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Abstract

Computing the angular similarity between pairs
of vectors is a core part of various ma-
chine learning algorithms. The seminal work of
Charikar [Charikar, 2002] (a.k.a. Sign-Random-
Projection (SRP) or SimHash) provides an unbi-
ased estimate for the same. However, SRP suffers
from the following limitations: (i) large variance in
the similarity estimation, (ii) and high running time
while computing the sketch. There are improved
variants that address these limitations. However,
they are known to improve on only one aspect in
their proposal, for e.g. [Yu et al., 2014] suggest a
faster algorithm, [Ji et al., 2012, Kang and Wong,
2018] provide estimates with a smaller variance.
In this work, we propose a sketching algorithm
that addresses both aspects in one algorithm – a
faster algorithm along with a smaller variance in
the similarity estimation. Moreover, our algorithm
is space-efficient as well. We present a rigorous
theoretical analysis of our proposal and comple-
ment it via experiments on synthetic and real-world
datasets.

1 INTRODUCTION

High-dimensional datasets are ubiquitous in many real-
life applications. Performing analytics on such datasets is
tedious and, at times impossible due to the curse of di-
mensionality. The dimensionality reduction or sketching
algorithms suggest probabilistic algorithmic techniques that
compress the high dimensional dataset into low dimensions
while preserving pairwise similarity measures such as JL
lemma [Johnson and Lindenstrauss, 1983] and its improved
variants [Achlioptas, 2001, Li et al., 2006b, Dasgupta et al.,
2010, Kane and Nelson, 2014] for real-valued vectors and
pairwise euclidean distance. Minhash [Broder et al., 1998]

and its improved variants [Li and König, 2011, Li et al.,
2012, Shrivastava, 2017] for sets and pairwise Jaccard sim-
ilarity. Feature Hashing [Weinberger et al., 2009] and its
improved variant [Verma et al., 2022b] preserves the pair-
wise inner product for real valued vectors. FSketch [Bera
et al., 2021] and a duo of Cabin and Cham [Verma et al.,
2022a] preserve pairwise hamming distance for categori-
cal vectors. For binary vectors BDR [Pratap et al., 2018a],
BCS [Pratap et al., 2018b] and BinSketch [Pratap et al.,
2019] preserve the inner product, hamming distance, cosine
and Jaccard similarity.

In this work, we focus on the sketching algorithm for real-
valued data that approximates pairwise cosine similarity.
The seminal work due to Charikar [Charikar, 2002] suggest
an algorithm for this task which has been extensively used
in applications such as detecting near-duplicates [Manku
et al., 2007], Spam-email detection [Ho et al., 2014]. Their
algorithm compresses large-dimensional datasets into low-
dimensional binary vectors such that the Hamming distance
between the sketched vectors gives an unbiased estimate
of the pairwise cosine similarity. Let a⃗, b⃗ ∈ RD such that
the angle between them is θ(a⃗,⃗b), and let H = {ξ(i)(·)}i≥1

denote the family of hash function stated as follows:

ξ(i)(⃗a) =

{
1, if ⟨⃗a, r⃗i⟩ ≥ 0.

0, otherwise,
(1)

where r⃗i = ⟨ri1, . . . , rij , . . . , riD⟩ ∈ RD such that rij ∼
N (0, 1). Repeating the step stated in Equation (1) K times,
and concatenating the corresponding hash values gives a K
dimensional binary vector corresponding to the input vector.
Let X be the estimator random variable for the estimate of
cosine similarity by SRP defined as:

X =
π

K

K∑
i=1

X(i),where X(i) = 1ξ(i)(a⃗) ̸=ξ(i) (⃗b).

E[X] = θ(a⃗,⃗b).
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Figure 1: Comparison based on RMSE for angular similarity
estimation on a pair of points. Original dimension of points
is 104. A smaller RMSE indicates better performance.

Var[X] =
θ(a⃗,⃗b)

(
π − θ(a⃗,⃗b)

)
K

. (2)

SRP can also be seen as a multiplication of the projection
matrix (of dimension K × D) with input vectors. Thus,
the running time and space required (by the projection ma-
trix) to compute the sketch per data point is O(DK). This
highlights the following limitations of SRP:

(i) higher running time and space requirement, especially
when the data dimension D is large, and (ii) high variance,
when sketch dimension K is smaller, and also when pairwise
angle of data points is close to π/2.

Previously known improved variants of SRP: There are
several results that address some of these limitations of SRP.
The result of [Yu et al., 2014, 2018] a.k.a. CBE gives a faster
and space efficient algorithm for the task, but its variance
remains the same as of SRP, whereas method proposed
by [Kang and Wong, 2018] (MLE) and [Ji et al., 2012]
(SuperBit) reduces the variance but at the cost of higher
running time than SRP. We present an elaborated discussion
in Section 2.

To the best of our knowledge, there is no work that
addresses all the limitations of SRP in the same sketching
algorithm. In this work, we propose one such algorithm.
Our key contributions are summarized as follows:

• Our first algorithm is COUNT-SKETCH SIGN-RANDOM-
PROJECTION (CSSRP) that compresses high dimensional
points into low dimensional binary vectors and closely
approximates pairwise cosine similarity, offer a faster
running time and simultaneously provide a significantly
smaller variance than SRP. At a high level, the CSSRP is
inspired from COUNT SKETCH [Charikar et al., 2004a]
algorithm, where we first apply the COUNT SKETCH
algorithm on the input vectors and then compute the sign
of the resultant sketch vector. The similarity estimation
step remains exactly the same as SRP (Definition 2). Note
that our algorithm can be seen as projecting the input
vector on a K ×D projection matrix (whose each column

has exactly one non-zero entry at the index randomly
sampled from {1, . . . ,K}, and takes value between {±1}
with probability 1/2), and computing the sign of the
resultant K-dimensional vector. However, the mentioned
improvement of CSSRP holds when the sketch dimension
K = o(D) (Theorems 5, 6).

• To alleviate the limitation of CSSRP mentioned
above, we propose another sketching algorithm, namely
- COUNT SKETCH SIGNED RANDOM PROJECTION-L
(CSSRP− L) (Definition 8). The basic difference
CSSRP− L and CSSRP is in the process of generating the
random projection matrix - each column of the projection
matrix for CSSRP− L has exactly l non-zero values
(randomly sampled from {±1} with probability 1/2) at
randomly chosen positions, where l ≪ K. CSSRP− L
offers significant variance reduction even for large K where
K = o(lD) (Theorems 9, 10). We summarise a quick
comparison between CSSRP and CSSRP− L using the
standard RMSE metric in Figure 1. It is evident that for
small values of K, CSSRP has a smaller RMSE. However,
at higher values of K, its RMSE starts increasing, which
gets settled by CSSRP− L, even for very small values of
l say 2, 3. Furthermore, both proposals are space-efficient
and require O(D) and O(lD) space for projection matrices,
for CSSRP and CSSRP− L, respectively, which is
significantly less than that required by most baseline
algorithms.

• We present our theoretical analysis in Section 4, and com-
plement it via experiments (in Section 5) on synthetic and
real-world datasets, on the metrics such as running time,
similarity search, and variance analysis via box-plot. We
observed a significant speedup (upto 3896×) in running
time, while simultaneously offering a better performance
on the remaining experiments. Our observation is that for
small values of the sketch dimension K, CSSRP offers both
significant speedup and smaller variance, whereas for large
values of K CSSRP− L performs similarly even for small
values of l = {2, 3, 5}. We summarise a tabular comparison
among the baselines on asymptotic sketching time, space
complexity, and variance in Table 1.

2 RELATED WORKS

Our work focuses on computing fast and accurate pairwise
cosine similarity between input vectors, which has been
extensively studied; we summarized some of the related
works below:

CBE: [Yu et al., 2014] proposed a faster algorithm to com-
pute pairwise cosine similarity. Their algorithm employs a
special kind of matrix called circulant matrix, which con-
sists of a random vector r⃗ = (r0, . . . , ri, . . . , rD), where
ri ∈ N (0, 1), and d−1 vectors obtained via applying circu-
lar shift in r⃗. Their projection matrix is the matrix obtained



Algorithm Sketching Space Variance
Time Complexity

SRP [Charikar, 2002] O(DK) O(DK) θ(π − θ)/K
CBE [Yu et al., 2014] O(D logD) O(D) θ(π − θ)/K
SuperBit [Ji et al., 2012] O(DK2) O(DK) (π2/K2) · (K (θ/π) +K(K − 1) (θ/π)× p21)− θ2

MLE [Kang and Wong, 2018] O(DK) O(DK) (2π/K) ·
(

1
θ+θx⃗,e⃗−θy⃗,e⃗

+ 1
θx⃗,e⃗+θy⃗,e⃗−θ + 1

2π−θx⃗,e⃗−θy⃗,e⃗−θ + 1
θ+θy⃗,e⃗−θx⃗,e⃗

)
CSSRP (this work) O(D) O(D) (π2/K2) · (K (θ/π) +K(K − 1) (θ/π)× η)− θ2

CSSRP− L (this work) O(lD) O(lD) (π2/K2) · (K (θ/π) +K(K − 1) (θ/π)× ηl)− θ2

Table 1: Comparison among the baselines on asymptotic sketching time, space complexity, and variance. [Kang and Wong,
2018] conditioned the estimate on a weighted vector e⃗, hence variance includes the angle formed between the vector pairs
and e⃗. Note that for a⃗, b⃗ ∈ RD, in SuperBit, p21 is defined as Pr[ξ(k2)(⃗a) ̸= ξ(k2)(⃗b)|ξ(k1)(⃗a) ̸= ξ(k1)(⃗b)], where ξ(k)(·)
is the hash function used in SRP (Equation (1)) s.t. the rows of the matrix R are orthonormal to each other. η and ηl are
defined in Theorems 6 and 10, respectively.

via multiplication of the circulant matrix and a random
diagonal matrix, whose entries are in {−1,+1} with prob-
ability 1/2. This projection matrix enables the use of the
Fast Fourier transform, which reduces the sketching time to
O(D logD). Moreover, if implemented carefully, the space
complexity of the algorithm is O(D). However, its variance
remains the same as of the SRP. In comparison, our pro-
posal is not only faster both asymptotically and empirically
w.r.t. CBE but simultaneously offers a smaller variance.

SuperBit: [Ji et al., 2012] proposed an algorithm that offers
smaller variance than SRP. Their main idea is to use a pro-
jection matrix that consists of orthogonal vectors obtained
via the Gram-Schmidt process in O(DK2) time, which
makes its running time high. In comparison, our proposal is
much faster both asymptotically and empirically (speedup
upto 3896×, see Table 2 and Figure 5), and simultaneously
space efficient as well. However, variance expression of
both the methods looks similar.

MLE: [Kang and Wong, 2018] suggest employing
maximum-likelihood-estimation technique on top of the
sketch obtained from SRP. Inspired by Li et al. [2006a],
their techniques include formulating the similarity estima-
tion problem into computing the real roots of a cubic poly-
nomial. In comparison, our proposal is both faster (asymp-
totically and empirically) as well as space efficient.

In order to understand the comparison among the baselines
on their theoretical variances, we plot their respective ex-
pressions stated in Table 1. To do so, we generate several
data pairs of 104 dimension such that their pairwise angles
are between 30o and 150o. We summarise it via a scatter
plot in Figure 2. It is evident that variances of SRP and
CBE remain the highest among all, followed by MLE. Fur-
ther, the variances of SuperBit, and our proposals CSSRP
and CSSRP− L remains the lowest, and are comparable
with each other.

Our proposals are based on correlated hash functions. We
note that such hash functions have been explored earlier to
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Figure 2: Illustration of theoretical variances of the base-
lines.

get an accurate estimation for random projection and an-
gular kernel estimation [Choromanski et al., 2017]. Also,
the COUNT SKETCH projection matrix used in CSSRP
have been used earlier to get a faster algorithm for tasks
such as low-Rank approximation and regression [Clark-
son and Woodruff, 2013, 2017]. Furthermore, our proposal
CSSRP− L uses a projection matrix whose entries are sam-
pled from sparse Bernoulli distribution. We note that such
projection matrices have been used in the context of random
projection [Li et al., 2006b, Dasgupta et al., 2010, Kane and
Nelson, 2014] to get a faster algorithm.

In contrast to the use of the correlated hash functions for
variance reduction, statistical techniques such as the control
variate trick [Lavenberg and Welch, 1981] and the maxi-
mum likelihood estimation method [Murphy, 2012], have
been also employed to improve the estimates of different
sketching algorithms like AMS sketch [Pratap et al., 2021],
Count-Sketch and Count Min Sketch [Pratap and Kulkarni,
2021], Random Projections [Kang et al., 2021], and Feature
Hashing [Verma et al., 2022b].



3 BACKGROUND

Notations
a⃗, b⃗ ∈ RD Input vectors

ai i-th feature of a⃗
α⃗, β⃗ ∈ RK Sketch vectors

D Original dimension
K Sketch dimension
R Projection matrix

θ(a⃗,⃗b) Angle between a⃗ and b⃗

r⃗k k-th row of projection matrix
rkj = s(j)1kj (k, j)-th index of projection matrix

Definition 1 (Count-Sketch [Charikar et al., 2004b, Wein-
berger et al., 2009]). Let α⃗ = (α1, . . . , αk, . . . , αK) ∈ RK

be the sketch of input vector a⃗ ∈ RD, obtained from Count-
sketch algorithm. Then, the k-th feature of α⃗

αk =

D∑
j=1

ajs(j)1kj , (3)

where s : [D] 7→ {−1,+1}, and g : [D] 7→ [K] are hash
functions from 2-universal hash families, and 1kj is indica-
tor of the event g(j) = k.

COUNT-SKETCH operation can also be represented as a
matrix projection. Let R be a random matrix such that rkj =
s(j) · 1kj , for all k ∈ [K], j ∈ [D].

R =


r⃗1
...
r⃗k
...
r⃗K


K×D

, where r⃗k = (rk1, . . . , rkj , . . . , rkD),

Therefore, α⃗ = Ra⃗T .

4 IMPROVING SRP USING
COUNT-SKETCH

At a high level our proposal is computing the sketch of input
vectors using Count-sketch (see Definition 1) and taking the
sign of the resultant vector. We state it as follows.

Definition 2 (COUNT-SKETCH SIGN-RANDOM-PROJEC-
TION-CSSRP). We denote our proposal as a hash function
h(·) that takes a vector a⃗ ∈ RD as input, first compress it
(say vector α⃗ ∈ RK ) using Count-sketch (Definition 1), and
then compute the sign of each component of the compressed
vector

h(⃗a) =
(
h(1)(⃗a), . . . , h(k)(⃗a), . . . , h(K)(⃗a)

)
.

Figure 3: Count-Sketch as matrix projection.

where, h(k)(⃗a) = sign(αk) and sign(αk) returns 1 if αk ≥
0, otherwise returns 0.

In what follows, we prove that our proposal gives an unbi-
ased estimate of the pairwise cosine similarity, further show
that the variance of our estimate is smaller than that of SRP.

Our proof techniques relies in showing that the projection
matrix (see Figure 3) corresponding to COUNT-SKETCH al-
gorithm, approximates sparse Bernoulli distribution, and fur-
ther we show that features of the sketch vector obtained from
COUNT-SKETCH asymptotically converges to the Gaussian
distribution when the sketch dimension K = o(D).

Note that the pairwise angular similarity is only meaningful
if all dimensions of the data are more or less equally impor-
tant; otherwise, the exceptionally large entries will dominate.
Therefore, our assumption is that the fourth moment of the
input vectors is bounded i.e. E[a4i ] < ∞, E[b4i ] < ∞ and
E[a2i b2i ] < ∞, for a⃗, b⃗ ∈ RD (as discussed in Sections
4, 5 of [Li et al., 2006b]). However, the proof of asymptotic
normality and analyzing its rate of convergence only require
a bounded third moment or even a much weaker condition.

We adopt the following two lemmas from [Li et al., 2006b]
to support our proofs. Our all results hold asymptotically as
D → ∞.

Lemma 3. [Adapted from Lemma 4 of Li et al. [2006b]]
Let r⃗ = (r1, . . . , rj , . . . , rD) ∈ RD s.t.

rj ∼


1 with probability 1

2K

0 with probability K−1
K

−1 with probability 1
2K

(4)

and a⃗ ∈ RD. Denote α =
∑D

j=1 rjaj = ⟨r⃗, a⃗⟩. Then if

D → ∞ and K = o(D), we have α
L
=⇒ N

(
0, ||⃗a||2

K

)
with



the rate of convergence

|Fα(y)− Φ(y)| ≤ 0.8
√
K

∑D
i=1 |ai|3

(
∑D

i=1 a
2
i )

3/2

= 0.8

√
K

D

E[|ai|3]
(E[a2i ])3/2

→ 0, (5)

where L
=⇒ denotes “convergence in distribution", Fα(y) is

the empirical cumulative density function of α, and Φ(y) is

the CDF of N
(
0, ||⃗a||2

K

)
.

Lemma 4. Let r⃗ ∈ RD with the probability distribu-
tion in Lemma 3, and a⃗, b⃗ ∈ RD. Suppose we denote
α =

∑D
j=1 rjaj = ⟨r⃗, a⃗⟩, and β =

∑D
j=1 rjbj = ⟨r⃗, b⃗⟩.

As D → ∞, we have

√
K

[
∥a⃗∥ a⃗⃗bT

a⃗⃗bT ∥⃗b∥

]− 1
2 (

α
β

)
L
=⇒ N

((
0
0

)
,

(
1 0
0 1

))
,

with E [∥sign(α)− sign(β)∥1] =
θ
(a⃗,⃗b)

.

π .

With the help of Lemmas 3 and 4, in the following we show
that CSSRP gives an unbiased estimate of pairwise cosine
similarity.

Theorem 5. Let a⃗, b⃗ ∈ RD, and h(⃗a), h(⃗b) be their K-
dimensional binary vector obtained via our proposal (Def-
inition 2). If K = o(D), then as D → ∞ we have the
following

E
[ π
K

||h(⃗a)− h(⃗b)||1
]
= θ(a⃗,⃗b). (6)

Proof. We first consider each row r⃗k, 1 ≤ k ≤ K of the ran-
dom matrix in Figure 3. The goal is to find the distribution
of each r⃗k, and hence compute

E

[
K∑

k=1

|h(k)(⃗a)− h(k)(⃗b)|

]
=

K∑
k=1

E
[
|h(k)(⃗a)− h(k)(⃗b)|

]
.

Suppose we denote Zk := |h(k)(⃗a)− h(k)(⃗b)|. While each
Zk are not independent due to our construction of R, let us
briefly consider how each r⃗k is distributed.

When k = 1, we have that each entry in r⃗1 comes from a
Sparse Bernoulli distribution with

r1j ∼


1 with probability 1

2K

0 with probability K−1
K

−1 with probability 1
2K

where E[r1j ] = 0, with Var[r1j ] = 1
K . Here, we note that

each entry in r⃗1 is i.i.d.

We can also compute the moment generating function of
each r1j and get

E [esr1j ] =
K − 1

K
+

exp{s}+ exp{−s}
2K

. (7)

Now let us consider the case k = 2, and compute the mo-
ment generating function for each r2j . By using the Law of
Total Expectation, we have

E [esr2j ] = E [esr2j | r1j = 0]P [r1j = 0]

+ E [esr2j | r1j = 1]P [r1j = 1]

+ E [esr2j | r1j = −1]P [r1j = −1] .

=

(
exp{s}+ exp{−s}

2(K − 1)
+

K − 2

K − 1

)
K − 1

K

+
1

2K
+

1

2K
.

=
exp{s}+ exp{−s}

2K
+

K − 2

K
+

1

K
.

=
exp{s}+ exp{−s}

2K
+

K − 1

K
. (8)

which is the same moment generating function as the sparse
Bernoulli distribution.

Moreover, we also note that each element in r⃗2 are i.i.d.,
i.e. each r2i is independent of r2j (albeit dependent on r1i).
Now, consider r⃗k, 2 < k ≤ K, and consider each rkj . By
Law of Total Expectation, and conditioning on previous
vectors:

E [esrkj ] = E [esrkj | all zeros for rk′j , k
′ < k]

× P [all zeros for rk′j , k
′ < k]

+ E [esrkj | 1 appears for at most one rk′j , k′ < k]

× P [1 appears for at most one rk′j , k′ < k]

+ E [esrkj | −1 appears for at most one rk′j , k′ < k]

× P [−1 appears for at most one rk′j , k′ < k] .

=

(
K − k

K − k + 1
+

exp{s}+ exp{−s}
2(K − k + 1)

)
K − k + 1

K

+
k − 1

2K
+

k − 1

2K
.

=
K − k

K
+

exp{s}+ exp{−s}
2K

+
k − 1

K
.

=
exp{s}+ exp{−s}

2K
+

K − 1

K
. (9)

which gives the same moment generating function as the
sparse Bernoulli distribution.
Now, we can use Lemma 3 to show that αk = ⟨r⃗k, a⃗⟩
and βk = ⟨r⃗k, b⃗⟩ converge in distribution to N

(
0, ||⃗a||2

K

)
and N

(
0, ||⃗b||2

K

)
respectively as D grows large. More-

over, by Lemma 4, we see that E
[
|h(k)(⃗a)− h(k)(⃗b)|

]
=

E [|sign(αk)− sign(βk)|] =
θ
(a⃗,⃗b)

π for each 1 ≤ k ≤ K.

Hence we must have that E
[∑K

k=1 |h(k)(⃗a)− h(k)(⃗b)|
]
=

K
θ
(a⃗,⃗b)

π , and on rearranging, we have

E

[
π

K

K∑
k=1

|h(k)(⃗a)− h(k)(⃗b)|

]
= θ(a⃗,⃗b) (10)



which is what we wanted to show.

We give a bound on the variance of CSSRP. We defer its
proof to the appendix due to space limit.

Theorem 6. Let a⃗, b⃗ ∈ RD, and h(⃗a), h(⃗b) be their K-
dimensional binary vector obtained via our proposal (Def-
inition 2). If K = o(D), then as D → ∞ we have the
following

Var
[ π
K

||h(⃗a)− h(⃗b)||1
]

=
π2

K2

(
Kθ(a⃗,⃗b)

π
+K(K − 1)

θ(a⃗,⃗b)

π
× η

)
− θ2

(a⃗,⃗b)
.

where, k1 ̸= k2, k1, k2 ∈ [K], and

η = Pr
[(

h(k2)(⃗a) ̸= h(k2)(⃗b)
)
|
(
h(k1)(⃗a) ̸= h(k1)(⃗b)

)]
.

Remark 7. Recall that the variance of SRP is

π2

K2

Kθ(a⃗,⃗b)

π
+K(K − 1)

(
θ(a⃗,⃗b)

π

)2
− θ2

(a⃗,⃗b)
.

We remark that the variance of CSSRP stated in Theorem 6
is smaller than that of SRP because η ≤ θ

π . We validate
this empirically by plotting η for several values of θ and
summarise it in Figure 4. We notice that η always remains
smaller than θ

π , and leads to variance reduction as also
supported in Figure 2.

4.1 ANOTHER IMPROVED ESTIMATOR -
CSSRP− L:

We note that the stated in Theorems 5 and 6 holds when
K = o(D). We wish to show that our results hold for higher
values of K as well. Our sketching algorithm CSSRP− L
stated below achieves the same.

Definition 8 (CSSRP− L). Let R′ be a K ×D projection
matrix such that each column of R′ has exactly l non-zero
entries. These l positions are sampled uniformly at random
and each of them takes value {±1} with probability 1/2

R′ =


r⃗′1
...
r⃗′k
...
r⃗′K


K×D

. (11)

We denote our proposal CSSRP− L as a hash function
h′(·) that takes a vector a⃗ ∈ RD as input, first compress it
(say vector α⃗′ ∈ RK) by projecting it on the matrix R′ (i.e.
α⃗′ = R′a⃗T ), and then compute the sign of each component
of the compressed vector

h′(⃗a) =
(
h′(1)(⃗a), . . . , h′(k)(⃗a), . . . , h′(K)(⃗a)

)
.

where h′(k)(⃗a) = sign(α′
k), sign(α

′
k) returns 1 if α′

k ≥ 0,
and 0 otherwise.

In the following theorem, we show that our proposal gives
an unbiased estimate of pairwise angular similarity. Its proof
is built on similar lines to the proof of Theorem 5. We defer
it to the appendix.

Theorem 9. Let a⃗, b⃗ ∈ RD, and h′(⃗a), h′(⃗b) be their K-
dimensional binary vector obtained via our improved esti-
mator proposal (stated in Definition 8). If K = o(lD), then
as D → ∞ we have the following

E
[ π
K

||h′(⃗a)− h′(⃗b)||1
]
= θ(a⃗,⃗b). (12)

We give a bound on the variance of our proposal
CSSRP− L estimator, its proof is analogous to that of The-
orem 6.

Theorem 10. Let a⃗, b⃗ ∈ RD, and h′(⃗a), h′(⃗b) be their
K-dimensional binary vector obtained via our improved
estimator (Definition 8). If K = o(lD), then as D → ∞ we
have the following

Var
[ π
K

||h′(⃗a)− h′(⃗b)||1
]

=
π2

K2

(
Kθ(a⃗,⃗b)

π
+K(K − 1)

θ(a⃗,⃗b)

π
× ηl

)
− θ2

(a⃗,⃗b)

where, k1 ̸= k2, k1, k2 ∈ [K], and

ηl = Pr
[(

h′(k2)(⃗a) ̸= h′(k2)(⃗b)
)
|
(
h′(k1)(⃗a) ̸= h′(k1)(⃗b)

)]
.

Remark 11. Similar to Remark 7, the variance of
CSSRP− L (Theorem 10) is smaller than that of SRP as
ηl ≤ θ

π . Its numerical simulation is mentioned in Figure 4.
Further, when l is equal to K, then rows of the matrix R′

defined in Equation (11) become independent, and our pro-
posal CSSRP− L (Definition 8) becomes exactly similar
to SRP.

5 EXPERIMENTS

Hardware description: We conducted our experiments on
a machine with the following configuration CPU: Intel(R)
Core(TM) i7-7700HQ CPU @ 2.80GHz (8 CPUs); Memory:
8GB; OS: Window 10; Model: MSI GL62M 7RDX.

We use synthetic and real-world dataset for our experiments.
In the synthetic dataset, the value of each feature is randomly
sampled from [0, 1]. Description of real-world dataset is
summarized in Table 3.
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Figure 4: Empirical estimation of η and ηl via synthetically generated data points for various pairwise angles θ, and reduced
dimensions K.
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Figure 5: Comparison among the baselines on average running time which consist of both dimensionality reduction time
as well as pairwise similarity computation time for a pair. Note that CSSRP− L− 2 denotes CSSRP− L algorithm with
l = 2, and so on.

Table 3: Description of real-world datasets.

Dataset # of points Dimension
Gisette [Lichman, 2013] 13, 500 5, 000
Arcene [Lichman, 2013] 900 10, 000
Gene RNA-Seq [Lichman, 2013] 801 20, 531
PEMS-SF[Dua and Graff, 2017] 440 138, 672

5.1 BASELINES AND END TASKS

We evaluate the performance of our proposals Count-Sketch-
Signed Random Projection (CSSRP) and Count-Sketch-
Signed Random Projection-L (CSSRP− L) to that of the
Signed Signed-random-projection (SRP) [Charikar, 2002],
Circulant Binary Embedding (CBE) [Yu et al., 2014], Max-
imum Likelihood Estimation (MLE) [Kang and Wong,
2018], and Super-Bit LSH (SuperBit) [Ji et al., 2012]. Note
that the MLE estimator requires an extra vector for similar-
ity computation, and we use the first principal component
vector for the same, as mentioned in [Kang and Wong, 2018].
We use the following metrics for evaluations: (i) running
time to generate the sketch, (ii) variance analysis via box-
plot, (iii) similarity search.

5.2 RUNNING TIME:

Experimental setting: We aim to compare the running time
of all the baselines. To do so, we generate high dimensional
synthetic datasets of dimensions ranging from 105 to 107.

We compress the datasets for different values of reduced
dimension using various baselines, and record the sum of
sketching time and pairwise similarity computation time.
Note that the sketching approach of MLE remains same as
that of SRP, however its similarity estimation step is differ-
ent, and involves computing the root of a cubic polynomial.
Therefore to have a fair comparison among all the baselines,
we included both sketching time as well as similarity com-
putation time. We compute average running time required
by a pair of points, over various reduced dimensions, and
summarise it in Figure 5. We also note the corresponding
speedup obtained via our proposal CSSRP w.r.t. baselines,
and report it in Table 2.

Insight: We observed that CSSRP is much faster than
all the baselines, and we observed a significant numerical
speedup (upto 3800×). We would like to highlight that our
CSSRP is also faster (speed up 1.45× to 2×) than CBE [Yu
et al., 2014], which is a faster variant of SRP. Further, the
running time of our other proposal CSSRP− L remains
somewhat comparable to CSSRP. Note that the SuperBit
method remains the slowest among all the baselines; this
is due to the step of generating orthonormal vectors (via
Gram-Schmidt orthogonalization process) required for the
projection matrix.

5.3 SIMILARITY SEARCH:

Experimental setting: In this experiment, aim is to check
if points proximity are maintained after dimensionality re-



Estimators Dimension-105 Dimension-5× 105 Dimension-106 Dimension-107

SRP [Charikar et al., 2004a] 7.32× 8.41× 8.44× 8.65×
CBE [Yu et al., 2014] 1.45× 1.70× 1.811× 2.074×
MLE [Kang and Wong, 2018] 11.80× 9.79× 9.32× 9.24×
SuperBit [Ji et al., 2012] 2541.35× 3820.91× 3826.56× 3896.71×
CSSRP− L− 2 (this work) 1.09× 1.12× 1.15× 1.20×
CSSRP− L− 5 (this work) 1.22× 1.25× 1.29× 1.39×
CSSRP− L− 10 (this work) 1.31× 1.35× 1.40× 1.55×

Table 2: Numerical speedup of CSSRP w.r.t. other baselines on a fixed reduced dimension 1000.
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better performance.
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duction. We discuss our experimental setting as follows. We
split the dataset randomly into two parts 90% and 10% – we
refer the former as the training partition, while the latter one
as the query partition. For each point in the query partition,
we record top-k similar points (under cosine similarity) from
training partition for the uncompressed datasets. We denote
this set by S. We compress the dataset (both query and train-
ing partition) using several baselines on various reduced
dimensions, and record top-k similar points (on the sketch)
of the query points from the sketch of the training partition.
We denote this set by S

′
. We use two evaluation metrics

– recall:= |S ∪ S
′ |/|S|, and accuracy= |S ∩ S

′ |/|S ∪ S
′ |.

We compute them for all the points in the query partition,
and record their average. We summarize our findings for
accuracy in Figure 6 and for recall in appendix.

Insight: We observed that at small reduced dimensions
(listed in first rows of the respective plots) for both accu-
racy and recall, our estimator CSSRP estimator performed
significantly better than the baselines. However, with the in-
crease of dimension CSSRP performance slightly decreases
(listed in second rows of the respective plots), which was
circumvented by our other proposal CSSRP− L, whose
performance remains at least in the top two.



5.4 VARIANCE ANALYSIS VIA BOX-PLOT:

Experimental setting: In this experiment, our aim is to
compare the variances of the baselines via box-plot. To do
so, we generate a synthetic dataset in 10000 dimension, and
randomly sample a pair of points from it. We compress
this pair and compute the estimated similarity using all the
baselines. We repeat this step 500 times independently, and
use the respective estimate to generate the box plot. We
summarise our findings in Figures 7.

Insight: We observe that at a small reduced dimension, the
variance of our CSSRP estimator is lower than the vari-
ance of the other baselines. However, at higher reduced
dimension variance of CSSRP is slightly worse than the
remaining. This problem is tackled by our other proposal
CSSRP− L, which offers smaller variance than the base-
lines, even at higher values of the reduced dimension.

6 CONCLUSION

We consider dimensionality reduction for real-valued data
that approximate cosine similarity. The classical algorithm
for this task - SRP [Charikar, 2002] suffers from high
variance, running time, and space complexity involved in
the similarity computation. Popular improvements such
as [Kang and Wong, 2018, Yu et al., 2014, Ji et al., 2012]
address only one or two aspects of the above. We present
algorithms (CSSRP and CSSRP− L) that address all these
limitations. When the sketch dimension K = o(D), our pro-
posal CSSRP offers a faster and space-efficient algorithm
along with the smaller variance. However, for large K, the
guarantee of CSSRP does not hold. Our other proposal
CSSRP− L, addresses this by offering a faster and space
efficient algorithm with smaller variance, when K is large.
We give a theoretical analysis of our proposals and comple-
ment it via empirical simulations. We notice the speedup of
several orders (even with faster variants of SRP [Yu et al.,
2014]) and simultaneously accurate performance on end
tasks, w.r.t. baselines. Finally, we could only empirically
show that our proposals have smaller variance w.r.t. the
baselines. Giving its mathematical proof still remains an
open question of the work.
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