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Abstract

There has been considerable recent interest in esti-
mating heterogeneous causal effects. In this paper,
we study conditional average partial causal effects
(CAPCE) to reveal the heterogeneity of causal ef-
fects with continuous treatment. We provide con-
ditions for identifying CAPCE in an instrumen-
tal variable setting. Notably, CAPCE is identifi-
able under a weaker assumption than required by a
commonly used measure for estimating heteroge-
neous causal effects of continuous treatment. We
develop three families of CAPCE estimators: sieve,
parametric, and reproducing kernel Hilbert space
(RKHS)-based, and analyze their statistical proper-
ties. We illustrate the proposed CAPCE estimators
on synthetic and real-world data.

1 INTRODUCTION

Instrumental variable (IV) analysis is a powerful tool used
to elucidate causal relationships between treatment (X) and
outcome (Y ) when a controlled experiment is not feasible
[Imbens, 2014, Angrist and Krueger, 2001]. Traditionally,
there are a large number of works focusing on binary or
categorical treatment variables [Imbens and Angrist, 1994,
Balke and Pearl, 1997]; recently, there has been a growing in-
terest in continuous treatment variables [Hirano and Imbens,
2005, Kennedy et al., 2017, Bahadori et al., 2022]. There
is also considerable recent interest in estimating heteroge-
neous causal effects across subsets of the population [Athey
and Imbens, 2016, Ding et al., 2016, Athey and Imbens,
2019, Künzel et al., 2019, Wager and Athey, 2018, Zhang
et al., 2022, Singh et al., 2023], including IV-based methods
[Angrist, 2004, Syrgkanis et al., 2019, Huntington-Klein,
2020, Bargagli-Stoffi et al., 2022]. Most of the works focus
on conditional average causal effect (CACE) E[Y1 − Y0|w],
also known as conditional average treatment effect (CATE),

for evaluating heterogeneous causal effects of a binary X ,
where Yx denotes the potential outcome under treatment
X = x, and W are covariates (e.g. gender, age, and race).

In this work, we study estimating heterogeneous causal
effects of a continuous treatment via the IV method. Existing
work in this direction has focused on estimating E[Yx|w].
The most widely used methods include parametric two-stage
least squared (PTSLS) [Wright, 1928, Angrist and Pischke,
2009, Wooldridge, 2010], sieve nonparametric two-stage
least squared (sieve NTSLS) [Newey and Powell, 2003,
Chen and Christensen, 2018], and Kernel IV [Singh et al.,
2019]. The line of works in [Syrgkanis et al., 2019, Dikkala
et al., 2020, Muandet et al., 2020, Bennett et al., 2023] focus
on the efficiency of estimators assuming simple additive
errors. All these methods rely on a separability assumption
for identifying E[Yx|w] [Newey and Powell, 2003].

Another quantity for evaluating the causal effects of a con-
tinuous treatment is average partial causal effect (APCE)
E[∂xYx] [Chamberlain, 1984, Wooldridge, 2005, Graham
and Powell, 2012]. Wong [2022] provided a condition for
identifying E[∂xYx] and Kawakami et al. [2023] presented
APCE estimators.

In this paper, we consider E[∂xYx|w], termed conditional
average partial causal effect (CAPCE), to capture the hetero-
geneous causal effects of a continuous treatment. CAPCE
extends APCE and is a natural generalization of the CACE
of a binary treatment. The quantity represented by CAPCE
has been implicitly studied in the literature (e.g. [Galagate,
2016]). Still existing works have focused on E[Yx|w]. One
contribution of this work is to show that under the IV model,
CAPCE is identifiable under a weaker separability assump-
tion than required by the previous work (sieve NTSLS, PT-
SLS, Kernel IV) for identifying E[Yx|w]. Thus, comput-
ing CAPCE allows scientists to estimate causal effects in a
larger class of models. Granted, given an estimated E[Yx|w],
one can compute its derivative to obtain CAPCE, but not the
other way around. However, in practice, the causal effect
from a reference point (e.g., CACE) is often the main inter-
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Figure 1: A causal graph representing the IV model.

est, and CAPCE is enough to compute causal effects from a

reference point: E[Yx′′ − Yx′ |w] =

∫ x′′

x′
E[∂xYx|w]dx.

We then develop three families of methods for estimating
CAPCE: sieve, parametric, and reproducing kernel Hilbert
space (RKHS)-based, and analyze their statistical properties.
Finally, we illustrate the proposed estimators on synthetic
data, showing superior performance to existing methods.
We also evaluate CAPCE in a real-world dataset.

2 NOTATION AND BACKGROUND

We represent each variable with a capital letter (X) and
its realized value with a small letter (x). Let ΩX be the
domain of X , E[Y ] be the expectation of Y , P(X ≤ x)
be the cumulative distribution function (CDF) of X , and
p(X = x) be the probability density function (PDF) of X .
A metric space ⟨Ω, d⟩, where distance function d(x, y) is
defined by a given norm ∥x− y∥ for x, y ∈ Ω, is compact if
every sequence in Ω has a convergent sub-sequence whose
limit is in Ω. If every Cauchy sequence of points in Ω has a
limit in Ω, Ω is called complete.

Sobolev norm [Gallant and Nychka, 1987, Leoni,
2009]. Let λ be a d + 1 dimensional vec-

tor of non-negative integer, |λ| =

d+1∑
l=1

λl, and

Dλf(x,w) = ∂|λ|f(x,w)/∂xλ1∂w1
λ2 · · · ∂wd

λd+1 .
Sobolev norm is defined as follows: ∥f∥W l,p =∑

|λ|≤l

∫
{Dλf(x,w)}pdxdw


1/p

for 1 ≤ p < ∞,

and ∥f∥W l,∞ = max|λ|≤l sup(x,w)D
λf(x,w). Note that

W 0,p norm coincides with Lp norm for 1 ≤ p ≤ ∞.

Structural Causal Models (SCM). We use SCM as
our framework [Pearl, 2009]. An SCM M is a tuple
⟨V ,U ,F ,PU ⟩, where U is a set of exogenous (unobserved)
variables following a joint distribution PU , and V is a set
of endogenous (observable) variables whose values are de-
termined by structural functions F = {fVi}Vi∈V such that
vi := fVi(paVi

,uVi) where PAVi ⊆ V and UVi ⊆ U .
Each SCM M induces an observational distribution PV

over V , and a causal graph G(M) over V in which there
exists a directed edge from every variable in PAVi to Vi.
An intervention do(x) of setting endogenous variables X
to constants x replaces the functions of X by the constants
x and induces a sub-model Mx. We denote the potential
outcome Y under intervention do(x) by Yx(u), which is
the solution of Y in the sub-model Mx given U = u.

Instrumental Variable (IV) Model with Covariates. We
consider the IV model represented by the causal graph in Fig
1, with the following SCM MIV over V = {Z,X, Y,W }
and U = {H,uX ,uY ,uZ ,uW }:

Y := fY (X,W ,H,uY ), X := fX(Z,W ,H,uX),

W := fW (H,uW ), Z := fZ(uZ),
(1)

where fW is a vector function. We assume all variables are
continuous, W are d-dimensional pre-treatment covariates,
and H stands for unmeasured confounders. This IV model
has been studied in e.g., [Hartford et al., 2017, Huntington-
Klein, 2020]. We further consider an IV model with an
additional edge W → Z in Appendix A.2.

Related work. Under the IV model, Newey and Powell
[2003] introduced sieve NTSLS for identifying and esti-
mating E[Yx|w] via an integral equation, E[Y |Z = z] =∫
ΩW

∫
ΩX

p(X = x,W = w|Z = z)E[Yx|w]dxdw, un-

der the following assumption called separability:

fY (X,W ,H,uY ) = f1Y (X,W ,uY ) + f2Y (H,uY ),

E[f2Y (H,uY )|W ] = 0,
(2)

which says the function fY (X,W ,H,uY ) is in the form
of a summation of two functions, one over (X,W ) and
one over H . Parametric PTSLS [Angrist and Pischke, 2009,
Wooldridge, 2010] and Kernel IV [Singh et al., 2019] meth-
ods for estimating E[Yx|w] have also been developed under
the separability assumption.

Recently, Wong [2022] introduced an integral equation for
identifying APCE E[∂xYx] := EU [∂xYx(U)] under the IV
model with no covariates W : E[Y |Z = z] − E[Y |Z =

z0] = −
∫
ΩX

{P(X ≤ x|Z = z) − P(X ≤ x|Z =

z0)}E[∂xYx]dx. Kawakami et al. [2023] has developed para-
metric (P-APCE) and Picard iteration-based (N-APCE) esti-
mators for APCE. In this paper, we extend their results and
develop three families of methods for estimating CACPE
E[∂xYx|w]. Our parametric estimator reduces to P-APCE
when W is empty. The sieve and RKHS estimators in this
paper were not provided in [Kawakami et al., 2023]. We note
that Picard-iteration estimator in [Kawakami et al., 2023]
is not suitable here because equation (3) uses a PDF in the
integral kernel instead of a CDF in the equation for APCE.



3 IDENTIFICATION OF CAPCE

First, we formally define conditional average partial causal
effect (CAPCE) to capture the heterogeneous causal effects
of a continuous treatment. Then we present a theorem for
identifying CAPCE under the IV model.

Definition 1 (CAPCE). E[∂xYx|w] :=

EU

[
∂

∂x
Yx(U)

∣∣∣W = w

]
.

CAPCE is a real-valued function from x ∈ ΩX and w ∈
ΩW to R. It is a generalization of CACE for continuous
treatment. It is also a generalization of APCE E[∂xYx] to
represent heterogeneous causal effects. Next, we present
conditions for identifying CAPCE under the IV model.

Assumption 3.1. Under the SCM MIV , given W = w,

1. Instrument relevance: IV Z has a causal effect on X ,
i.e., E[Xz] is not a constant function of z.

2. Yx is differentiable and bounded in x ∈ ΩX .

3. sup
x,z,w

p(Xz = x|W = w) <∞.

4. The set of distributions P(X|Z = z,W = w) induced
by varying z is a complete set.

The first assumption is standard for the IV setting. The
second assumption means that there exists CAPCE for all
subjects for x ∈ ΩX and w ∈ ΩW . The third assumption
means the density function of Xz,w is bounded. The fourth
assumption implies that h is a zero function if E[h(X)|Z =
z,W = w] does not depend on z for all w ∈ ΩW , which is
also assumed in [Newey and Powell, 2003] for identifying
E[Yx|w].

Assumption 3.2 (Separability on X). fY (X,W ,H,uY )
is in the form of a summation of two functions over X and
H separately, i.e., fY (X,W ,H,uY ) = f1Y (X,W ,uY )+
f2Y (W ,H,uY ).

We obtain the following result.

Theorem 3.1 (Identification of CAPCE). Under SCM MIV

and Assumptions 3.1 and 3.2, CAPCE E[∂xYx|w] is iden-
tifiable from distributions P(X,W |Z) and P(Y |Z) via the
integral equation:

µ(z) =

∫
ΩW

∫
ΩX

k(z, x,w)E[∂xYx|w]dxdw, (3)

where µ(z) = E[Y |Z = z0] − E[Y |Z = z], k(z, x,w) =
p(X ≤ x,W = w|Z = z)− p(X ≤ x,W = w|Z = z0),
and z0 is a arbitrary fixed value.

Remark: Assumption 3.2 is weaker than the assumption (2)
needed by existing work sieve NTSLS [Newey and Powell,

2003], PTSLS [Wooldridge, 2010], and Kernel IV [Singh
et al., 2019] for identifying E[Yx|w], which require both
covariates W and the treatment X to be separable from the
unmeasured confounders H . Assumption 3.2 is particularly
less restrictive when there are many covariates. Theorem 3.1
states that CAPCE E[∂xYx|w] is identifiable under a weaker
assumption than required by E[Yx|w]. The result enables
us to compute causal effects in IV models where Assump-
tion 3.2 holds but assumption (2) does not such that existing
methods are not applicable. Theorem 3.1 extends the results
in [Wong, 2022, Kawakami et al., 2023] for identifying
APCE E[∂xYx]; however, it is worth noting that this im-
portant point about weaker separability assumption does
not arise in the work of Wong [2022] and Kawakami et al.
[2023] because they study the setting with no covariates W .

4 ESTIMATION OF CAPCE

In this section, we develop three families of methods
for estimating CAPCE from data based on Theorem 3.1.
We do not need samples from the joint p(Z,X, Y,W ),
but rather two datasets D(1) = {x(1)i ,w

(1)
i , z

(1)
i }N1

i=1 and
D(2) = {y(2)i , z

(2)
i }N2

i=1 known as two-samples IV methods
[Singh et al., 2019, Angrist and Krueger, 1992].

4.1 SIEVE CAPCE ESTIMATOR

Sieve estimators are a class of non-parametric estimators
that use progressively more complex models to estimate an
unknown function as more data becomes available [Geman
and Hwang, 1982].

Approximation by Orthonormal Basis Functions. We
approximate the CAPCE E[∂xYx|w] by a set of orthonor-
mal basis functions, such as Hermite polynomial functions
[Hermite, 2009]. Specifically,

E[∂xYx|w] ≡ g0(x,w) ≈ g(x,w) =

J∑
j=1

βjϕj(x,w),

(4)

where {ϕj(x,w)}∞j=1 is a set of infinite basis functions that
satisfy the following conditions where Sobolev norm W l,2

norm (0 ≤ l ≤ ∞) is used:

Assumption 4.1. The basis functions {ϕj(x,w)}∞j=1 are
orthonormal basis functions, and satisfy ∥ϕj(x,w)∥W l,2 <
∞ for all j = 1, 2, . . . .

Assumption 4.2.
J∑

j=1

βjϕj(x,w) convergences uniformly

to g0(x,w) if J → ∞.

We note that Hermite polynomial functions satisfy As-
sumption 4.2 for any bounded and continuous function g0
[Damelin et al., 2001].



Compactness Restriction. The integral equation (3), known
as a “Fredholm Integral Equation of the First Kind”
[Bôcher, 1926], is ill-posed since the integral operator

K, where K(f)(z) =

∫
ΩW

∫
ΩX

k(z, x,w)f(x,w)dxdw,

is not guaranteed to be compact. Problems where one
or more of the three properties - existence, uniqueness,
and stability of the solution - do not hold are called
ill-posed problems [Tikhonov et al., 1995] and lead to
severe estimation difficulties. To relieve the issue, we
put restrictions on the functional space of g0(x,w). Let

g(X,W ) =

∫
ΩW

∫
ΩX

{1X≤x,W=w−E[1X≤x,W=w|Z =

z0]}g(X,W )dxdw, and define regularized Sobolev norm
W̃ l,2, which is called “consistency norm" in [Gallant and
Nychka, 1987], as follows

∥g(x,w)∥2W̃ l,2 =
∑
|λ|≤l

∫ {
Dλg(x,w)

}2

× {1 + (x,wT )(x,wT )T }κdxdw,
(5)

where l ≥ 1 is an integer and κ is a constant satisfying
κ > (1 + d)/2 where d is the dimension of W . We make
the following assumption:

Assumption 4.3. Given a positive regularization param-
eter BS , g0(x,w) is in the functional space GBS

= {g :
∥g(x,w)∥2

W̃ l,2 ≤ BS}.

Using the approximation in (4), equation (3) reduces to

µ(z) =

J∑
j=1

βj

∫
ΩW

∫
ΩX

k(z, x,w)ϕj(x,w)dxdw. (6)

Letting the anti-derivative of the basis functions be

φj(x,w) =

∫
ϕj(x,w)dx.1 Then, the equation becomes

E[Y |Z = z]− E[Y |Z = z0] =

J∑
j=1

βj{E[φj(X,W )|Z = z]− E[φj(X,W )|Z = z0]}

(7)
Let c = E[Y |Z = z] − E[Y |z = z0], β = (β1, . . . , βJ)

T ,
and d = (d1, . . . , dJ)T where dj = E[φj(X,W )|Z =
z]− E[φj(X,W )|Z = z0]. Then, the integral equation (3)
finally reduces to a linear equation c = βTd.

Sieve CAPCE (S-CAPCE) estimator. Given datasets
D(1) = {x(1)i ,w

(1)
i , z

(1)
i }N1

i=1 and D(2) = {y(2)i , z
(2)
i }N2

i=1,
our S-CAPCE estimator consists of two stages. In Stage
1, we learn models Ê[Y |Z = z] and Ê[φj(X,W )|Z = z]
from the datasets by regression. Then in Stage 2, we esti-
mate parameters β by solving Eq. (7).

1We will simply write the antiderivative φj(x,w) =∫ x

−∞
ϕj(x

′,w)dx′ as φj(x,w) =
∫
ϕj(x,w)dx in the paper.

Stage 1. We learn prediction models Ê[Y |Z = z] using
D(2) and Ê[φj(X,W )|Z = z] for j = 1, . . . , J using
D(1). Any regression method can be used. We select an IV
value z0. Denote ĉi = Ê[Y |Z = zi] − Ê[Y |Z = z0] and
d̂ji = Ê[φj(X,W )|Z = zi]− Ê[φj(X,W )|Z = z0].

Specifically, we perform the regression using the power
series basis functions in this paper. Let basis functions
be q(z) = (q1(z), q2(z), . . . , qP (z))

T , and consider the
model Ê[Y |Z = z] =

∑P
p=1 ωpqp(z), Ê[φj(X,W )|Z =

z] =
∑P

p=1 ν
j
pqp(z) for j = 1, . . . , J . Denote ω =

(ω1, . . . , ωP )
T and νj = (νj1 , . . . , ν

j
P )

T . Then, we opti-
mize the error functions below:

Q1(ν
j ;D(1))

=
1

N1

N1∑
i=1

(φj(x
(1)
i ,w

(1)
i )− q(z

(1)
i )Tνj)2,

(8)

Q2(ω;D(2)) =
1

N2

N2∑
i=1

(y
(2)
i − q(z

(2)
i )Tω)2. (9)

Let variance-covariance matrices be M̂(1) =∑N1

i=1N
−1
1 q(z

(1)
i )q(z

(1)
i )T and M̂(2) =∑N2

i=1N
−1
2 q(z

(2)
i )q(z

(2)
i )T . We obtain

ĉi = (q(zi)− q(z0))
TM̂(2)− ∑N2

l=1
1
N2

q(z
(2)
l )y

(2)
l

d̂ji = (q(zi)− q(z0))
TM̂(1)−

×
∑N1

l=1
1
N1

q(z
(1)
l )φj(x

(1)
l ,w

(1)
l )

(10)
for j = 1, . . . , J , where M̂− denotes the generalized in-
verse that satisfies M̂M̂−M̂ = M̂. Let N = N1 + N2

and (z1, . . . , zN ) = (z
(1)
1 , . . . , z

(1)
N1
, z

(2)
1 , . . . , z

(2)
N2

). We
will compute predicted values in (10) for all i = 1, . . . , N .

Stage 2. Estimate parameters β based on the linear equation
c = βTd. Let ĉ = (ĉ1, . . . , ĉN )T , d̂i = (d̂1i , . . . , d̂

J
i )

T ,
D̂ = (d̂1, . . . , d̂N )T , and the empirical risk be

Q3(β ;D(1),D(2)) =
1

N

N∑
i=1

(ĉi − d̂T
i β)

2. (11)

Under Assumption 4.3, our estimator β̂ is given by the
optimization problem below:

min
β
Q3(β ;D(1),D(2)) subject to βTΛβ ≤ BS , (12)

where

Λi,j =
∑
|λ|≤l

∫ {
Dλφi(x,w)−DλE[φi(X,W )|Z = z0]

}
×

{
Dλφj(x,w)−DλE[φj(X,W )|Z = z0]

}
× {1 + ∥(x,wT )∥2}κdxdw

(13)



for i, j = 1, . . . , J , and Λ = {Λi,j}Ji,j=1. Λ can be calcu-
lated by Monte Carlo integration Λ̂ [Kroese et al., 2011].
The optimization problem (12) can be solved by a ridge
regression method with the following solution [Hilt et al.]:

β̂ = (D̂T D̂+ ζSdiag[Λ])−1D̂T ĉ, (14)

where ζS is a regularization parameter called Lagrange mul-
tipliers. Then, our proposed sieve CAPCE estimator is given

by Ê[∂xYx|w] =

J∑
j=1

β̂jϕj(x,w).

Model Selection. The model selection in Stage 1 is a
standard regression problem, and we presume the models
in Stage 1 have been selected appropriately according to
standard machine learning methods. We can use the em-
pirical risk in equation (11) as a performance metric of
the trained model in Stage 2 with parameters β̂ if given
separate test datasets D(1)′ = {x(1)

′

i , z
(1)′

i ,w
(1)′

i }N
′
1

i=1 and
D(2)′ = {y(2)

′

i , z
(2)′

i }N
′
2

i=1. Let N ′ = N ′
1 +N ′

2. Assume ĉ′i
and d̂′

i for i = 1, . . . , N ′ are computed using D(1)′ and
D(2)′ . Then, we can evaluate the trained model by the test

error Q̂3(β̂ ;D(1)′ ,D(2)′) =
1

N ′

N ′∑
i=1

(ĉ′i − d̂
′T
i β̂)2. Given

separate datasets, this performance metric can be used for
model selection from various candidate basis functions or
the number J or P of basis terms.

Property of sieve CAPCE estimator. We show that sieve
CAPCE estimator is consistent under assumptions similar
to sieve NTSLS [Newey and Powell, 2003]. Assumptions
B.1 - 4 are shown in Appendix B.

Theorem 4.1 (Consistency). Under SCM MIV and As-
sumptions 3.1, 3.2, 4.1, 4.2, 4.3, B.1, B.2, B.3, and B.4,
letting P → ∞ and J → ∞, then ∥ĝ − g0∥W l,∞

p−→ 0.

Theorem 4.2 (Rate of Convergence). Under SCM MIV

and Assumptions 3.1, 3.2, 4.1, 4.2, 4.3, C.1, C.2, C.3, C.4,
C.5, C.6, and C.7, settingN = N1 = N2, then ∥ĝ−g0∥A =
op(N

−1/4).

Assumpts. C.1-7 and norm ∥ · ∥A are defined in Appendix C.

4.2 PARAMETRIC CAPCE ESTIMATOR

Next, we develop a parametric CAPCE (P-CAPCE) esti-
mator. We consider the setting that the CAPCE E[∂xYx|w]
takes the form of the following parametric model:

E[∂xYx|w] =
K∑

k=1

γkθk(x,w), (15)

where {θk(x,w)}Kk=1 are a set of known functions, and
γ = (γ1, . . . , γK)T are unknown model parameters to be
estimated from data.

The derivation of the P-CAPCE estimator is very sim-
ilar to that of the sieve CAPCE estimator, so we skip
the details in the following. Denote the anti-derivatives

ϑk(x,w) =

∫
θk(x,w)dx for k = 1, . . . ,K. Let c =

E[Y |Z = z]−E[Y |z = z0], and e = (e1, . . . , eK)T where
ek = E[ϑk(X,W )|Z = z]−E[ϑk(X,W )|Z = z0]. Then,
equation (3) reduces to a linear equation c = γTe.

P-CAPCE estimator. Given datasets D(1) =
{x(1)i ,w

(1)
i , z

(1)
i }N1

i=1 and D(2) = {y(2)i , z
(2)
i }N2

i=1, our
P-CAPCE estimator consists of two stages.

Stage 1. Let basis functions be q(z) =

(q1(z), q2(z), . . . , qP (z))
T . Denote ĉi = Ê[Y |Z =

zi] − Ê[Y |Z = z0] and êki = Ê[ϑk(X,W )|Z =

zi] − Ê[ϑk(X,W )|Z = z0]. Let variance-covariance
matrices M̂(1) =

∑N1

i=1N
−1
1 q(z

(1)
i )q(z

(1)
i )T and

M̂(2) =
∑N2

i=1N
−1
2 q(z

(2)
i )q(z

(2)
i )T . We obtain the

following predication values
ĉi = (q(zi)− q(z0))

TM̂(2)− ∑N2

l=1
1
N2

q(z
(2)
l )y

(2)
l

êki = (q(zi)− q(z0))
TM̂(1)−

×
∑N1

l=1
1
N1

q(z
(1)
l )ϑk(x

(1)
l ,w

(1)
l )

(16)
for k = 1, . . . ,K. Let N = N1 +N2 and (z1, . . . , zN ) =

(z
(1)
1 , . . . , z

(1)
N1
, z

(2)
1 , . . . , z

(2)
N2

). We will compute predicted
values in (16) for all i = 1, . . . , N .

Stage 2. Estimate parameters γ based on the linear equation
c = γTe. Let ĉ = (ĉ1, . . . , ĉN )T , êi = (ê1i , . . . , ê

K
i )T ,

Ê = (ê1, . . . , êN )T , and the empirical risk be

Q4(γ ;D(1),D(2)) =

N∑
i=1

1

N
(ĉi − êTi γ)

2. (17)

We make the following assumption:

Assumption 4.4. Given a positive regularization parameter
BP , γ satisfies γTγ ≤ BP .

Under Assumption 4.4, our estimator γ̂ is given by the
optimization problem below:

min
γ
Q4(γ ;D(1),D(2)) subject to γTγ ≤ BP . (18)

This problem can be solved by the ridge regression method
with the following solution [Hilt et al.]:

γ̂ = (ÊT Ê+ ζP IK)−1ÊT ĉ, (19)

where ζP is a regularization parameter, and IK is a K ×K
identity matrix. Then, our proposed P-CAPCE estimator is

given by Ê[∂xYx|w] =

K∑
k=1

γ̂kθk(x,w).

Model Selection. We presume the models in Stage 1
have been selected appropriately. We can use the empir-
ical risk in equation (17) as a performance metric of the



trained model in Stage 2 with parameters γ̂ if given sep-
arate test datasets D(1)′ = {x(1)

′

i , z
(1)′

i ,w
(1)′

i }N
′
1

i=1 and
D(2)′ = {y(2)

′

i , z
(2)′

i }N
′
2

i=1. Let N ′ = N ′
1 + N ′

2. Assume
ĉ′i and ê′i for i = 1, . . . , N are computed using D(1)′ and
D(2)′ . Then, we can evaluate the trained model by the test

error Q̂4(γ̂ ;D(1)′ ,D(2)′) =
1

N ′

N ′∑
i=1

(ĉ′i − ê
′T
i γ̂)2. Given a

separate dataset, this performance metric can be used for
model selection from various candidate basis functions or
the number K or P of basis terms.

Property of P-CAPCE estimator. We show that P-CAPCE
estimator is consistent.

Theorem 4.3 (Consistency). Under SCM MIV and As-
sumptions 3.1, 3.2, 4.4, D.1, D.2, D.3, and D.4, letting
P → ∞, then ∥γ̂ − γ∥ p−→ 0.

Theorem 4.4 (Rate of Convergence). Under SCM MIV

and Assumptions 3.1, 3.2, 4.4, E.1, E.2, E.3, E.4, and E.5,
setting N = N1 = N2, then ∥γ̂ − γ∥ = op(N

−1/4).

Assumptions D.1 - 4 are shown in Appendix D. Assumptions
E.1 - 5 are in Appendix E.

4.3 RKHS CAPCE ESTIMATOR

Finally, we develop a reproducing kernel Hilbert space
(RKHS) CAPCE estimator. RKHS models are popular and
widely used in nonparametric regression [Theodoridis and
Koutroumbas, 2006, Schölkopf et al., 2013].

RKHS model. Let kX,W : ΩX,W × ΩX,W → R and
kZ : ΩZ × ΩZ → R be measurable positive definitive
kernels corresponding to RKHSs HX,W and HZ . A sym-
metric function k : Ω× Ω → R is called positive-definite

kernel if
n∑

i=1

n∑
j=1

cicjk(ai,aj) ≥ 0 for all a1, . . . ,an ∈ Ω

given any n ∈ N and c1, . . . , cn ∈ R [Shawe-Taylor and
Cristianini, 2004]. Denote the feature map η : ΩX,W →
HX,W , (x,w) 7→ k′X,W (x,w, ·, ·) and ψ : ΩZ → HZ ,
z 7→ kZ(z, ·). In addition, we denote the antideriva-
tive feature function π : ΩX,W → HX,W , (x,w) 7→

kX,W (x,w, ·, ·) with π(x,w) = −
∫
η(x,w)dx and

the antiderivative kernel function kX,W (x,w, x′,w′) =∫
k′X,W (x,w, x′,w′)dxdx′. Assume that the CAPCE

takes the form

E[∂xYx|w] = H(π(x,w)) (20)

for some operatorH ∈ L2(HX,W ,ΩY ), where L2(Ω1,Ω2)
is the L2 measurable function space from Ω1 to Ω2, and
H(π(x,w)) is a composition function H ◦ π : ΩX,W →

ΩY . Our RKHS CAPCE estimator consists of two stages (a
detailed derivation is provided in Appendix A.2).

Stage 1. We learn an operator G1 ∈ L2(HZ ,HX,W ) that
satisfies E[π(X,W )|Z = z] = G1(ψ(z)), and learn an
operator G2 ∈ L2(HZ ,ΩY ) that satisfies E[Y |Z = z] =
G2(ψ(z)).

Stage 2. We learn an operatorH ∈ L2(HX,W ,ΩY ) that sat-
isfies Ê[Y |Z = z]− Ê[Y |Z = z0] = H(Ê[π(X,W )|Z =

z] − Ê[π(X,W )|Z = z0]) ⇔ Ĝ1(ψ(z) − ψ(z0)) =
H(Ĝ2(ψ(z) − ψ(z0))), where Ĝ1 and Ĝ2 are learned in
Stage 1.

We learn Ĝ1, Ĝ2, and Ĥ by the following optimization
problems using datasets D(1) and D(2):

min
G1

1

N1

N1∑
i=1

∥∥∥π(x(1)i ,w
(1)
i )−G1(ψ(z

(1)
i ))

∥∥∥2
HX,W

+ λ1 ∥G1∥2L2(HZ ,HX,W ) ,

(21)

min
G2

1

N2

N2∑
i=1

∥∥∥y(2)i −G2(ψ(z
(2)
i ))

∥∥∥2
+ λ2 ∥G2∥2L2(HZ ,ΩY ) ,

(22)

min
H

1

N2

N2∑
i=1

∥∥∥Ĝ2(ψ(z
(2)
i )− ψ(z0))

−H(Ĝ1(ψ(z
(2)
i )− ψ(z0)))

∥∥∥2
+ ξ ∥H∥2L2(HX,W ,ΩY ) + λ3

∥∥∥H ◦ Ĝ1

∥∥∥2
L2(HZ ,ΩY )

,

(23)
where (λ1, λ2, λ3, ξ) are regularization parameters. From
the representer theorem [Schölkopf et al., 2001], the optimal
G1 exists in span{ψ(z(1)1 ), . . . , ψ(z

(1)
N1

)}, and the optimal

G2 and H exist in span{ψ(z(2)1 ), . . . , ψ(z
(2)
N2

)}.

We denote gram matrices KZ(1)Z(1) =

{kZ(z(1)i , z
(1)
j )}N1

i,j=1; KZ(1)z0 is N1 × N1 matrix

{kZ(z(1)i , z0)}N1
i,j=1; and K(X,W )(1)(x,w) is N1-dimension

vector {kX,W (x
(1)
i ,w

(1)
i , x,w)}N1

i=1. Then, the RKHS
CAPCE estimator is given by

Ê[∂xYx|w] = α̂TK(X,W )(1)(x,w), (24)

where

α̂ = (ÔÔT +N2ξK(X,W )(1)(X,W )(1) +N2λ3IN2
)−1

× Ô{y(2)T (KZ(2)Z(2) +N2λ2IN2
)−1

× (KZ(2)Z(2) −KZ(2)z0)},
(25)



Ô = K(X,W )(1)(X,W )(1)(KZ(1)Z(1) +N1λ1IN1)
−1

× (KZ(1)Z(2) −KZ(1)z0),
(26)

and IN is a N ×N identity matrix.

Model Selection. We presume the models in Stage 1 have
been selected appropriately, and introduce a model selection
method in Stage 2 following [Singh et al., 2019]. Assume
we have separate datasets D(1)′ = {x(1)

′

i ,w
(1)′

i , z
(1)′

i }N
′
1

i=1

and D(2) = {y(2)
′

i , z
(2)′

i }N
′
2

i=1. We determine the optimal λ∗1
by minimizing

L1(λ1) =
1

N ′
1

Trace
[
K(X,W )(1)′ (X,W )(1)′

− 2K(X,W )(1)′ (X,W )(1)P1 +PT
1 K(X,W )(1)(X,W )(1)P1

]
,

(27)
where P1 = (KZ(1)Z(1) +N ′

1λ1IN1
)−1KZ(1)Z(2) . We de-

termine the optimal λ∗2 by minimizing

L2(λ2) =
1

N ′
2

Trace
[
y(2)′y(2)′T

− 2y(2)′y(2)TP2 +PT
2 y

(2)y(2)TP2

]
,

(28)

where P2 = (KZ(1)Z(1) + N1λ2IN1)
−1KZ(1)Z(2) .

Finally, we determine the optimal ξ∗ and
λ∗3 by minimizing test error L(λ3, ξ) =

1

N ′
2

N ′
2∑

i=1

∥y(2)′T (KZ(2)′Z(2)′ +N ′
2λ

∗
2IN ′

2
)−1(KZ(2)′Z(2)′ −

KZ(2)′z0
) − Ĥλ3,ξ(x

(1)′

i ,w
(1)′

i )∥2 where Ĥλ3,ξ is learned
with λ1 = λ∗1 and λ2 = λ∗2 using D(1) and D(2).

Properties of RKHS CAPCE estimator. The RKHS
CAPCE estimator requires O(N3

1 ) + O(N3
2 ) time [Saun-

ders et al., 1998]. We show that RKHS CAPCE is consistent
under assumptions similar to Kernel IV [Singh et al., 2019].
Assumptions F.1 - 8 are shown in Appendix F.

Theorem 4.5 (Consistency). Under SCM MIV and As-
sumptions 3.1, 3.2, F.1, F.2, F.3, F.4, F.5, F.6, F.7 and F.8,
the RKHS CAPCE estimator in (24) converges pointwise to
CAPCE when λ3 = 0.

When λ3 = 0, the inverse of the matrix ÔÔT +
N2ξK(X,W )(1)(X,W )(1) in Eq. (25) is numerically unsta-
ble. In practice, regularization leads to bias, but we must
consider the bias-variance trade-off.

5 EXPERIMENTS

In this section, we present numerical experiments to demon-
strate the performance of the proposed P-CAPCE, sieve
CAPCE, and RKHS CAPCE estimators. Detailed settings

are in Appendix G. The experiments are performed using
an Apple M1 (16GB).

Baselines. We compare with the most widely used meth-
ods PTSLS (parametric), NTSLS (sieve), and Kernel IV.
These methods compute E[Yx|w] which we differentiate to
compute CAPCE E[∂xYx|w].

SCM Settings. We consider the following two SCMs:W :=
H + E1, X := Z +W +H + E2, and{
Y := 10X2 +WX +X +W + 50f(W )H + E3 (A)
Y := exp(X)exp(W ) + 25f(W )H + E3 (B)

(29)
where f(W ) =W 5 +W 4 +W 3 +W 2. The SCMs satisfy
separability Assumption 3.2 but not (2). We use setting (A)
as a parametric setting and setting (B) as a nonparametric
setting. Values of Z, H , E1, E2, and E3 are sampled i.i.d.
from a uniform distribution on [−1, 1]. True CAPCE is
20x+w+1 in setting (A) and exp(x)exp(w) in setting (B).

Setting of P-CAPCE and PTSLS. We used the basis terms
{1,W,X} for P-CAPCE and {1,W,X,WX,X2} for PT-
SLS, which match setting (A).

Setting of NTSLS and sieve CAPCE. We consider the ba-
sis terms hp(X)hq(W ) for p = 0, 1, 2 and q = 0, 1, 2,
where hp is Hermite polynomial functions: h0(t) = 1,
h1(t) = t, h2(t) = t2 − 1, and h3(t) = t3 − 3t.

Setting of Kernel IV and RKHS CAPCE. We use poly-
nomial kernel function kZ(z, z

′) = (zT z′ + C1)
C2 and

kX,W (x,w, x′, w′) = ((x,w)T (x′, w′) + C3)
C4 .

Results. The means of estimated coefficients by PTSLS
and P-CAPCE in the parametric setting (A) are shown in
Table 1. We observe that, when N = 1000, both P-CAPCE
and PTSLS estimates have large standard deviations (SD)
(shown in Appendix G) such that the differences in esti-
mated values are not statistically significant. The estimated
coefficients of P-CAPCE are converging to the true values
when the sample size N = 10000, while the coefficient for
W estimated by PTSLS is still biased. We plotted the true
and estimated CAPCE curves given W = 1 in Figure 2(a).
It is clear that the estimated curve by P-CAPCE is much
closer to the true curve than PTSLS. The true and estimated
CAPCE surfaces over (X,W ) are shown in Appendix G.

We computed the mean-squared-error (MSE) between
estimated and true CAPCE values for each estimator,

where MSE is computed as
1

N ′
1

N ′
1∑

i=1

{ĝ(x(1)
′

i , w
(1)′

i ) −

g(x
(1)′

i , w
(1)′

i )}2 with test dataset D(1)′ , and the results are
shown in Table 2. We observed that our sieve and RKHS
CAPCE estimators are superior to the existing methods;
sieve and RKHS CAPCE estimators are superior to P-
CAPCE in the nonparametric setting (B); and kernel-based
methods are much slower than other methods. We plotted the
true and estimated CAPCE curves given W = 1 in Figure



Table 1: Means of estimated coefficients by PTSLS and P-CAPCE estimators in setting (A).

Estimated coefficients N = 1000 N = 10000

Terms 1 W X 1 W X

PTSLS 1.248 50.032 27.862 1.101 51.181 19.763
P-CAPCE -1.651 10.383 19.293 1.226 0.963 19.971
True Coefficients 1 1 20 1 1 20

Table 2: MSE and run time of estimators in settings (A) and (B).

MSE PTSLS NTSLS Kernel IV P-CAPCE S-CAPCE RKHS CAPCE

(A) N = 1000 925.139 418.396 548.821 104.990 203.079 87.853
Time (second) 0.126 0.361 6.105 0.132 0.596 6.410
(A) N = 10000 817.074 357.777 495.742 69.185 185.056 71.276
Time (second) 0.372 1.127 2814.018 0.452 1.883 4530.765
(B) N = 1000 290.340 46.405 45.734 202.313 8.600 11.612
Time (second) 0.127 0.356 6.019 0.143 0.454 6.540
(B) N = 10000 265.400 20.990 51.470 54.124 3.579 8.985
Time (second) 0.367 1.031 2951.841 0.485 1.836 4360.991

2(b), which shows the estimated curves by sieve and RKHS
CAPCE are much closer to the true curve than NTSLS and
Kernel IV. The true and estimated CAPCE surfaces over
(X,W ) are shown in Appendix G.

Overall, the results of settings (A) and (B) show that our pro-
posed methods (P-CAPCE, sieve CAPCE, RKHS CAPCE)
are superior to the previous works (PTSLS, NTSLS, Kernel
IV). The advantage of our proposed methods stems from
that the underlying models (A) and (B) do not satisfy the
separability assumption (2) needed by the existing works.
Indeed, we have performed experiments in settings where
the interaction between the covariates W and unobserved
confounders H (the f(W )H term in (29)) is absent, and
the results (presented in Appendix G) show that the perfor-
mances of the existing methods PTSLS, NTSLS, Kernel IV
are comparable with our proposed methods under this situa-
tion. Among the three proposed methods, the performance
of P-CAPCE relies on correct parametric model assump-
tion, and RKHS CAPCE is computationally expensive and
requires tuning many regularization parameters.

6 APPLICATION IN A REAL-WORLD
DATASET

In this section, we present an application of our CAPCE
estimators to a real-world dataset in economics.

Real-world Dataset. We take up an open dataset “the Na-
tional Longitudinal Survey of Young Men” in the R pack-
age “wooldridge" (https://cran.r-project.org/
package=wooldridge), which has been analyzed by

many works, e.g., in [Griliches, 1977, Blackburn and Neu-
mark, 1992]. The sample size is 935 with 857 left after
excluding missing values. We evaluate the heterogeneity of
the effect of years of education on monthly wages, which is
of great interest in economics [Angrist and Krueger, 1991,
Card, 1999]. We followed Blackburn and Neumark [1992]
to use mother’s education as an instrument to uncover the
effect of education on wages. The use of mother’s education
as an instrument in this dataset has been subjected to debate
in the literature (e.g., [Card, 1999, Kling, 2001, Wooldridge,
2010]). We take the subject’s years of education as the treat-
ment variable (X), their monthly wage as the outcome (Y ),
their mother’s years of education as the IV (Z), and their
IQ as a covariate (W ). The domains of X and Z are [9, 18],
ranging from the 1st year of high school to the 2nd year of
a master’s degree. The domain of W is [50, 145].

Settings. We applied P-CAPCE and PTSLS. Other es-
timators are not used due to the small sample size.
We use terms {1,W,W 2, X,XW,XW 2} for P-CAPCE
and {1,W,W 2, X,XW,XW 2, X2, X2W,X2W 2} for PT-
SLS. Detailed settings are in Appendix G.

Results. The estimated CAPCE values are shown in Ap-
pendix G. For subjects with IQ 100, the estimated CAPCE
E[∂xYx|W = 100] of years of education (X) on wages (Y )
is given by 94.905− 5.618x by P-CAPCE and 108.491−
5.882x by PTSLS. Both predict that years of education
increase wages, which is consistent with previous works
[Blackburn and Neumark, 1992, Wooldridge, 2010]. The
results also show that education significantly affects wages
at the compulsory school level, but the effect gets weaker
with more years of education, consistent with the results

https://cran.r-project.org/package=wooldridge
https://cran.r-project.org/package=wooldridge
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Figure 2: Plots of CAPCE curves with W = 1. X-axis rep-
resents treatment (X); Y-axis is CAPCE value. Dot-dashed
curves in (a) represent 95% pointwise confidence interval
(CI).

in [Angrist and Krueger, 1991, Caplan, 2018]. On the
other hand, for subjects with IQ 80, the estimated CAPCE
E[∂xYx|W = 80] is 60.740 − 3.598x by P-CAPCE and
69.465− 3.057x by PTSLS. For subjects with IQ 120, the
estimated CAPCE E[∂xYx|W = 120] is 136.662− 8.086x
by P-CAPCE and 156.181− 9.531x by PTSLS.

While we estimate the heterogeneity of causal effects of edu-
cation on wages across subjects with different IQs, existing
works [Blackburn and Neumark, 1992, Card, 1999, Kling,
2001, Wooldridge, 2010, Kawakami et al., 2023] using this
dataset have focused on the effects of education on wages
over the whole population. Card [1999] and Wooldridge
[2010] provided a summary of the early works on IV es-
timates and showed that the estimates of all studies were
positive implying education increases wages. On the other
hand, our results give two new insights into the effects of
education on wages. First, our results suggest that for each
sub-population IQ = 80, 100, 120, education significantly
affects wages at the compulsory school level; but has little
effect at the college level. This result is consistent with the

result of APCE estimates for the whole population given in
[Kawakami et al., 2023]. Second, we reveal that the effect of
education on wages is more significant for high IQ students,
especially at the compulsory school level. To the best of
our knowledge, this result has not been revealed in previous
studies of this dataset, but it is consistent with the panel data
analysis result in [Altonji and Dunn, 1996].

7 CONCLUSION

We study conditional average partial causal effect (CAPCE)
to represent the heterogeneous causal effects of a continu-
ous treatment. We present a method for identifying CAPCE
in the IV model. Notably, CAPCE E[∂xYx|w] is identifi-
able under a weaker assumption than required by E[Yx|w],
showing the merit of studying CAPCE instead of E[Yx|w],
which has been the focus of existing work. We develop
three families of CAPCE estimators: sieve, parametric, and
RKHS, and analyze their statistical properties. We empir-
ically demonstrate that the proposed CAPCE estimators
are superior to the existing widely used IV methods PT-
SLS [Angrist and Pischke, 2009, Wooldridge, 2010], sieve
NTSLS [Newey and Powell, 2003], and Kernel IV [Singh
et al., 2019] in settings where the standard separability as-
sumption (2) is violated. The work provides scientists with
a new tool for analyzing the heterogeneous causal effects of
a continuous treatment. The results can be extended to an IV
model with an additional edge W → Z. An identification
theorem similar to Theorem 3.1 can be derived, which uses
P(Y |Z,W ) as input instead of P(Y |Z). We present this
result in Appendix A.2.
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A PROOFS OF THEOREM 3.1 AND RKHS CAPCE ESTIMATOR

A.1 PROOF OF THEOREM 3.1

We give proof of Theorem 3.1.

Theorem 3.1. (Identification of CAPCE). Under SCM MIV and Assumptions 3.1 and 3.2, CAPCE E[∂xYx|w] is identifiable
from distributions P(X,W |Z) and P(Y |Z) via the integral equation:

µ(z) =

∫
ΩW

∫
ΩX

k(z, x,w)E[∂xYx|w]dxdw, (30)

where µ(z) = E[Y |Z = z0]− E[Y |Z = z], k(z, x,w) = p(X ≤ x,W = w|Z = z)− p(X ≤ x,W = w|Z = z0), and
z0 is a fixed value.

Proof. First, we show the following integral equation holds under Assumptions 3.1 and 3.2 following the idea in [Wong,
2022]:

E[Y |Z = z,W = w]− E[Y |Z = z0,W = w] (31)

= −
∫
ΩX

{P(X ≤ x|Z = z,W = w)− P(X ≤ x|Z = z0,W = w)}E[∂xYx|w]dx.

From the setting of the IV, the following integral equation holds:

YXz
=

∫
ΩX

1Xz=xYxdx, (32)

given W = w for each subject, where 1· is a delta function or indicator function. This equation means Xz = x ⇒
YXz

= Yx from the definition of delta function. By substituting the integral equations YXz
=

∫
ΩX

1Xz=xYxdx and

YXz0
=

∫
ΩX

1Xz0
=xYxdx, then

YXz − YXz0
=

∫
ΩX

{1Xz=x − 1Xz0
=x}Yxdx (33)

holds. Since the Heaviside step function is the integration of the delta function,

YXz
− YXz0

=
[
{1Xz=x − 1Xz0=x}∂xYx

]∞
−∞ −

∫
ΩX

{IXz≤x − IXz0≤x}∂xYxdx. (34)
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Figure 3: A causal graph representing the IV setting with covariates when there is an edge W → Z.

Because ∂xYx <∞ for all x ∈ ΩX ,
[
{1Xz=x − 1Xz0

=x}∂xYx
]∞
−∞ = 0 holds. Then, the integral equation becomes

YXz
− YXz0

= −
∫
ΩX

{IXz≤x − IXz0≤x}∂xYxdx. (35)

From the separability with covariate fY (X,W ,H,uY ) = f1Y (X,W ,uY ) + f2Y (W ,H,uY ), random variables IXz≤x −
IXz0

≤x and ∂xYx are independent given W = w. Thus, we take expectations on both sides:

E[YXz
|W = w]− E[YXz0

|W = w] (36)

= −
∫
ΩX

E[{IXz≤x − IXz0≤x}∂xYx|W = w]dx (37)

= −
∫
ΩX

{E[IXz≤x|W = w]− E[IXz0
≤x|W = w]}E[∂xYx|w]dx. (38)

Then, the integral equation becomes

E[Y |Z = z,W = w]− E[Y |Z = z0,W = w] (39)

= −
∫
ΩX

{P(X ≤ x|Z = z,W = w)− P(X ≤ x|Z = z0,W = w)}E[∂xYx|w]dx.

Next, the integral equation can be given by multiplying p(W = w|Z = z) and marginalizing for W , then

EW [E[Y |Z = z,W = w]] = (40)∫
ΩX

∫
ΩW

P(X ≤ x|Z = z,W = w)p(W = w|Z = z)E[∂xYx|w]dwdx (41)

⇔ E[Y |Z = z] =

∫
ΩX

∫
ΩW

p(X ≤ x,W = w|Z = z)E[∂xYx|w]dwdx (42)

Finally, we show the uniqueness of the solution. Since Xz is a nontrivial function, there does not exist a function which
satisfies E[δ(X)|Z = z,W = w] = 0 for any z ∈ ΩZ and w ∈ ΩW . Since E[δ(X)|Z = z,W = w] = E[δ(X),W =
w|Z = z]P(W = w), there exists a function which satisfies E[δ(X),W = w|Z = z] = 0 for any z ∈ ΩZ and w ∈ ΩW

if there exists a function which satisfies E[δ(X)|Z = z] = 0 for any z ∈ ΩZ and w ∈ ΩW . Taking a contraposition, there
does not exist a function which satisfies E[δ(X),W = w|Z = z] = 0 for any z ∈ ΩZ and w ∈ ΩW .

A.2 IDENTIFICATION THEOREM UNDER IV MODEL IN FIG 3

We consider the IV model with covariates represented by the causal graph in Fig 3, with the following SCM M′
IV over

V = {Z,X, Y,W } and U = {H,uX ,uY ,uZ ,uW }:

Y := fY (X,W ,H,uY ), X := fX(Z,W ,H,uX),W := fW (H,uW ), Z := fZ(W ,uZ), (43)

where fW is a vector function. We assume all variables are continuous, W are d-dimensional pre-treatment covariates, and
H stands for unmeasured confounders. We show a similar identification result to Theorem 3.1.



Theorem 3.1’. Under SCM M′
IV and Assumptions 3.1 and 3.2, CAPCE E[∂xYx|w] is identifiable from distributions

P(X|Z,W ) and P(Y |Z,W ) via the integral equation:

µ(z,w) =

∫
ΩX

k(z, x,w)E[∂xYx|w]dx, (44)

where µ(z,w) = E[Y |Z = z0,W = w] − E[Y |Z = z,W = w], k(z, x,w) = p(X ≤ x|Z = z,W = w) − p(X ≤
x|Z = z0,W = w), and z0 is a fixed value.

Proof. Eq. (44) is guaranteed by Eq. (39), which appears in the proof of Theorem 3.1.

Based on Theorem 3.1’, we have to learn E[∂xYx|w] as a function of x for each w ∈ ΩW respectively. In contrast, based
on Theorem 3.1, we can learn E[∂xYx|w] directly as a function of x and w.

We perform experiments about estimating CAPCE based on Theorem 3.1’ in Appendix G.5.

A.3 DERIVATION OF RKHS CAPCE ESTIMATOR

We show the detailed steps of deriving the RKHS CAPCE estimator.

RKHS estimator. RKHS CAPCE estimator is given as Ê[∂xYx|w] = α̂TK(X,W )(1)(x,w) where

α̂ = (ÔÔT +N2ξK(X,W )(1)(X,W )(1) +N2λ3IN2
)−1Ô

×{y(2)T (KZ(2)Z(2) +N2λ2IN2
)−1(KZ(2)Z(2) −KZ(2)z0)}

Ô = K(X,W )(1)(X,W )(1)(KZ(1)Z(1) +N1λ1IN1
)−1(KZ(1)Z(2) −KZ(1)z0), (45)

(λ1, λ2, λ3, ξ) are regularization parameters, and IN is a N ×N identity matrix.

Proof. There are three optimization problems in RKHS estimator, Stage 1 (A) learning linear operator G1, Stage 1 (B)
learning linear operator G2, and Stage 2 learning linear operator H . We explain them respectively.

Stage 1 (A). We denote the feature map be ψ(z) and π(x,w), where π(x,w) = −
∫ x

−∞ η(x′,w)dx′ for some feature
function η(x′,w). The optimization problem in Stage 1 (A) becomes

min
G1∈L2(HZ ,HX,W )

N1
−1

∑N1

i=1

∥∥∥π(x(1)i ,w
(1)
i )−G1(ψ(z

(1)
i ))

∥∥∥2
HX,W

+ λ1∥G1∥2L2(HZ ,HX,W ). (46)

using D(1). Then, the estimator Ĝ1 becomes

Ĝ1(·) =
〈
πX(1),W (1)(KZ(1)Z(1) +N1λ1I)

−1ψ
(1)T
Z , ·

〉
(47)

where KZ(1)Z(1) and KX(1)X(1) are the empirical kernel matrices, the i-th column of πX(1),W (1) is −
∫ x

(1)
i

−∞
η(x,w)dx, and

the i-th column of ψX
(1) is ψ(z(1)i ). The prediction values are

d0(z) = πX(1),W (1)(KZZ +N1λ1I)
−1ψ

(1)T
Z ψ(z) = −

N1∑
i=1

γi(z)

∫ x
(1)
i

−∞
η(x,w)dx (48)

where γ(z) = (KZ(1)Z(1) + N1λ1I)
−1ψ

(1)T
Z ψ(z) = (KZ(1)Z(1) + N1λ1I)

−1KZ(1)z . Furthermore, the difference in the
predication values are

d(z) = d0(z)− d0(z0) = −
N1∑
i=1

{γi(z)− γi(z0)}
∫ x

(1)
i

−∞
η(x,w)dx (49)



and γ(z)− γi(z0) = (KZ(1)Z(1) +N1λ1I)
−1ψ

(1)T
Z {ψ(z)− ψ(z0)} = (KZ(1)Z(1) +N1λ1I)

−1(KZ(1)z −KZ(1)z0) holds.
Letting Ĝ1 =

∑N1

j=1 αjη(x
(1)
j ,w

(1)
j ) since the optimal Ĝ1 exists in span({η(x(1)j ,w

(1)
j )}N1

j=1) from the representer theorem
[Schölkopf et al., 2001]. Then the functional form of d(z) is restricted by

d(z) = −

〈
N1∑
j=1

αj

∫ x
(1)
i

−∞
η(x,w

(1)
i )dx,−

N1∑
i=1

{γi(z)− γi(z0)}
∫ x

(1)
j

−∞
η(x,w

(1)
j )dx

〉
(50)

=

N1∑
i=1

N1∑
j=1

αj{γi(z)− γi(z0)}

〈
−
∫ x

(1)
i

−∞
η(x,w

(1)
i )dx,−

∫ x
(1)
j

−∞
η(x,w

(1)
j )dx

〉
(51)

=

N1∑
i=1

N1∑
j=1

αj{γi(z)− γi(z0)}
〈
π(x

(1)
i ,w

(1)
i ), π(x

(1)
j ,w

(1)
j )

〉
. (52)

From the kernel trick, it becomes

=

N1∑
i=1

N1∑
j=1

αj{γi(z)− γi(z0)}k((x(1)i ,w
(1)
i ), (x

(1)
j ,w

(1)
j )) (53)

= αTw(z) (54)

where w(z) = K(X,W )(1)(X,W )(1)(KZZ +N1λ1I)
−1(KZ(1)z −KZ(1)z0). Note that the α will be estimated in Stage 2.

Stage 1 (B). The optimization problem in Stage 1 (B) is

min
G2∈L2(HZ ,ΩY )

N2
−1

∑N2

i=1

∥∥∥y(2)i −G2(ψ(z
(2)
i ))

∥∥∥2 + λ2∥G2∥2L2(HZ ,ΩY ) (55)

using D(2). As Stage 1 (A), the estimator of G2, Ĝ2, become

Ĝ2(·) =
〈
y(2)(KZ(2)Z(2) +N2λ2I)

−1ψ
(2)T
Z , ·

〉
(56)

where KZ(2)Z(2) are the gram matrices, the i-th column of y(2) is y(2)i .

u0(z) = y(2)T (KZ(2)Z(2) +N2λ2I)
−1ψ

(2)T
Z ψ(z) =

N2∑
i=1

γi(z)ψ(z) (57)

where γ(z) = y(2)T (KZ(2)Z(2) +N2λ2I)
−1ψ

(2)T
Z . Then,

u0(z0) = y(2)T (KZ(2)Z(2) +N2λ2I)
−1KZ(2)z0 (58)

and, the difference of the predication values are

u(z) = u0(z)− u0(z0) = y(2)T (KZ(2)Z(2) +N2λ2I)
−1(KZ(2)z −KZ(2)z0). (59)

This is the estimator of E[Y |Z = z]− E[Y |Z = z0].

Stage 2. The optimization problem in Stage 2 using D(2) is

min
H∈L2(HX,W ,ΩY )

N2
−1

∑N2

i=1

∥∥∥Ĝ2(ψ(z
(2)
i )− ψ(z0))−H(Ĝ1(ψ(z

(2)
i )− ψ(z0)))

∥∥∥2
+ξ∥H∥2L2(HX,W ,ΩY ) + λ3∥H ◦ Ĝ1∥2L2(HZ ,ΩY ). (60)

Then, the estimation problem reduces to

1

N2

N2∑
i=1

(y
(2)
i − u0(z0)−αTw(z))2 + ξαTKXXα+ λ3α

Tα (61)



=
1

N2
∥y(2) − y(2)T (KZ(2)Z(2) +N2λ2I)

−1KZ(2)z0 (62)

−(KX(1)X(1)(KZ(1)Z(1) +N1λ1I)
−1(KZ(1)Z(2) −KZ(1)z0))

Tα∥2 (63)

+ξαTK(X,W )(1)(X,W )(1)α+ λ3α
Tα, (64)

and the solution to this optimization problem can be represented as

α̂ = (ÔÔT +N2ξK(X,W )(1)(X,W )(1) +N2λ3I)
−1Ô (65)

×(y(2) − y(2)T (KZ(2)Z(2) +N2λ2I)
−1KZ(2)z0) (66)

Ô = K(X,W )(1)(X,W )(1)(KZ(1)Z(1) +N1λ1I)
−1(KZ(1)Z(2) −KZ(1)z0). (67)

Finally, RKHS CAPCE estimator of (x,w) becomes Ê[∂xYx|w] = α̂TK(X,W )(x,w).

B CONSISTENCY OF SIEVE CAPCE ESTIMATOR

In this section, we show that sieve CAPCE estimator is consistent under assumptions similar to those guaranteeing the
consistency of sieve NTSLS [Newey and Powell, 2003].

NOTATIONS

We introduce the notations for the assumptions.

Conditional Moment Restrictions. The estimation problem reduces to the problem called conditional moment restrictions,
and properties of the estimator are well studied [Newey and Powell, 2003, Ai and Chen, 2003], and it is widely used in
machine learning fields [Kato et al., 2022]. Since E[Y |Z = z0]−E[Y |Z] = E[E[Y |Z = z0]−Y |Z] and E[1X≤x,W=w|Z =
z]− E[1X≤x,W=w|Z = z0] = E[1X≤x,W=w − E[1X≤x,W=w|Z = z0]|Z = z] , Theorem 3.1 reduces to

E
[
(YXz0

− Y )− g(X,Xz0 ,W , g)
∣∣∣Z = z

]
= 0 (68)

where g(X,Xz0 ,W , g) =

∫
ΩW

∫
ΩX

{1X≤x,W=w − 1Xz0
≤x,W=w}g(X,W )dxdw. We denote residual function

ρ(Y, YXz0
, X,Xz0 ,W , g) = (YXz0

− Y ) − g(X,W , g)). Then, the integral equation can be represented by
E[ρ(Y, YXz0

, X,Xz0 ,W , g)|Z] = 0.

Consistency of Sieve CAPCE Estimator. First, we show consistency without compactness restriction. The Sieve CAPCE
estimator reduces to the general form of the conditional moment restrictions method, which is well-studied in [Newey and
Powell, 2003], as below:

ĝ = argmin
g∈G

N∑
i=1

1

N
ρ̂(zi, g)

2, (69)

where ρ̂(zi, g) = ĉi − d̂iβ, and ρ̂(zi, g) can be considered as the estimators of E[ρ(Y, YXz0
, X,Xz0 ,W , g)|Z = zi].

ASSUMPTIONS

We make the following consistency assumptions introduced in [Newey and Powell, 2003]. We denote GS = {g ∈ G :
∥g0(x,w)∥2

W̃ l,2 ≤ BS}, and GS is a closure of GS .

Assumption B.1 (Uniqueness of g). g0 ∈ GS is the only g ∈ GS satisfying E[ρ(Y, YXz0
, X,Xz0 ,W , g)|Z = z] = 0.

Assumption B.2 (Completeness of Stage 1.). Taking limits P → ∞, N → ∞ with P/N → 0, there exists πP with
E[{b(z)− q(z)TπP }2] → 0 for any b(z) with E[b(z)2] <∞.

The above assumption is for the completeness of parameter space used in Stage 1.



Assumption B.3 (Boundedness of ρ). E[∥ρ(Y, YXz0
, X,Xz0 ,W , g)∥2|Z] is bounded and there exists

M(Y, YXz0
, X,Xz0 ,W ), ν > 0 such that for all g̃, g ∈ GS , ∥ρ(Y, YXz0

, X,Xz0 ,W , g̃)− ρ(Y, YXz0
, X,Xz0 ,W , g)∥ ≤

M(Y, YXz0
, X,Xz0 ,W )∥g̃ − g∥νW l,2 and E[M(Y, YXz0

, X,Xz0 ,W )2|Z] is bounded.

The above assumption is for the boundness of the parameters used in stage 2.

Let W denote the domain of g(x,w, g).

Assumption B.4 (Openness and Convexness of Restricted Parameter Space). W is open and convex.

The following lemma is shown in [Newey and Powell, 2003]:

Lemma B.1. If (i) Θ is a compact subset of a space with norm ∥θ∥: (ii) Q̂(θ) →p Q(θ) for all θ ∈ Θ: (iii) there is v > 0

and BnOp(1) such that for all θ̃, θ ∈ Θ, |Q̂(θ) − Q̂((̃θ))| ≤ Bn∆
v = Bnϵ/2M ≤ ϵ/2 with a positive probability, then

Q(θ) is continuous and supθ∈Θ |Q̂(θ)−Q(θ)| →p 0.

Theorem 4.1. Under SCM MIV and Assumptions 3.1, 3.2, 4.1, 4.2, 4.3, B.1, B.2, B.3, and B.4, letting P → ∞ and J → ∞,
then ∥ĝ − g0∥W l,∞

p−→ 0.

Proof. From the Assumption B.2 and B.4, the parameter space is compact subset. From the Assumption B.3, the following
relation is satisfied:

|ρ(Y, YXz0
, X,Xz0 ,W , g̃)− ρ(Y, YXz0

, X,Xz0 ,W , g)| (70)
≤M(Y, YXz0

, X,Xz0 ,W )∥g̃ − g∥νW l,2 (71)

From the Lemma B.1,

∥g̃ − g∥W l,∞ →p 0. (72)

From Assumption B.1, the limits of g̃ is g0.

From the definition of W l,∞, this theorem means uniform convergence.

C RATE OF CONVERGENCE OF SIEVE CAPCE ESTIMATOR

NOTATIONS

In this section, we explain the notations used in the assumptions for Theorem 4.2 and Theorem 4.4. Denote the estimation
problem

inf
g∈G

E
[
g(X,Xz0 ,W , g)2

]
(73)

and introduce norm ∥ · ∥A as below:

∥g1 − g0∥A =

√√√√E

[(
dg(X,Xz0 ,W , g0)

dg

)2
]

(74)

where

dρ(Z, g0)

dg
[g − g0] =

dρ(Z, (1− τ)g0 + τg)

dτ
a.s. Z (75)

dρ(Z, g0)

dg
[g1 − g2] =

dρ(Z, g0)

dg
[g1 − g0]−

dρ(Z, g0)

dg
[g2 − g0] (76)



dg(X,Xz0 ,W , g0)

dg
= E

[
dρ(Z, g0)

dg
[g1 − g2]

∣∣∣{X,Xz0 ,W }
]
. (77)

These derivatives are called “pathwise derivatives." See [Ai and Chen, 2003] for details.

To evaluate the rate of convergence, we denote the number of the basis functions depending on sample size be JN and PN .
Note that N → ∞ implies JN → ∞ and PN → ∞. We use more basis functions, qPN = (q1, . . . , qPN ), as the sample
size grows for the stage 1.

ASSUMPTIONS

We make the following assumptions.

Assumption C.1 (Compactness of Domain). Ω(X,Xz0 ,W ) is compact with non empty interior.

Assumption C.2 (Order of Convergence of Stage 1). For any h ∈ GS with κ > (1 + d)/2, there exists
qPN (X,Xz0 ,W )TπPN

∈ GS , where πPN
is PN vector, such that sup(X,Xz0

,W )∈Ω(X,Xz0
,W )

|h(X,Xz0 ,W ) −

qPN (X,Xz0 ,W )TπPN
| = O(P

−κ/(1+d)
N ) and P−κ/(1+d)

N = o(N−1/4).

The above assumption guarantees the order of convergence of regression (basis functions) used in Stage 1.

Assumption C.3 (Order of Convergence of Stage 2). There is a constant µ1 > 0 such that for any g ∈ G, there is Πg ∈ G
satisfying ∥Πg − g∥ = O(J

−κ/(1+d)
N ) and J−κ/(1+d)

N = o(N−1/4). Π is the projections to G.

The above assumption guarantees the order of convergence of regression (basis functions) used in Stage 2.

Assumption C.4 (Envelope condition). Each element of ρ(Z, g) satisfies the envelope condition in g ∈ G; and, each element
of ρ(Z, g) ∈ GS with κ > (1 + d)/2.

The envelope condition is shown in [Milgrom and Segal, 2002].

Denote ξN = sup(X,Xz0
,W ) ∥qPN (X,Xz0 ,W )∥.

Assumption C.5 (Condition of JN ). JN × ln(N)× ξN ×N−1/2 = o(1)

We denote N(ϵ1/k,G, ∥ · ∥W l,2) as the minimal number of radius δ covering ball of G.

Assumption C.6 (Condition of JN ). ln[N(ϵ1/k,G, ∥ · ∥W l,2)] ≤ const.× JN × ln(JN/ϵ)

These assumptions show how to make the models complex depending on sample size.

Assumption C.7 (Convexness of Parameter Space). G is convex in g, and ρ(Z, g) is pathwise differentiable at g; and, for
some c1, c2 > 0,

c1E[ρ̂(Z, g)2] ≤ ∥ĝ − g∥2 ≤ c2E[ρ̂(Z, g)2] (78)

holds for all ĝ ∈ G with ∥ĝ − g∥2W l,2 = o(1)

The following lemma holds [Ai and Chen, 2003]:

Lemma C.1. Under Assumptions C.1, C.2, C.3, C.4, C.5, C.6, and C.7, (i) L̂N (g)− LN (g) = op(N
−1/4) uniformly over

g ∈ G; and (ii) L̂N (g)− L̂N (g0)− {LN (g)− LN (g0)} = op(τNN
−1/4) uniformly over g ∈ G with ∥g − g0∥ ≤ o(τN ),

where τN = N−τ with τ ≤ 1/4.

Theorem 4.2. Under SCM MIV and Assumptions 3.1, 3.2, 4.1, 4.2, 4.3, C.1, C.2, C.3, C.4, C.5, C.6, and C.7, setting
N = N1 = N2, then ∥ĝ − g0∥A = op(N

−1/4).



Proof. Let

L̂N (g) = − 1

2N
ĝ(X,Xz0 ,W .g)2, LN (g) = − 1

2N
g(X,Xz0 ,W , g)2. (79)

Then, Lemma C.1 implies

L̂N (g)− L̂N (g0)− {LN (g)− LN (g0)} = op(N
−1/4) (80)

and this proves

∥ĝ − g0∥ = op(N
−1/4). (81)

D CONSISTENCY OF PARAMETRIC CAPCE ESTIMATOR

In this section, we show the consistency property of parametric CAPCE estimator. We denote the functional space G be
{g ∈ G : g(x,w) =

∑K
k=1 γkθk(x,w)}.

Consistency of Parametric CAPCE Estimator. First, we show consistency without compactness restriction. The Parametric
CAPCE estimator reduces to the general form of the conditional moment restrictions method, which is well-studied in
[Newey and Powell, 2003], as below:

γ̂ = argmin
γ

N∑
i=1

1

N
ρ̂(zi,γ)

2, (82)

where ρ̂(zi,γ) = ĉi − êiγ. ρ̂(zi,γ) can be considered as the estimators of E[ρ(Y, YXz0
, X,Xz0 ,W ,γ)|Z = zi].

ASSUMPTIONS

We make the following assumptions introduced in [Newey and Powell, 2003]. We denote GP = {γTγ ≤ BP }, and GP is
the closure of GP .

Assumption D.1 (Uniqueness of g). γ ∈ GP is the only γ ∈ GP satisfying E[ρ(Y, YXz0
, X,Xz0 ,W ,γ)|Z = z] = 0.

Assumption D.2 (Completeness of q). Taking limits P → ∞, N → ∞ with P/N → 0, there exists πP with E[{b(z)−
q(z)TπP }2] → 0 for any b(z) with E[b(z)2] <∞.

Assumption D.3 (Boundedness of ρ). E[∥ρ(Y, YXz0
, X,Xz0 ,W ,γ)∥2|Z] is bounded and there exists

M(Y, YXz0
, X,Xz0 ,W ), ν > 0 such that for all γ̃,γ ∈ GP , ∥ρ(Y, YXz0

, X,Xz0 ,W , γ̃)− ρ(Y, YXz0
, X,Xz0 ,W , g)∥ ≤

M(Y, YXz0
, X,Xz0 ,W )∥γ̃ − γ∥ν and E[M(Y, YXz0

, X,Xz0 ,W )2|Z] is bounded.

Let W denote the domain of g(x,w,γ).

Assumption D.4 (Openness and Convexness of Restricted Parameter Space). W is open and convex.

Theorem 4.3. Under SCM MIV and Assumptions 3.1, 3.2, 4.4, D.1, D.2, D.3, and D.4, letting P → ∞, then ∥γ̂−γ∥ p−→ 0.

Proof. From the Assumption D.2 and D.4, the parameter space is compact subset. From the Assumption D.3, the following
relation is satisfied:

|ρ(Y, YXz0
, X,Xz0 ,W , γ̃)− ρ(Y, YXz0

, X,Xz0 ,W ,γ)| (83)
≤M(Y, YXz0

, X,Xz0 ,W )∥γ̃ − γ∥ν (84)

From Lemma B.1,

∥γ̃ − γ∥ →p 0. (85)

From Assumption D.1, the limits is γ0.



E RATE OF CONVERGENCE OF PARAMETRIC CAPCE ESTIMATOR

ASSUMPTIONS

We make the following assumptions.

Assumption E.1 (Compactness of Domain). Ω(X,Xz0
,W ) is compact with non empty interior.

Assumption E.2 (Order of Convergence of Stage 1). For any h ∈ GP with κ > (1 + d)/2, there exists
qPN (X,Xz0 ,W )TπPN

∈ GP , where πPN
is PN vector, such that sup(X,Xz0 ,W )∈Ω(X,Xz0 ,W )

|h(X,Xz0 ,W ) −

qPN (X,Xz0 ,W )TπPN
| = O(P

−κ/(1+d)
N ) and P−κ/(1+d)

N = o(N−1/4).

Assumption E.3 (Order of Convergence of Stage 2). There is a constant µ1 > 0 such that for any γ ∈ GP , there is
Πγ ∈ GP satisfying ∥Πγ − γ∥ = O(1).

Assumption E.4 (Envelope condition). Each element of ρ(Z,γ) satisfies the envelope condition in γ ∈ GP ; and, each
element of ρ(Z,γ) ∈ GP with κ > (1 + d)/2, for all γ ∈ GP .

The envelope condition is shown in [Milgrom and Segal, 2002].

Assumption E.5 (Convexness of Parameter Space). GP is convex in γ, and ρ(Z,γ) is pathwise differentiable at γ; and, for
some c1, c2 > 0,

c1E[ρ̂(Z,γ)2] ≤ ∥γ̂ − γ∥2 ≤ c2E[ρ̂(Z,γ)2] (86)

holds for all γ̂ ∈ GP with ∥γ̂ − γ∥2 = o(1)

The following lemma holds [Ai and Chen, 2003]:

Lemma E.1. Under Assumptions E.1, E.2, E.3, E.4, and E.5, (i) L̂N (γ)− LN (γ) = op(N
−1/4) uniformly over γ; and (ii)

L̂N (γ)− L̂N (γ0)− {LN (γ)− LN (γ0)} = op(τNN
−1/4) uniformly over γ with ∥γ − γ0∥ ≤ o(τN ), where τN = N−τ

with τ ≤ 1/4.

Theorem 4.4. Under SCM MIV and Assumptions 3.1, 3.2, 4.4, E.1, E.2, E.3, E.4, and E.5, setting N = N1 = N2, then
∥γ̂ − γ∥ = op(N

−1/4).

Proof. Let

L̂N (γ) = − 1

2N
ĝ(X,Xz0 ,W ,γ)2, LN (g) = − 1

2N
g(X,Xz0 ,W ,γ)2. (87)

Then, Lemma E.1 implies

L̂N (γ)− L̂N (γ0)− {LN (γ)− LN (γ0)} = op(N
−1/4) (88)

and this proves

∥γ̂ − γ0∥ = op(N
−1/4). (89)

F PROPERTIES OF RKHS CAPCE ESTIMATOR

We show the consistency and rate of convergence of RKHS CAPCE estimator following [Singh et al., 2019] when λ3 is 0.



NOTATIONS

We use the integral operator notations from the kernel methods literature. L2(ΩZ , pZ) denotes a L2 integrable function from
ΩZ to ΩY with respect to measure pZ .

Definition 2. The stage 1 operators are

S∗
1 : HZ → L2(ΩZ , pZ), l 7→ ⟨l, ψ(·)⟩HZ

(90)

S1 : L2(ΩZ , pZ) → HZ , l̃ 7→
∫
ψ(z)l̃(z)pZ(z)dz (91)

and T1 = S∗
1 ◦ S1 is the uncentered covariance operator. The details of the theory of vector-valued RKHS are shown in

[Singh et al., 2019].

In addition, we denote

Definition 3.

G1ρ = argmin E1(E), E1 = E[π(X,W )−G1(ψ(Z))]
2
HX,W

, (92)

G1λ = argmin E1(G1), E1 = E[π(X,W )−G1(ψ(Z))]
2
HX,W

+ λ∥G1∥2L2(HZ ,HX,W ), (93)

Ĝ1λ = argmin E1(G1), E1 = Ê[π(X,W )−G1(ψ(Z))]
2
HX,W

+ λ∥G1∥2L2(HZ ,HX,W ), (94)

G2ρ = argmin E1(E), E1 = E[Y −G2(ψ(Z))]
2, (95)

G2λ = argmin E1(G2), E1 = E[Y −G2(ψ(Z))]
2 + λ∥G2∥2L2(HZ ,ΩY ), (96)

Ĝ2λ = argmin E1(G2), E1 = Ê[Y −G2(ψ(Z))]
2 + λ∥G2∥2L2(HZ ,ΩY ). (97)

Definition 4. The stage 2 operators are

S∗
2 : L2(HZ ,HX,W ) → L2(HX,W , pHX,W

), H 7→ Ω∗
(·)H (98)

S2 : L2(HX,W , pHX,W
) → L2(HZ ,HX,W ), (99)

H̃ 7→
∫

Ωµ(z)−µ(z0) ◦ H̃{µ(z)− µ(z0)}pHX,W
(µ(z)) (100)

and T2 = S∗
2 ◦ S2 is the uncentered covariance operator.

Definition 5. We denote

Hρ = argmin E(H), E(H) = E[Y − µ2(z0)−H(µ(Z)− µ(z0))]
2
HX,W

, (101)

Hξ = argmin Eξ(H), (102)
E(H) = E[Y − µ2(z0)−H(µ(Z)− µ(z0))]

2
HX,W

+ ξ∥H∥2L2(HX,W ,ΩY ), (103)

Ĥξ = argmin Êξ(H), (104)

Ê(H) = Ê[Y − µ2(z0)−H(µ(Z)− µ(z0))]
2
HX,W

+ ξ∥H∥2L2(HX,W ,ΩY ). (105)



ASSUMPTIONS

Next, we show assumptions for Theorem 4.5.

Assumption F.1 (Restriction for the domains). Suppose that ΩX,W and ΩZ are Polish spaces, i.e., separable and completely
metrizable topological spaces.

Assumption F.2 (Restriction for the feature functions). Suppose that

1. kX,W and kZ are continuous and bounded: supx∈ΩX,W
∥π(x,w)∥HX,W

≤ Q and supz∈ΩZ
∥ψ(z)∥HZ

≤ κ.

2. π and ψ are measurable.

3. kX,W is characteristic.

Assumption F.3 (Uniqueness). Suppose that G1ρ ∈ L2(HZ ,HZ), then E1(G1ρ) = infG1∈HZ
E1(G1). Furthermore,

suppose that G2ρ ∈ L2(HZ ,HZ), then E1(G2ρ) = infG2∈HZ
E1(G2).

Assumption F.4 (Boundness of stage 1). Fix ζ1, ζ2 ≤ ∞. For given c1, c2 ∈ (1, 2], define the prior P(ζ1, c1) and
P(ζ2, c2) as the set of the probability distributions on ΩX,W × ΩZ such that a range space assumption is satisfied:

∃C1 ∈ L2(HZ ,HX,W ) such that G1ρ = T
c1−1

2
1 ◦ C1 and ∥C1∥2L2(HZ ,HX,W ) ≤ ζ1, and ∃C2 ∈ L2(HZ ,ΩY ) such that

G2ρ = T
c2−1

2
1 ◦ C2 and ∥C2∥2L2(HZ ,ΩY ) ≤ ζ2.

Lemma F.1 (Rate of convergence of stage 1 (A)). Make Assumptions F.1, F.2, F.3 and F.4. For all δ ∈ (0, 1), the following
holds w.p. 1− δ:

∥Ĝ1λ −G1ρ∥L2(HZ ,HX,W )

≤
√
ζ1(c1 + 1)

4
1

c1+1

(
4κ(Q+ κ∥G1ρ∥L2(HZ ,HX,W ))ln(2/δ)√

nζ1(c1 − 1)

)
(106)

Lemma F.2 (Rate of convergence of stage 1 (B)). Make Assumptions F.1, F.2, F.3 and F.4. For all δ ∈ (0, 1), the following
holds w.p. 1− δ:

∥Ĝ2λ −G2ρ∥L2(HZ ,ΩZ)

≤
√
ζ2(c2 + 1)

4
1

c2+1

(
4κ(Q+ κ∥G2ρ∥L2(HZ ,ΩZ))ln(2/δ)√

nζ2(c2 − 1)

)
(107)

The proof is shown in [Singh et al., 2019]. The above lemma implies consistency of Stage 1 (A).

Assumption F.5 (Restriction of domain). Suppose that ΩY is a Polish space, i.e., separable and completely metrizable
topological spaces.

Assumption F.6 (Boundness of stage 2). Suppose that

1. The {Ψµ(z)−µ(z0)} operator family is uniformly bounded in Hilbert-Schmidt norm: ∃B such that ∀µ(z),
∥Ψµ(z)−µ(z0)∥2L2(ΩZ ,L2(HZ ,HX,W )) = Tr(Ψ∗

µ(z)−µ(z0)
◦Ψµ(z)−µ(z0)) ≤ B.

2. The {Ψµ(z)−µ(z0)} operator family is Hölder continuous in operator norm: ∃L > 0, ι ∈ (0, 1] such that ∀µ(z), µ(z′),
∥Ψµ(z)−µ(z0) −Ψµ(z′)−µ(z0)∥L(ΩZ ,L2(HZ ,HX,W )) ≤ L∥µ(z)− µ(z′)∥ιHX,W

.

Assumption F.7 (Boundness of stage 2). Suppose that

1. ⟨Hρ, · ⟩ ∈ L2(HX,W ,ΩY ). Then, E(Hρ) = infH∈HX,W
E(H).

2. Y is bounded, i.e. ∃C <∞ such that ∥Y ∥ ≤ C almost surely.

Assumption F.8 (Boundness of stage 2). Fix ζ <∞. For given b ∈ (1,∞] and c ∈ (1, 2], define the prior P(ζ, b, c) as the
set of probability distributions p on HX,W × ΩY such that

1. A range space assumption is satisfied: ∃C ∈ L2(HX,W ,ΩY ) such that Hρ = T
c−1
2

2 ◦ C and ∥C∥2L2(HX,W ,ΩY ) ≤ ζ.



2. In the spectral decomposition T =
∑∞

k=1 λkek ⟨·, ek⟩HX,W
, where {ek}∞k=1 is a basis of Ker(T )⊥, the eigenvalues

satisfies α ≤ kbλk ≤ β for some α, β > 0.

These assumptions are for the boundness of Stage 2.

Lemma F.3. Make Assumptions F.1, F.2, F.3, F.4, F.5, F.6, F.7 and F.8. Let λ = N
− 1

c1+1

1 , N1 = N
a(c1+1)

ι(c1−1)

2 , a > 0, and
λ3 = 0. We have

1. if a ≤ b(c+1)
bc+1 then E(Ĥξ)− E(Hρ) = Op(N

− ac
c+1

2 ) with ξ = N
− a

c+1

2 .

2. if a ≥ b(c+1)
bc+1 then E(Ĥξ)− E(Hρ) = Op(N

− bc
bc+1

2 ) with ξ = N
− b

bc+1

2 .

Lemma F.3 can be proved from the proof of Theorem 4 in [Singh et al., 2019] by subsituting µ(z) with µ(z)− µ(z0).

Theorem 4.5. Under SCM MIV and Assumptions 3.1, 3.2, F.1, F.2, F.3, F.4, F.5, F.6, F.7 and F.8, the RKHS CAPCE
estimator in (25) converges pointwise to CAPCE when λ3 = 0.

Proof. Lemma F.3 implies consistency of RKHS CAPCE estimator by taking limit N2 → ∞.

G ADDITIONAL INFORMATION ON EXPERIMENTS AND THE APPLICATION

In this section, we give detailed information about the settings of the experiments and additional experimental results.

We note that the choice of the reference point z0 does not affect the consistency results or rate of convergence, but it may
affect the variance of the estimator. In our experiments, we take the minimum value of Z as a standard reference point z0.
The choice of the reference point z0 did not affect the standard deviation of the estimators much in our experiments.

G.1 DETAILED SETTINGS OF EXPERIMENTS

We present detailed settings of numerical experiments in the following.

Setting of P-CAPCE and PTSLS. We learn the conditional expectations of basis functions E[Y |Z = z], E[X|Z = z],
E[WX|Z = z] and E[X2|Z = z] by the nonlinear model, b0 + b1Z + b2Z

2. We used the basis terms {1,W,X} for
P-CAPCE and {1,W,X,WX,X2} for PTSLS, which match setting (A), and let z0 = −1. Regularize value is determined
by test error from {1, 10−1, 10−2, 10−3}.

Setting of NTSLS and sieve CAPCE. We learn the conditional expectations by the nonlinear model, b0+b1Z+b2Z
2+b3Z

3,
We consider the basis terms hp(X)hq(W ) for p = 0, 1, 2 and q = 0, 1, 2, where hp is Hermite polynomial functions
(h0(t) = 1, h1(t) = t, h2(t) = t2 − 1 and h3(t) = t3 − 3t), and let z0 = −1. Let κ = 2 and l = 1, and we calculate Λ̂ by
Monte Carlo integration using uniform distribution (x,w) = (U(−4, 4), U(−2, 2)), where ΩX ⊆ [−4, 4] and ΩX ⊆ [−2, 2].
Regularize value is determined by test error from {1, 10−1, 10−2, 10−3}. We estimate CAPCE via differentiating estimated
E[Yx|W = w].

Setting of kernel IV and RKHS CAPCE estimator. We use polynomial kernel function kZ(z, z′) = (zT z′ + C1)
C2 and

kX,W ((x,w)(x,w)T + C3)
C4 . We select the kernel parameters (C1, C2) and (C3, C4) from {1, 2, 3, 4, 5} × {1, 2, 3, 4, 5},

respectively. We select the regularize values λ1 and λ2 from {1, 10−1, 10−2, 10−3}, respectively, and (λ3, ξ) is from
Cartesian product set {100, 10, 1} × {100, 10, 1}.

G.2 ADDITIONAL INFORMATION ON EXPERIMENTAL RESULTS IN THE BODY OF PAPER

Results: Parametric setting (A). The basic statistics of estimated coefficients by 100 time simulations of PTSLS and
P-CAPCE are shown in Tables 3 and 4. These tables supplement Table 1 in the paper. The true and estimated CAPCE
surfaces over (X,W ) are shown in Fig. 4.

Results: Nonparametric setting (B). The true and estimated CAPCE surfaces over (X,W ) are shown in Fig. 5.
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Figure 4: Parametric estimated surfaces in setting (A) (Mean, N = 10000). X-axis is the value of treatment variable
(X = x), Y-axis is the value of covariate (W = w), and Z-axis is the value of CAPCE.

Table 3: Basic statistics of the P-CAPCE estimator over 1000 runs when N = 1000 and N = 10000 in setting (A).

N = 1000 1 W X

True Coeff. 1 1 20

Min. -51.515 -18.715 -116.480
1st Qu. -10.044 0.160 -10.809
Median -1.849 3.035 17.691
3rd Qu. 7.926 12.239 50.007
Max. 40.458 109.791 213.306
Mean -1.651 10.383 19.293
SD 14.707 22.309 50.957

N = 10000 1 W X

True Coeff. 1 1 20

Min. -13.466 -2.302 -23.863
1st Qu. -2.324 -0.157 10.908
Median 1.138 0.543 22.075
3rd Qu. 4.643 1.568 29.509
Max. 14.988 11.017 59.559
Mean 1.226 0.963 19.971
SD 5.380 2.124 15.487

Table 4: Basic statistics of the PTSLS over 1000 runs when N = 1000 and N = 10000 in setting (A).

N = 1000 1 W X

True Coeff. 1 1 20

Min. -33.368 2.971 -113.509
1st Qu. -4.258 28.662 0.518
Median 2.785 45.497 28.629
3rd Qu. 7.617 62.155 61.569
Max. 26.799 161.738 138.283
Mean 1.248 50.032 27.862
SD 11.374 29.523 46.388

N = 10000 1 W X

True Coeff. 1 1 20

Min. -12.117 30.794 -20.407
1st Qu. -2.336 45.907 9.404
Median 1.704 50.716 19.347
3rd Qu. 4.494 57.017 30.498
Max. 8.952 78.573 54.494
Mean 1.101 51.181 19.763
SD 4.638 8.814 15.171

G.3 ADDITIONAL EXPERIMENTS: NO INTERACTION BETWEEN COVARIATES AND UNOBSERVED
CONFOUNDERS

In this section, we give additional experiments with no interaction between covariates and unobserved confounders.

SCM Settings. We consider the following two SCMs: W := H + E1, X := Z +W +H + E2, and{
Y := 10X2 +WX +X +W + 50H + E3 · · · (C)
Y := exp(X) exp(W ) + 50H + E3 · · · (D) . (108)
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Figure 5: Nonparametric estimated surfaces in setting (B) (Mean, N = 10000). X-axis is the value of treatment variable
(X = x), Y-axis is the value of covariate (W = w), and Z-axis is the value of CAPCE.



The other settings of each estimator are the same as in setting (A) and (B).

Results. The basic statistics of estimated coefficients by 100 time simulations of PTSLS and P-CAPCE in setting (C) are
shown in Tables 5 and 6. The MSE of each estimator in settings (C) and (D) are shown in Table 7. The results show that the
performance of the previous works PTSLS, NTSLS, Kernel IV is comparable with our proposed methods under the settings
where the interaction between the covariates W and unobserved confounders H is absent.

Table 5: Basic statistics of the P-CAPCE estimator over 1000 runs when N = 1000 and N = 10000 in setting (C).

N = 1000 1 W X

True Coeff. 1 1 20

Min. -4.419 -38.895 -21.176
1st Qu. 0.896 0.351 19.614
Median 0.983 1.361 19.919
3rd Qu. 1.065 2.620 20.246
Max. 6.066 19.864 41.021
Mean 0.944 1.151 19.642
SD 0.811 5.535 4.884

N = 10000 1 W X

True Coeff. 1 1 20

Min. 0.522 -21.630 18.680
1st Qu. 0.976 0.158 19.901
Median 1.000 0.830 20.006
3rd Qu. 1.021 1.989 20.101
Max. 1.724 24.138 21.684
Mean 0.999 0.966 19.998
SD 0.106 4.851 0.305

Table 6: Basic statistics of the PTSLS over 1000 runs when N = 1000 and N = 10000 in setting (C).

N = 1000 1 W X

True Coeff. 1 1 20

Min. 0.350 -2.045 15.831
1st Qu. 0.957 -0.199 19.303
Median 1.021 1.009 19.731
3rd Qu. 1.101 1.921 19.953
Max. 1.456 5.165 20.260
Mean 1.029 0.997 19.474
SD 0.155 1.609 0.782

N = 10000 1 W X

True Coeff. 1 1 20

Min. 0.904 -1.251 19.501
1st Qu. 0.986 0.515 19.905
Median 1.003 0.962 19.963
3rd Qu. 1.021 1.407 20.019
Max. 1.074 3.148 20.120
Mean 1.003 0.939 19.939
SD 0.028 0.814 0.118

Table 7: MSE of estimators in settings (C) and (D).

MSE PTSLS NTSLS Kernel IV P-CAPCE S-CAPCE RKHS CAPCE

(C) N = 1000 3.004 4.124 8.165 8.316 11.827 3.572
(C) N = 10000 0.254 0.367 0.614 0.774 1.324 0.567
(D) N = 1000 139.713 4.224 4.438 52.861 4.254 2.943
(D) N = 10000 57.006 0.334 1.026 40.062 0.477 0.696

G.4 ADDITIONAL EXPERIMENTS: WEAKER INTERACTION BETWEEN COVARIATES AND
UNOBSERVED CONFOUNDERS

In this section, we give additional experiments with weak interaction between covariates and unobserved confounders.

SCM Settings. We consider the following two SCMs: W := H + E1, X := Z +W +H + E2, and{
Y := 10X2 +WX +X +W + 10(W 5 +W 4 +W 3 +W 2)H + E3 · · · (E)
Y := exp(X)exp(W ) + 5(W 5 +W 4 +W 3 +W 2)H + E3 · · · (F) . (109)

The other settings of each estimator are the same as in setting (A) and (B).



Results. The basic statistics of estimated coefficients by 100 time simulations of PTSLS and P-CAPCE in setting (E) are
shown in Tables 8 and 9. The MSE of estimators in settings (E) and (F) are shown in Table 10. The results show that our
methods are superior to the previous works PTSLS, NTSLS, Kernel IV while the performance differences are less than that
in the settings (A) and (B) where the interaction between covariates and unobserved confounders are stronger.

Table 8: Basic statistics of the P-CAPCE estimator over 1000 runs when N = 1000 and N = 10000 in setting (E).

N = 1000 1 W X

True Coeff. 1 1 20

Min. -2.056 -9.914 -6.174
1st Qu. -0.103 -0.589 11.002
Median 0.848 1.996 15.528
3rd Qu. 1.898 6.510 29.150
Max. 2.047 3.502 25.181
Mean 1.185 1.765 18.248
SD 2.416 5.991 14.165

N = 10000 1 W X

True Coeff. 1 1 20

Min. 0.057 -1.633 10.648
1st Qu. 0.635 -0.286 17.381
Median 1.193 1.187 22.993
3rd Qu. 1.743 2.306 23.704
Max. 2.047 3.502 25.181
Mean 1.160 0.979 20.531
SD 0.662 1.713 4.798

Table 9: Basic statistics of the PTSLS over 1000 runs when N = 1000 and N = 10000 in setting (E).

N = 1000 1 W X

True Coeff. 1 1 20

Min. -5.345 -1.064 -3.732
1st Qu. -0.074 9.187 14.958
Median 1.195 10.862 20.450
3rd Qu. 2.667 13.322 24.988
Max. 5.766 34.620 37.757
Mean 1.195 10.862 20.450
SD 2.161 5.437 8.597

N = 10000 1 W X

True Coeff. 1 1 20

Min. -1.072 7.402 11.514
1st Qu. 0.394 9.613 17.370
Median 0.957 10.748 19.355
3rd Qu. 1.446 11.977 21.967
Max. 2.684 15.641 26.645
Mean 0.934 10.883 19.459
SD 0.778 1.687 3.478

Table 10: MSE of estimators in settings (E) and (F).

MSE PTSLS NTSLS Kernel IV P-CAPCE S-CAPCE RKHS CAPCE

(E) N = 1000 170.152 129.132 113.733 29.408 17.181 31.267
(E) N = 10000 64.645 55.104 65.055 3.592 4.527 3.171
(F) N = 1000 141.678 28.73 24.125 101.902 13.84 14.806
(F) N = 10000 61.569 4.323 3.197 42.422 1.788 1.731

G.5 ADDITIONAL EXPERIMENTS: ESTIMATION BASED ON THEOREM 3.1’.

In this section, we give additional experiments about estimating CAPCE in the settings (A) and (B) in Eq. (29) based on
Theorem 3.1’ in Appendix A.2. P-CAPCE’, S-CAPCE’, and RKHS CAPCE’ estimate CAPCE based on Theorem 3.1’. We
present detailed settings of numerical experiments in the following.

Setting of P-CAPCE’. We learn the conditional expectations of basis functions E[Y |Z = z,W = w], E[X|Z = z,W = w],
E[WX|Z = z,W = w] and E[X2|Z = z,W = w] by the nonlinear model, b0 + b1Z + b2Z

2. We used the basis terms
{1, X,X2} for P-CAPCE’ and {1, X} for PTSLS, which match setting (A), and let z0 = −1 and w = 1. Regularize value
is determined by test error from {1, 10−1, 10−2, 10−3}.

Setting of S-CAPCE’. We learn the conditional expectations by the nonlinear model, b0 + b1Z + b2Z
2 + b3Z

3 + b4W +
b5W

2 + b6W
3, We consider the basis terms hp(X) for p = 0, 1, 2, where hp is Hermite polynomial functions (h0(t) = 1,



h1(t) = t, h2(t) = t2 − 1 and h3(t) = t3 − 3t), and let z0 = −1 and w = 1. Let κ = 2 and l = 1, and we calculate Λ̂ by
Monte Carlo integration using uniform distribution x ∼ U(−4, 4), where ΩX ⊆ [−4, 4]. Regularize value is determined by
test error from {1, 10−1, 10−2, 10−3}. We estimate CAPCE via differentiating estimated E[Yx|W = w].

Setting of RKHS CAPCE’ estimator. We use polynomial kernel function kZ,W ((z, w)(z, w)T + C1)
C2 and kX(x, x′) =

(xx′ + C3)
C4 . We select the kernel parameters (C1, C2) and (C3, C4) from {1, 2, 3, 4, 5} × {1, 2, 3, 4, 5}, respectively. We

select the regularize values λ1 and λ2 from {1, 10−1, 10−2, 10−3}, respectively, and (λ3, ξ) is from Cartesian product set
{100, 10, 1} × {100, 10, 1}.

Results. The MSEs of P-CAPCE, S-CAPCE, RKHS CAPCE, P-CAPCE’, S-CAPCE’, and RKHS CAPCE’ in settings (A)
and (B) for w = 1 are shown in Table 11. The results show that estimators based on Theorem 3.1 and 3.1’ have very similar
performance.

Table 11: MSE of each estimator based on Theorem 3.1 and 3.1’ in settings (A) and (B) for w = 1.

MSE P-CAPCE S-CAPCE RKHS CAPCE P-CAPCE’ S-CAPCE’ RKHS CAPCE’

(A) N = 1000 453.233 225.301 339.091 132.167 399.446 193.306
(A) N = 10000 98.885 220.358 164.798 91.5647 275.907 153.689
(B) N = 1000 284.598 14.398 30.562 129.721 11.780 28.266
(B) N = 10000 52.217 5.189 3.475 63.302 5.726 3.194

G.6 ADDITIONAL INFORMATION ON THE APPLICATION

We present detailed settings of the application in Section 6. We applied P-CAPCE and PTSLS. We learn the expected values
of basis functions by the nonlinear model, β0 + β1Z + β2Z

2. We use terms {1,W,W 2, X,XW,XW 2} for P-CAPCE
and {1,W,W 2, X,XW,XW 2, X2, X2W,X2W 2} for PTSLS, and let z0 = 8. We estimate CAPCE via differentiating
estimated E[Yx|w] for PTSLS. Regularize parameter is determined by test error from {1, 10−1, 10−2, 10−3, . . .}.

Results. The basic bootstrapping statistical properties of the P-CAPCE and PTSLS estimators are shown in Tables 12 and
13. The predicted CAPCE values are shown in Tables 14 and 15. The estimated CAPCE surfaces are shown in Fig. 6.

Table 12: Basic statistics of the P-CAPCE estimator over 1000 bootstrapping.

Terms 1 W W 2 X WX W 2X

Min. -0.00267 -0.00003 -0.00126 -0.00006 -0.00084 -0.00237
1st Qu. -0.00061 0.00002 0.00510 -0.00001 -0.00029 -0.00099
Median -0.00006 0.00004 0.00904 -0.00001 -0.00016 -0.00053
3rd Qu. 0.00058 0.00007 0.01331 0.00000 -0.00008 -0.00017
Max. 0.00226 0.00018 0.02786 0.00004 0.00059 0.00068
Mean -0.00003 0.00005 0.00949 -0.00001 -0.00018 -0.00056
SD 0.00090 0.00004 0.00602 0.00001 0.00018 0.00062

Table 13: Basic statistics of the PTSLS estimator over 1000 bootstrapping.

Terms 1 W W 2 X WX W 2X

Min. -0.00082 -0.03024 -0.00319 -0.01294 -0.47307 -0.00180
1st Qu. 0.00000 0.00023 0.00729 0.00005 0.00238 -0.00126
Median 0.00007 0.00259 0.00996 0.00134 0.06028 -0.00108
3rd Qu. 0.00012 0.00499 0.01341 0.00260 0.10789 -0.00089
Max. 0.00051 0.01539 0.04302 0.00773 0.30066 0.00046
Mean 0.00004 0.00191 0.01083 0.00102 0.04417 -0.00103
SD 0.00017 0.00617 0.00660 0.00299 0.11830 0.00039
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Figure 6: Bootstrap mean surface of each estimator. X-axis is years of education, Y-axis is IQ, and Z-axis is CAPCE.
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