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Abstract

Figurative language is a challenge for language
models since its interpretation is based on the
use of words in a way that deviates from their
conventional order and meaning. Yet, humans
can easily understand and interpret metaphors,
similes or idioms as they can be derived from
embodied metaphors. Language is a proxy for
embodiment and if a metaphor is conventional
and lexicalised, it becomes easier for a sys-
tem without a body to make sense of embodied
concepts. Yet, the intricate relation between
embodiment and features such as concreteness
or age of acquisition has not been studied in
the context of figurative language interpretation
concerning language models. Hence, the pre-
sented study shows how larger language mod-
els perform better at interpreting metaphoric
sentences when the action of the metaphorical
sentence is more embodied. The analysis rules
out multicollinearity with other features (e.g.
word length or concreteness) and provides ini-
tial evidence that larger language models con-
ceptualise embodied concepts to a degree that
facilitates figurative language understanding.

1 Introduction

Infants acquire their first conceptual building
blocks by observation and manipulation in the phys-
ical world. These primary building blocks enable
them to make sense of their perceptions (Mandler
and Canovas, 2014). In return, their embodiment
defines the capabilities with which they can explore
and understand the world. The early conceptual
system is built from spatial schemas, which enables
early word understanding (Mandler, 1992). These
so-called Image Schemas are recurring cognitive
structures shaped by physical interaction with the
environment. They emerge from bodily experience
and motivate subsequent conceptual metaphor map-
pings (Johnson, 2013). The metaphorical mapping
is visible in our everyday language whenever we
use figurative language. For example, if we say

that she like a turtle, that is to say, that she
dances poorly. The metaphor in this phrase is read-
ily interpreted by humans, who would favour the
interpretation of dances poorly over dances well.
The turtle dance example employs a conceptual
mapping in which the turtle provides the source do-
main for the attributes slow and rigid, which turn
the dance target domain into poorly dancing. This
mapping draws from the human, bodily experience
of dancing and therefore enables interpretation.

For a language model (LM), the understanding
of figurative language is a great challenge (Liu
et al., 2022). By nature of their digital imple-
mentation as computer algorithms, LMs are non-
embodied and do not ground their conceptualisa-
tion by physical interaction with the environment.
Instead, LMs learn statistical features of language
by deep learning vast amounts of data (Vaswani
et al., 2017). Whether these learned statistical
features allow LMs to mirror or copy natural lan-
guage understanding (NLU) is subject to discus-
sion (Zhang et al., 2022a). Moreover, Tamari et al.
(2020) suggest an embodied language understand-
ing paradigm for LMs can benefit NLU systems
through grounding by metaphoric inference.

One can argue that most embodied metaphors
are heavily conventional (e.g. UP IS GOOD,
DOWN IS BAD, KNOWLEDGE IS LIGHT, IG-
NORANCE IS DARKNESS) and as such, they are
lexicalised in a language without an inherent need
to understand their bodily basis. This lexicalisation
should allow LMs to conceptualise and interpret
them correctly and more robustly than less conven-
tional metaphors. Conventionality relates to word
frequency and age of acquisition (AoA), i.e. more
frequent words and words that are acquired early in
life are more conventional. We argue that embodi-
ment has a measurable effect on the interpretation
of metaphors that differs from the effect of other lin-
guistic features. Moreover, we investigate whether
an interpretation of figurative language with more



embodied concepts is easier for LMs. Analogously,
we investigate conflating factors such as the AoA,
word frequency, concreteness and word length. The
relation between embodiment and LMs’ ability to
interpret figurative language has not yet been inves-
tigated and is the key contribution of this research.

The following Section (2) starts with a review of
language model abilities, more specifically figura-
tive language interpretation abilities. The review
identifies a suitable data set for our experiment
and describes its formation in Section 3. We use
a subset of the Fig-QA data set (Liu et al., 2022),
a Winograd-style figurative language understand-
ing task, and correlate the performance of various
LMs concerning the degree of embodiment of the
metaphorical actions that the LMs are tasked to
interpret. In Section 4, we identify that models,
that can reach a certain performance on our Fig-QA
subset, show a significant and positive correlation
between the rating of the embodiment of the action
involved in the metaphorical phrase. An in-depth
analysis of additional features, such as the AoA,
word length or frequency, does not indicate mul-
ticollinearity among those features. In Section 5
we conclude that the degree of embodiment of the
action within the metaphoric phrase is a predictor
of the LMs’ ability to correctly interpret the figu-
rative language. Lastly, we discuss the limitations
and broader implications of the work.

2 Related Works
2.1 Language Model Abilities

The presented work investigates the zero-shot ca-
pabilities of LMs of different types and sizes. Ar-
guably, LMs’ capabilities to solve language-based
tasks, which they have not been trained on, are an
emerging property of their complexity and large-
scale statistical representation of language. It is
a property that makes them unsupervised multi-
task learners (Radford et al., 2019; Brown et al.,
2020). Despite task-agnostic pre-training and a
task-agnostic architecture, LMs can perform var-
ious NLP tasks without seeing a single example
of the task, albeit with mixed results (Srivastava
et al., 2022). This raises the question of whether
LMs mirror the human conceptual understanding
encoded in language or whether they “only” learn
statistical features from the underlying training dis-
tribution, allowing them to generalise and solve
previously unseen tasks.

Several works have tried to assess to what ex-

tent LMs are capable to perform more complex
NLP tasks (e.g. logical reasoning or metaphoric
inference). For example, Zhang et al. (2022a) inves-
tigate the logical reasoning capabilities of BERT
(Devlin et al., 2019). For this, the authors define a
simplistic problem space for logical reasoning and
show that BERT learns statistical features from its
training distribution, but fails to generalise when
presented with other distributions and drops in per-
formance. According to the authors, this implies
that BERT does not emulate a correct reasoning
function in the same way that humans would con-
ceptualise the problem. Similarly, Sanyal et al.
(2022) evaluate whether the RoBERTa model (Liu
et al., 2019) or the T5 model (Raffel et al., 2020)
can perform logical reasoning by understanding im-
plicit logical semantics. The authors test the mod-
els on various logical reasoning data sets whilst
introducing minimal logical edits to their rule base.
Consequently, Sanyal et al. (2022) show that LMs,
even when fine-tuned on logical reasoning, do not
sufficiently learn the semantics of some logical op-
erators. Han et al. (2022) present a diverse data set
for reasoning in natural language. An evaluation of
the GPT-3 model (Brown et al., 2020) on their data
set shows a performance that is only slightly better
than random. This indicates that there is a fun-
damental gap between human reasoning and LM
reasoning and their conceptualisation capabilities.

The related works show that, although LMs seem
to mirror an aspect of reasoning, e.g. logical rea-
soning, a closer look at the underlying conceptu-
alisation of these abilities can reveal they are not
robust and fail to mirror deeper semantics. Sim-
ilarly, Our work looks at metaphorical reasoning
and the understanding of figurative language con-
cerning embodied conceptualisation.

2.2 Figurative Language Interpretation

Liu et al. (2022) are among the first to quantita-
tively assess the ability of LMs to interpret fig-
urative language. Their Fig-QA data set is pub-
licly available' and we discuss the construction of
our subcorpus in more detail in Section 3.1. In
short, the authors present crowdsourced creative
metaphor phrases with two possible interpretations
of various LMs and check for which interpretation
the model returns the higher probability distribu-
tion. The main contribution of Liu et al. (2022) is

"https://huggingface.co/datasets/
nightingal3/fig-ga
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the Fig-QA task, which consists of 10,256 exam-
ples of human-written creative metaphors that are
paired in a Winograd schema. The authors also
contribute an assessment of various LMs in zero-
shot, few-shot and fine-tuned settings on Fig-QA.
Moreover, their results indicate that overall, LMs
fall short of human performance. On a phrase and
word level, the authors find that longer phrases are
harder to interpret and that metaphors relying on
commonsense knowledge concerning objects’ vol-
ume, height, mass, brightness or colour are easier
to interpret. This indicates that bodily modalities
seem to facilitate interpretation success. They also
show that larger models (i.e. number of parameters)
perform better on the task. All of these findings are
reproduced in our experiments.

Chakrabarty et al. (2022) present FLUTE, a data
set of 8,000 figurative NLI instances. Their data set
includes the different figurative language categories
of metaphor, simile, and sarcasm. In contrast to
Fig-QA, the authors do not create metaphors in a
Winograd scheme as a forced-choice task but create
natural language explanations (NLE) using GPT-3
(Brown et al., 2020) and human validation. Their
experiments with state-of-the-art NLE benchmark
models show poor performance in comparison to
human performance. The authors do not differen-
tiate the metaphors, similes and sarcastic phrases
concerning linguistic features. Moreover, they in-
clude a language model in the creation process,
which, as far as our study is concerned, introduces
a bias to the data set. Hence, we decide to use the
Fig-QA data set instead of FLUTE.

2.3 Modelling Embodied Language

It is generally understood that language is grounded
in experience based on interaction with the world
(Bender and Koller, 2020; Bisk et al., 2020). Hence,
there is an interest to leverage LMs’ capabilities
in interactions with the environment. For exam-
ple, Suglia et al. (2021) present EmBERT, which
attempts language-guided visual task completion.
Their model uses a pre-trained BERT stack fused
with an embedding for detecting objects from vi-
sual input. The model achieves competitive perfor-
mance on ALFRED, a benchmark task for inter-
preting instructions (Shridhar et al., 2020).

Huang et al. (2022) investigate if LMs know
enough embodied knowledge about the world to
ground high-level tasks in the procedural planning
of instructions for household tasks. For example,

the authors pass a prompt, e.g. “Step 1: Squeeze out
a glob of lotion” to a pre-trained LM (e.g. GPT-3)
and extract actionable knowledge from its response.
Their results indicate that large language models
(<10B parameters) can produce plausible action
plans for embodied agents.

Embodiment In this study, the term embodiment
relates to cognitive sciences: Humans process a lin-
guistic statement such as “fo grab an apple” using
embodied simulations in the brain. Perceptual expe-
riences activate cortical regions that are dedicated
to sensory actions and those regions partially re-
activate premotor areas to implement, what Barsa-
lou (1999) calls, perceptual symbols. Reading of
actions words such as kick or lick is associated
with premotor cortex activation responsible for con-
trolling movements for these actions (Hauk et al.,
2004). This effect is diminished by figurative lan-
guage (Schuil et al., 2013). Therefore, a statement
such as “to grasp the idea” does not necessarily
rely on premotor cortex simulation. The semantic
processing of the linguistic statement is therefore
linked to its context and degree of embodiment
in the sense that the action can be simulated by a
brain in a body (Zwaan, 2014). This understanding
of the term embodiment guides the evaluation of
how LMs, which do not have a brain in a body, can
interpret figurative language phrases with a varying
degree of embodied actions.

3 Statistical Evaluation

The review of related works shows that there are
abilities of LMs that go beyond mere language gen-
eration, e.g. logical reasoning, and action planning.
It is unclear how LMs conceptualise actions that
humans conceptualise using interaction with the en-
vironment. Figurative language acts as a test bed to
assess metaphorical conceptualisations since they
are grounded in embodied experience and inter-
action with the environment. We take Liu et al.
(2022)’s findings as a starting point to focus on
the effect of embodiment in figurative language
interpretation by LMs of various sizes.

3.1 Experimental Framework

Embodiment Rating and Data Set  To assess the
effect of embodiment on the task, we discuss the
effects of embodiment in semantic processing and
introduce the simplification underlying our study
through an example. The Fig-QA provides the fol-
lowing item:



(A) The pants were as faded as ...
(A.1) ... the memory of pogs
(A.2) ... the sun in June

with the possible interpretations:
(A.I) they were very faded

(A.Il) they were bright

The LM is prompted with each combination of sen-
tence completion and interpretation (i.e. A.1+A.l,
A 1+AIL A.2+A.1, A.2+A.II). Notably, Liu et al.
(2022) have shown that the addition of “that is
to say” as a concatenation between metaphorical
phrase and interpretation phrase elicits better model
performance, hence we also include this prompt in
our studies. Subsequently, the prediction scores of
the language modelling head (scores for each vo-
cabulary token) are retrieved and the highest prob-
ability becomes the LMs choice of interpretation
(for more details, see (Liu et al., 2022)). We com-
pare this example with a different Fig-QA item:

(B) She

(B.1) ... fairy
(B.2) ... turtle
with the possible interpretations:

(B.I) she dances well

like a ...

(B.II) she dances poorly

Given our hypothesis that embodiment affects the
LMs’ ability to interpret these phrases, we score
(A) and (B) concerning the embodiment. As a
simplification, we limit the rating of embodiment
to the actions within the phrase, i.e. the verbs.
Thus, we rate faded for (A) and for (B)
with respect to their relative embodiment. For this
scoring, we consult a data set by Sidhu et al. (2014).

In their empirical study, Sidhu et al. (2014) char-
acterise a dimension of a relative embodiment for
verbs. In the construction of the data set, “partici-
pants were asked to judge the degree to which the
meaning of each verb involved the human body, on
a 1-7 scale” (Sidhu et al., 2014). Their resulting
data set consists of ratings for 687 English verbs.
Our hypothesis is that embodiment is a semantic
component which affects the interpretation abil-
ity of LMs concerning figurative language. With
their data set, the authors provide evidence that
the meaning of a verb has a semantic component
linked to the human body in the lexical process-
ing of that verb. They assume that more robust

Label Source Description Entries
Fig-QA All phrases from the Fig-QA
CLiu tei testrs,et ¢ 1,146
c Fig-QA Phrases that have at least one 1.438
Emb train/dev action w/ embodiment rating ’
c Fig-QA Phrases that do not have an 1438
NoE train/dev action w/ embodiment rating ?

Table 1: Cpy is 100% of the Fig-QA test set and 11% of
the entire Fig-QA data set (Liu et al., 2022). Our selected
subsets C'gmp and Cy,p are mutually exclusive and
each composes 14% of the entire Fig-QA data set.

semantic activation is generated by more embodied
verbs (Sidhu et al., 2014). This provides us with
data set we can apply to our experiment on figura-
tive language. Moreover, their experiment provides
additional control variables such as the AoA and
word length, which have a known effect on lexical
processing (Colombo and Burani, 2002) and are
included in our results (Sec. 4).

At the time of conducting our experiment, Fig-
QA did only provide the training and development
data, which we will refer to as train & dev. Hence,
we identify all phrases from the train & dev data
set that contain at least one word with an embod-
iment rating from Sidhu et al. (2014). The pro-
cess of creating the subcorpus with embodiment
ratings (C'g.mp) begins by identifying verbs using
spaCy (Honnibal et al., 2020). The lemmatized
versions of the verbs for the metaphorical phrases
are then matched with embodiment scores, result-
ing in a subcorpus (Cg,p) with 1,438 entries. If
more than one verb is present in the metaphorical
sentence, the average is assigned. Analogously,
we construct a subcorpus of the same size with
metaphorical phrases that do not contain an embod-
ied verb (Cn,g). For both subcorpora, we only
keep phrases in which the verb is contained in the
Winograd pair. The resulting subcorpora statistics
are listed in Table 2. The previous examples (A)
and (B) are thus augmented as follows:

(A) The pants were as faded as ...
Embodiment Rating: 2.36

(B) She
Embodiment Score: 6.50

like a ...

With the annotated Fig-QA subcorpus Cgy,p We
now turn to the models we select to assess whether
there is a correlation between embodiment score
and LM task performance.

Hypotheses The main hypothesis for the statisti-
cal evaluation can be summarized as follows:



1. There is a correlation between the LMs’ in-
terpretation capabilities of metaphors and the
amount of embodiment of the verbs within
those metaphorical phrases.

Intuitively, more embodied actions such as kick,
move or eat are much more concrete, shorter and
basic, when compared to resonate, compartmen-
talise or misrepresent. Therefore, the analysis of
embodied actions must take into account factors
such as concreteness, AoA, word length and word
frequency. Moreover, common metaphors are con-
ventional and more lexicalised. Consequently, they
might simply be more embodied and the effect of
embodied verbs might stem from the fact that these
verbs are more concrete in the context that they are
presented. Hence, the first hypothesis should not
stand alone, but will be evaluated along with two
additional directional hypotheses:

1.I There is no correlation between the LMs’ in-
terpretation capabilities of metaphors and the
amount of concreteness of the verbs within
those metaphorical phrases irrespective of
their embodiment rating.

In our evaluation, the concreteness of a word
in its context will be scored using an open-source
predictor’? based on distributional models and be-
havioural norms explained in (Rotaru, 2020). De-
tails of the concreteness scoring with the predictor
have been summarized in Sec. 3.2. Concreteness
ratings are often subjective ratings (Brysbaert et al.,
2014) or determined by other low-level features,
such as AoA, word frequency and word length (Ro-
taru, 2020). To isolate the effect of embodiment,
we add the second directional hypothesis:

1.IT There is no correlation between the LMs’
interpretation capabilities of metaphors and
other linguistic features, such as AoA, word
frequency and word length.

For AoA we obtain scores for each of the actions
from (Kuperman et al., 2012) and for word fre-
quency from (Van Heuven et al., 2014). Together
with word length and embodiment score we test for
variance inflation to respond to 1.11.

Model Selection The selection of our models is
based on three criteria: First, we want to reproduce

https://github.com/armandrotaru/
TeamAndi-CONcreTEXT

#Parameters

Label in Millions Provider
GPT-3
(small) ~350 OpenAl
GPT-3
(large) ~175,000 OpenAl
OPT 350 Facebook
(small)
OP.T 13,000 Facebook
(medium)
GPT-Neo 125 EleutherAl
(small)
GPT-NeoX 20,000 EleutherAl
(medium)
GPT-2
(small) 355 OpenAl
GPT-2 XL
(medium) 1,500 OpenAl

Table 2: Different model types and parameter numbers
have been selected for the evaluation. For each type,
we have selected a pair of smaller and medium to large
model version (indicated with shades of grey).

the results by (Liu et al., 2022) having a compara-
ble measure. Second, we want to check whether
the effect generalises to other large LMs. Third, we
want a variation of different model sizes to account
for varying performance on the task as a result of
model size. For the latter two criteria, we start
with the smallest available models of each type and
check intermediate model sizes. We do not con-
sider it necessary to check whether or not scaled,
largest versions of each model perform better on
the task since this is a general property of LMs
(Brown et al., 2020; Srivastava et al., 2022).

In the original Fig-QA study, the authors exam-
ine three transformer-based LMs with different pa-
rameter sizes: GPT-2 (Radford et al., 2019), GPT-3
(Brown et al., 2020) and GPT-Neo (Black et al.,
2021). To reproduce the results by Liu et al. (2022),
we include GPT-2, GPT-3, GPT-Neo LMs and add
OPT LMs (Zhang et al., 2022b). An overview of
the models and their specifications is shown in Ta-
ble 1. Notably, we want to correlate whether the
type and number of parameters play a role when it
comes to performance concerning the embodiment.
Hence, we include pairs of models from each type
that are small (<1 billion) and medium to large (>1
billion) in their number of parameters.


https://github.com/armandrotaru/TeamAndi-CONcreTEXT
https://github.com/armandrotaru/TeamAndi-CONcreTEXT

3.2 Methodology

We apply the same methodology of evaluation as
Liu et al. (2022). In our zero-shot setting, each
pretrained LM is prompted with the metaphor sen-
tences combined with one of the interpretation sen-
tences, concatenated with that is to say. For Ope-
nAl models, the API provides the log probabilities
per token as 1ogprob return value. We access all
other models using huggingface.co and its
transformer library. To create the same eval-
uation metric as for results by (Liu et al., 2022),
we follow (Tunstall et al., 2022) and implement a
function that returns the 1ogprob based on the
prediction scores of the language modelling head.
All code and data is publicly available?.

Reproduction and Suffix Prompting In an ini-
tial experiment, we reproduce the same experiment
by Liu et al. (2022), but instead of performing the
zero-shot classification on the test set, we evaluate
the performance on C'g,,; and C'y, g with and with-
out suffix prompting (that is to say). This allows us
to compare our data set against the baseline. The
result indicates that GPT-3 models perform slightly
worse on our subcorpora, but all conditions ben-
efit from the suffix prompting (see Appendix B).
Since both Cg,,,, and C'n,g are more difficult for
GPT-3, we can rule out that this effect stems solely
from the embodiment component present in C'gyyp,
which is not present in C'yy,p. Moreover, we adopt
the suffix prompting for all further experiments.

Concreteness Scoring To determine the con-
creteness of a verb in context, (Rotaru, 2020) built
a predictor based on a combination of distribu-
tional models, together with behavioural norms.
We adopt the same settings and model choice as
presented by the author, but exclude the word fre-
quency behavioural norm, as we investigate it as a
separate feature. We evaluate our predictor on the
same English test set of the CONcreTEXT task at
EVALITA2020 (Gregori et al., 2020) and receive
a mean Spearman correlation of 0.87, which is in
line with (Rotaru, 2020). The context-dependent
models used in the predictor include ALBERT (Lan
et al., 2020), BERT and GPT-2.

Statistical Tests For each model, we obtain its
performance on the data set with a binary scoring
of each figurative phrase as being correctly or incor-
rectly identified. We correlate this series of binary

*https://osf.io/puhxb/?view_only=
1c8a2a01a0534653a87a7b8684e04113

Accuracy on Correlation * p <.05
Model CEmb p-Value coefficient  ** p <.01
GPT:3 0.594 0.018 0.062 #*
(small)
GPT-3 0.667 0.034 0.056 #*
(large)
OPT 0.561 0.206 0.033
(small)
OPT 0.627 0.034 0.056 *
(medium)
GPT-Neo 0.535 0.399 0.022
(small)
GPT-NeoX 0.648 0.005 0.073 =
(medium)
GPT-2 0.597 0.158 0.037
(small)
GPT-2 XL 0.606 0.009 0.069 ok
(medium)

Table 3: Experimental results of all model pairs (small
and larger versions) on the C'g,,;, corpus. The last col-
umn marks significant results of the point biserial cor-
relation between embodiment score and model perfor-
mance for p < 0.05 with * and for p < 0.01 with **.

values with the continuous variable of embodiment
ratings by calculating the point biserial correlation
coefficient and the associated p-value. Moreover,
we assess various other language features to isolate
any effect of embodiment. As described in previ-
ous sections and based on the work by Liu et al.
(2022); Sidhu et al. (2014); Colombo and Burani
(2002), we test for the effects of word concrete-
ness, AoA, word frequency and word length. This
analysis includes an assessment of the amount of
multicollinearity within the regression variables by
determination of the variance inflation factor (VIF).

4 Results

Embodiment Correlation The results of all
models are listed in Table 3 and visualized in Figure
1. Overall, for each pair of small and larger mod-
els, the larger models always perform better on the
interpretation task than the smaller version of the
model. Moreover, all larger versions of the models
show a significant correlation (p < 0.05) between
the embodiment rating and task performance. In
two instances, GPT-NeoX (20B) and GPT-2 (1.5B),
the p value is < 0.01. In the case of GPT-3, both
model variants show a significant correlation. In all
correlations, the coefficient is positive, albeit small
(<0.1), which indicates that embodiment has a posi-
tive effect on task performance. All smaller models
(except for GPT-3 with 350M parameters) do not
show a significant correlation between embodiment
score and task performance.
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Figure 1: Performance of four language models in two
size-variations on Cpg,p. Significant results of the
point biserial correlation between embodiment score
and model performance are marked for p < 0.05 with
* and for p < 0.01 with **. Colours correspond to the
same model type, and x-labels provide the size of the
model.

Concreteness Using the concreteness-in-context
predictor, we provide a concreteness value for each
verb in C'g,,p and correlate those predictions with
all models’ performance. As a result, there is no
significant correlation between the concreteness of
the action word in its context and the performance
of the LM on the interpretation (results in Appendix
A). We do not reject hypothesis 1.1.

Variance Inflation Pairwise correlations be-
tween AoA, word frequency, embodiment score
and word length are visualized in Figure 2. In-
tuitively, frequency and AoA are expected to be
correlated with each other, because words that are
acquired much later in life are often less frequently
used words, as they tend to be more complex or spe-
cific words. The multicollinearity test through VIF
is presented in Table 4. All factors are close to 1.0,
which indicates that there is no multicollinearity
among predictor variables (if the VIF is between
5 and 10, multicollinearity is likely to present)
(James et al., 2013). Given that there is no multi-
collinearity between embodiment score and other
linguistic features, we do not reject hypothesis 1.11.

4.1 Interpretation

The results of the correlation analysis indicate that
embodiment affects the LMs’ ability to interpret
figurative language when the LM achieves a certain
level of performance, which depends on the size of
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Figure 2: Pairwise correlation for the variables of AoA,
word frequency, embodiment score and word length.
Positive numbers indicate that increase in one variable
correlates with an increase in the other and analogously
for negative numbers with a decrease. Value 1 is the
perfect correlation of the variable with itself. aca: Age
of acquisition, freq: Word frequency, embod: Em-
bodiment score and word len: word length.

Word Embodiment  Word
AoA . Constant
Frequency Rating Length
1.610 1.345 1.326 1.017 86.387

Table 4: VIF from the four features. Constant denotes
the intercept provided for the VIF. A factor close to 1
indicates no correlation with values above 4 regarded as
moderate correlation.

the model. The correlation coefficient is positive in
all significant cases and those significant correla-
tions occur in all larger (>1B parameter) model ver-
sions. Since task performance increases with model
size, the effect of embodiment becomes more ap-
parent through more successful interpretations in
better-performing models. The fact that concrete-
ness, AoA, word length and word frequency do
not inflate this effect, shows that the embodiment
rating is not an arbitrary construct that implicitly
models another linguistic feature.

There are slight differences in the model types
when it comes to the performance of the mod-
els. For example, GPT-3 shows a significant cor-
relation for the effect of an embodiment for both,
the small (350M) and large (175B) model sizes.
Yet, this effect does not occur in the small GPT-2
(355M) model, but in the large GPT-2 (1.5B) ver-
sion. Notably, OpenAl does not explicitly list the
Ada model with 350M, but its performance ranks
close with 350M versions on various tasks (Brown
et al., 2020). Hence, this difference has only lim-
ited relevance. Nonetheless, we assume that the
effect is correlating with model size and that a re-



liable effect can be seen in larger models with a
parameter number of over 1 billion.

5 Conclusion

5.1 Contribution to the Field

We successfully reproduce results that are in line
with (Liu et al., 2022). Moreover, we provide a
subcorpus with ratings of an embodiment for the
Fig-QA task. We identify the contribution of em-
bodied verbs to LMs’ ability to interpret figurative
language. To the best of our knowledge, this study
is the first to provide evidence that the psycho-
linguistic norm of the perceived embodiment has
been investigated in an NLP task for LMs.

5.2 Discussion

Benchmarks, such as BIG-bench (Srivastava et al.,
2022), show that different types and sizes of LMs
can be evaluated on many different tasks to identify
potential shortcomings or limitations. This paper
takes an entirely different approach by zeroing in
on a particular task, which has been augmented
with a specific semantic evaluation (embodiment
ratings of actions), to highlight how difficult tasks,
such as figurative language interpretation, benefit
not only from model size but from specific embod-
ied semantics.

Figurative language is difficult for LMs because
its interpretation is often not conveyed directly by
the conventional meaning of its words. Human
NLU is embodied and grounded by physical inter-
action with the environment (Di Paolo et al., 2018).
Consequently, it could be expected that LMs strug-
gle when the interpretation of figurative language
depends on a more embodied action. Yet, the oppo-
site has been shown as more embodied concepts are
more lexicalised and larger LMs can interpret them
better in figurative language. Hence, our study pro-
vides valuable insight that raises the question of
whether this effect is limited to figurative language
or translates to other NLU tasks for LMs.

5.3 Limitations and Future Works

The current results are limited to one specific figu-
rative language task (Fig-QA). In future work, we
aim to test whether our hypothesis holds for other
figurative language interpretation tasks, such as
those by (Chakrabarty et al., 2022; Stowe et al.,
2022). Moreover, we want to assess BIG-bench
(Srivastava et al., 2022) performances on various
other tasks concerning embodiment scoring and

see whether the bias can be detected in tasks other
than figurative language interpretation.

The statistical evaluation has attempted to mea-
sure many different linguistic dimensions, e.g.
AoA, word length, word frequency and concrete-
ness in context. Empirically, this indicates that
the effect of embodiment is not simply explain-
able by other factors. Theoretically, we argue that
this correlation can be causally explained through
the lexicalisation of conventional metaphors. We
simplify conventionality by assuming that word
frequency and age of acquisition (AoA) are indica-
tors of conventionality, i.e. more frequent words
and words that are acquired early in life are more
conventional. Nonetheless, a thorough explanation
of the effect of embodiment on LMs’ capabilities
for language tasks requires many more studies.

Ethical Consideration It should be noted that
a key component of the experiment is built from
(Sidhu et al., 2014) with their ratings of relative em-
bodiment. For their study, the authors have sampled
data exclusively from (N=67, 57 female) “gradu-
ate students at the University of Calgary who par-
ticipated in exchange for bonus credit in a psychol-
ogy course, had a normal or corrected-to-normal
vision, and reported English proficiency” (Sidhu
et al., 2014). Even though embodiment is supposed
to be a general, human experience, the pool of par-
ticipants is relatively homogeneous (mostly female,
educated and presumably able-bodied). A broader
and more diverse set of ratings, specifically con-
cerning differently-abled participants and cultural
backgrounds should be targeted.

Computing Cost All model inferences (except
OpenAl) have been conducted on University
servers with 8x NVIDIA RTX A6000 (300 W). Each
experiment for each model lasted at most 10min
with full power consumption. A conservative esti-
mate of 2,400 W (8 GPUs x 300 W) for 20 exper-
iments results in a power consumption of at most
8 kWh, which equals emission of at most ~3.5 kg
C O, for all experiments with model inference.

Data and Artefact Usage Existing artefacts used
in this research are attributed to their creators and
their consent has been acquired before the studies.
This concerns the embodiment ratings by Sidhu
et al. (2014), the Fig-QA corpus by Liu et al. (2022)
and the concreteness predictor by Rotaru (2020).
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A Appendix: Concreteness Correlation

Correlation p-value
GPT-3
(small -0.016 0.554
GPT-3 -0.039 0.139
(large)
OPT
(small) -0.037 0.163
OPT -0.032 0.227
(medium)
GPT-Neo -0.020 0.448
(small)
GPT-NeoX -0.026 0.318
(medium)
GPT-2
(small -0.036 0.176
GPT'.2 XL -0.003 0.921
(medium)

Table 5: Results of the point biserial correlation between
the concreteness of action in context and performance of
LM on the interpretation of figurative language phrases
(CEmp)- None of the LMs shows a statistically signifi-
cant correlation between the variables (o < 0.05).

B Appendix: Reproduction and Suffix
Prompting

GPT-3 (small) GPT-3 (large)

Corpus w/ suffix  w/o suffix w/ suffix  w/o suffix
ClLiu 0.601 0.591 0.684
CEmb 0.594 0.577 0.667 0.661
CNoE 0.583 0.572 0.661 0.659
Cemb + CnoE 0.591 0.574 0.665

Table 6: Comparing the zero-shot performance of the
GPT-3 models Ada (~350M parameters) and Davinci
(~175B parameters) on the different corpora (Tab. 1).
The comparison includes the variable that is to say suffix
prompting.
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