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Text +Sketch  guidance

A yellow backrest chair

Text+Depth guidance

A  wooden office table

Text+Sketch +Depth guidance

A red sedan with sports style

Figure 1: We propose ImageBind3D, a simple but effective approach that can offer guidance in multiple forms to feed-forward
3D generative models, while not affecting the original network architectures, generation capacity, and efficiency. Thanks to
ImageBind3D, we can achieve more controllable outcomes, as opposed to the random results generated by GAN-based models
or optimization-based techniques (e.g., GET3D and Dreamfusion). Furthermore, ImageBind3D can generate 3D objects with
composable guidance.

Abstract
Recent advancements in 3D generation have garnered considerable
interest due to their potential applications. Despite these advance-
ments, the field faces persistent challenges in multi-conditional
control, primarily due to the lack of paired datasets and the inher-
ent complexity of 3D structures. To address these challenges, we
introduce ImageBind3D, a novel framework for controllable 3D
generation that integrates text, hand-drawn sketches, and depth
maps to enhance user controllability. Our innovative contribution
is adopting an inversion-align strategy, facilitating controllable
3D generation without requiring paired datasets. Firstly, utilizing
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GET3D as a baseline, our method innovates a 3D inversion tech-
nique that synchronizes 2D images with 3D shapes within the
latent space of 3D GAN. Subsequently, we leverage images as in-
termediaries to facilitate pseudo-pairing between the shapes and
various modalities. Moreover, our multi-modal diffusion model
design strategically aligns external control signals with the gen-
erative model’s latent knowledge, enabling precise and control-
lable 3D generation. Extensive experiments validate that Image-
Bind3D surpasses existing state-of-the-art methods in both fidelity
and controllability. Additionally, our approach can offer compos-
able guidance for any feed-forward 3D generative models, signifi-
cantly enhancing their controllability. The code will be available at
https://imagebind-3d.github.io/imagebind3d/.

CCS Concepts
• Computing methodologies→ Appearance and texture rep-
resentations; Mesh models.

Keywords
3D object generation, Conditional generation, Multimodal diffusion
model
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1 Introduction
High-quality 3D objects are becoming increasingly important in
various applications, e.g., metaverse, film special effects, and social
platforms. However, the manual creation of 3D assets is very slow
and tedious and requires specific technical knowledge and refined
artistic skills. To accelerate this process, numerous studies have ex-
plored the use of generative models[4, 15, 23, 45] for 3D generation,
yielding significant advancements. However, these approaches still
lack the capability for multi-conditional control.

Existing methods[11, 24, 25, 40] typically require large-scale and
paired shape data to enable effective training in the field of single-
condition-guided 3D generation. Benefiting from 3D supervision,
the generated results exhibit commendable geometric fidelity and
consistency across different viewpoints. However, these methods
exhibit a notable limitation in preserving fine-grained appearance
details and ensuring robust controllability. They are constrained to
textual inputs and can’t incorporate additional guidances, such as
sketches or depth maps. Yet, the collection and annotation of 3D
data present substantial difficulties.

Recently, NeRF[36, 39] and 3D Gaussian Splatting[12, 27, 29, 41],
have attracted considerable attention in the field of view synthesis,
owing to their remarkable ability to represent complex scenes and
produce high-fidelity rendering results. Numerous studies [8, 23,
31, 45] have employed NeRF and GS as 3D representations for text-
based 3D generation tasks. Dream Fields[23], Dreamfusion[45],
and GSGEN [8] were introduced to mitigate the constraints posed
by limited datasets. By harnessing the capabilities of pre-trained
vision-language models for guidance, these approaches extract 3D
insights from 2D models. These techniques demonstrate excellent
performance in generating high-fidelity and coherent 3D objects,
meeting various textual prompts provided by the users. Due to the
lack of paired textual and shape data, the task of generating 3D
shapes from text is highly challenging for the following reasons.
On one hand, the 2D diffusion model will introduce biases from the
internet dataset into 3D generation. On the other hand, the absence
of 3D priors in 2D models gives rise to problems of geometric
inconsistency and discontinuity. Additionally, due to the multi-step
iterative nature of diffusion models, the generation process often
necessitates several tens of minutes.

While these methods can achieve promising generative quality,
they notably lack the flexibility in user control capability to accu-
rately guide the generation of 3D objects according to users’ specific
ideas. Specifically, the absence of multi-conditional control capa-
bility results in generated outputs that are usually uncontrolled
and unstable. For instance, recent methods like GET3D[15] and
Dreamfusion[45] fail to achieve accurate control over generated
outputs through the combination of different conditions, e.g., com-
bining text with sketches or depth maps, as shown in Figure.1. This
paper tries to dig out the control capabilities that 3D generation
models have implicitly learned.

Going beyond existing approaches, we introduce a novel 3D
generation method named ImageBind3D, which enables multi-
conditional 3D generationwithout the need formatched 3D datasets.
Our ImageBind3D methodology adopts an inversion-align two-
stage approach that effectively exploits the control capabilities of-
fered by diffusion models, facilitating multi-conditional 3D genera-
tion. Inspired by ImageBind[16] and LanguageBind[65], we employ
images as an intermediary representation to connect 3D shapes
with text, sketch, and depth maps. In the first stage, employing
GET3D as a baseline, we design an encoder-based 3D inversion
algorithm that aligns images and shapes in latent space, as shown
in Figure 2: Stage 1. Next, we extract multi-modal information from
images to serve as pseudo-labels for 3D objects. In the second stage,
We design a 3D multi-modal diffusion model in the latent space
of the 3D GAN and inject additional guiding information into the
diffusion model using decoupled attention, as shown in Figure 2:
Stage 2. Utilizing a 3D multi-modal diffusion model, ImageBind3D
can generate accurate 3D objects under multiple conditions. We
summarize our main contributions as follows:

• We design a 3D multi-modal diffusion model that enables ac-
curate control for generating high-quality 3D objects, while
also supporting multi-conditional guidance.

• We introduce an encoder-based 3D inversion method to align
images and 3D shapes in latent space.

• Employing images as an intermediary, we develop a pseudo-
label generation strategy between shapes and various modal-
ities, thus eliminating the necessity for matched 3D datasets.

2 Related Work
GAN-based models. Researchers have explored various methods
for generating different 3D representations, including 3D voxel
grids [14, 17, 34, 53], clouds [1, 37, 59, 63], implicit models [9, 35,
42, 62], octrees [13, 22], and meshes[3, 15, 21, 30]. However, the pri-
mary emphasis of these approaches lies in 3D content generation,
with limited attention paid to controllability aspects. Employing
semantic or edge maps, pix2pix3D [10] and SofGAN [6] facilitate
new view synthesis, performing admirably for views closely aligned
with the input. Yet, when generating views distant from the origi-
nal conditions, they exhibit degraded quality with rough geometric
and lack of fine details. Closely related to our work, TAPS3D [58]
and ISS [32] establish a relationship between the input text and
the latent space to achieve text-guided 3D generation. However,
they only support text guidance and do not allow for more refined
constraints on shape and appearance.
Diffusion-based generative models. Diffusion model[20, 54, 55]
have recently achieved state-of-the-art performance in multiple
generative tasks, such as text-to-image [44, 47, 49, 50], text-to-
video[2, 28, 46, 52] and text-to-3D[8, 45, 51]. Dreamfusion [45] and
SJC [57] employ Neural Radiance Fields (NeRF) to represent 3D
structures, and subsequently utilize Score Distillation Sampling
(SDS) for optimizing the rendering of new perspective images.
These methods facilitate zero-shot text-to-3D generation, however,
they are constrained by their low-resolution output, slow genera-
tion process, over-smoothing, over-saturating, and multi-faceted
issues. Concurrently related to our method, HOLODIFFUSION [25]
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introduces Warp-Conditioned-Embedding [18] as a pseudo-3D rep-
resentation for 3D diffusion, which is constructed from multi-view
features. Subsequently, this representation is rendered into 2D space
and further optimized with the aid of 2D diffusion models. It should
be noted that their pseudo-3D representation has inspired the 3D
representation of our ImageBind3D. Control3D[7] enables the gen-
eration of primary views constrained by text and sketches, thus
offering a degree of controllability with the SDS strategy. However,
it still faces issues such as inconsistencies in geometry and views,
and slow generation speeds.

3 Background
3D genetative model. GET3D [15] is a novel approach for 3D
object generation, capable of producing high-fidelity textured 3D
shapes through multi-view supervision. Specifically, GET3D maps
noise vectors 𝑧 ∈ N (0, I) to a textured mesh. The generation process
includes the geometry branch and texture branch. The geometry
branch is responsible for the differentiable generation of a surface
mesh. Additionally, the texture branch generates a texture field,
allowing for color queries to be performed at surface points. Fol-
lowing the design of StyleGAN [26] and PTI [48], they map 𝑧1
and 𝑧2 to intermediate latent spaces𝑤1 and𝑤2. By leveraging the
differentiable render, the complete procedure is fully differentiable.
The adversarial objective is defined as follows:

𝐿(𝐷𝑥 ,𝐺) =E𝑧∈𝑁,𝑐∈𝐶 [𝑔(𝐷𝑥 (𝑅(𝐺 (𝑧), 𝑐)))]
+ E𝐼𝑥 ∈𝑝𝑥 [𝑔(−𝐷𝑥 (𝐼𝑥 ))]
+ 𝜆 | |∇𝐷𝑥 (𝐼𝑥 ) | |22,

(1)

where 𝑔(𝑢) = − log(1 + exp(−𝑢)), 𝑝𝑥 represents the distribution of
real images, 𝑅 stands for rendering, and 𝜆 is a hyperparameter.

Challenges: This method enables the rapid generation of high-
quality 3D objects. However, it still lacks multi-conditional control
capability.

Diffusionmodel for Image Synthesis. Latent DiffusionModels[49]
achieved significant advancements in the realm of text-to-image
synthesis. T2I-adapter[38] and ControlNet[61] dig out the hidden
abilities of T2I models, and then explicitly use them to control the
generation, including text, semantic maps, and sketches. LDM rep-
resents a two-stage diffusion model comprising an autoencoder and
a UNet-based denoiser. The optimization process can be expressed
by the following formulation:

L = E𝑍𝑡 ,𝐶𝜖,𝑡
(∥𝜖 − 𝜖𝜃 (𝑍𝑡 ,𝐶)∥22), (2)

𝑍𝑡 =
√
𝛼𝑡𝑍0 +

√
1 − 𝛼𝑡𝜖, 𝜖 ∼ N(0, 𝐼 ) is the noised feature map at

step 𝑡 , as a combination of a scaled initial feature map 𝑍0 and scaled
noise 𝜖 , where 𝜖 is drawn from a standard normal distribution. C
represents the conditional information. 𝜖𝜃 is a U-Net-based denois-
ing architecture. Following T iterative steps, the final artifact 𝑍0 is
propagated into the decoder phase of the autoencoder to perform
image generation. They utilize the cross-attention model to incor-
porate text into the denoising framework, which could be defined
as follows:

𝑍 ′ = Attention(𝑄,𝐾,𝑉 ) = softmax
(
𝑄𝐾𝑇
√
𝑑

)
·𝑉 , (3)

where 𝑐𝑡 is text features, 𝑄 = 𝑍𝑊𝑞, 𝐾 = 𝑐𝑡𝑊𝑘 and 𝑉 = 𝑐𝑡𝑊𝑣

represent the query, key, and values from text features.𝑊𝑞,𝑊𝑘 and
𝑊𝑣 represent the weight matrices.

Challenges: The primary advantage of this method is its ca-
pability for fine-grained control, yet it necessitates a significant
investment in computational power and expansive training data. In
the process of designing a 3D diffusion model, this issue becomes
more evident.

4 Method
To achieve the best of both worlds, we propose an inversion-align
approach named ImageBind3D, as shown in Figure 2. Our method
harnesses the multi-condition guidance capability of diffusion mod-
els for Controllable 3D generation. To address computational chal-
lenges, we propose denoising in the intermediate latent space of
3D GAN. In response to the absence of paired datasets, we adopt a
pseudo-labeling strategy to generate labels for 3D objects. In subse-
quent sections, we first introduce our 3d inversion method, which
aligns images and 3D objects in the latent space (Section 4.1). Sub-
sequently, we discuss our pseudo-label generation method, which
forms connections between shapes and multiple modalities, with
images serving as the central component (Section 4.2). Lastly, we
propose our 3D multi-modal diffusion model, which can generate
accurate 3D objects according to different input conditions (Section
4.3).

4.1 Image-based 3D Inversion
Controllable 3D generation encounters dual challenges: the absence
of paired datasets and the substantial computational resources re-
quired. To address these two challenges, we design a 3D inversion
method. Similar to the encoding-decoding architecture of SD[49],
we adopt latent codes as 3D representations to simplify computa-
tional complexity. Utilizing the 3D inversion method, we establish
a mapping relationship between images and 3D representations,
which provides us with a benchmark for aligning 3D objects across
different modalities. Employing GET3D as the foundational base-
line, we develop an encoder-based 3D GAN inversion approach,
which adopts an encoder-decoder architecture, as shown in Fig-
ure 2: Stage 1. Our encoder architecture comprises a VAE encoder
and an MLP feature mapping layer. While the decoder follows the
generator of GET3D architecture with frozen parameters. We uti-
lize MLP to map image features from various hierarchical levels to
the geometric latent variables𝑤1 and appearance latent variables
𝑤2. By constraining the weights of this generator, our model can
concentrate on achieving semantic congruence between the input
images and the generated 3D objects. Hence, in the training phase,
optimization is solely focused on the parameters of VAE and MLP.
In the inversion process, we aim to find an intermediate latent vari-
able to minimize the disparity in reconstruction loss between input
images and their 3D renderings. It can be defined as follows:

min
𝐸

𝑁∑︁
𝑖=1

𝐿(𝑥 (𝑖), 𝑅(𝐺 (𝐸 (𝑥 (𝑖)), 𝜃 ))), (4)

where 𝐺 (𝑤 ;𝜃 ) is the 3d object generated by GET3D, which param-
eterized by weights 𝜃 , R is a differentiable renderer, 𝐸 is a VAE
encoder.
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Figure 2: Our ImageBind3D is a two-stage approach for multi-conditional 3D generation. In the first stage, we employ a 3D
inversion technique to align images and shapes within the GAN’s latent space. Next, we generate a pseudo-label centered
around the images. In the second stage, we introduce our 3D multi-modal diffusion model for multi-conditional 3D generation.

Figure 3: We demonstrate our pseudo caption generation
module, which is inspired by TAPS3D[58]. Within this mod-
ule, there are four distinct steps: vocabulary construction,
keyword retrieval, pseudo caption generation, and caption
retrieval from images.

It is observed that using 𝐿(𝐷𝑥 ,𝐺) only allows the model to create
plausible geometry corresponding to the input image. However,
the generated appearance is unnatural and blurry. The primary
challenge we face is the discordance between the adversarial loss
and our objective of achieving a direct one-to-one mapping during
the inversion process. To address this problem, we introduce two
additional losses: image similarity loss, and pixel-wise loss. The
image similarity loss is defined as follows:

𝐿CLIP = 1 − cos(E𝑖 (𝐼𝑥 ), E𝑖 (𝐼𝑔𝑡 )), (5)

where 𝐸𝑖 is the image encoder of CLIP, 𝐼𝑥 and 𝐼𝑔𝑡 present the ren-
dered images and input images. The pixel-wise loss is L2 loss, which
signifies the Euclidean norm between the input and rendered im-
ages. The overall loss is obtained by blending these three compo-
nents. It can be defined as follows:

𝐿 = 𝜆1𝐿(𝐷𝑥 ,𝐺) + 𝜆2𝐿2 + 𝜆3𝐿CLIP, (6)

Figure 4: We calculated the average distance between dif-
ferent modalities using examples from two classes: Car and
Chair.

4.2 Pseudo Label Generation
The most recent 3D shape generation models are primarily fueled
by data. Benefiting from large-scale training data, their performance
enhancement is notable. However, when we aim to train a multi-
condition 3D generationmodel, we are confined to a restricted set of
multi-modal conditioned 3D objects. To address this challenge, we
follow the methodology of [58, 64] and propose generating pseudo-
labels for 3D objects centered around images. Our pseudo-label
strategy is predominantly focused on text descriptions, sketches,
and depth maps. For pseudo captions, we adopt a four-step pseudo
caption generation method from TAPS3D[58], as shown in Figure
3. Initially, we construct a vocabulary using ShapeNet-related[5]
nouns and adjectives found in the CLIP vocabulary. Next, we gather
multiple words based on the 2D-rendered images. Subsequently,
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candidate captions are generated using the retrieved words. Lastly,
we choose a caption by assessing text-image similarities computed
with the CLIP model. Following the paradigm of ControlNet[61],
we’ve incorporated sketch and depth estimation models to predict
sketches and depth maps.

As shown in Figure 4, through an image-centric pseudo-label
strategy, we can efficiently establish connections between multi-
modal data. Taking depth, image, and 3D as examples, it is observed
that the direct mapping generation of 3D objects results in smaller
intervals between modalities. The distance between modalities
is obtained using equation 5. Considering the semantic gap, we
opted not to employ a strategy of controlling images with different
conditions and then using images to control 3D generation. On the
contrary, our objective is to directly establish mapping relationships
between different modalities and shapes, without intermediaries.

4.3 Multimodal Diffusion for Controllable 3D
Generation

Due to the absence of multi-condition guidance in GAN frame-
works, we present a 3D multimodal diffusion model for controllable
3D generation, as shown in Figure 2: Stage 2. We have adopted
U-Net architecture and decoupled the cross-attention module. The
multimodal diffusion model is designed to generate diverse latent
codes, each corresponding to distinct input conditions. The gener-
ated latent codes are inputted as control signals into the generator,
thereby enabling controllable 3D generation.

This innovation draws inspiration from themethodologies SD[49]
and HoloDiffusion[25]. Specifically, HoloDiffusion leverages multi-
view approaches to forge a comprehensive 3D representation suit-
able for diffusion. In our denoising architecture, 𝑧𝑡 is constructed
by concatenating geometric latent variables and appearance la-
tent variables, with dimensions of 512*31. Within the latent space,
512×22 dimensions are allocated to present geometric attributes,
leaving the remaining 512×9 dimensions to present appearance
characteristics.

As illustrated in Equation 3, the original SD model utilizes the
cross-attention mechanism to incorporate text into the denoising
framework. To achieve multi-conditional control, one straight-
forward approach is to concatenate the features from disparate
conditions and subsequently feed them collectively into the cross-
attention layers. However, our findings indicated that this method-
ology fell short of efficacy. Inspired by Ip-adapter[60], we propose
our decoupled cross-attention mechanism, comprising both cross-
attention and dot-product attention modules. The output of the
cross-attention 𝑍 ′ can be computed by Equation 3. Our dot-product
attention module consists of three components: the CLIP encoder,
VAE encoder, and AdaIN feature fusionmodule. These two encoders
are employed to extract visual prompt features at semantic and geo-
metric levels. Utilizing these image features, we apply Adaptive
Instance Normalization (AdaIN) to normalize two features 𝑐𝑠 and
𝑐𝑔 . It can be defined as follows:

�̂�𝑠 = AdaIN(𝑄𝑠 , 𝑄𝑔), (7)

�̂�𝑠 = AdaIN(𝐾𝑠 , 𝐾𝑔), (8)

AdaIN(𝑥,𝑦) = 𝜎 (𝑦)
(
𝑥 − 𝜇 (𝑥)
𝜎 (𝑥)

)
+ 𝜇 (𝑦), (9)

A pink car

A red motorcycle

A blue car

A wooden chair

A  sofa chair

An office table

Figure 5:We demonstrate the generative diversity and textual
guidance of our method. Each row employs the text prompt
with different samples of random noise as input.

where 𝑥,𝑦 present CLIP and VAE feature, 𝜇, 𝜎 present the mean and
standard deviation of features. We concatenate 𝐾𝑛 and 𝐾𝑚 , as well
as𝑉𝑛 and𝑉𝑚 , respectively, to obtain𝐾𝑛𝑚 and𝑉𝑛𝑚 . Our dot-product
attention can be defined as:

𝑍 ′′ = Attention(�̂�𝑚, 𝐾
𝑇
𝑛𝑚,𝑉𝑛𝑚) = Softmax

(
�̂�𝑚𝐾

𝑇
𝑛𝑚√
𝑑

)
𝑉𝑛𝑚, (10)

Where �̂�𝑚 , 𝐾𝑛𝑚 and 𝑉𝑛𝑚 represent the query, key and value. Sub-
sequently, the output of condition dot-product attention is added
to the output of text cross-attention. The decoupled cross-attention
is specified as follows:

Znew = Attention(𝑄,𝐾,𝑉 ) + 𝛼 ∗ Attention(�̂�𝑚, �̂�
𝑇
𝑛𝑚,𝑉𝑛𝑚)

= softmax
(
𝑄𝐾𝑇
√
𝑑

)
·𝑉 + 𝛼 ∗ softmax

(
�̂�𝑚�̂�

𝑇
𝑛𝑚√
𝑑

)
·𝑉𝑛𝑚

(11)

where 𝛼 is weight factor, if 𝛼 = 0, the model become the original
text-guided diffusion model. Specifically, our additional control
signals include sketches or depth maps, as well as combinations of
various conditions.

5 Experiment
5.1 Implementation Details and Metrics
We conduct training and evaluation on ShapeNet[5]. Our experi-
mental evaluations are performed on four complex geometric cate-
gories, including Car, Table, Chair, and Motorbike. We utilize the
GET3D model as our 3D generator. In the inversion stage, our in-
version experiments are performed with a batch size of 16 and
executed on 2 Nvidia 3090Ti-24G GPUs. It costs 15 hours for 3D
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A  red  car A  white  carInput sketch

Sketch + depth

Input depth A  red  chair with backrest

A wooden  coffee table A gray coffee table

A  gray  chair with backrest

Figure 6: We show the multi-conditional control capabilities of our method. Each column takes the text prompt and additional
conditions as the model input.

inversion training. In the alignment stage, we set the batch size to
64. The training process begins with the text-to-3D diffusion model,
followed by the training of the multi-modal diffusion model. The
training sessions lasted 15 and 6 hours for the respective stages.

5.2 Qualitative Results
In Figure 5, we illustrate our method’s generative diversity and
textual control efficacy across four object classes. In each row, we
sample random noises alongside the provided textual prompts as
inputs to generate textured 3D shapes. We observe that the ren-
dered 2D images possess semantic coherence with the provided
prompts. Furthermore, the 3D results present substantial diversity
in texture and geometric structures, even when generated from
the same textual inputs. Additionally, the Motorbike, Table, and
Chair exhibit more complex geometric structures compared to the
Car. However, we still effectively control the texture and geometric
details of these challenging categories, demonstrating the robust-
ness of our approach. In Figure 6, we show the multi-conditional
control capabilities of our method across different classes. In the
initial four lines, we present our ability to generate 3D objects by
combining text with sketches or depth maps. Our approach enables
the generation of multiple appearances for 3D objects using the
same shape prompts and different text inputs. Furthermore, our
method can generate diverse 3D objects based on the same text
and varying visual prompts. In the last two lines, we present the
results of 3D generation based on multiple conditions such as text,
sketches, and depth maps. We observed that when we introduce a
concept with text and then further refine the object with sketches

or depth maps, it leads to a more realistic and controllable genera-
tion. This allows ordinary users to rapidly create 3D objects as they
imagine, enhancing the user-friendly design experience.

5.3 Comparisons with State-of-the-art Methods
We compared our method with existing works through qualita-
tive and quantitative analyses. To demonstrate the quality of our
3D generation, we compared it with existing works using three
metrics: FID[19], R-precision[43], and FPD[33]. They are employed
individually to assess the quality of rendered 2D images, the dis-
tance between textual and image representations, and the geometric
fidelity of 3D models.

Qualitative Comparisons. Due to the current research meth-
ods mainly supporting single-condition guided 3D generation, we
performed comparative experiments under different conditions.
Our comparative analysis encompasses the following methods:
TAPS3D[58], ISS[32], and pix2pix3d[10]. TAPS3D and ISS only sup-
port text-guided 3D generation, whereas pix2pix3d enables sketch-
guided 3D generation. For a fair comparison, we conducted retrain-
ing of pix2pix3d and ISS at a resolution of 1024×1024. In Figure 7,
we present the results of qualitative comparisons. We show text-
guided, sketch-guided, and combined text and sketch-guided 3D
generation separately. We compare across two categories, show-
casing the generated results for each category from two different
views. For example, with the text "a wooden backrest chair", our
ImageBind3D can generate richer details than TAPS3D and ISS.
Compared to pix2pix3D, our method can generate results that bet-
ter match the sketch description, as shown in the sixth column of
Figure 7. It can be observed that our method outperforms TAPS3D,
ISS, and pix2pix3d in generating 3D textured shapes.
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Our sketch+text

A wooden backrest chair

A yellow car

ISS Taps3D Our text Sketch Pix2pix3d Our sketch Our sketch+text

Figure 7: Our comparative experiments are conducted on two classes: Car and Chair. For each object, we display rendered
images from two perspectives. We compare the text-guided 3D generation results of TAPS3D[58] and ISS[32] separately and
contrast them with pix2pix3D[10] for sketch-guided generation results.

Table 1: Evaluation is performed on the Car and Chair categories using the FID, R-Precision, and FPD metrics. As the resolution
generated by 3DFuse is 256×256, we downsample the generated results for comparison. Ablation-1 and Ablation-2 represent the
experimental results of our ablation study.

Method Car Chair
FID (↓) R-Precision(R=1)(↑) FPD (↓) FID (↓) R-Precision(R=1)(↑) FPD (↓)

3DFuse[51] 65.23 59.32 ± 2.15 N/A 94.75 67.55 ± 2.47 N/A
TAPS3D[58] 34.62 62.36 ± 1.93 337.67 44.83 60.19 ± 1.89 342.23
ISS[32] 37.18 60.36 ± 2.03 364.93 44.96 58.72 ± 2.23 585.79

Ablation-1 538.61 56.18 ± 1.98 1786.42 673.18 54.07 ± 2.01 2487.52
Ablation-2 668.35 57.13 ± 2.17 1875.68 797.31 55.75 ± 2.04 2613.57
Ablation-3 35.18 61.94 ± 2.06 N/A 50.28 59.87 ± 1.97 N/A
Ablation-4 35.57 62.37 ± 2.04 N/A 59.69 19.52 ± 1.96 N/A

Our-256*256 30.46 64.05±1.87 N/A 40.27 64.41±2.05 N/A
Our 29.04 64.57±1.91 305.14 38.36 64.79±1.94 322.85
Our+sketch 28.93 64.68 ± 1.90 N/A 37.41 64.92 ± 1.93 N/A
Our+depth 28.16 64.49 ± 1.93 N/A 37.62 64.73 ± 1.94 N/A

Quantitative Comparisons. To ensure fairness in compar-
ison, we test on the same dataset using the official codes from
GitHub. Table 1 provides quantitative comparisons. In particular,
we downsampled our results to match the resolutions of 3DFuse
[51]. 3DFuse adopts NeRF for 3D representation and utilizes SDS
techniques, thereby imposing limitations on both the resolution and
speed of the resultant outputs. In contrast, our backbone GET3D
model boasts a larger capacity, enabling higher resolutions. Ex-
perimental findings demonstrate that our approach outperforms
3DFuse in text-guided generation quality for specific categories.
Comparing the existing works with ours in Table 1, we can ob-
serve that our method outperforms the three state-of-the-art works
across all three evaluation metrics.
In Table 2, we compare our methodwith others in terms of inference
speed. Optimization-based techniques, such as Dreamfusion[45],
3DFuse[51], and GSGEN[8] demand several tens of minutes. Al-
though DreamGaussian[56] reduces optimization time to 2 minutes,
the resulting resolution is only 256*256 and the geometric quality is

poor. However, it is important to emphasize that this comparison is
not entirely fair for these optimization-based algorithms, as they are
designed for open-world 3D generation. ISS, utilizing optimization
strategies for each object, takes approximately 10 minutes. TAPS3D,
employing a direct mapping text feature to latent space, operates in
6.5 seconds. Our approach delivers rendering results in 0.32 seconds
and requires 1.09 seconds for mesh generation.

5.4 Ablation Study
3D Inversion Module. In ablation-1, we removed 𝐿𝑐𝑙𝑖𝑝 and 𝐿2
during 3D inversion training and conducted experiments follow-
ing the original inversion-align strategy. All other settings remain
unchanged, yet the generated results underperform our original
ImageBind3D across three evaluation metrics, as shown in Table
1. We execute ablative analyses on our methodology under textual
guidance, encompassing "a red car" and "a chair with a backrest".
The experimental results of ablation-1 are visualized in the second
and fifth rows of Figure 8. Pseudo Label Module. In ablation-2 of
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Table 2: We compare the inference times of various
methods across distinct prompts. The inference times for
Dreamfusion[45] and GSGEN[8] were obtained from their
papers. For 3DFuse[51], DreamGaussian[56], and ISS[32],
we computed the average time from 50 sample sets. For
TAPS3D[58] and our method, the average time was derived
from 500 sample sets.

Method Device Output Time

Dreamfusion[45] TPUv4 Rendering 90 min
3DFuse[51] 3090Ti Rendering 30 min
GSGEN[8] 11G Mesh 100 min
DreamGaussian[56] 3090Ti Mesh 2 min
ISS[32] 3090Ti-24G Mesh 10 min
TAPS3D[58] 3090Ti-24G Mesh 6.5 sec

Ours-text 3090Ti-24G Rendering 0.32 sec
Ours-text 3090Ti-24G Mesh 1.07 sec
Ours-text+sketch 3090Ti-24G Mesh 1.09 sec
Ours-text+depth 3090Ti-24G Mesh 1.08 sec

Figure 8: We perform ablation studies in our method, with
two different text prompts "a chair with a backrest" and "a
red car". The first row of experimental results corresponds to
our complete model, followed by the results of the ablation-1
experiment in the second row, and those of the ablation-2
experiment in the third row.

Table 1, we directly removed the pseudo-label module and utilized a
diffusion model to control the image directly for 3D generation. The
experimental results are depicted within the third and sixth rows
of Figure 8. Experimental results indicate that pseudo pseudo-label
module plays a significant role in our method. Furthermore, by com-
paring ablation-1, ablation-2, and the original ImageBind3D, we

Visual prompt Our model Ablation-3 Ablation-4

Figure 9: We show 3D results using various fusion mecha-
nisms. All generated outputs are derived from identical text
and visual prompts.

observe that our inversion-based alignment mechanism contributes
more substantially to the overall effectiveness.

Decoupled Attention Module. To validate the effectiveness
of our decoupled attention module, we conduct ablation-3 and
ablation-4. In ablation-3, we adopt the decoupled attention mech-
anism of IP-Adapter[60]. In ablation-4, we directly add additional
information to text, then input them into the cross-attention mod-
ule. We compared the performance of these two approaches on FID
and 𝑅 − 𝑃 evaluation metrics, as shown in Table 1. Additionally,
qualitative comparisons are illustrated in Figure 9. We merge the
textual description "a yellow car" with different visual prompts. In
the first row, the generated result from ablation-3 does not match
the sketch conditions for the window part, and in ablation-4, the
generated result for the car’s tail part is also inconsistent with the
input sketch. The experimental results indicate that our decoupled
attention module effectively and precisely incorporates different
guiding information into 3D generation.

6 Conclusion
We propose a novel 3D generation framework that enables con-
trollable and high-quality 3D generation with multi-conditional
guidance. Initially, we introduce a 3D inversion approach to es-
tablish correspondences between images and 3D objects, and then
employ the latent codes as 3D representation. Next, we generate
pseudo-labels to facilitate model training. Finally, we design a 3D
multi-modal diffusion model to control the generation of 3D objects.
During the inference stage, our method does not require additional
optimization steps. Our generation method enables regular users to
generate controllable and high-quality 3D objects within acceptable
processing times.

Limitations. The primary limitation of our method lies in its
generation capability, which is constrained by the original gen-
erative model. This issue could be addressed by adopting a more
extensive and powerful generative model. Besides, we cannot pro-
duce different fine-grained details for different object components.
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