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Abstract
Recently, commonsense knowledge models — pretrained language models (LM) fine-

tuned on knowledge graph (KG) tuples — showed that considerable amounts of commonsense
knowledge can be encoded in the parameters of large language models [Bosselut et al.,
2019]. However, as parallel studies show that LMs are poor hypothesizers of declarative
commonsense relationships [Petroni et al., 2019] on their own, it remains unclear whether
this knowledge is learned during pretraining or from fine-tuning on KG examples.

To investigate this question, we train commonsense knowledge models in few-shot settings
to study the emergence of their commonsense representation abilities. Our results show that
commonsense knowledge models can rapidly adapt from limited examples, indicating that
KG fine-tuning serves to learn an interface to encoded knowledge learned during pretraining.
Importantly, our analysis of absolute, angular, and distributional parameter changes during
few-shot fine-tuning provides novel insights into how this interface is learned.

1. Introduction

Driven by advances in pretrained language models [Liu et al., 2019, Raffel et al., 2019], recent
NLP systems have demonstrated considerable improvement [Clark et al., 2020, Lourie et al.,
2021] on benchmarks that test the commonsense representation and reasoning abilities of
NLP systems [Talmor et al., 2019, Sap et al., 2019b, Bhagavatula et al., 2020, Sakaguchi
et al., 2020]. Despite this success, it remains unclear how much commonsense knowledge
is actually directly encoded by these models. When prompted out-of-the-box to complete
commonsense declarative relationships (as depicted in Figure 1), they exhibit limited ability
to map their language modeling abilities to this task [Petroni et al., 2019, Zhou et al., 2020].

However, the zero-shot expression of declarative commonsense knowledge is but one use
of language that these models are pretrained to manifest. Infilling evaluations that entangle
this ability with general language expression may be narrow tests of true commonsense
representation ability. Indeed, commonsense knowledge models [Bosselut et al., 2019] —
which finetune pretrained LMs on examples from commonsense knowledge graphs [Speer
et al., 2017, Sap et al., 2019a, Jiang et al., 2021] — learn to express declarative commonsense
relationships much more effectively. This learning procedure allows these models to recalibrate
to the actual task of hypothesizing declarative knowledge. Simultaneously, these systems are
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Figure 1: Commonsense knowledge models can be trained to effectively hypothesize com-
monsense knowledge when trained in few-shots, implying that finetuning serves to learn and
interface to knowledge encoded during pretraining.

evaluated in challenging train/test settings (where head entities tested on cannot be seen
during training), indicating they may learn to transfer implicit representations of declarative
knowledge that are learned during pretraining [Hwang et al., 2021].

However, current commonsense knowledge models are trained on a large number of
examples from knowledge graphs. Consequently, this comprehensive finetuning obfuscates
whether these systems exhibit knowledge that was encoded during language pretraining [Geva
et al., 2020, Dai et al., 2021], or whether pretraining merely provides a favorable initialization
to learn to generalize from examples in the KG. In this work, we explore this question by
training commonsense knowledge models in a few-shot setting. We vary the training budgets
of KG examples that they receive, and evaluate their capacity to hypothesize commonsense
knowledge after training on each of these budgets. Using this framework, we discover whether
the finetuning process causes the model to learn new knowledge from the KG, or whether
the model learns an interface to existing knowledge it already encodes.

Our results demonstrate that few-shot commonsense knowledge models trained on knowl-
edge graphs in few-shots — up to 10,000× fewer tuples than the full KG — exhibit strong
performance relative to zero-shot LMs, and approach the performance of fully-trained knowl-
edge models. Our analysis supports the hypothesis that few-shot finetuning allows the model
to adapt knowledge it already encodes implicitly. We find that few-shot training mainly
changes parameters in the attention heads of the decoder transformer blocks. The large
feed-forward networks that serve as an implicit memory storage for information learned
during pretraining [Geva et al., 2020] are minimally updated. Furthermore, we observe that
larger knowledge models exhibit most of their parameter change across a more concentrated
set of parameters, implying they learn knowledge during pretraining in a less entangled
manner due to their capacity. Finally, we find that using natural language prompts to
represent relation inputs accelerates commonsense emergence. Our code, few-shot training
sets, and models are at https://github.com/allenai/few-shot-comet/.
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Head h Relation r Generated Tail t (COMeT) Generated Tail t (GPT-3)

nail AtLocation in wall 3 hammer 7

video camera ObjectUse video recording 3 record the grooming session 3

PersonX takes it to the vet HinderedBy PersonX doesn’t have time 3 PersonX doesn’t know where the vet is. 3

PersonX gets a call for an interview xAttr PersonX is qualified for the job 3 lucky 3

PersonX wants to learn how to swim xAttr PersonX isn’t confident in the water 3 a good idea 7

PersonX falls ill xEffect PersonX will miss work 3 is in bed 3

PersonX sprays by a skunk xEffect PersonX will be sick 3 is stinky 3

PersonX misses class xNeed to have a valid excuse 3 to have a class 3

PersonX notices a strange smell xWant to investigate the smell 3
PersonX is distracted by the
smell of PersonY’s perfume. 7

PersonX wants to learn how to sing xWant to take voice lessons 3 to learn how to play an instrument 7

Table 1: Examples of few-shot (n = 3) generations produced by COMeT (T5) and GPT-3.
COMeT (T5) produces diverse and novel tail hypotheses despite learning from few examples
and is able to learn the task interface more easily than GPT-3, which tends to copy the input
or generate unnecessary full sentences. Assessments (3, 7) are from human evaluators.

2. Background

In this work, we investigate few-shot performance and parameter change of commonsense
knowledge models to shed light on the dynamics of commonsense representation learning.
Below, we describe background concepts to contextualize this analysis.
Commonsense Knowledge Graphs are structured, relational representations of common-
sense knowledge. In our study, we use Atomic20

20 [Hwang et al., 2021],1 a commonsense KG
with 1.33M inferential knowledge tuples about entities and events. It represents a large-scale
commonsense repository of textual descriptions that encode social and physical aspects of
common human experiences. Across its 1.33M tuples, it captures information about 23
relationship types. Example head entities and relations are shown in Table 1. Atomic20

20 is
split into training, development, and test subsets such that no head entities in one set appear
in any other. This property allows models trained on this resource to be evaluated on their
capacity to generalize commonsense relationships to new entities, events, and situations.
Commonsense Knowledge Models represent facts by learning to encode a commonsense
KG [Bosselut et al., 2019]. They are pre-trained as language models and fine-tuned on
knowledge graph tuples to learn to hypothesize knowledge relationships through language
generation. After training on a large collection of tuples from a KG, they learn the structure
and relationships encoded by that KG. Furthermore, because they are seeded with pretrained
language models, they learn to generalize the relationships to other entities about which the
LM implicitly encodes knowledge [Petroni et al., 2019, Roberts et al., 2020]. Consequently,
they can be used to produce precise knowledge on-demand for any entity that can be expressed
through language.

3. Experimental Setup

In this section, we outline our experimental setting for training few-shot knowledge models.

Input Each tuple in the Atomic20
20 knowledge graph is composed of a {head h, relation r,

tail t} triplet. The head and tail entities in the triplet are natural language words or phrases.

1. Downloadable at https://allenai.org/data/atomic-2020
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Relation r Prompt

ObjectUse h is used for t
AtLocation You are likely to find a h in a t
xIntent Because of h, PersonX wanted t
xWant After h, PersonX would want t.
xAttr h is seen as t
isAfter Something that happens after h is t
oWant As a result of h, others would want t

Table 2: Examples of language prompts used
to represent relations for knowledge models.
Prompts significantly speed up transfer in
few-shot learning settings.

h tokens r token t tokens

PersonX goes to the mall <xIntent> to buy clothes

PersonX goes to the mall because they wanted  to buy clothes

h tokens prompt r t tokens

Figure 2: With prompting, KG relations are
mapped to natural language templates that
more closely resemble inputs the model has
learned to process from pretraining.

Commonsense knowledge models are trained by providing the tokens of h and r as inputs to
the model and learning to generate the tokens of t. In this work, rather than initializing r
with a new token and random embedding [Bosselut et al., 2019], we automatically format
the input tuples into natural language prompts to represent the relation [Feldman et al.,
2019, Jiang et al., 2020]. Table 2 shows examples of such prompts.

Training We source training tuples from the Atomic20
20 training set [Hwang et al., 2021].

When constructing few-shot training sets, we set a target number n of examples to randomly
sample from the knowledge graph for each relation (i.e., n = 3 =⇒ 3 examples × 23
relations = 69 total training examples). Once a training set of examples is produced, the
model is trained on this subset to minimize the negative log-likelihood of the tokens of the
tail entity for each tuple. We use the AdaFactor optimizer [Shazeer and Stern, 2018] with
a constant learning rate of 0.001, a mini-batch size of 4, and train the model for 3 epochs.
Unless stated otherwise (§5.3), we use T5-11B [Raffel et al., 2019] as a seed language model
for all experiments. To pick hyperparameters during fine-tuning, we run 5 different sets of
hyperparameters and use a validation set of equivalent size to the training set (n examples /
relation) to evaluate performance [Perez et al., 2021].

Evaluation We evaluate the knowledge hypothesized by the trained few-shot models using
human and automatic evaluations. For the human evaluation (Accept % in Table 3), we use
the procedure described in [Hwang et al., 2021]. We ask annotators to label the plausibility
generated tuples using a 4-point Likert scale: {always/often true (+2), sometimes/likely true
(+1), false/untrue (−1), nonsensical (−2)}. We collect 3 annotations per relation, convert
each annotation to an acceptability label (i.e., {+1,+2} → 3, {−1,−2} → 7) and use the
majority label as the acceptability judgment. Evaluation agreement is measured using Fleiss’s
κ = 0.49 for the acceptability judgment. We also evaluate hypothesized knowledge tuples
using automatic metrics: BLEU-1 [Papineni et al., 2002], METEOR [Banerjee and Lavie,
2005], ROUGE-L [Lin, 2004], and CIDEr [Vedantam et al., 2015]. For few-shot experiments,
we report average performance across 5 runs with different training sets.

4. Do few-shot knowledge models learn?

We evaluate the general few-shot commonsense interface learning capability of large-scale
language models. We train COMeT models as described in §3 and set the number of training
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Methodology Model BLEU-1 METEOR ROUGE-L CIDEr Accept %

zero-shot GPT-2 XL 10.1 8.2 9.8 4.7 36.6
GPT-3 14.3 11.7 13.9 4.7 39.9

few-shot
(n = 3)

GPT-2 XL (augmentation) 15.1 10.2 13.5 6.5 37.5
COMeT (GPT-2 XL) (finetuning) 18.4 11.1 14.2 7.3 40.1
GPT-3 (augmentation) 29.9 17.8 25.3 19.0 71.7
COMeT (T5) (finetuning) 24.2 14.4 21.3 18.1 75.7

fully COMeT (GPT-2 XL) 40.7 29.2 48.5 65.3 72.5

supervised COMeT (BART) 46.9 33.0 49.5 65.8 84.5
COMeT (T5) 48.2 34.1 50.0 66.4 86.4

Table 3: Comparison between various trained knowledge models. Few-shot (n = 3) knowledge
models transfer well in both the finetuning (COMeT) and augmentation (GPT-3) settings.

examples per relation to n = 3. We report several zero-shot and few-shot augmentation
baselines (e.g., GPT-{2 XL, 3}), which prepend n training examples (for the same relation) to
the start of the input sequence as a prompt, and condition the generation on these additional
examples. Few-shot augmentation baselines are not fine-tuned, but receive examples using
the same prompt formats as the finetuning baselines (Tables 2, 8). Similar to fine-tuning,
we report average performance across 5 different example sets used for prompting. As T5
models are not pretrained using a causal language modeling objective, reporting zero-shot
evaluation performance for a multi-word generation task would be an unfair comparison,
so we only report limited numbers in Table 6 of Appendix A. We also report the results of
several fully supervised COMeT knowledge models.

Findings We find that both the few-shot augmentation and few-shot learning settings are
able to produce high quality commonsense knowledge tuples, indicating that large LMs are
also efficient few-shot learners (in addition to showcasing impressive few-shot prompting
abilities). Using only n = 3 tuples per relation, both GPT-3 and COMeT (T5) produce high-
quality tuples that are accepted as plausible by human evaluators more than 70% of the time —
75.7% for COMeT (T5). While this performance falls short of the fully supervised knowledge
model performance — 86.4% — it demonstrates that the commonsense representation
abilities of language models extends much further than their zero-shot prompting abilities.
Furthermore, these abilities can be measured by finetuning on limited examples, supporting
the hypothesis that early-stage finetuning serves to learn an interface to knowledge learned
during pretraining. In the following section, we support this hypothesis by investigating
how parameters of large language models change during finetuning (across different training
budgets n §5.2, different model size §5.3, and different prompting strategies §5.4).

5. How do knowledge models learn?

Despite strong empirical results showing that pretrained language models can rapidly adapt
to become few-shot language learners [Schick and Schutze, 2021a], little work has focused
on how language models learn to adapt knowledge learned from pretraining to perform well
on downstream end tasks. We explore this problem in the context of few-shot knowledge
modeling and investigate how the parameters of few-shot commonsense knowledge models
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change during finetuning. We define three measures to investigate parameter change: absolute
parameter change, angular parameter change, and distribution of parameter change.

5.1 Measuring parameter change

Notation To more easily discuss measures of parameter change during knowledge model
fine-tuning, we review the structure of the transformer blocks in an encoder-decoder trans-
former LM [Vaswani et al., 2017]. Encoder blocks consist of a self-attention layer followed by a
feedforward network. Each self-attention layer contains parameter matrices (referred to in the
following sections as q, k, v) that project the query, key, and value inputs before computing
a scaled dot-product attention between the key and value, and an output projection o of
the attended value vectors. The trainable parameters in the feedforward network consist of
two linear projection matrices wi, wo. Each decoder block consists of the same parameter
matrices with an additional cross-attention layer (parameter matrices xq, key xk, value xv,
and output xo) that attends to the outputs of the encoder blocks.

Absolute Parameter Change To measure a normalized quantity for average change
in each parameter matrix, we compute a normalized `1 distance for each set of parameter
matrices in the transformer blocks. Without loss of generality, for each of these parameter
matrices, we define ΘPT as the matrix of parameters before finetuning, and ΘFT as the
matrix of parameters post-finetuning. The normalized `1 distance between these two matrices
for each parameter matrix type is then:

d`1 =
1

mn

∥∥ΘFT −ΘPT
∥∥
1
, (1)

where m and n correspond to the row and column dimensionality of the parameter matrix,
and ‖·‖1 corresponds to the `1 norm. Intuitively, d`1 measures the degree of absolute per
parameter shift between these two sets of parameters.

Angular Parameter Change However, measuring normalized `1 distance solely captures
how the magnitude of the parameter matrix changes, but obfuscates relative drift between
parameters in each matrix. For instance, a matrix with high average L1 change may in fact
have small relative changes between its elements (i.e., the parameter change may mainly
cause a scaling effect on the output vectors). Consequently, we measure the row-wise
angular distance between ΘPT and ΘFT to capture the rotational drift of parameters during
finetuning:

dang =
1

mπ

m∑
k=1

cos−1

(
〈ΘFT

k ,ΘPT
k 〉∥∥ΘFT

k

∥∥
2

∥∥ΘPT
k

∥∥
2

)
, (2)

where k indexes a common row vector in both parameter matrices, 〈·〉 corresponds to an inner
product, ‖·‖2 is the Euclidean (`2) norm, and cos−1 is the inverse cosine operation. Contrary
to d`1 , which represents a per-parameter average distance, dang is computed between all
corresponding rows of the parameter matrices, ΘPT and ΘFT , and averaged per row. We
choose to average rows as opposed to columns as each row in the parameter matrix performs
a dot product with the input vector to the transformation, and has a correspondence to an
individual element in the output vector.
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Figure 3: Example visualization of area under curve for FFN parameter matrices, n = 30

Figure 4: Normalized `1 distance between ΘFT and ΘPT for each parameter matrix at each
layer of the encoder and decoder of the COMeT (T5-Large) model. We report the change
for training budgets of n = 3, 30, and 300.

Distributional Parameter Change In additional to angular distance, we also report the
distribution of parameter changes for a given matrix. More concretely, parameter changes
may be concentrated across varying numbers of dimensions. We compute the change in each
dimension by calculating W = |ΘPT −ΘFT |, sorting parameters by their absolute change,
and plotting % cumulative parameter number against % cumulative mass as a function of a
given parameter change wi ∈W :(

count(w ∈W,w ≤ wi)

count(w ∈W )
,

∑
w∈W,w≤wi

w∑
w∈W w

)
(3)

Figure 3 visualizes this relationship. Intuitively, a matrix with a small AUC has a skewed
relative distribution of changes, signaling that a select number of dimensions are responsible
for a large amount of the learning during fine-tuning. Likewise, a matrix with a large AUC
learns a relatively even parameter change distribution.

5.2 How does few-shot learning change the parameters of the pretrained LM?

We first investigate how different example budgets affect parameter change. We train a
few-shot COMeT (T5) model across different example budgets (n ∈ {3, 30, 300}). Table 4
shows that performance increases monotonically as we grow the example budget. To explore
the differences between models, we investigate the parameter changes between each fine-tuned
model in Fig. 4. We include additional heatmaps for angular change in the Appendix.
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Findings In Figure 4, we observe that the `1 distance between ΘFT and ΘPT increases as
we increase the training budget in the decoder. Interestingly, we note that most parameter
changes occur in the decoder of the LM (and more strongly in its later layers), rather
than the encoder, implying that much of the parameter shift may be due to learning how
to express commonsense knowledge in a declarative form. Furthermore, when comparing
the changes across parameter matrix types, the key and value matrices of the attention
layers change more while the feedforward network parameters (wi, wo) remain relatively
unchanged. These findings suggest the model learns how to process the structure of declarative
commonsense knowledge expressions, but does not need to modify its stored representations
of this knowledge learned during pretraining, hinting at a possible explanation for the success
of adapters for limited-parameter finetuning of NLP models [Houlsby et al., 2019].

# Ex COMeT Model BLEU-1 METEOR ROUGE-L CIDEr

3
T5-Small 13.4 ± 3.0 8.8 ± 3.1 11.5 ± 1.1 6.8 ± 1.0
T5-Large 23.5 ± 1.3 13.6 ± 1.1 19.1 ± 1.2 12.6 ± 2.1
T5-11B 24.2 ± 1.7 14.4 ± 1.9 21.3 ± 3.7 18.1 ± 7.9

30
T5-Small 26.2 ± 2.0 15.5 ± 0.4 20.8 ± 0.6 11.9 ± 0.3
T5-Large 29.6 ± 0.6 16.6 ± 0.4 23.0 ± 0.5 14.3 ± 0.6
T5-11B 31.9 ± 0.3 18.7 ± 0.5 26.0 ± 0.6 19.8 ± 1.2

300
T5-Small 37.0 ± 1.0 23.5 ± 0.4 35.9 ± 0.9 36.8 ± 2.2
T5-Large 39.1 ± 0.8 26.3 ± 0.4 40.4 ± 0.9 46.6 ± 2.0
T5-11B 39.1 ± 0.9 26.7 ± 0.9 40.1 ± 1.5 48.5 ± 2.8

Table 4: Effect of model size for few-shot commmonsense knowledge modeling performance.

5.3 How does model size affect knowledge model learning?

We train a few-shot COMeT (T5) model (with n = 30) across different pretrained language
model sizes, i.e. Small, Large, and 11B, with 60M, 770M, and 11B parameters, respectively.

Findings In Table 4, we observe that the importance of model size decreases as the training
budget increases, reinforcing that model scale is critically important in few-shot learning
settings [Brown et al., 2020]. When examining the parameter change heatmaps in Figure 5,
we note the `1 distances between finetuned and original parameters increase as model size
increases. As these distances are normalized by the number of parameters, this observation
implies that when trained on the same examples, the smaller model experiences smaller
magnitude gradient updates over time. This pattern indicates more destructive inference
between parameter updates in the smaller models, an observation supported by the larger
angular parameter changes in the encoders of the smaller models.

Interestingly, several parameter matrices display high angular change but low `1 change
(e.g., in early wo layers of T5-11B), suggesting that a matrix with low average absolute
parameter change may still contain critical dimensions which are used to learn the task. To
investigate these differences, we look at the AUC heatmaps (Fig. 5, bottom row), and note
that as the feedforward networks get larger with increasing model size, the relative number of
parameters that change to encode new information drops drastically in both the decoder and
encoder. Furthermore, the lower AUCs for the encoder parameter changes indicate that the
encoder layers generally experience more concentrated changes as the model size increases.
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Figure 5: Parameter change measures for different knowledge model sizes.

These two patterns suggest that the increased capacity of larger language models allow them
to encode knowledge in a less distributed manner, making their knowledge easier to access.

5.4 How do prompts influence knowledge model learning?

Recent work has shown that prompts can help models elicit knowledge from pretrained
language representations [Feldman et al., 2019, Shin et al., 2020]. However, eliciting knowledge
through zero-shot prompting has drawbacks. For example, the output is sensitive to subtle
variations in the construction of the language prompt [Jiang et al., 2020]. Here, we explore
whether prompts can accelerate few-shot learning by initializing natural language prompts
for each relation (Table 2) training on these expressions of relations rather than initializing
new relation token embeddings for each relation as in Bosselut et al. [2019]. As a control for
whether the model understands the semantics of specific relation prompts, or merely benefits
from arbitrary expressions of relations using language, we also train a model where we shuffle
prompts among the relations (i.e. shuffling the Prompt column of Table 2).

Findings In Table 5, we see that knowledge models can efficiently learn from fewer
examples when relations are represented using correct natural language prompts (∼10×
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# Ex Input BLEU-1 METEOR ROUGE-L CIDEr

3 Prompts 24.2 ± 1.7 14.4 ± 1.9 21.3 ± 3.7 18.1 ± 7.9
Embedding 13.9 ± 1.3 11.4 ± 1.2 13.5 ± 0.9 7.4 ± 0.8

30
Prompts 31.9 ± 0.3 18.7 ± 0.5 26.0 ± 0.6 19.8 ± 1.2
Embedding 18.1 ± 0.8 13.5 ± 1.1 16.7 ± 1.1 9.7 ± 1.7
Shuffled 15.6 ± 0.8 11.3 ± 0.5 14.2 ± 0.5 8.3 ± 0.8

Table 5: Prompts accelerate few-shot commonsense interface learning.

Figure 6: Average angular distance between original and finetuned parameters for prompts,
shuffled prompts, and initialized relation embeddings. Each model is trained with n = 30.

fewer examples), an observation made by contemporaneous works on other tasks [Scao and
Rush, 2021]. Interestingly, however, we find that the absolute and angular distance heatmaps
for prompt and embedding relation inputs are similar (Fig. 6; `1 heatmap in Appendix),
implying that most of the parameter change during fine-tuning is not linked to the way the
relation is represented. One notable difference is that models with embedding relation inputs
have a significant angular change in layer 4 of the decoder wo matrix. Models that use
prompts see a larger angular change in layer 2 of the decoder wo matrix. This discrepancy
suggests that both models must learn to adapt their parameters to the new input format,
but do so by adapting the same parameters at different layers. We note that there is no such
concentrated angular change for the Shuffled setting, perhaps because the model must first
unlearn language relationships between head entities and prompts, requiring more uniform
parameter updates.

6. Related Work

Commonsense Knowledge Models Our work uses commonsense knowledge models,
first proposed by Bosselut et al. [2019], to learn from commonsense knowledge graphs. Hwang
et al. [2021] also trained commonsense models on Atomic20

20, but focused on fully-supervised
learning. Other works have developed commonsense knowledge models that are grounded to
visual scenes [Park et al., 2020, Da et al., 2021], requiring multimodal commonsense inference
generation. Recent works extend commonsense knowledge models beyond generating single-
hop inferences and generate multi-branch [Bosselut et al., 2021] and multi-hop [Wang et al.,
2020b] inferential structures. Commonsense knowledge base completion is also a closely
related task to commonsense inference generation [Li et al., 2016, Saito et al., 2018]. Recent
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works on this task combine language and graph structure representations for improved
generalization [Malaviya et al., 2020, Wang et al., 2020a]. Our work differs from these prior
studies by investigating commonsense knowledge models in few-shot settings, and analyzing
the emergence of their capabilities as a function of parameter change.

Few-shot Learning with Prompting In recent years, the term few-shot has taken two
meanings: the classical definition of training on limited examples [Fei-Fei et al., 2006, Fink,
2005], and a new in-context definition where models are given examples as a prepended
augmentation of their context and process these examples as input to recognize the structure
of a task [Brown et al., 2020]. Various contemporaneous works related to ours have studied the
use of natural language and artificial prompts in language models [Schick and Schutze, 2021a,
Gao et al., 2020, Tam et al., 2021, Schick and Schutze, 2021b] as accelerators of few-shot
learning. Scao and Rush [2021] further empirically study the data efficiency advantage gained
from using prompting to represent a task. Our work differs from these studies in that we
do not use prompts to map a classification task to masked language modeling, but instead
use prompts as priming text for a generation task. Most similar to our approach is perhaps
Schick and Schütze [2020], which uses prompts for few-shot summarization, but their work
does not focus on how few-shot training affects the learned representations of their model.

7. Conclusion

In this work, we propose few-shot commonsense knowledge modeling, where models are
finetuned on a limited number of examples to evaluate how efficiently they can adapt their
pretrained representations to the task of hypothesizing commonsense knowledge tuples. Our
results demonstrate that large language models require few examples to adapt their learned
representations to the task and our analysis explores how their parameters change to enable
this rapid emergence of commonsense representation ability.
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Appendix A. Accuracy in zero-shot MLM setting

While little work has explored few-shot knowledge completion, recent works have investigated
performance of zero-shot knowledge graphs [Petroni et al., 2019, Feldman et al., 2019]. Thus,
we investigate the ability of T5-11B to complete commonsense knowledge in a zero-shot
setting.

Model BLEU-1 METEOR ROUGE-L CIDEr

T5 - Zero-shot 6.7 7.8 7.3 7.3
T5 - Few-shot (n = 3) 31.9 18.7 26.0 19.8
T5 - Fully-supervised 48.2 34.1 50.0 66.4

Table 6: Zero-shot performance of T5-11B

We use prompts to leverage the masking objective of the language model pretraining. Since
the mask only predicts several tokens at a time, for relations with longer length tail entities,
we allow the model to predict up to 7 mask tokens in succession, or until the model predicts
an empty string for the mask. We suggest that this is still only a workaround, and masked
models are poor predictors of longer length tail entities, as indicated by our results above.

Appendix B. Additional Results on the Effect of Relation Input Format

In Table 7, we provide further experimental results on the effect of relation input format on
few-shot performance. Namely, we extend the results from Table 5 with the case n = 300.
These results confirm that knowledge models can efficiently learn from fewer examples when
relations are represented using natural language prompts. We also show the results from
using paraphrases of the main prompts for training (original and paraphrased prompts can
be found in Tables 8 and 10, respectively). We find that the paraphrased prompts do cause
a slight drop in performance, but that this drop is generally close to the margin of error,
indicating that while prompt formulation is an important consideration [Jiang et al., 2020],
fine-tuning on the prompts does make the model less sensitive to prompt variations.

# Ex Input BLEU-1 METEOR ROUGE-L CIDEr

3 Prompts 24.2 ± 1.7 14.4 ± 1.9 21.3 ± 3.7 18.1 ± 7.9
Embedding 13.9 ± 1.3 11.4 ± 1.2 13.5 ± 0.9 7.4 ± 0.8

30

Prompts 31.9 ± 0.3 18.7 ± 0.5 26.0 ± 0.6 19.8 ± 1.2
Embedding 18.1 ± 0.8 13.5 ± 1.1 16.7 ± 1.1 9.7 ± 1.7
Shuffled Prompts 15.6 ± 0.8 11.3 ± 0.5 14.2 ± 0.5 8.3 ± 0.8
Paraphrased 30.5 ± 1.3 18.3 ± 0.5 24.5 ± 0.8 18.4 ± 1.4

300 Prompts 39.1 ± 0.9 26.7 ± 0.9 40.1 ± 1.5 48.5 ± 2.8
Embedding 25.2 ± 0.8 18.5 ± 0.9 26.4 ± 1.9 26.8 ± 4.3

Table 7: Effect of relation input format on few-shot performance. Prompts accelerate few-shot
commonsense interface learning. We show mean performance over 5 random splits of training
examples, and standard deviation (±) between splits.
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Relation Template

ObjectUse {} is used for
AtLocation You are likely to find {} in
MadeUpOf {} is made up of
HasProperty {} is
CapableOf {} can
Desires {} wants
NotDesires {} does not want
isAfter Something that happens after {} is
HasSubEvent Something you might do while {} is
isBefore Something that happens before {} is
HinderedBy {} is hindered by
Causes Sometimes {} causes
xReason {}. The reason for PersonX doing this is
isFilledBy {} can be filled by
xNeed But before {}, PersonX needed
xAttr {} is seen as
xEffect As a result of {}, PersonX will
xReact As a result of {}, PersonX feels
xWant After {}, PersonX would want
xIntent Because of {}, PersonX wanted
oEffect as a result of {}, others will
oReact as a result of {}, others would feel
oWant as a result of {}, others would want

Table 8: Prompts used for relations in ATOMIC2020.

Something you might do while {} is ___
Something you might do while design software is determine deliverables
Something you might do while scuba dive is take off scuba gear
Something you might do while play ball is put on mitt

Table 9: Example of augmentation experiments, following [Brown et al., 2020]. {} indicates
the location of the head, and the language model is asked to complete the tail by finishing
the sentence.
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Relation Template

ObjectUse a {} can be used for
AtLocation You could find {} in the location
MadeUpOf {} is made up of
HasProperty {} will have
CapableOf {} is capable of
Desires a {} desires
NotDesires a {} does not desire
isAfter Before {},
HasSubEvent You might do {} while doing
isBefore After {},
HinderedBy {}. This is hindered by
Causes Sometimes {} causes
xReason {}. PersonX did this because
isFilledBy {} is filled
xNeed Before {}, PersonX needs to
xAttr {}. An attribute of PersonX is
xEffect The effect of {} PersonX will be
xReact As a result of {}. PersonX will be
xWant After {}, PersonX will want to
xIntent For {}, PersonX did this to
oEffect An effect of {} on others will be
oReact As a result of {}, other feel
oWant After {}, others will want to

Table 10: Paraphrased version of the prompts used (for paraphrased experiment in the
Appendix.)
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Appendix C. Additional Experiments on Parameter Change Measures

In addition, we provide extensive results of the `1 and angular distances, as well as the
distributional parameter change metric (AUC), for both the encoder and decoder of various
model sizes (Small, Large, and 11B) and different example budget (n ∈ {3, 30, 300}) (Figures 7-
36). When computing AUC diagrams, we round each weight change to the nearest 10−5.

Figure 7: Area Under Curve, Decoder, T5-11B, n = 30

Figure 8: Area Under Curve, Decoder, T5-Large, n = 30
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Figure 9: Area Under Curve, Decoder, T5-Small, n = 30

Figure 10: Area Under Curve, Encoder, T5-11B, n = 30

Figure 11: Area Under Curve, Encoder, T5-Large, n = 30
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Figure 12: Area Under Curve, Encoder, T5-Small, n = 30

Figure 13: Angular change, Decoder, T5-11B, n = 3

Figure 14: Angular change, Decoder, T5-11B, n = 30

21



Figure 15: Angular change, Decoder, T5-11B, n = 300

Figure 16: Angular change, Encoder, T5-11B, n = 3

Figure 17: Angular change, Encoder, T5-11B, n = 30
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Figure 18: Angular change, Encoder, T5-11B, n = 300

Figure 19: Angular change, Decoder, T5-11B (relation embedding), n = 30

Figure 20: Angular change, Encoder, T5-11B (relation embedding), n = 30
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Figure 21: L1 change, Decoder, T5-11B, n = 3

Figure 22: L1 change, Decoder, T5-11B, n = 30

Figure 23: L1 change, Decoder, T5-11B, n = 300
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Figure 24: L1 change, Encoder, T5-11B, n = 3

Figure 25: L1 change, Encoder, T5-11B, n = 30

Figure 26: L1 change, Encoder, T5-11B, n = 300
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Figure 27: L1 change, Decoder, T5-11B (relation embedding), n = 30

Figure 28: L1 change, Encoder, T5-11B (relation embedding), n = 30

Figure 29: L1 change, Encoder, T5-Large, n = 30
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Figure 30: L1 change, Decoder, T5-Large, n = 30

Figure 31: L1 change, Encoder, T5-Small, n = 30

Figure 32: L1 change, Decoder, T5-Small, n = 30
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Figure 33: L1 change, Encoder, T5-11B, Shuffled Prompts, n = 30

Figure 34: L1 change, Decoder, T5-11B, Shuffled Prompts, n = 30

Figure 35: Angular change, Encoder, T5-11B, Shuffled Prompts, n = 30
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Figure 36: Angular change, Decoder, T5-11B, Shuffled Prompts, n = 30

29


	Introduction
	Background
	Experimental Setup
	Do few-shot knowledge models learn?
	How do knowledge models learn?
	Measuring parameter change
	How does few-shot learning change the parameters of the pretrained LM?
	How does model size affect knowledge model learning?
	How do prompts influence knowledge model learning?

	Related Work
	Conclusion
	Accuracy in zero-shot MLM setting
	Additional Results on the Effect of Relation Input Format
	Additional Experiments on Parameter Change Measures

