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Abstract

Figurative language is a challenge for language001
models since its interpretation is based on the002
use of words in a way that deviates from their003
conventional order and meaning. Yet, humans004
can easily understand and interpret metaphors,005
similes or idioms as they can be derived from006
embodied metaphors. Language is a proxy for007
embodiment and if a metaphor is conventional008
and lexicalised, it becomes easier for a sys-009
tem without a body to make sense of embodied010
concepts. Yet, the intricate relation between011
embodiment and features such as concreteness012
or age of acquisition has not been studied in013
the context of figurative language interpretation014
concerning language models. Hence, the pre-015
sented study shows how larger language mod-016
els perform better at interpreting metaphoric017
sentences when the action of the metaphorical018
sentence is more embodied. The analysis rules019
out multicollinearity with other features (e.g.020
word length or concreteness) and provides ini-021
tial evidence that larger language models con-022
ceptualise embodied concepts to a degree that023
facilitates figurative language understanding.024

1 Introduction025

Infants acquire their first conceptual building026

blocks by observation and manipulation in the phys-027

ical world. These primary building blocks enable028

them to make sense of their perceptions (Mandler029

and Cánovas, 2014). In return, their embodiment030

defines the capabilities with which they can explore031

and understand the world. The early conceptual032

system is built from spatial schemas, which enables033

early word understanding (Mandler, 1992). These034

so-called Image Schemas are recurring cognitive035

structures shaped by physical interaction with the036

environment. They emerge from bodily experience037

and motivate subsequent conceptual metaphor map-038

pings (Johnson, 2013). The metaphorical mapping039

is visible in our everyday language whenever we040

use figurative language. For example, if we say041

that she dances like a turtle, that is to say, that she 042

dances poorly. The metaphor in this phrase is read- 043

ily interpreted by humans, who would favour the 044

interpretation of dances poorly over dances well. 045

The turtle dance example employs a conceptual 046

mapping in which the turtle provides the source do- 047

main for the attributes slow and rigid, which turn 048

the dance target domain into poorly dancing. This 049

mapping draws from the human, bodily experience 050

of dancing and therefore enables interpretation. 051

For a language model (LM), the understanding 052

of figurative language is a great challenge (Liu 053

et al., 2022). By nature of their digital imple- 054

mentation as computer algorithms, LMs are non- 055

embodied and do not ground their conceptualisa- 056

tion by physical interaction with the environment. 057

Instead, LMs learn statistical features of language 058

by deep learning vast amounts of data (Vaswani 059

et al., 2017). Whether these learned statistical 060

features allow LMs to mirror or copy natural lan- 061

guage understanding (NLU) is subject to discus- 062

sion (Zhang et al., 2022a). Moreover, Tamari et al. 063

(2020) suggest an embodied language understand- 064

ing paradigm for LMs can benefit NLU systems 065

through grounding by metaphoric inference. 066

One can argue that most embodied metaphors 067

are heavily conventional (e.g. UP IS GOOD, 068

DOWN IS BAD, KNOWLEDGE IS LIGHT, IG- 069

NORANCE IS DARKNESS) and as such, they are 070

lexicalised in a language without an inherent need 071

to understand their bodily basis. This lexicalisation 072

should allow LMs to conceptualise and interpret 073

them correctly and more robustly than less conven- 074

tional metaphors. Conventionality relates to word 075

frequency and age of acquisition (AoA), i.e. more 076

frequent words and words that are acquired early in 077

life are more conventional. We argue that embodi- 078

ment has a measurable effect on the interpretation 079

of metaphors that differs from the effect of other lin- 080

guistic features. Moreover, we investigate whether 081

an interpretation of figurative language with more 082
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embodied concepts is easier for LMs. Analogously,083

we investigate conflating factors such as the AoA,084

word frequency, concreteness and word length. The085

relation between embodiment and LMs’ ability to086

interpret figurative language has not yet been inves-087

tigated and is the key contribution of this research.088

The following Section (2) starts with a review of089

language model abilities, more specifically figura-090

tive language interpretation abilities. The review091

identifies a suitable data set for our experiment092

and describes its formation in Section 3. We use093

a subset of the Fig-QA data set (Liu et al., 2022),094

a Winograd-style figurative language understand-095

ing task, and correlate the performance of various096

LMs concerning the degree of embodiment of the097

metaphorical actions that the LMs are tasked to098

interpret. In Section 4, we identify that models,099

that can reach a certain performance on our Fig-QA100

subset, show a significant and positive correlation101

between the rating of the embodiment of the action102

involved in the metaphorical phrase. An in-depth103

analysis of additional features, such as the AoA,104

word length or frequency, does not indicate mul-105

ticollinearity among those features. In Section 5106

we conclude that the degree of embodiment of the107

action within the metaphoric phrase is a predictor108

of the LMs’ ability to correctly interpret the figu-109

rative language. Lastly, we discuss the limitations110

and broader implications of the work.111

2 Related Works112

2.1 Language Model Abilities113

The presented work investigates the zero-shot ca-114

pabilities of LMs of different types and sizes. Ar-115

guably, LMs’ capabilities to solve language-based116

tasks, which they have not been trained on, are an117

emerging property of their complexity and large-118

scale statistical representation of language. It is119

a property that makes them unsupervised multi-120

task learners (Radford et al., 2019; Brown et al.,121

2020). Despite task-agnostic pre-training and a122

task-agnostic architecture, LMs can perform var-123

ious NLP tasks without seeing a single example124

of the task, albeit with mixed results (Srivastava125

et al., 2022). This raises the question of whether126

LMs mirror the human conceptual understanding127

encoded in language or whether they “only” learn128

statistical features from the underlying training dis-129

tribution, allowing them to generalise and solve130

previously unseen tasks.131

Several works have tried to assess to what ex-132

tent LMs are capable to perform more complex 133

NLP tasks (e.g. logical reasoning or metaphoric 134

inference). For example, Zhang et al. (2022a) inves- 135

tigate the logical reasoning capabilities of BERT 136

(Devlin et al., 2019). For this, the authors define a 137

simplistic problem space for logical reasoning and 138

show that BERT learns statistical features from its 139

training distribution, but fails to generalise when 140

presented with other distributions and drops in per- 141

formance. According to the authors, this implies 142

that BERT does not emulate a correct reasoning 143

function in the same way that humans would con- 144

ceptualise the problem. Similarly, Sanyal et al. 145

(2022) evaluate whether the RoBERTa model (Liu 146

et al., 2019) or the T5 model (Raffel et al., 2020) 147

can perform logical reasoning by understanding im- 148

plicit logical semantics. The authors test the mod- 149

els on various logical reasoning data sets whilst 150

introducing minimal logical edits to their rule base. 151

Consequently, Sanyal et al. (2022) show that LMs, 152

even when fine-tuned on logical reasoning, do not 153

sufficiently learn the semantics of some logical op- 154

erators. Han et al. (2022) present a diverse data set 155

for reasoning in natural language. An evaluation of 156

the GPT-3 model (Brown et al., 2020) on their data 157

set shows a performance that is only slightly better 158

than random. This indicates that there is a fun- 159

damental gap between human reasoning and LM 160

reasoning and their conceptualisation capabilities. 161

The related works show that, although LMs seem 162

to mirror an aspect of reasoning, e.g. logical rea- 163

soning, a closer look at the underlying conceptu- 164

alisation of these abilities can reveal they are not 165

robust and fail to mirror deeper semantics. Sim- 166

ilarly, Our work looks at metaphorical reasoning 167

and the understanding of figurative language con- 168

cerning embodied conceptualisation. 169

2.2 Figurative Language Interpretation 170

Liu et al. (2022) are among the first to quantita- 171

tively assess the ability of LMs to interpret fig- 172

urative language. Their Fig-QA data set is pub- 173

licly available1 and we discuss the construction of 174

our subcorpus in more detail in Section 3.1. In 175

short, the authors present crowdsourced creative 176

metaphor phrases with two possible interpretations 177

of various LMs and check for which interpretation 178

the model returns the higher probability distribu- 179

tion. The main contribution of Liu et al. (2022) is 180

1https://huggingface.co/datasets/
nightingal3/fig-qa
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the Fig-QA task, which consists of 10,256 exam-181

ples of human-written creative metaphors that are182

paired in a Winograd schema. The authors also183

contribute an assessment of various LMs in zero-184

shot, few-shot and fine-tuned settings on Fig-QA.185

Moreover, their results indicate that overall, LMs186

fall short of human performance. On a phrase and187

word level, the authors find that longer phrases are188

harder to interpret and that metaphors relying on189

commonsense knowledge concerning objects’ vol-190

ume, height, mass, brightness or colour are easier191

to interpret. This indicates that bodily modalities192

seem to facilitate interpretation success. They also193

show that larger models (i.e. number of parameters)194

perform better on the task. All of these findings are195

reproduced in our experiments.196

Chakrabarty et al. (2022) present FLUTE, a data197

set of 8,000 figurative NLI instances. Their data set198

includes the different figurative language categories199

of metaphor, simile, and sarcasm. In contrast to200

Fig-QA, the authors do not create metaphors in a201

Winograd scheme as a forced-choice task but create202

natural language explanations (NLE) using GPT-3203

(Brown et al., 2020) and human validation. Their204

experiments with state-of-the-art NLE benchmark205

models show poor performance in comparison to206

human performance. The authors do not differen-207

tiate the metaphors, similes and sarcastic phrases208

concerning linguistic features. Moreover, they in-209

clude a language model in the creation process,210

which, as far as our study is concerned, introduces211

a bias to the data set. Hence, we decide to use the212

Fig-QA data set instead of FLUTE.213

2.3 Modelling Embodied Language214

It is generally understood that language is grounded215

in experience based on interaction with the world216

(Bender and Koller, 2020; Bisk et al., 2020). Hence,217

there is an interest to leverage LMs’ capabilities218

in interactions with the environment. For exam-219

ple, Suglia et al. (2021) present EmBERT, which220

attempts language-guided visual task completion.221

Their model uses a pre-trained BERT stack fused222

with an embedding for detecting objects from vi-223

sual input. The model achieves competitive perfor-224

mance on ALFRED, a benchmark task for inter-225

preting instructions (Shridhar et al., 2020).226

Huang et al. (2022) investigate if LMs know227

enough embodied knowledge about the world to228

ground high-level tasks in the procedural planning229

of instructions for household tasks. For example,230

the authors pass a prompt, e.g. “Step 1: Squeeze out 231

a glob of lotion” to a pre-trained LM (e.g. GPT-3) 232

and extract actionable knowledge from its response. 233

Their results indicate that large language models 234

(<10B parameters) can produce plausible action 235

plans for embodied agents. 236

Embodiment In this study, the term embodiment 237

relates to cognitive sciences: Humans process a lin- 238

guistic statement such as “to grab an apple” using 239

embodied simulations in the brain. Perceptual expe- 240

riences activate cortical regions that are dedicated 241

to sensory actions and those regions partially re- 242

activate premotor areas to implement, what Barsa- 243

lou (1999) calls, perceptual symbols. Reading of 244

actions words such as kick or lick is associated 245

with premotor cortex activation responsible for con- 246

trolling movements for these actions (Hauk et al., 247

2004). This effect is diminished by figurative lan- 248

guage (Schuil et al., 2013). Therefore, a statement 249

such as “to grasp the idea” does not necessarily 250

rely on premotor cortex simulation. The semantic 251

processing of the linguistic statement is therefore 252

linked to its context and degree of embodiment 253

in the sense that the action can be simulated by a 254

brain in a body (Zwaan, 2014). This understanding 255

of the term embodiment guides the evaluation of 256

how LMs, which do not have a brain in a body, can 257

interpret figurative language phrases with a varying 258

degree of embodied actions. 259

3 Statistical Evaluation 260

The review of related works shows that there are 261

abilities of LMs that go beyond mere language gen- 262

eration, e.g. logical reasoning, and action planning. 263

It is unclear how LMs conceptualise actions that 264

humans conceptualise using interaction with the en- 265

vironment. Figurative language acts as a test bed to 266

assess metaphorical conceptualisations since they 267

are grounded in embodied experience and inter- 268

action with the environment. We take Liu et al. 269

(2022)’s findings as a starting point to focus on 270

the effect of embodiment in figurative language 271

interpretation by LMs of various sizes. 272

3.1 Experimental Framework 273

Embodiment Rating and Data Set To assess the 274

effect of embodiment on the task, we discuss the 275

effects of embodiment in semantic processing and 276

introduce the simplification underlying our study 277

through an example. The Fig-QA provides the fol- 278

lowing item: 279
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(A) The pants were as faded as ...280

(A.1) ... the memory of pogs281

(A.2) ... the sun in June282

with the possible interpretations:283

(A.I) they were very faded284

(A.II) they were bright285

The LM is prompted with each combination of sen-286

tence completion and interpretation (i.e. A.1+A.I,287

A.1+A.II, A.2+A.I, A.2+A.II). Notably, Liu et al.288

(2022) have shown that the addition of “that is289

to say” as a concatenation between metaphorical290

phrase and interpretation phrase elicits better model291

performance, hence we also include this prompt in292

our studies. Subsequently, the prediction scores of293

the language modelling head (scores for each vo-294

cabulary token) are retrieved and the highest prob-295

ability becomes the LMs choice of interpretation296

(for more details, see (Liu et al., 2022)). We com-297

pare this example with a different Fig-QA item:298

(B) She dances like a ...299

(B.1) ... fairy300

(B.2) ... turtle301

with the possible interpretations:302

(B.I) she dances well303

(B.II) she dances poorly304

Given our hypothesis that embodiment affects the305

LMs’ ability to interpret these phrases, we score306

(A) and (B) concerning the embodiment. As a307

simplification, we limit the rating of embodiment308

to the actions within the phrase, i.e. the verbs.309

Thus, we rate faded for (A) and dances for (B)310

with respect to their relative embodiment. For this311

scoring, we consult a data set by Sidhu et al. (2014).312

In their empirical study, Sidhu et al. (2014) char-313

acterise a dimension of a relative embodiment for314

verbs. In the construction of the data set, “partici-315

pants were asked to judge the degree to which the316

meaning of each verb involved the human body, on317

a 1–7 scale” (Sidhu et al., 2014). Their resulting318

data set consists of ratings for 687 English verbs.319

Our hypothesis is that embodiment is a semantic320

component which affects the interpretation abil-321

ity of LMs concerning figurative language. With322

their data set, the authors provide evidence that323

the meaning of a verb has a semantic component324

linked to the human body in the lexical process-325

ing of that verb. They assume that more robust326

Label Source Description Entries

CLiu
Fig-QA
test

All phrases from the Fig-QA
test set 1,146

CEmb
Fig-QA
train/dev

Phrases that have at least one
action w/ embodiment rating 1,438

CNoE
Fig-QA
train/dev

Phrases that do not have an
action w/ embodiment rating 1,438

Table 1: CLiu is 100% of the Fig-QA test set and 11% of
the entire Fig-QA data set (Liu et al., 2022). Our selected
subsets CEmb and CNoE are mutually exclusive and
each composes 14% of the entire Fig-QA data set.

semantic activation is generated by more embodied 327

verbs (Sidhu et al., 2014). This provides us with 328

data set we can apply to our experiment on figura- 329

tive language. Moreover, their experiment provides 330

additional control variables such as the AoA and 331

word length, which have a known effect on lexical 332

processing (Colombo and Burani, 2002) and are 333

included in our results (Sec. 4). 334

At the time of conducting our experiment, Fig- 335

QA did only provide the training and development 336

data, which we will refer to as train & dev. Hence, 337

we identify all phrases from the train & dev data 338

set that contain at least one word with an embod- 339

iment rating from Sidhu et al. (2014). The pro- 340

cess of creating the subcorpus with embodiment 341

ratings (CEmb) begins by identifying verbs using 342

spaCy (Honnibal et al., 2020). The lemmatized 343

versions of the verbs for the metaphorical phrases 344

are then matched with embodiment scores, result- 345

ing in a subcorpus (CEmb) with 1,438 entries. If 346

more than one verb is present in the metaphorical 347

sentence, the average is assigned. Analogously, 348

we construct a subcorpus of the same size with 349

metaphorical phrases that do not contain an embod- 350

ied verb (CNoE). For both subcorpora, we only 351

keep phrases in which the verb is contained in the 352

Winograd pair. The resulting subcorpora statistics 353

are listed in Table 2. The previous examples (A) 354

and (B) are thus augmented as follows: 355

(A) The pants were as faded as ... 356

Embodiment Rating: 2.36 357

(B) She dances like a ... 358

Embodiment Score: 6.50 359

With the annotated Fig-QA subcorpus CEmb we 360

now turn to the models we select to assess whether 361

there is a correlation between embodiment score 362

and LM task performance. 363

Hypotheses The main hypothesis for the statisti- 364

cal evaluation can be summarized as follows: 365
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1. There is a correlation between the LMs’ in-366

terpretation capabilities of metaphors and the367

amount of embodiment of the verbs within368

those metaphorical phrases.369

Intuitively, more embodied actions such as kick,370

move or eat are much more concrete, shorter and371

basic, when compared to resonate, compartmen-372

talise or misrepresent. Therefore, the analysis of373

embodied actions must take into account factors374

such as concreteness, AoA, word length and word375

frequency. Moreover, common metaphors are con-376

ventional and more lexicalised. Consequently, they377

might simply be more embodied and the effect of378

embodied verbs might stem from the fact that these379

verbs are more concrete in the context that they are380

presented. Hence, the first hypothesis should not381

stand alone, but will be evaluated along with two382

additional directional hypotheses:383

1.I There is no correlation between the LMs’ in-384

terpretation capabilities of metaphors and the385

amount of concreteness of the verbs within386

those metaphorical phrases irrespective of387

their embodiment rating.388

In our evaluation, the concreteness of a word389

in its context will be scored using an open-source390

predictor2 based on distributional models and be-391

havioural norms explained in (Rotaru, 2020). De-392

tails of the concreteness scoring with the predictor393

have been summarized in Sec. 3.2. Concreteness394

ratings are often subjective ratings (Brysbaert et al.,395

2014) or determined by other low-level features,396

such as AoA, word frequency and word length (Ro-397

taru, 2020). To isolate the effect of embodiment,398

we add the second directional hypothesis:399

1.II There is no correlation between the LMs’400

interpretation capabilities of metaphors and401

other linguistic features, such as AoA, word402

frequency and word length.403

For AoA we obtain scores for each of the actions404

from (Kuperman et al., 2012) and for word fre-405

quency from (Van Heuven et al., 2014). Together406

with word length and embodiment score we test for407

variance inflation to respond to 1.II.408

Model Selection The selection of our models is409

based on three criteria: First, we want to reproduce410

2https://github.com/armandrotaru/
TeamAndi-CONcreTEXT

Label #Parameters
in Millions Provider

GPT-3
(small) ∼350 OpenAI

GPT-3
(large) ∼175,000 OpenAI

OPT
(small) 350 Facebook

OPT
(medium) 13,000 Facebook

GPT-Neo
(small) 125 EleutherAI

GPT-NeoX
(medium) 20,000 EleutherAI

GPT-2
(small) 355 OpenAI

GPT-2 XL
(medium) 1,500 OpenAI

Table 2: Different model types and parameter numbers
have been selected for the evaluation. For each type,
we have selected a pair of smaller and medium to large
model version (indicated with shades of grey).

the results by (Liu et al., 2022) having a compara- 411

ble measure. Second, we want to check whether 412

the effect generalises to other large LMs. Third, we 413

want a variation of different model sizes to account 414

for varying performance on the task as a result of 415

model size. For the latter two criteria, we start 416

with the smallest available models of each type and 417

check intermediate model sizes. We do not con- 418

sider it necessary to check whether or not scaled, 419

largest versions of each model perform better on 420

the task since this is a general property of LMs 421

(Brown et al., 2020; Srivastava et al., 2022). 422

In the original Fig-QA study, the authors exam- 423

ine three transformer-based LMs with different pa- 424

rameter sizes: GPT-2 (Radford et al., 2019), GPT-3 425

(Brown et al., 2020) and GPT-Neo (Black et al., 426

2021). To reproduce the results by Liu et al. (2022), 427

we include GPT-2, GPT-3, GPT-Neo LMs and add 428

OPT LMs (Zhang et al., 2022b). An overview of 429

the models and their specifications is shown in Ta- 430

ble 1. Notably, we want to correlate whether the 431

type and number of parameters play a role when it 432

comes to performance concerning the embodiment. 433

Hence, we include pairs of models from each type 434

that are small (<1 billion) and medium to large (>1 435

billion) in their number of parameters. 436
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3.2 Methodology437

We apply the same methodology of evaluation as438

Liu et al. (2022). In our zero-shot setting, each439

pretrained LM is prompted with the metaphor sen-440

tences combined with one of the interpretation sen-441

tences, concatenated with that is to say. For Ope-442

nAI models, the API provides the log probabilities443

per token as logprob return value. We access all444

other models using huggingface.co and its445

transformer library. To create the same eval-446

uation metric as for results by (Liu et al., 2022),447

we follow (Tunstall et al., 2022) and implement a448

function that returns the logprob based on the449

prediction scores of the language modelling head.450

All code and data is publicly available3.451

Reproduction and Suffix Prompting In an ini-452

tial experiment, we reproduce the same experiment453

by Liu et al. (2022), but instead of performing the454

zero-shot classification on the test set, we evaluate455

the performance on CEmb and CNoE with and with-456

out suffix prompting (that is to say). This allows us457

to compare our data set against the baseline. The458

result indicates that GPT-3 models perform slightly459

worse on our subcorpora, but all conditions ben-460

efit from the suffix prompting (see Appendix B).461

Since both CEmb and CNoE are more difficult for462

GPT-3, we can rule out that this effect stems solely463

from the embodiment component present in CEmb,464

which is not present in CNoE . Moreover, we adopt465

the suffix prompting for all further experiments.466

Concreteness Scoring To determine the con-467

creteness of a verb in context, (Rotaru, 2020) built468

a predictor based on a combination of distribu-469

tional models, together with behavioural norms.470

We adopt the same settings and model choice as471

presented by the author, but exclude the word fre-472

quency behavioural norm, as we investigate it as a473

separate feature. We evaluate our predictor on the474

same English test set of the CONcreTEXT task at475

EVALITA2020 (Gregori et al., 2020) and receive476

a mean Spearman correlation of 0.87, which is in477

line with (Rotaru, 2020). The context-dependent478

models used in the predictor include ALBERT (Lan479

et al., 2020), BERT and GPT-2.480

Statistical Tests For each model, we obtain its481

performance on the data set with a binary scoring482

of each figurative phrase as being correctly or incor-483

rectly identified. We correlate this series of binary484

3https://osf.io/puhxb/?view_only=
1c8a2a01a0534653a87a7b8684e04113

Model Accuracy on
CEmb

p-Value Correlation
coefficient

* p <.05
** p <.01

GPT-3
(small)

0.594 0.018 0.062 *

GPT-3
(large)

0.667 0.034 0.056 *

OPT
(small)

0.561 0.206 0.033

OPT
(medium)

0.627 0.034 0.056 *

GPT-Neo
(small)

0.535 0.399 0.022

GPT-NeoX
(medium)

0.648 0.005 0.073 **

GPT-2
(small)

0.597 0.158 0.037

GPT-2 XL
(medium)

0.606 0.009 0.069 **

Table 3: Experimental results of all model pairs (small
and larger versions) on the CEmb corpus. The last col-
umn marks significant results of the point biserial cor-
relation between embodiment score and model perfor-
mance for p < 0.05 with * and for p < 0.01 with **.

values with the continuous variable of embodiment 485

ratings by calculating the point biserial correlation 486

coefficient and the associated p-value. Moreover, 487

we assess various other language features to isolate 488

any effect of embodiment. As described in previ- 489

ous sections and based on the work by Liu et al. 490

(2022); Sidhu et al. (2014); Colombo and Burani 491

(2002), we test for the effects of word concrete- 492

ness, AoA, word frequency and word length. This 493

analysis includes an assessment of the amount of 494

multicollinearity within the regression variables by 495

determination of the variance inflation factor (VIF). 496

4 Results 497

Embodiment Correlation The results of all 498

models are listed in Table 3 and visualized in Figure 499

1. Overall, for each pair of small and larger mod- 500

els, the larger models always perform better on the 501

interpretation task than the smaller version of the 502

model. Moreover, all larger versions of the models 503

show a significant correlation (p < 0.05) between 504

the embodiment rating and task performance. In 505

two instances, GPT-NeoX (20B) and GPT-2 (1.5B), 506

the p value is < 0.01. In the case of GPT-3, both 507

model variants show a significant correlation. In all 508

correlations, the coefficient is positive, albeit small 509

(<0.1), which indicates that embodiment has a posi- 510

tive effect on task performance. All smaller models 511

(except for GPT-3 with 350M parameters) do not 512

show a significant correlation between embodiment 513

score and task performance. 514
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GPT-3 (175B)

OPT (13B)

GPT-NeoX (20B)

OPT (350M)

GPT-Neo (125M)
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Figure 1: Performance of four language models in two
size-variations on CEmb. Significant results of the
point biserial correlation between embodiment score
and model performance are marked for p < 0.05 with
* and for p < 0.01 with **. Colours correspond to the
same model type, and x-labels provide the size of the
model.

Concreteness Using the concreteness-in-context515

predictor, we provide a concreteness value for each516

verb in CEmb and correlate those predictions with517

all models’ performance. As a result, there is no518

significant correlation between the concreteness of519

the action word in its context and the performance520

of the LM on the interpretation (results in Appendix521

A). We do not reject hypothesis 1.I.522

Variance Inflation Pairwise correlations be-523

tween AoA, word frequency, embodiment score524

and word length are visualized in Figure 2. In-525

tuitively, frequency and AoA are expected to be526

correlated with each other, because words that are527

acquired much later in life are often less frequently528

used words, as they tend to be more complex or spe-529

cific words. The multicollinearity test through VIF530

is presented in Table 4. All factors are close to 1.0,531

which indicates that there is no multicollinearity532

among predictor variables (if the VIF is between533

5 and 10, multicollinearity is likely to present)534

(James et al., 2013). Given that there is no multi-535

collinearity between embodiment score and other536

linguistic features, we do not reject hypothesis 1.II.537

4.1 Interpretation538

The results of the correlation analysis indicate that539

embodiment affects the LMs’ ability to interpret540

figurative language when the LM achieves a certain541

level of performance, which depends on the size of542

sp
ea

rm
an

 c
oe

ff
ic

ie
n
t

Figure 2: Pairwise correlation for the variables of AoA,
word frequency, embodiment score and word length.
Positive numbers indicate that increase in one variable
correlates with an increase in the other and analogously
for negative numbers with a decrease. Value 1 is the
perfect correlation of the variable with itself. aoa: Age
of acquisition, freq: Word frequency, embod: Em-
bodiment score and word len: word length.

AoA
Word

Frequency
Embodiment

Rating
Word

Length
Constant

1.610 1.345 1.326 1.017 86.387

Table 4: VIF from the four features. Constant denotes
the intercept provided for the VIF. A factor close to 1
indicates no correlation with values above 4 regarded as
moderate correlation.

the model. The correlation coefficient is positive in 543

all significant cases and those significant correla- 544

tions occur in all larger (>1B parameter) model ver- 545

sions. Since task performance increases with model 546

size, the effect of embodiment becomes more ap- 547

parent through more successful interpretations in 548

better-performing models. The fact that concrete- 549

ness, AoA, word length and word frequency do 550

not inflate this effect, shows that the embodiment 551

rating is not an arbitrary construct that implicitly 552

models another linguistic feature. 553

There are slight differences in the model types 554

when it comes to the performance of the mod- 555

els. For example, GPT-3 shows a significant cor- 556

relation for the effect of an embodiment for both, 557

the small (350M) and large (175B) model sizes. 558

Yet, this effect does not occur in the small GPT-2 559

(355M) model, but in the large GPT-2 (1.5B) ver- 560

sion. Notably, OpenAI does not explicitly list the 561

Ada model with 350M, but its performance ranks 562

close with 350M versions on various tasks (Brown 563

et al., 2020). Hence, this difference has only lim- 564

ited relevance. Nonetheless, we assume that the 565

effect is correlating with model size and that a re- 566
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liable effect can be seen in larger models with a567

parameter number of over 1 billion.568

5 Conclusion569

5.1 Contribution to the Field570

We successfully reproduce results that are in line571

with (Liu et al., 2022). Moreover, we provide a572

subcorpus with ratings of an embodiment for the573

Fig-QA task. We identify the contribution of em-574

bodied verbs to LMs’ ability to interpret figurative575

language. To the best of our knowledge, this study576

is the first to provide evidence that the psycho-577

linguistic norm of the perceived embodiment has578

been investigated in an NLP task for LMs.579

5.2 Discussion580

Benchmarks, such as BIG-bench (Srivastava et al.,581

2022), show that different types and sizes of LMs582

can be evaluated on many different tasks to identify583

potential shortcomings or limitations. This paper584

takes an entirely different approach by zeroing in585

on a particular task, which has been augmented586

with a specific semantic evaluation (embodiment587

ratings of actions), to highlight how difficult tasks,588

such as figurative language interpretation, benefit589

not only from model size but from specific embod-590

ied semantics.591

Figurative language is difficult for LMs because592

its interpretation is often not conveyed directly by593

the conventional meaning of its words. Human594

NLU is embodied and grounded by physical inter-595

action with the environment (Di Paolo et al., 2018).596

Consequently, it could be expected that LMs strug-597

gle when the interpretation of figurative language598

depends on a more embodied action. Yet, the oppo-599

site has been shown as more embodied concepts are600

more lexicalised and larger LMs can interpret them601

better in figurative language. Hence, our study pro-602

vides valuable insight that raises the question of603

whether this effect is limited to figurative language604

or translates to other NLU tasks for LMs.605

5.3 Limitations and Future Works606

The current results are limited to one specific figu-607

rative language task (Fig-QA). In future work, we608

aim to test whether our hypothesis holds for other609

figurative language interpretation tasks, such as610

those by (Chakrabarty et al., 2022; Stowe et al.,611

2022). Moreover, we want to assess BIG-bench612

(Srivastava et al., 2022) performances on various613

other tasks concerning embodiment scoring and614

see whether the bias can be detected in tasks other 615

than figurative language interpretation. 616

The statistical evaluation has attempted to mea- 617

sure many different linguistic dimensions, e.g. 618

AoA, word length, word frequency and concrete- 619

ness in context. Empirically, this indicates that 620

the effect of embodiment is not simply explain- 621

able by other factors. Theoretically, we argue that 622

this correlation can be causally explained through 623

the lexicalisation of conventional metaphors. We 624

simplify conventionality by assuming that word 625

frequency and age of acquisition (AoA) are indica- 626

tors of conventionality, i.e. more frequent words 627

and words that are acquired early in life are more 628

conventional. Nonetheless, a thorough explanation 629

of the effect of embodiment on LMs’ capabilities 630

for language tasks requires many more studies. 631

Ethical Consideration It should be noted that 632

a key component of the experiment is built from 633

(Sidhu et al., 2014) with their ratings of relative em- 634

bodiment. For their study, the authors have sampled 635

data exclusively from (N=67, 57 female) “gradu- 636

ate students at the University of Calgary who par- 637

ticipated in exchange for bonus credit in a psychol- 638

ogy course, had a normal or corrected-to-normal 639

vision, and reported English proficiency” (Sidhu 640

et al., 2014). Even though embodiment is supposed 641

to be a general, human experience, the pool of par- 642

ticipants is relatively homogeneous (mostly female, 643

educated and presumably able-bodied). A broader 644

and more diverse set of ratings, specifically con- 645

cerning differently-abled participants and cultural 646

backgrounds should be targeted. 647

Computing Cost All model inferences (except 648

OpenAI) have been conducted on University 649

servers with 8x NVIDIA RTX A6000 (300 W). Each 650

experiment for each model lasted at most 10min 651

with full power consumption. A conservative esti- 652

mate of 2,400 W (8 GPUs x 300 W) for 20 exper- 653

iments results in a power consumption of at most 654

8 kWh, which equals emission of at most ∼3.5 kg 655

CO2 for all experiments with model inference. 656

Data and Artefact Usage Existing artefacts used 657

in this research are attributed to their creators and 658

their consent has been acquired before the studies. 659

This concerns the embodiment ratings by Sidhu 660

et al. (2014), the Fig-QA corpus by Liu et al. (2022) 661

and the concreteness predictor by Rotaru (2020). 662
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A Appendix: Concreteness Correlation 838

Correlation p-value
GPT-3
(small) -0.016 0.554

GPT-3
(large) -0.039 0.139

OPT
(small) -0.037 0.163

OPT
(medium) -0.032 0.227

GPT-Neo
(small) -0.020 0.448

GPT-NeoX
(medium) -0.026 0.318

GPT-2
(small) -0.036 0.176

GPT-2 XL
(medium) -0.003 0.921

Table 5: Results of the point biserial correlation between
the concreteness of action in context and performance of
LM on the interpretation of figurative language phrases
(CEmb). None of the LMs shows a statistically signifi-
cant correlation between the variables (α < 0.05).

B Appendix: Reproduction and Suffix 839

Prompting 840

GPT-3 (small) GPT-3 (large)
Corpus w/ suffix w/o suffix w/ suffix w/o suffix
CLiu 0.601 0.591 - 0.684
CEmb 0.594 0.577 0.667 0.661
CNoE 0.583 0.572 0.661 0.659
CEmb + CNoE 0.591 0.574 0.665

Table 6: Comparing the zero-shot performance of the
GPT-3 models Ada (∼350M parameters) and Davinci
(∼175B parameters) on the different corpora (Tab. 1).
The comparison includes the variable that is to say suffix
prompting.
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