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ABSTRACT

Cooperative multi-agent reinforcement learning (MARL) commonly adopts cen-
tralized training with decentralized execution (CTDE), where centralized critics
leverage global information to guide decentralized actors. However, centralized-
decentralized mismatch (CDM) arises when the suboptimal behavior of one agent
degrades others’ learning. Prior approaches mitigate CDM through value decom-
position, but linear decompositions allow per-agent gradients at the cost of limited
expressiveness, while nonlinear decompositions improve representation but require
centralized gradients, reintroducing CDM. To overcome this trade-off, we pro-
pose the multi-agent cross-entropy method (MCEM), combined with monotonic
nonlinear critic decomposition (NCD). MCEM updates policies by increasing the
probability of high-value joint actions, thereby excluding suboptimal behaviors.
For sample efficiency, we extend off-policy learning with a modified k-step return
and Retrace. Analysis and experiments demonstrate that MCEM outperforms
state-of-the-art methods across both continuous and discrete action benchmarks.

1 INTRODUCTION

Cooperative multi-agent reinforcement learning (MARL) has made significant progress in recent
years, see (Oroojlooy & Hajinezhad, 2023) for a comprehensive review. A widely adopted paradigm
is centralized training with decentralized execution (CTDE), which underpins both value-based and
policy gradient approaches. Prominent policy gradient approaches, such as COMA (Foerster et al.,
2018), MADDPG (Lowe et al., 2017), and MAPPG (Chen et al., 2023), follow the centralized critic
with decentralized actors (CCDA) framework. Each agent has a centralized critic that leverages
full information—including the global state and the information of other agents—to evaluate the
agent’s behaviors. However, a key limitation of this setup is that the suboptimal behavior of one agent
can influence the centralized critics of other agents and, in turn, degrade their learning, known as
centralized-decentralized mismatch (CDM) (Wang et al., 2020b).

To address CDM, Wang et al. (2020b) propose DOP that represents the centralized critic as a
weighted sum of individual agent critics. The linear decomposition allows for per-agent gradients
when updating agents’ policies. The suboptimal behavior of one agent is isolated and does not degrade
the policy learning of other agents. However, the linear decomposition has limited representation
capability. The centralized critic may be misallocated to individual agent critics and therefore
negatively affect the per-agent gradient. Peng et al. (2021) propose FACMAC to factor the centralized
critic across agents with a flexible decomposition function. For the same, (Su et al., 2021) proposes
using a linear decomposition function (VDAC-sum) and a monotonic decomposition function (VDAC-
mix), and LICA (Zhou et al., 2020) uses a nonlinear function. While enjoying rich expressiveness,
the nonlinear decomposition must use a centralized gradient when updating the policies of agents. As
a result, when one agent exhibits suboptimal behavior, it can adversely affect the learning of other
agents, indicating that CDM remains unresolved.

To overcome the limitations of existing methods, this study proposes a new method MCEM-NCD
(Multi-agent Cross-Entropy Method with Monotonic Nonlinear Critic Decomposition), which can
successfully address the CDM issue and enjoy the rich representation capability of the nonlinear
critic decomposition. Our method is characterized by learning the agent policies with an extended
Cross-Entropy Method (CEM) (Rubinstein, 1999). CEM is a sampling-based stochastic optimization
technique and has been adopted in reinforcement learning domains (Kalashnikov et al., 2018;
Simmons-Edler et al., 2019; Shao et al., 2022; Neumann et al., 2023). In this study, we extend
the CEM framework from single-agent to multi-agent CEM (MCEM). Specifically, a batch of joint
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actions is sampled following current policies of agents and only the joint actions with the best
performance contribute to policy learning. By this, the joint actions of poor performance due to the
suboptimal behavior of a few agents are excluded from the policy learning and thus effectively address
CDM. A monotonic nonlinear decomposition function is applied to factor the centralized critic into
individual agent critics. The monotonicity ensures that the best performance of the individual agents
aligns with the best performance of the agents as a team. MCEM-NCD supports stochastic policies
with both discrete actions and continuous actions.

For sample efficiency when learning the centralized but factored critic, we employ the k-step λ-
return off-policy TB (Tree-backup) method (Wang et al., 2020b). This method is based on Expected
Sarsa (Sutton & Barto, 2018), which requires the expected value over all actions and agents, and
thus suffers from intractable computational complexity. Wang et al. (2020b) shows that the linear
decomposition can significantly reduce the computation. To work with nonlinear decomposition, we
replace the Expected Sarsa with Sarsa. Moreover, we optimize off-policy learning by introducing
Retrace method (Munos et al., 2016) to overcome the limitation of TB. The analysis and experiments
demonstrate the superiority of MCEM-NCD, showing strong performance with discrete actions on
various StarCraft Multi-Agent Challenge (SMAC) scenarios, especially the Hard and Super Hard
ones (Samvelyan et al., 2019), as well as with continuous actions in Continuous Predator-Prey
environments (Peng et al., 2021). To facilitate reproducibility, the code for this study is available at
https://github.com/Yuru27/MCEM-NCD.

2 RELATED WORK

A widely adopted MARL paradigm is centralized training with decentralized execution (CTDE),
including value-based approaches (Rashid et al., 2020a;b; Son et al., 2019; Sunehag et al., 2018;
Wang et al., 2020a) and policy gradient approaches (Foerster et al., 2018; Kuba et al., 2021; Lowe
et al., 2017; Yu et al., 2022; Wang et al., 2020b; Peng et al., 2021). The value-based approaches
aim to decompose the joint action-value across individual agents where the Individual-Global-Max
(IGM) principle is widely applied, i.e., the global optimal action should align with the collection of
individual optimal actions of agents (Rashid et al., 2020b). Following IGM, Sunehag et al. (2018)
propose value decomposition networks (VDN) to represent the joint action-value function as a sum of
value functions of individual agents. QMIX changes the simple sum function of the VDN to a deep
neural network that satisfies the monotonicity constraints (Rashid et al., 2020b). Various value-based
approaches have been developed to enhance the expressive power of QMIX, including Qatten (Yang
et al., 2020), QPLEX (Wang et al., 2020a), QTRAN (Son et al., 2019; 2020), MAVEN (Mahajan
et al., 2019), WQMIX (Rashid et al., 2020a), TLMIX (Zhang et al., 2023), DFAC (Sun et al., 2021),
and SMIX (Wen et al., 2020). The value-based approaches are mainly limited to discrete actions.

When facing tasks with continuous actions, multi-agent policy gradient methods are often considered.
Some actor-critic approaches adopt a centralized critic with the decentralized actors framework
(CCDA) (Lowe et al., 2017; Foerster et al., 2018; Chen et al., 2023). By extending its single-
agent counterpart (DDPG) (Lillicrap et al., 2016), MADDPG (Lowe et al., 2017) learns policies by
approximating a centralized critic for each agent, which requires knowledge of the policies of other
agents. COMA (Foerster et al., 2018) learns a centralized critic function Qtot and then each agent
models an advantage function for its current action by comparing Qtot with a counterfactual baseline,
where a default action replaces the current action of the agent, but the other agents maintain their
actions. The advantage function is used to update the policy of the agent. MAPPG (Chen et al., 2023)
learns a centralized critic for each agent via a polarization policy gradient. The methods under CCDA
suffer from the issue of centralized-decentralized mismatch (CDM) (Wang et al., 2020b), that is, the
suboptimality of one agent can propagate through the centralized critic and negatively affect policy
learning of other agents, causing catastrophic miscoordination.

Wang et al. (2020b) address CDM by proposing DOP that factors the centralized critic into individual
agent critics using a linear decomposition function. The linear decomposition has limited representa-
tional capability, but it is essential for policy update based on per-agent gradients. The suboptimal
behavior of one agent is isolated and does not degrade the policy learning of other agents. FACMAC
(Peng et al., 2021) extends the MADDPG framework by introducing a centralized, yet factored, critic
with a neural network like QMIX, but relaxes its original monotonicity constraints to enable more
flexible decomposition of value functions. VDAC (Su et al., 2021) proposes using the monotonic
decomposition function to factor the centralized critic into individual agent critics, including a linear
decomposition function (VDAC-sum) and a monotonic decomposition function (VDAC-mix). For

2

https://github.com/Yuru27/MCEM-NCD


108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

both FACMAC and VDAC, the policy update is based on the centralized gradient if the decomposition
function is nonlinear; otherwise, it is based on the per-agent gradients. LICA (Zhou et al., 2020)
factors the centralized critic across agents by training a nonlinear function to establish the relationship
between the joint action-value and the action samples drawn from policies of individual agents. For
both LICA and VDAC, the policies of agents are updated based on the centralized gradient. These
studies reveal a trade-off: linear decompositions enable per-agent gradients to mitigate CDM but lack
expressiveness, whereas nonlinear decompositions enhance representation yet rely on centralized
gradients, reintroducing the issue of CDM. This work aims to address this problem.

Zhang et al. (2021) introduces FOP and shows that it enables agents to perform globally optimal
behavior. However, its underlying assumption—that the optimal joint action-value function can be
factored into individual agent functions—is often too restrictive, failing to capture necessary joint
behavior in tasks requiring significant coordination (Cassano & Sayed, 2021). Other actor-critic
studies investigate collaborative MARL from specific perspectives and are orthogonal to our study.
(Zhou et al., 2022) investigates the situation that one agent may have the same partial observations at
different states. (Zang et al., 2023) evaluates agents in a sequence, i.e., the less-affected agents are
evaluated before other agents.

3 BACKGROUND

3.1 MODEL

We take DEC-POMDP (Oliehoek et al., 2016) for modeling cooperative multi-agent tasks as a tuple
< A,S, U, Z, P,R, k, γ > where A = {a1, . . . , ak} represents k agents, s ∈ S denotes the true
state of the environment, U is the action space, and γ ∈ [0, 1) is the discount factor. We consider a
partially observable scenario in which each agent draws individual observations z ∈ Z according to
an observation function O(s, a) : S ×A 7→ Z.

At each time step, each agent a ∈ A has an action-observation history τa ∈ T ≡ (Z × U)∗. The
agent follows a stochastic policy πa : T × U → [0, 1], where πa(ua | τa) denotes the probability of
choosing action ua ∈ U given history τa. All agents collectively define a joint policy π = {πa}a∈A

and a joint action–observation history τ = {τa}a∈A. The actions chosen by all agents together
form the joint action u = {ua}a∈A. The joint action space is denoted as U . Executing a joint
action u causes the transition of the environment from state s ∈ S to state s′ ∈ S according
to the transition function P (s′|s,u) : S × U × S 7→ [0, 1]. All agents share the same reward
function r(τ ,u) : U × (Z × U)∗|A| 7→ R. For the joint policy π, the joint action-value function is
Qtot(τt,ut) = Eτt+1:∞,ut+1:∞ [Rt|τt,ut], where Rt =

∑∞
i=0 γ

irt+i is the discounted return.

We consider both discrete and continuous action spaces, for which stochastic policies are learned.
Although training is centralized, execution is decentralized. That is, the learning algorithm has access
to all local action-observation histories τ and global state s, but each agent a learns policy conditional
only on its own action-observation history τa.

3.2 CHALLENGES

DOP (Wang et al., 2020b) factors the centralized critic into individual agent critics using a linear
decomposition function:

Qtot(τ ,u) =
∑

a∈A w
a(τ )Qa(τ , ua;ϕa) + b(τ ) (1)

where ϕa are parameters of local action-value function Qa of agent a; wa(τ ) > 0 (the weight
associated with agent a) and b(τ ) are generated by the learnable networks. Similarly, the linear
decomposition function can be applied in FACMAC (Peng et al., 2021) and VDAC (Su et al., 2021).
With the linearly decomposed critic architecture, learning stochastic policies with discrete actions is
based on the per-agent policy gradients defined as:

∇J(θ) = Eu∼π
τ∼D

[∑
a∈A w

a(τ )∇θa log πa(ua|τa; θa)Qa(τ , ua;ϕa)
]

(2)

where the actor network of agent a is parameterized by θa and the parameters of all agents together
are denoted θ. Under the per-agent policy gradients, the policy of agent a is updated with respect to
Qa(τ , ua;ϕa), independent from the local action-values of other agents. Consequently, the subopti-
mal behavior of one agent does not propagate into the policy gradient updates of others. However, due
to the limited representational capacity of linear functions, Qtot(τ ,u) may be improperly allocated
to Qa(τ , ua;ϕa) in complicated scenarios, thereby impairing policy learning.
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Figure 1: The process flow of decentralized policy learning with multi-agent CEM (MCEM) is
marked in blue (detailed in section 4.1). The process flow of the off-policy method for learning a
centralized but factored critic is marked in red (detailed in section 4.2).

The nonlinear decomposition function in FACMAC (Peng et al., 2021) and VDAC-mix (Su et al.,
2021) can be applied to factor the centralized critic into individual agent critics:

Qtot(τ ,u) = F (Qa1(τa1 , ua1), · · · , Qak(τak , uak);ψ) (3)

where the nonlinear function F is parameterized by ψ. These methods rely on the centralized gradient
to learn agent policies. For stochastic policies with discrete actions, the centralized policy gradient is
given by

∇J(θ) = Eu∼π
τ∼D

[∑
a∈A ∇θa log πa(ua|τa; θa)Qtot(τ ,u)

]
(4)

Due to the centralized policy gradient, the suboptimal behavior of a single agent can reduce the joint
action–value Qtot. As a result, other agents—despite taking optimal actions—are forced to update
their policies in an unfavorable direction. This misattribution of credit is precisely the CDM problem.

4 METHOD

We propose MCEM-NCD (Multi-agent Cross-Entropy Method with Monotonic Nonlinear Critic
Decomposition). The overall framework of MCEM-NCD is illustrated in fig. 1, and the corresponding
pseudocode is provided in algorithm 1 (appendix C). In practice, NCD is a monotonic nonlinear
network, parameterized by ψ, following QMIX (Rashid et al., 2020b). The inputs are the action-values
produced by the individual agent critics, {Qa}a∈A, and the output is the joint action-value Qtot.
It ensures that the global argmax performed on Qtot yields the same result as a set of individual
argmax operations performed on each Qa:

argmaxuQtot(τ ,u) = {argmaxua Qa(τa, ua)}a∈A (5)

By this, each agent a participates in a decentralized execution solely by choosing greedy actions
concerning its Qa. Monotonicity can be enforced by restricting the relationship between Qtot and
each Qa: ∂Qtot

∂Qa ≥ 0 for a ∈ A.

To improve sample efficiency, MCEM-NCD leverages off-policy data to train the policy networks
(actors), action-value functions (critics), and the monotonic nonlinear critic decomposition network.
During training, agents periodically sample actions from their current policies, and the resulting
interactions with the environment generate episodes that are stored in a replay buffer D. Each episode
record at time step t is represented as (st, τt,ut, rt, st+1).

4.1 DECENTRALIZED POLICY LEARNING WITH MULTI-AGENT CEM
The cross-entropy method (CEM) (Rubinstein, 1999) is a sampling-based stochastic optimization
technique that employs iterative updates to the sampling distribution. This methodology has seen
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increasing adoption in reinforcement learning domains (Kalashnikov et al., 2018; Simmons-Edler
et al., 2019; Shao et al., 2022; Neumann et al., 2023) and is categorized as evolutionary reinforcement
learning (Lin et al., 2025). Existing studies focus on single-agent reinforcement learning. We extend
the single-agent CEM framework in (Neumann et al., 2023) to the multi-agent CEM (MCEM).
MCEM randomly samples records from the replay buffer D and, for each record, takes the following
phases:

1. Sampling: For τ = {τa}a∈A in each record, we draw a set of joint actions E(τ ) from the
decentralized policies {πa(·|τa; θa)}a∈A which are parameterized by {θa}a∈A.

2. Evaluation: For each joint action u ∈ E(τ ), we compute Qtot(τ ,u).

3. Elite Selection: We select a subset of joint actions I(τ ) ⊂ E(τ ) where Qtot(τ ,u) for
u ∈ I(τ ) is in the top (1− ρ) quantile values.

For each record, we repeat the three phases and use {I(τ )}τ∼D to update decentralized actors
(policies). To help agents learn their policies π = {πa}a∈A, called main policies, we adopt auxiliary
proposal policies π̂ = {π̂a}a∈A, one for each agent, following (Neumann et al., 2023). These
proposal policies are entropy regularized to ensure that we keep a broader set of potential actions in
the sampling phase. The main policies do not use entropy regularization, allowing them to start acting
according to currently greedy actions more quickly. Updating the main policies and the proposal
policies are based on the gradient in eq. (6) and eq. (7), respectively:

∇J(θ) = Eτ∼D
[∑

u∈I(τ )

∑
a∈A ∇θa log πa(ua|τa; θa)

]
(6)

∇J(θ̂) = Eτ∼D
[∑

u∈I(τ )

∑
a∈A ∇θ̂a log π̂a(ua|τa; θ̂a) + β∇θ̂aH

(
π̂a(·|τa; θ̂a)

)]
(7)

where H
(
π̂a(·|τa; θ̂a) is the entropy regularizer, the main policy πa and the proposal policy π̂a are

parameterized by θa and θ̂a, respectively, for agent a.

Stochastic Policies with Continuous Actions Learning stochastic policies in discrete action spaces
is well supported by MCEM as discussed above. For RL with continuous actions, the policy
gradient methods are often considered and can be divided into two main categories: deterministic
and stochastic. Deterministic policies are often more sample-efficient than stochastic policies due
to lower gradient variance (Silver et al., 2014; Schulman et al., 2015). However, they lack inherent
exploration and require external noise (Lillicrap et al., 2016). In contrast, stochastic policies possess
built-in exploration (Williams, 1992; Sutton & Barto, 2018). This inherent exploratory capability not
only makes stochastic policies more robust in POMDPs where state is a probability distribution over
the true states (Singh et al., 1994; Dutech & Scherrer, 2013), but also enables them to potentially
avoid local optima and discover better final policies (Haarnoja et al., 2018; Ahmed et al., 2019).

For MARL with continuous actions, many existing policy gradient methods learn deterministic
policies, including MADDPG (Lowe et al., 2017), DOP (Wang et al., 2020b), and FACMAC (Peng
et al., 2021). Some studies facilitate learning stochastic policies where the stochastic policies are
parameterized as Gaussian distributions over continuous actions. Foerster et al. (2018) mentioned
that COMA can be readily extended to continuous action domains by employing Gaussian policies.
MAPPG (Chen et al., 2023) and FOP (Zhang et al., 2021) utilize Gaussian distributions for action
sampling in their continuous control settings.

MCEM inherently supports stochastic policies in a continuous action space. Specifically, the built-in
exploratory nature of stochastic policies enables the sampling phase of MCEM. For each agent a, the
stochastic policy is a Gaussian distribution over continuous action:

πa(ua|τa; θa) = 1

σa
√
2π

exp

(
− (ua − µa)2

2(σa)2

)
(8)

where the variance σa and mean µa of the Gaussian distribution are returned by a network parameter-
ized by θa for input τa. The formula for the entropy regularization of the Gaussian distribution is as
follows:

H(πa(·|τa; θa) = 1

2
log(2πe(σa)2) (9)

By replacing πa(ua|τa; θa) in eq. (6) by eq. (8), we can update the main policies in continuous action
space. By replacing H(π̂a(·|τa; θa) in eq. (7) by eq. (9) and reformulating π̂a(ua|τa; θ̂a) in eq. (7)
as eq. (8), we can update the proposal policies in a continuous action space. More details of stochastic
polices with continuous actions are presented in appendix B
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4.2 OFF-POLICY METHOD FOR LEARNING CENTRALIZED BUT FACTORED CRITIC

For sample efficiency when estimating the update target of the centralized critic, we explore off-policy
data in the replay buffer, that is, the episodes generated following behavior policy β. To this end, we
adapt the following operator (Wang et al., 2020b):

RQtot(τ ,u) = Qtot(τ ,u) + Eβ

(∑n−1
t≥0 γ

t(
∏t

j=1 cj)δt

)
(10)

In (Wang et al., 2020b), δt = rt + γEπ[Qtot(τt+1, ·)]−Qtot(τt,ut) and the nonnegative coefficient
cj = λπ(uj |τj) = λ

∏
a∈A π

a(uaj |τaj ). It is the multi-agent version of the n-step λ-return off-policy
TB algorithm (Munos et al., 2016) in the Expected Sarsa form (Sutton & Barto, 2018). However,
such definitions of δt and cj have limitations.

The definition of δt requires Eπ[Qtot(τt+1, ·)] =
∑

u∈U π(u|τt+1)Q(τt+1,u) for discrete actions,
which needs O(|U |k) steps of summation. With the linearly decomposed critic in (Wang et al.,
2020b), the complexity of computing Eπ[Qtot(τt+1, ·)] is reduced to O(n|U |). Since our method
uses a nonlinear decomposition function to factorize the centralized critic, we adopt:

δt = rt + γQtot(τt+1,ut+1)−Qtot(τt,ut) (11)
where Qtot(τt+1,ut+1) features the λ-return off-policy in the Sarsa form (Sutton & Barto, 2018).
That is, ut+1 is the next joint action chosen following the current policy π(·|τt+1) given τt+1, i.e.,
ut+1 ∼ π(·|τt+1). More interestingly, it is ready to support continuous actions. In contrast, it is
hard, if not impossible, for δt defined in (Wang et al., 2020b) to work with continuous actions, even
though the linearly decomposed critic is applied.

The nonnegative coefficient cj = λπ(uj |τj) = λ
∏

a∈A π
a(uaj |τaj ) corrects the discrepancy between

π and β when learning from the off-policy returns following behavior policy β. But it is inefficient
in the case of near policy where β and π are similar (Munos et al., 2016). Another popular
method is Importance Sampling (IS) cj =

π(aj |τj)
β(aj |τj)

. Due to the product
∏t

j=1 cj , IS suffers from
large, even possibly infinite, variance. To address the limitations, we adopt the Retrace algorithm
cj = λmin(1,

π(aj |τj)
β(aj |τj)

(Munos et al., 2016) which incorporates a correction mechanism to IS. By
truncating the importance weight at 1, Retrace effectively reduces the variance of IS and therefore
improves the stability of the off-policy action-value estimators.

During learning, as illustrated in fig. 1, we randomly sample a trajectory from the replay buffer
D and extract (τ ,u) from each record in the trajectory. For agent a, we estimate the local
critic Qa(τa, ua;ϕa) and then use these local values as inputs to compute the joint action-value
Qtot(τ ,u;ψ,ϕ) through the mixing function NCD, parameterized by ψ. From the same trajectory,
the following n steps after the trajectory record, where (τ ,u) is extracted, are explored to return
RQtot(τ ,u) using operator in eq. (10). RQtot(τ ,u) is the update target of Qtot(τ ,u;ϕ, ψ). The
parameters of local critics, i.e., ϕ = {ϕa}a∈A, and the parameters of the mixing function, ψ, are
updated by minimizing the loss:

L(ψ,ϕ) = E(τ ,u)∼D

[
(RQtot(τ ,u)−Qtot(τ ,u;ψ,ϕ))

2
]

(12)

Qtot(τ ,u;ψ,ϕ) = NCD
(
Q1(τ1, u1;ϕ1), · · · , Qk(τk, uk;ϕk), ψ

)
(13)

5 ANALYSIS

To distinguish, we refer to the agent policies learned using MCEM-NCD as percentile-greedy policies
πρ = {πa

ρ}a∈A, which updates agent policies by only raising the probability of joint actions in the top
(1− ρ) quantile according to Qtot(τ , ·); and refer to the agent policies learned with the centralized
gradient (eq. (4)) as centralized gradient policies πg = {πa

g}a∈A.

Theorem 5.1. The percentile-greedy policy πρ, where ρ > 0, is guaranteed to be at least as good as
the centralized gradient policies πg for any given τ . It can be formulated as eq. (14) for discrete
actions: ∑

u∈U

πρ(u|τ )Q
πρ

tot(τ ,u) ≥
∑
u∈U

πg(u|τ )Q
πg

tot(τ ,u) (14)

For continuous actions, it can be formulated as eq. (15):∫
U

πρ(u|τ )Q
πρ

tot(τ ,u)du ≥
∫
U

πg(u|τ )Q
πg

tot(τ ,u)du (15)
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The proof is in appendix A

6 EXPERIMENTS

This section presents our experimental results on the discrete-action SMAC benchmark (Samvelyan
et al., 2019) and the continuous-action Predator-Prey benchmark (Peng et al., 2021). The experiments
were conducted on a workstation equipped with a 32-Core AMD Ryzen Threadripper PRO 7975WX
processor, 128 GB of RAM, and an NVIDIA RTX 4080 GPU (16 GB VRAM). The evaluation metric
is the median win rate for discrete tasks and the mean episode return for continuous tasks when the
number of training steps increases. To ensure reliable results, we repeat every experiment by three
times with different random seeds. For our MCEM-NCD, the default setting of percentile parameter
ρ = 0.9 for continuous tasks, ρ = 0.8 for discrete tasks; the default number of joint actions sampled
per τ (i.e., the size of E(τ ) in section 4.1) is 20 for continuous tasks, 10 for discrete tasks. For
baseline methods, we employ the hyperparameter settings from the source of the code.

6.1 DISCRETE ACTION TASKS
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Figure 2: Discrete action tasks - performance measured by median win
rate on 9 scenarios in the SMAC benchmark.

StarCraft II (SC2) con-
tains a variety of special-
ized units, each possess-
ing unique capabilities that
enable the development of
complex cooperative strate-
gies among agents. The
StarCraft Multi-Agent Chal-
lenge (SMAC) (Samvelyan
et al., 2019) comprises a set
of StarCraft II microman-
agement battle scenarios de-
signed to evaluate how inde-
pendent agents can cooper-
ate to solve complex tasks.
This study evaluates the per-
formance of the proposed
MCEM-NCD on SC2 mi-
cromanagement tasks in the
SMAC benchmark. These
tasks require decentralized
agents to control a group
of heterogeneous ally units
and collaboratively defeat a comparable heterogeneous group of enemy units governed by the built-in
game AI. Battles may occur in either symmetric scenarios, where both groups have identical units, or
asymmetric scenarios, featuring divergent units.

The default environment settings in SMAC are employed. Each episode terminates under two
conditions: either when all units from one faction have been eliminated, or when the predefined
step limit for the episode is reached. A win is recorded when all enemy units are successfully
defeated. The game framework categorizes the scenarios into three difficulty levels: Easy, Hard, and
Super Hard. In our experiments, we examined 9 battle scenarios, including 4 Hard (2c_vs_64zg,
8m_vs_9m, 3s_vs_5z, and 5m_vs_6m) and 5 Super Hard (3s5z_vs_3s6z, corridor, 6h_vs_8z, MMM2,
and 27m_vs_30m). We compared our MCEM-NCD on these scenarios against six state-of-the-art
baselines. For LICA (Zhou et al., 2020), RIIT (Hu et al., 2021), VDAC-mix (Su et al., 2021), and
DOP (Wang et al., 2020b), the code is provided by PyMARL2 1 (Hu et al., 2021). For FACMAC
(Peng et al., 2021) and FOP (Zhang et al., 2021), the code is provided by the authors 2.

As shown in fig. 2, MCEM-NCD achieves outstanding performance in terms of median win rate and
convergence speed across all nine scenarios. In the 2c_vs_64zg scenario, many methods perform

1https://github.com/hijkzzz/pymarl2.
2https://github.com/oxwhirl/facmac (FACMAC), https://github.com/liyheng/

FOP (FOP)
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strongly due to their ability to control two Colossus units optimally. MCEM-NCD matches the
two best baselines and delivers significantly better performance than other baselines. Additionally,
MCEM-NCD exhibits a small variance in the median win rate. In the 3s_vs_5z scenario, where
allied agents must kite enemies over long episodes (lasting at least 100 timesteps), i.e., rewards are
substantially delayed (Samvelyan et al., 2019), MCEM-NCD achieves the best results, demonstrating
both superior median win rate and the fastest convergence, with consistently lower variance than
the baselines. In asymmetric matchups such as 8m_vs_9m, 5m_vs_6m, and 27m_vs_30m, success
depends on precise coordination and extensive exploration to discover advanced collaborative tactics.
Here, MCEM-NCD again dominates in both median win rate and convergence speed. Finally, in the
most challenging heterogeneous and asymmetric settings–3s5z_vs_3s6z, corridor, 6h_vs_8z, and
MMM2–baselines struggle to achieve meaningful performance, whereas MCEM-NCD consistently
converges to significantly higher median win rates.

6.2 CONTINUOUS ACTION TASKS
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Figure 3: Continuous action tasks - performance measured by mean
episode return on 3 scenarios in continuous Predator-Prey with varying
numbers of agents and prey.

For continuous action tasks,
we evaluate MCEM-NCD
on the Continuous Predator-
Prey environment (Peng
et al., 2021), a continuous-
action variant of the classic
predator-prey game. In this
setting, N slower coopera-
tive agents pursue M faster
prey on a two-dimensional
plane with two large, ran-
domly placed landmarks
serving as obstacles. Each agent a selects a movement action ua ∈ R2. A cooperative capture, where
one agent collides with a prey while others are within a specified proximity, yields a team reward
of +10. In contrast, an isolated capture incurs a penalty of -1, and all other outcomes yield 0. The
environment is partially observable, as each agent perceives only entities (agents, prey, and land-
marks) within its limited view radius. We test our method on three scenarios: 3_agents_and_1_prey,
6_agents_and_2_preys, and 9_agents_and_3_preys.
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Figure 4: Ablation study on the discrete tasks (top 3) and on the
continuous tasks (bottom 3).

With continuous actions,
MADDPG (Lowe et al.,
2017), DOP (Wang et al.,
2020b), and FACMAC
(Peng et al., 2021) adopt
deterministic policies,
but only MADDPG and
FACMAC provide publicly
available implementations3.
In contrast, COMA (Foer-
ster et al., 2018), MAPPG
(Chen et al., 2023), and
FOP (Zhang et al., 2021)
employ stochastic policies,
yet none of them release
source code. To ensure
fair and reproducible
comparisons, we restrict our experiments to algorithms with publicly available and previously
validated implementations, thereby avoiding unfair results caused by potential reimplementation bias.

The experimental results are presented in fig. 3. Compared with the baselines, our MCEM-NCD
achieves substantially better performance in terms of both mean episode return and convergence
speed across all scenarios, while all methods show a comparable level of variance. As expected, the
performance of all methods decreases as task complexity increases, i.e., with higher mean episode
return in simpler settings (involving fewer agents and prey) and lower mean episode return in more

3https://github.com/oxwhirl/facmac
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challenging ones. Notably, the relative advantage of MCEM-NCD becomes more pronounced in
complex environments, indicating that our approach not only scales effectively but also remains
robust when coordination demands intensify. These results underscore the strength of MCEM-NCD
in addressing increasingly difficult multi-agent interactions, where conventional baselines struggle.

6.3 ABLATION STUDY

Linear vs Nonlinear Critic Decomposition: Our MCEM-NCD is featured by multi-agent CEM and
the monotonic nonlinear critic decomposition. This ablation study aims to disclose the impact of
replacing the non-linear decomposition with the linear decomposition as in (Wang et al., 2020b).
As shown in fig. 4, the performance of the linear decomposition, denoted as MCEM_NCD_linear,
is comparable to that of the nonlinear decomposition in the easier scenarios. But the nonlinear
decomposition outperforms significantly in the complicated scenarios, including two Super Hard
scenarios in discrete action tasks and the 9_agents_and_3_preys scenario in continuous action tasks.
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Figure 5: Impact of ρ.

Off-policy vs. On-policy: MCEM-
NCD employs an n-step return-based
off-policy approach with Sarsa and
Retrace to estimate the update tar-
get of the centralized critic. To as-
sess the effectiveness of this design,
we construct an on-policy variant, de-
noted MCEM-NCD_on-policy, which
replaces the off-policy target with the
n-step return-based on-policy Sarsa
update (Retrace is excluded, as it is
specific to off-policy learning). As
shown in fig. 4, MCEM-NCD consistently dominates MCEM-NCD_on-policy across all scenarios for
both discrete and continuous action tasks.

Retrace vs TB: When learning stochastic policies with discrete actions in (Wang et al., 2020b), the
n-step return-based off-policy with Expected Sarsa and TB where linear critic decomposition is
applied. Due to the nonlinear critic decomposition, MCEM-NCD cannot be adapted by replacing
Sarsa with Expected Sarsa. But we can replace Retrace with TB in MCEM-NCD, denoted as MCEM-
NCD_tree-backup, to learn whether Retrace is better than TB. As shown in fig. 4, MCEM-NCD
consistently outperforms MCEM-NCD_tree-backup across all scenarios, with the advantage being
particularly pronounced in complex environments.”.

6.4 IMPACT OF ρ

The multi-agent CEM updates agent policies using joint action samples from the top (1− ρ) quantile
ranked by the joint action-value Qtot. We evaluate how different choices of ρ affect performance. As
shown in fig. 5, performance is sensitive to this parameter. A larger ρ reduces the number of samples
available for policy updates, lowering estimation accuracy and potentially impairing learning stability.
In contrast, a smaller provides more samples but increases the risk of reinforcing suboptimal actions,
i.e., assigning higher probabilities to actions that should remain unlikely.

7 CONCLUSION

This study advances cooperative multi-agent reinforcement learning by introducing MCEM-NCD,
a novel method that reconciles the strengths of nonlinear decomposition with the need to mitigate
the centralized–decentralized mismatch. By extending the Cross-Entropy Method to the multi-agent
setting, MCEM-NCD enables policy updates that exclude suboptimal joint actions, ensuring more
robust and stable learning across agents. Furthermore, our integration of Sarsa with Retrace optimizes
off-policy learning under nonlinear decomposition, improving sample efficiency without sacrificing
computational tractability. Empirical evaluations across benchmark environments confirm that
MCEM-NCD consistently outperforms state-of-the-art approaches in both discrete and continuous
action spaces. These findings highlight the promise of MCEM-NCD as a scalable and expressive
framework for cooperative MARL, paving the way for future research on efficient and reliable
coordination among multiple agents in complex environments.
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A PROOF OF THEOREM 5.1

Proof. Given a set of joint actions E(τ ) for τ , MCEM-NCD increases the probability of joint actions
in I(τ ) ⊂ E(τ ), which are the top (1− ρ) quantile according to Qπg

tot(τ , ·). That is, each agent a
increases πa

ρ(u
a|τa) of action ua ∈ u for every joint action u ∈ I(τ ). In contrast, the method with

centralized gradient increases the probability of joint action u if Qπg

tot(τ ,u) is high, and decreases
it if Qπg

tot(τ ,u) is low. The low Q
πg

tot(τ ,u) may be caused by the suboptimal behavior of some
agents rather than all agents. So, although the behavior of an agent a is optimal, it still needs to
decrease πa

g (u
a|τa). If the optimal behavior of the agent a is a part of another joint action u′ where

Q
πg

tot(τ ,u
′) is high, it reduces the probability of joint action u′. So, the following relations hold:∑

u∈U

πg(u|τ )Q
πg

tot(τ ,u) = Eπg
[Q

πg

tot(τ ,u)]

≤ Eπρ [Q
πg

tot(τ ,u)]

= Eπρ
{rt+1 + γEπg

[Q
πg

tot(τt+1,ut+1)]|τt=τ ,ut=u}
≤ Eπρ

{rt+1 + γEπρ
[Q

πg

tot(τt+1,ut+1)]|τt=τ ,ut=u}
= Eπρ

{rt+1 + γrt+2 + γ2Eπg
[Q

πg

tot(τt+2,ut+2)]|τt=τ ,ut=u}
≤ Eπρ

{rt+1 + γrt+2 + γ2Eπρ
[Q

πg

tot(τt+2,ut+2)]|τt=τ ,ut=u}
· · ·
≤ Eπρ

{rt+1 + γrt+2 + γ3rt+3 + · · ·+ γ3rT |τt=τ ,ut=u}

= Eπρ
[Q

πg

tot(τ ,u)] =
∑
u∈U

πρ(u|τ )Q
πρ

tot(τ ,u)

The inequality in eq. (14) is proved. In a similar way, the inequality for continuous actions in eq. (15)
can be proved.

B STOCHASTIC POLICIES WITH CONTINUOUS ACTIONS-GAUSSIAN
DISTRIBUTION

The policy π(u|τ ; θ) is this parameterized probability distribution (Sutton & Barto, 2018):

π(τ ; θ) ≡ N (µ(τ ; θ), σ(τ ; θ)2)

Given τ , the network outputs the distribution parameters µ and σ. The policy is then:

π(u|τ ; θ) = N (u|µ, σ2) =
1

σ
√
2π

exp

(
− (u− µ)2

2σ2

)
We replace π(u|τ ; θ) with the probability density function of the Gaussian distribution:

log π(u|τ ; θ) = log
[
N (u|µ, σ2)

]
Substitute into the formula for the Gaussian distribution:

log π(u|τ ; θ) = log

(
1

σ
√
2π

exp

(
− (u− µ)2

2σ2

))
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We replace π(·|τ ; θ) with the Gaussian distribution and substitute into the formula for the entropy of
the Gaussian distribution (Shannon, 1948):

H(π(·|τ ; θ)) = H(N (·|µ, σ2))

= −Eu∈U

[
log

[
N (u|µi, σ

2
i )
]]

= −Eu∈U

[
log

(
1

σi
√
2π

exp

(
− (u− µ)2

2σ2

))]
= −Eu∈U

[
−1

2
ln(2πσ2

i )−
1

2

(
u− µ

σi

)2
]

=
1

2
log(2πσ2

i ) +
1

2
Eu∈U

[(
u− µ

σi

)2
]

=
1

2
log(2πσ2

i ) +
Eu∈U

[
(u− µ)2

]
2σ2

=
1

2
log(2πσ2) +

σ2

2σ2

=
1

2
log(2πσ2

i ) +
1

2
log(e)

=
1

2
log(2πσ2

i e)

C PSEUDOCODE OF MCEM-NCD

Algorithm 1 MCEM-NCD

1: Randomly initialize parameters ψ, ϕ = {ϕa}a∈A, θ = {θa}a∈A, and θ̂ = {θ̂a}a∈A for the
critic decomposition network NCD, action-value functions Q = {Qa}a∈A, the main policies
π = {πa}a∈A, and the proposal policies π̂ = {π̂a}a∈A, respectively; initialize a replay buffer
D = ∅;

2: for 1 to T do
3: Trajectories generated where each agent a follows its current policy πa

a∈A and stored in D;
4: Sample a batch B of trajectories from D;
5: Update parameters related to centralized critic, ψ and ϕ, by minimizing loss: (eq. (12)):
6: L(ψ,ϕ) = E(τ ,a)∈B

[
(RQtot(τ ,a)−Qtot(τ ,a;ψ,ϕ))

2
]

7: for each record in the trajectories of B, extract τ do
8: Sample a set of joint actions E(τ ) where each u = {ua}a∈A and ua ∼ π̂a(·|τa);
9: Compute Qtot(τ ,u) for each joint action u ∈ E(τ );

10: Identify I(τ ) including all u ∈ E(τ ) in the top (1− ρ) quantile according to Qtot(τ , ·);
11: end for
12: Updating main and proposal policies by ascending gradients (eq. (6) and eq. (7)):
13: ∇J(θ) =

∑
τ∈B

∑
u∈I(τ )

∑
a∈A ∇θa lnπa(ua|τa; θa)

14: ∇J(θ̂) =
∑

τ∈B

∑
u∈I(τ )

∑
a∈A ∇θ̂a ln π̂a(ua|τa; θ̂a) + β∇θ̂aH

(
π̂a(·|τa; θ̂a)

)
15: end for

D ROLE OF LLMS

LLMs have been used to polish writing only in this paper. We would like to clarify that LLMs do
not play any role in research ideation and/or writing to the extent that they could be regarded as a
contributor.
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