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ABSTRACT

Large language models (LLMs) have shown strong performance on mathematical
reasoning under well-posed conditions. However, real-world engineering prob-
lems require more than mathematical symbolic computation—they need to deal
with uncertainty, context, and open-ended scenarios. Existing benchmarks fail
to capture these complexities. We introduce EngiBench, a hierarchical bench-
mark designed to evaluate LLMs on solving engineering problems. It spans
three levels of increasing difficulty (foundational knowledge retrieval, multi-step
contextual reasoning, and open-ended modeling) and covers diverse engineering
subfields. To facilitate a deeper understanding of model performance, we systemat-
ically rewrite each problem into three controlled variants (perturbed, knowledge-
enhanced, and math abstraction), enabling us to separately evaluate the model’s
robustness, domain-specific knowledge, and mathematical reasoning abilities. Ex-
periment results reveal a clear performance gap across levels: models struggle
more as tasks get harder, perform worse when problems are slightly changed,
and fall far behind human experts on the high-level engineering tasks. These
findings reveal that current LLMs still lack the high-level reasoning needed for
real-world engineering, highlighting the need for future models with deeper and
more reliable problem-solving capabilities. Our source code and data are available
at https://anonymous.4open.science/r/EngiBench-05DF.

1 INTRODUCTION

Large language models (LLMs) have demonstrated promising capabilities in a range of mathematical
reasoning tasks, from foundational skills such as basic computation and structured problem-solving
(Cobbe et al., 2021), multi-step reasoning (Shao et al., 2024; Wei et al., 2022), to more complex
applications like mathematical modeling (Guo et al., 2025) and the generation or verification of
mathematical proofs (Yang et al., 2023; Lin et al., 2025; Ren et al., 2025). However, just using
mathematical reasoning is not enough for real-world applications. In practice, many high-impact use
cases occur not in abstract mathematical domains, but in engineering contexts, where problems are
grounded in physical systems and require balancing uncertainty and constraints inherent to real-world
decision making. These characteristics require not only mathematical computation, but also need
broader capabilities to understand engineering contexts and solve complex engineering problems.

Engineering problems differ fundamentally from mathematical problems. Mathematical problems
aim for abstract theoretical rigor and universality, and are typically characterized by complete
information within a clearly defined problem space (Hendrycks et al., 2021). In contrast, engineering
problems are driven by the need to find “good enough” and feasible solutions for specific objectives,
which are often open-ended, highly context-dependent, and must be achieved within real-world
constraints (Dym et al., 2005). For example, designing a drone system (Table 1) requires identifying
relevant operational requirements and balancing objectives such as range, payload, and energy limits,
illustrating the practical complexity that characterizes real-world engineering tasks. As illustrated
in Figure 1, solving real-world engineering problems requires more than retrieving a formula or
executing a single calculation. It involves a sequence of interdependent cognitive steps that span from
understanding the problem context to formulating robust, feasible solutions. We define this broader
set of competencies as the engineering problem-solving capability, comprising four interconnected
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Difficulty Level

LEVEL 3
Open-ended Modeling

LEVEL 2
Contextual Reasoning

LEVEL 1
Foundational Knowledge Retrieval

Systems & Control

Physical & Structural

Chemical & Biological

Electrical & Power, Control & Navigation, 
Communication & Signal, Optics & Photonics, 

Energy & Thermal, Automotive

Mechanical & Aerospace, Civil & Ocean, Thermal & 
Fluid, Environmental, Systems Methods

Chemical, Chemical Engineering, 
Chemical/Bioengineering, Bioengineering, Biomedical

Subfield

Information Extraction

Domain-specific Reasoning

Multi-objective Decision-making

Uncertainty Handling

Engineering Problem-Solving Capability

Figure 1: Task taxonomy of EngiBench organized by difficulty, capability, and subfield. Problems are grouped
into three difficulty levels, with Level 3 specifically designed to evaluate engineering problem-solving capabilities.
All tasks are additionally categorised into three major engineering subfields.

dimensions: information extraction, domain-specific reasoning, multi-objective decision-making, and
uncertainty handling.
Despite the broader requirements of real-world engineering tasks, most existing benchmarks focus
narrowly on well-defined mathematical problems. Benchmarks such as GSM8K (Cobbe et al., 2021),
MATH (Hendrycks et al., 2021), and Omni-MATH (Gao et al., 2024a) primarily assess symbolic
reasoning, calculation, and formal problem-solving under clean and fully specified conditions. While
these benchmarks have driven progress in mathematical reasoning, their support for engineering tasks
remains unclear. Although some include basic engineering questions, they fail to capture the deeper
reasoning required for real-world problem solving (Hendrycks et al., 2021; Wang et al.; Albalak
et al., 2025; Du et al., 2025). In addition, these benchmarks rely on publicly available datasets
without rewriting that may overlap with LLM pretraining corpora, raising concerns about benchmark
contamination and overclaimed performance (Deng et al., 2024; Huang et al., 2025; Sainz et al.,
2023). For example, GSM1k introduces human-written problems in the style of GSM8k to avoid
data overlap, revealing up to 8% performance drops and potential overfitting (Zhang et al., 2024).
Without proper safeguards, evaluations may measure memorization rather than true generalization,
particularly in engineering contexts requiring practical reasoning. Solely using unmodified public
questions thus inadequately assesses true engineering capabilities, limiting insights into real-world
model performance.

In this work, we introduce an evaluation framework designed to systematically assess LLMs on
engineering problem-solving. It spans a wide range of engineering subfields. Meanwhile, EngiBench
is designed around the broader concept of engineering problem-solving capability, evaluating LLMs
across multiple dimensions aligned with the demands of practical engineering contexts. As illustrated
in Figure 1, it consists of three progressively task levels. We use a structured data construction strategy
consisting of three key aspects. First, we systematically rewrite public questions through numerical
and semantic perturbations to minimize overlap with pretraining datasets. Second, we introduce
controlled problem variations, including knowledge-enhanced and math abstraction versions, to
enable fine-grained analysis of model capabilities. Finally, we adopt rubric-based evaluation for
open-ended tasks, using expert-designed scoring criteria to assess model performance across key
engineering problem-solving capabilities. Together, these measures yield a diverse and high-quality
dataset that supports rigorous and contamination-limited evaluation of LLMs’ engineering problem-
solving abilities.

Experiment results show that our benchmark reveals clear performance stratification across difficulty
levels, with higher-level tasks exposing distinct capability gaps. In addition, our perturbed version
induce performance drops, even in strong models, revealing that prior evaluations may overestimate
true generalization. Most critically, current LLMs consistently underperform on Level 3 tasks involv-
ing open-ended, high-level engineering reasoning, falling well short of human expert performance.
These results suggest that today’s LLMs remain far from reliably solving real-world engineering
problems, leaving substantial room for future research.

Our contributions can be summarized as follows: (1) We are among the first to systematically evaluate
LLMs on real-world engineering problems; (2) We design a hierarchical benchmark with three
difficulty levels and multiple problem variants, enabling fine-grained analysis of model reasoning
capabilities and limitations; (3) Unlike prior benchmarks, our benchmark systematically evaluate
LLM performance on open-ended engineering tasks; (4) We evaluate a broad set of mainstream LLMs,
providing insights that can aid future model development and enhance engineering capabilities.
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2 RELATED WORKS

LLMs for Engineering Problems. LLMs possess logical-reasoning skills, domain knowledge, and
the capacity for multi-step inference that surpass earlier AI paradigms, making them promising tools
for tackling complex challenges. Engineering centers on understanding complex problems, building
mathematical models, and discovering feasible solutions, making it highly relevant to real-world
challenges and a critical domain for evaluating advanced reasoning capabilities. Although LLMs are
increasingly applied to simulation, modeling, and system design, their true proficiency in engineering
problem solving remains unclear because current benchmarks are inadequate (Wang et al., 2024b; Ma
et al., 2024; Tang et al., 2024; Cheng et al., 2025). Some general-purpose benchmarks – like MMLU
(Hendrycks et al., 2021), MMLU-Pro (Wang et al.), BIG-Math (Albalak et al., 2025), and SuperGPQA
(Du et al., 2025) – include a few engineering-flavoured questions, but these are mostly fact-recall
multiple-choice items that ignore authentic engineering reasoning. Domain-specific benchmarks
do exist, such as EEE-Bench (Li et al., 2024), ElecBench (Zhou et al., 2024), FEABench (Mudur
et al., 2025), TransportBench (Syed et al., 2024), and JEEBench (Arora et al., 2023). However,
these benchmarks typically focus on single disciplines and closed-ended tasks, providing limited
support for evaluating open-ended and cross-disciplinary engineering reasoning. Moreover, none of
these efforts are explicitly designed to evaluate key engineering problem-solving capabilities. We
introduce a multi-level engineering benchmark spanning multiple subfields that emphasizes not only
closed-form tasks but also open-ended problems, enabling a more comprehensive evaluation of the
essential skills needed for effective real-world engineering decision-making.

LLM for Mathematical Problems. A closely related area that has been extensively studied is
mathematics. Because solving mathematic problems demands strong logical ability, multi-step
reasoning, and symbolic manipulation, it has become a primary proving ground for evaluating
LLMs. Early benchmarks focus on elementary problems (Cobbe et al., 2021; Hendrycks et al.,
2021; Patel et al., 2021; Amini et al., 2019) and higher-level symbolic reasoning (Hendrycks et al.,
2021; Albalak et al., 2025). Recent efforts like MiniF2F (Zheng et al., 2022), UniMath (Liang
et al., 2023), Omni-MATH (Gao et al., 2024b), and MathVista (Lu et al., 2024) expand to theorem
proving and multimodal tasks. MATH-Vision (Wang et al., 2024a) improves coverage by introducing
diverse topics and difficulty levels from real competitions, and SMART-840 (Cherian et al., 2024)
benchmarks model performance against human children across grades. While these benchmarks
provide rigorous evaluations of mathematical competence, they do not capture engineering-specific
reasoning such as modeling, decision-making under constraints, or domain-based assumptions. Our
work builds on their methodological insights but shifts the focus toward real-world engineering tasks.

Evaluation Challenges. Evaluating the capability of LLMs to solve engineering problems is
challenging due to the inherent complexity involved. Current evaluation methods for LLMs fall
into four main categories: reference-based, task-oriented, preference-based, and rubric-based. The
first two are effective for problems with clear ground truths or executable outputs – e.g., MathVista
(Lu et al., 2024), CHAMP (Mao et al., 2024) (reference-based), and EEE-Bench (Li et al., 2024),
FEABench (task-oriented) (Mudur et al., 2025). However, the core capabilities of the engineering
field we are discussing cannot be effectively evaluated by such closed-form problems. For open-
ended tasks, preference-based methods such as MT-Bench-101 (Bai et al., 2024) use pairwise
comparisons, but are often biased by model-specific generation patterns, limiting objectivity and
real-world applicability. Rubric-based evaluations aim to improve transparency by scoring along
multiple criteria, with general-purpose frameworks like Prometheus (Kim et al., 2024) focusing on
abilities such as context retention and rephrasing.

3 METHODOLOGY

3.1 ENGINEERING PROBLEM-SOLVING CAPABILITY

Engineering problems typically require practical, context-aware solutions under real-world constraints
(Dym et al., 2005), fundamentally differing from mathematical problems that emphasize well-defined,
closed-form problem spaces (Hendrycks et al., 2021). While both fields value abstraction and logical
rigor, engineering problem-solving involves interconnected cognitive steps, from understanding
problem context to formulating robust, feasible solutions (see Figure 1 and Table 1). We define this
as engineering problem-solving ability, comprising four key dimensions: information extraction,
domain-specific reasoning, multi-objective decision-making, and uncertainty handling. These dimen-
sions reflect well-established paradigms in engineering modeling, including information filtering,
multiobjective and constraint-based formulation, and uncertainty and robustness analysis.
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Table 1: Hierarchical difficulty from mathematics to real-world engineering. This illustrates three
levels of increasing complexity. Examples show the progression from closed-form math problems to
open-ended engineering scenarios.

Level Definition Example
Mathematics Mathematical tasks are typically well-posed and self-

contained, with complete information and clearly defined 
solution spaces.

A machine produces 45 parts per minute. If it operates continuously for 2 hours, how many parts 
will it produce in total?
👉 This task requires only basic multiplication and does not involve any domain knowledge. It 
represents a typical closed-form numerical computation problem.

💡 Upgrading Condition: Incorporating domain-specific engineering knowledge
Engineering Level 1: 
Foundational 
Knowledge 
Retrieval

Apply basic engineering concepts or formulas to 
structured problems via single-step computation.

A drone operates at a constant power of 200W for 30 minutes. Calculate the total energy 
consumption in joules.
👉 This task requires applying the basic physical formula 𝐸 = 𝑃× 𝑡, with unit conversion from 
minutes to seconds. It tests the model’s ability to retrieve and apply foundational engineering 
knowledge in a single-step calculation.

💡 Upgrading Condition: Multi-step reasoning and contextual integration
Engineering Level 2:
Contextual 
Reasoning

Perform multi-step reasoning under well-defined 
constraints by integrating conditions and domain 
knowledge.

A drone needs to fly 6 km. The first half is uphill, increasing power usage by 20%, while the second 
half is flat at 180W. The drone flies at 30 km/h and uses a battery rated at 8000mAh, 11.1V. Can 
the battery support the trip?
👉 This task requires multi-step reasoning: estimating flight time, adjusting power consumption, 
and comparing with battery capacity. 

💡 Upgrading Condition: Solving open-ended, under-specified problems
Engineering Level 3:
Open-ended 
Modeling

Solve open-ended, real-world problems through 
information extraction, trade-off reasoning, and 
uncertainty handling.

Design a drone system for urban delivery that balances multiple factors, including flight range, 
payload capacity, and cost control. Propose a feasible solution and justify your design decisions.
👉 This is an open-ended problem with incomplete constraints and potentially conflicting objectives, 
requiring information extraction, trade-off analysis, and robustness under uncertainty.

🔍 Information
Extraction

Identify and extract relevant information from complex or 
redundant problem descriptions.

Identify critical variables—such as payload weight, wind speed, flight duration, and battery 
margin—from complex or verbose task descriptions.

📖 Domain-specific
Reasoning

Apply specialized engineering principles and structured 
knowledge to guide logical inference and solution 
formulation.

Apply specialized engineering knowledge—such as flight mechanics and battery discharge 
principles—to formulate models and perform technical analysis.

⚖ Multi-objective
Decision-making

Make justified trade-offs between competing in the 
absence of a single optimal solution.

Justify trade-offs among competing objectives like range, cost, safety, and operational efficiency 
when no single optimal solution exists.

🌧 Uncertainty
Handling

Ensure solution robustness by reasoning under 
incomplete, variable, or ambiguous real-world conditions.

Account for unpredictable factors such as weather, task variation, and battery aging, and design 
robust strategies (e.g., adding 20% battery reserve) to ensure reliable performance.

• Information extraction refers to the ability to identify and retrieve critical information from complex
or redundant problem descriptions. It involves recognizing relevant variables, constraints, and
objectives while distinguishing them from irrelevant or distracting details. This capability reflects
the model’s proficiency in processing unstructured inputs and converting them into structured
representations that facilitate subsequent reasoning. Its significance lies in its capacity to accurately
capture the essential elements of a problem, thereby minimizing errors in subsequent reasoning
processes and ultimately enabling the precise formulation of effective and implementable solutions.

• Domain-specific reasoning refers to the model’s ability to apply specialized engineering knowledge
such as physical principles, empirical rules, and practical engineering conventions to interpret a
given scenario and formulate appropriate solutions. This includes understanding when certain
approximations are valid, recognizing implicit assumptions commonly made in specific domains,
and selecting solution strategies that align with real-world engineering practices. Such reasoning
requires both conceptual understanding and practical judgment, distinguishing engineering tasks
from purely mathematical problem solving.

• Multi-objective decision-making denotes the capability to evaluate and balance competing objectives
in situations where no single optimal solution exists. Engineering problems commonly involve
trade-offs among factors such as cost, performance, and safety. This dimension reflects the model’s
ability to navigate such trade-off spaces and justify rational decisions within given constraints.
Consequently, it is this inherent requirement for trade-offs that imparts engineering problems with
their distinctive characteristics of multiplicity, openness, and flexibility compared to traditionally
studied problem domains.

• Uncertainty handling characterizes the capability to reason under conditions of incomplete or
variable information. Real-world engineering scenarios frequently involve missing data, noisy
inputs, or dynamic conditions. This dimension evaluates whether a model can anticipate such
uncertainties, incorporate safety margins or adaptive strategies, and consistently deliver robust
and reliable solutions despite these challenges. Effectively managing uncertain and ambiguous
information, including making informed assumptions or estimations, is thus a critical yet complex
challenge that LLMs must address to successfully solve practical engineering problems.

3.2 PROBLEM HIERARCHICAL DIFFICULTY DESIGN

As discussed above, the capabilities involved in solving engineering problems are multifaceted and
complex, making it challenging to evaluate them comprehensively through any single task. Each
capability emphasizes distinct cognitive demands and cannot be adequately represented within a
single hierarchical dimension. Without a clear taxonomy for engineering problem-solving, it is
difficult to pinpoint the specific skills in which a model may be deficient. To address this issue, we
introduce a structured evaluation framework. Unlike previous benchmarks that merely aggregate
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A resistor has a
resistance of 5Ω and
carries a 2A current.
What is the voltage?

Original

A heating coil with 4Ω
resistance draws 3A
of current. What is
the voltage across it?

Perturbed

Given: Ohm’s Law 𝑉 = 𝐼 × 𝑅 ,
where 𝑉 is voltage, 𝐼 is current,
and 𝑅 is resistance.
Problem: A heating coil with 4Ω
resistance draws 3A of current.
What is the voltage across it?

Knowledge-enhanced

Let 𝑅 = 4, 𝐼 = 3.
Compute 𝑉 =
𝐼 × 𝑅.

Math Abstraction

Engineering
Knowledge

Engineering
Application

Mathematical
Reasoning

Extraction of Core 
Mathematical ReasoningKnowledge Augmentation

Numerical + Semantic 
Perturbation

Re
qu

ire
d

Ca
pa

bi
liti

es

Figure 2: We create variants of the
original problem to test different
reasoning skills. Perturbed changes
context and numbers to assess
robustness. Knowledge-enhanced adds
domain knowledge to focus on
reasoning. Math Abstraction isolates
engineering knowledge to test math
ability. Each version targets specific
capabilities.

tasks, our framework classifies tasks according to the core capabilities required by engineering
scenarios. As illustrated in Table 1, engineering problem-solving spans three levels: foundational
knowledge retrieval, contextual reasoning, and open-ended modeling. This hierarchy mirrors the
cognitive progression in engineering problem-solving—from applying basic formulas to reasoning
under uncertainty and conflicting objectives. EngiBench reflects this hierarchical organization through
a three-level difficulty framework.

1. Level 1. Tasks are well-structured and self-contained, typically requiring the model to apply
fundamental engineering formulas in a single step. They emphasize factual recall, precise com-
putation, and minimal contextual reasoning. This level evaluates whether the model possesses a
reliable engineering knowledge base and can consistently retrieve and apply it for straightforward
problems.

2. Level 2. Tasks extend beyond formula application to multi-step reasoning under explicit contextual
constraints such as units, physical limits, or interdependent variables. Problems remain well-
specified and have unique answers, but require interpreting structured descriptions and integrating
domain knowledge across steps. Crucially, unlike Level 1, simple recall is insufficient—models
must handle structured complexity to arrive at the correct solution.

3. Level 3. Tasks mirror real-world challenges by being under-specified, ambiguous, or involving
conflicting objectives. They require advanced reasoning across four dimensions: information
extraction, domain-specific reasoning, multi-objective decision-making, and uncertainty handling.
Unlike Levels 1 and 2, problems lack unique correct solutions, and evaluation focuses on how
well models demonstrate robust and adaptive reasoning under open-ended conditions.

3.3 DATASET CONSTRUCTION

Data Sources. We collect data from three primary sources: problems selected from existing public
benchmarks, university educational materials, and modeling competitions. These problems reflect
the intended hierarchy of difficulty described above and address the lack of open-ended engineering
modeling problems with expert-defined evaluation criteria in existing datasets.

Construction Process. Levels 1 and 2 consist of structured problems with standard answers,
extracted from benchmarks such as SuperGPQA (Du et al., 2025), MMLU (Hendrycks et al., 2021),
MATH (Hendrycks et al., 2021), GSM8k (Cobbe et al., 2021), Orca-Math (Mitra et al., 2024),
HARP (Yue et al., 2024), Omni-MATH (Gao et al., 2024b), Big-Math (Albalak et al., 2025), and
selected university resources. All problems were standardized and validated. Level 3 introduces
the first systematic collection of open-ended engineering tasks, with 43 problems curated from
modeling competitions, each accompanied by official scoring rubrics and reference solutions from
top performers. Problems were carefully reformatted to ensure clarity and evaluability by LLMs.

Annotation and Quality Control. Level 3 was annotated by 20 PhD students and engineering
professionals, supported by GPT-4.1 and Gemini 2.5 Flash as auxiliary tools. Detailed scoring
guidelines ensured consistency and fairness, and inter-annotator agreement was high. From nearly
1,000 competition problems, only those with official rubrics were retained, with extensive reformatting
of formulas, tables, and diagrams. Automated scoring scripts are released with the dataset, enabling
reproducible evaluation closely aligned with human ratings.

Coverage and Classification. EngiBench spans three subfields: Systems & Control (916 problems),
Physical & Structural (334 problems), and Chemical & Biological (467 problems). This categorization
reflects differences in problem focus, required knowledge, and reasoning approaches.
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3.4 CONTROLLED PROBLEM VARIATIONS FOR FINE-GRAINED CAPABILITY ANALYSIS

Multiple factors may influence LLMs performance on individual problems. Potential reasons include
insufficient domain-specific knowledge, calculation errors, or difficulties in accurately interpreting
the engineering context. Merely collecting problems to test overall accuracy provides only a broad
indication of comprehensive performance. We propose to systematically rewrite problems to conduct
controlled experiments, enabling more fine-grained analyses of LLM performance on our benchmark.
This approach allows us to isolate particular challenges, evaluate the robustness of model, and detect
potential data leakage issues (Huang et al., 2025; Zhang et al., 2024; Mirzadeh et al., 2025; Srivastava
et al., 2024; Gulati et al., 2024). By comparing model performance across different problem variations,
we gain deeper insights into the specific capabilities required for realistic engineering tasks.

Motivated by this, we design three controlled variations for each problem, each targeting a distinct
aspect of the reasoning process, as illustrated in Figure 2. Unlike prior robustness benchmarks, these
versions are explicitly constructed for engineering scenarios: the knowledge-enhanced and math
abstraction versions are, to our knowledge, the first systematic variants tailored to diagnose domain-
specific reasoning failures rather than general robustness. This design enables fine-grained capability
analysis by isolating knowledge gaps, contextual dependencies, and mathematical reasoning skills.
The detailed construction procedure is provided in the Appendix. Starting from an original version,
we construct the following three versions:

(1) The perturbed version introduces numerical and semantic perturbations to the original problem,
thereby reducing overlap with pretraining datasets. (2) The knowledge-enhanced version, built upon
the perturbed version, explicitly provides relevant engineering knowledge, such as formulas, physical
constants, and domain-specific definitions. This version helps to diagnose whether model errors
stem specifically from a lack of critical knowledge. (3) The math abstraction version removes all
contextual and domain-specific elements, reformulating the problem purely as a symbolic com-
putation task. This isolates the model from the engineering context, reverting the evaluation to
well-established mathematical reasoning and computational capabilities. Consequently, this version
explicitly illustrates the impact of the engineering context on model performance.

These three variations, along with the original versions, are constructed systematically for all tasks in
Level 1 and Level 2. For Level 3 tasks, however, the open-ended and inherent complexity typically
render knowledge enhancement and mathematical abstraction impractical. Hence, only the original
and perturbed versions are provided for this level. Moreover, we provide a detailed scoring criteria for
Level 3, based on the official evaluation criteria disclosed by the competition organizers. This rubric
enables assessment of an LLM’s response to the specific requirements of each capability dimension.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Evaluated LLMs. As the first batch, 16 LLMs were evaluated under the zero-shot setting, covering
a representative range of model types. Specifically, we include: (1) closed-source models such as
GPT-4.1, GPT-4.1 Mini, and GPT-4.1 Nano from OpenAI (Achiam et al., 2023); Claude 3.7 Sonnet
and Claude 3.5 Sonnet from Anthropic (Anthropic, 2024a;b); and Gemini 2.5 Flash and Gemini 2.0
Flash from Google DeepMind (Team et al., 2023; 2024); (2) open-source models, including GLM-4-
32B and GLM-4-9B from THUDM (GLM et al., 2024), Qwen2.5-72B and Qwen2.5-7B from Alibaba
(Yang et al., 2024), Llama 4 Maverick (referred to as Llama 4) and Llama 3.3-70B (referred to as
Llama 3.3) from Meta (Grattafiori et al., 2024), and DeepSeek-V3-671B (referred to as DeepSeek-V3)
and DeepSeek-R1-Distill-Qwen-1.5B (referred to as DeepSeek-R1 7B) from DeepSeek (Liu et al.,
2024; Guo et al., 2025), Mixtral-8x7B-Instruct-v0.1 (referred to as Mixtral 8x7B) from Mistral AI
(Jiang et al., 2024). This selection spans diverse model sizes, training paradigms, and accessibility
levels. We ensured consistent formatting and output parsing across all models.

Evaluation protocols. A key challenge in evaluating engineering problem-solving lies in deter-
mining not whether a solution is correct, but whether it is good enough given practical constraints.
Unlike mathematical problems with definitive answers, real-world engineering tasks often involve
uncertainty, redundant information, and competing objectives. These characteristics make binary
judgments insufficient for capturing the quality and completeness of a solution.

For Level 1 and Level 2, which consist of well-structured problems with clear solutions, we adopt
binary scoring. A response is marked correct only if it exactly matches the reference answer, and
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Figure 3: Overview of model performance across engineering reasoning tasks. The left subfigure shows model
accuracy on Level 1 and Level 2 tasks, while the right subfigure presents expert-assigned scores on Level 3
open-ended tasks, with the human expert score indicated by the red line.

overall performance is reported as accuracy. Level 3 tasks are open-ended and under-specified,
lacking a single correct answer, which makes it essential to evaluate not just correctness but the
quality and completeness of a model’s reasoning. Their evaluation depends on how well a model
extracts relevant information, applies domain knowledge, balances competing objectives, and reasons
under uncertainty. We therefore employ a rubric-based scoring framework, constructed from officially
released and expert-designed criteria and refined with LLM assistance. For each problem, we extract
the rubric points relevant to our target competencies and convert them into concrete scoring items.
To ensure scoring quality, all results were reviewed by PhD-level professionals with expertise in
mathematical modeling.

Also, we introduce human scores for Level 3 tasks for comparison with LLMs’ performance. We
obtain human scores from two sources: award-winning competition submissions (original version)
and manual solutions by top-performing students for the perturbed version. All responses are
evaluated using the same rubric as LLM outputs to ensure consistency and fairness.

4.2 RESULTS

4.2.1 OVERALL

Model stratification and design validation. Model performance exhibits a clear downward trend
from Level 1 to Level 3, demonstrating the effectiveness of our hierarchical difficulty design. As
shown in Figure 3, most models achieve high accuracy on Level 1, perform moderately on Level 2,
and struggle significantly on Level 3. This progression indicates that our hierarchical framework
successfully separates problems by cognitive difficulty, with each level revealing distinct capability
thresholds. The results validate that a multi-level design is necessary to capture the full spectrum of
engineering problem-solving capabilities.

Evaluating high-level engineering reasoning. Level 3 is designed to assess high-level engineering
reasoning that goes beyond formulaic computation. Unlike Level 1 and Level 2, which focus on
structured problem solving, Level 3 features open-ended and underspecified tasks that better reflect
real-world engineering challenges. The sharp performance drop at this level reveals the current
limitations of LLMs in handling such complex scenarios. Besides, the gap between LLMs and human
experts at Level 3 also reveals a key deficiency in high-level engineering capabilities. All evaluated
models score well below the human expert, who achieves an average of 8.58, indicating that current
LLMs are still far from reliably handling complex engineering problems. This underscores the need
for further research to bridge this gap.

Smaller-scale LLMs struggle with complex tasks. While all LLMs show room for improvement
on complex, open-ended engineering tasks, smaller-scale LLMs exhibit significantly greater limita-
tions. As task complexity increases, performance disparities widen. At Level 1, most models still
cluster within 70–90%. But at Level 2, leading models such as GPT-4.1 and Gemini 2.5 Flash achieve
accuracies above 80%, whereas DeepSeek-R1 7B reaches only about 52% and other lightweight
models often fall below 40%. This divergence is most pronounced at Level 3, where state-of-the-art
models approach scores of 7.0, while lightweight models remain under 4.0. These results indicate that
EngiBench is far from saturated and continues to provide meaningful differentiation across scales.
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Figure 4: Accuracy of LLMs on Level 1 (left) and Level 2 (right) tasks across the original setting and three
variants: Original, Perturbed, Knowledge-enhanced, and Math Abstraction. Drops in the Perturbed version
indicate sensitivity to input changes, while gains in the latter two show that current LLMs require external
knowledge or reformulation to improve accuracy—highlighting their lack of these abilities.

Robustness and contamination risk. Some LLMs may achieve high scores not through internal
reasoning, but due to overlap with pretraining data. To reveal this, we introduce perturbed variants
that modify surface details but keep the core structure unchanged. As shown in Figure 4, performance
remains relatively stable on Level 1 but drops sharply on Level 2—e.g., 9.3% for GPT-4.1 Nano,
11.4% for Qwen2.5-7B, and 8.3% for Mixtral-8x7B. These declines reveal that many models rely on
superficial pattern matching rather than robust reasoning. This underscores the value of perturbation-
based evaluation in exposing overestimated capabilities and assessing true generalization.

4.2.2 PERFORMANCE FOR LEVEL 1 & LEVEL 2 TASKS

Our results show that adding explicit domain knowledge significantly improves model accuracy across
all levels, especially for weaker models. As shown in Figure 4, models perform consistently better on
knowledge-enhanced variants than on perturbed inputs. These gains may reflect two common failure
modes: either the model lacks sufficient domain knowledge, or it fails to recognize when and how to
apply it during multi-step reasoning. The use of explicit knowledge prompts thus provides a useful
diagnostic signal for distinguishing between knowledge gaps and reasoning failures—an important
capability dimension for engineering benchmarks.

In addition, LLMs’ performance further improves when problems are abstracted into symbolic
mathematical form, eliminating engineering context. As shown in Figure 4, most models achieve their
highest accuracy under this variant, particularly smaller-scale LLMs that struggle with contextual
interpretation. This trend reveals that the primary difficulty in engineering problem-solving lies not in
the computation itself, but in the upstream reasoning required to structure the problem from natural
input. This affirms the necessity of assessing reasoning steps that precede formula application—steps
often overlooked by traditional math benchmarks.

Smaller-scale LLMs exhibit significantly greater performance variation across different input versions,
revealing limited generalization and unstable reasoning processes. As shown in Figure 4, Qwen2.5-7B
drops by 11.4% under the perturbed version, but gains 16.6% when explicit domain knowledge is
added and a further 15.5% under math abstraction. In contrast, Gemini 2.5 Flash—a top-performing
model—remains largely stable, with only minimal changes relative to its perturbed performance
(-1.2%, +2.4%, and +0.1%). This contrast highlights that smaller-scale models are sensitive to input
formulation and often rely on surface patterns rather than consistent, context-aware reasoning.

4.2.3 PERFORMANCE FOR LEVEL 3 TASKS

Dimension-wise and model-wise performance. As shown in Figure 5a, human experts lead across
all four dimensions with a balanced capability profile. In contrast, LLMs show uneven performances:
they perform best on redundant information extraction, moderately on multi-objective decision-
making, and poorly on domain-specific reasoning and uncertainty handling—highlighting a lack of
deep, context-aware reasoning. Results also demonstrate that model performance also correlates with
scale and accessibility. Larger, closed-source models like GPT-4.1 and Gemini 2.5 Flash consistently
score above 6, demonstrating broader coverage though limited in-depth analysis. In contrast, smaller
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(a) Level 3 Model Evaluation.

Selection of Evaluation Indicators (6 pts)
Ø 6 pts: Covers efficiency, safety, 

robustness; clear formulas provided
Ø 4 pts: Includes reasonable indicators, 

but lacks full coverage or definitions
Ø 2 pts: Incomplete or loosely relevant 

indicators
Ø 0 pts: No valid indicators proposed
Assumption Analysis (4 pts)
Ø 4 pts: Assumptions clearly stated and 

justified
Ø 2 pts: Lists assumptions, but lacks 

analysis
Ø 0 pts: No assumptions, or assumptions 

are irrelevant

Multi-Objective Optimization (6 pts)
Ø 6 pts: Formal multi-objective model 

(e.g., efficiency vs. safety vs. 
robustness)

Ø 4 pts: Mentions trade-offs but lacks 
full model

Ø 2 pts: Only single-objective 
considered

Ø 0 pts: No mention of optimization
Computational Efficiency (4 pts)
Ø 4 pts: Efficient model; supports 

multiple scenario simulations
Ø 2 pts: Model works but inefficient
Ø 0 pts: No mention of runtime or 

efficiency

Modeling Traffic Variability (6 pts)
Ø 6 pts: Models peak/off-peak flows or 

stochastic variation
Ø 4 pts: Mentions variability, lacks 

modeling detail
Ø 2 pts: Weak or vague handling of 

uncertainty
Ø 0 pts: Ignores uncertainty
Risk Evaluation & Mitigation (4 pts)
Ø 4 pts: Provides risk assessment and 

detailed response strategy
Ø 2 pts: Mentions risk, lacks concrete 

measures
Ø 0 pts: No discussion of risk

Application of Traffic Flow Theory (5 
pts)
Ø 5 pts: Correct use of flow-density-

speed relationships or queuing theory
Ø 3 pts: Partial or incorrect theory use
Ø 0 pts: No use of traffic theory
Urban Planning & Traffic Management 
(5 pts)
Ø 5 pts: Proposes actionable, planning-

based recommendations
Ø 3 pts: General suggestions not tied 

to planning
Ø 0 pts: No practical recommendations

Information Extraction Multi-objective Decision-making

Uncertainty Handling Domain-specific Reasoning

(b) Scoring rubric example.

Figure 5: Level 3 Model Evaluation and Scoring Rubric. This figure summarizes Level 3 evaluation
results and scoring standards. Subfigure (a) reports average model scores across four capabilities
under both original and rewritten inputs. Subfigure (b) shows an example rubric outlining scoring
criteria across capability dimensions.
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Figure 6: Correlation between structured
tasks (Level 1&2) and open-ended tasks
(Level 3).

Figure 7: Case study showing why Llama 4 received
low Level 3 scores.

open-source models (e.g., Qwen2.5-7B, Mixtral-8x7B) average below 4, often omitting key factors
such as trade-offs or uncertainty handling.

Correlation analysis. To quantify this trend, Figure 6 illustrates the relationship between model
performance on structured tasks (Levels 1 & 2) and open-ended tasks (Level 3). Overall, we observe
a clear positive correlation: models that achieve higher accuracy on structured tasks tend to also
perform well on open-ended tasks, suggesting a general consistency across task types.

However, few models deviate from the general trend. For example, GPT-4.1, Claude 3.7 Sonnet,
and DeepSeek-V3 outperforming expectations on Level 3 tasks—showing not just factual recall but
stronger reasoning and modeling abilities. In contrast, models like Llama 4 perform pretty well
on structured tasks but falter on open-ended ones, revealing weak high-level reasoning. Figure 7
illustrates this gap: Llama 4 scores 0 in multi-objective decision-making due to missing trade-off
analysis, while GPT-4.1 provides a structured evaluation and scores 7.5. A similar shortfall also
appears in uncertainty handling. These examples show that Llama 4 can recall facts but struggles to
apply them in complex, judgment-based scenarios.

5 CONCLUSION

We introduce EngiBench, a benchmark for evaluating LLMs on engineering problem solving across
increasing levels of complexity. Our results show that while current models perform well on
foundational knowledge retrieval, their performance declines significantly in multi-step contextual
reasoning tasks, due to both domain knowledge gaps and limited mathematical reasoning. On open-
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ended modeling tasks, even the strongest models fall short of human-level performance, revealing
persistent limitations in high-level reasoning, trade-off analysis, and uncertainty handling. These
findings underscore the need for LLMs to move beyond pattern matching and toward deeper reasoning
capabilities for real-world engineering applications.

6 ETHICS STATEMENT

This work introduces a benchmark for evaluating large language models on engineering tasks. The
problems are derived from publicly available benchmarks, academic competitions, and educational
materials. For open-ended tasks, human participants voluntarily contributed reference solutions and
evaluation scores using publicly available rubric criteria, and personal information was collected
only for inclusion in the acknowledgment section with explicit consent. The dataset does not
contain sensitive data or enable harmful applications. The goal of EngiBench is to promote rigorous,
transparent, and fair evaluation of language models in engineering contexts, and we affirm adherence
to the ICLR Code of Ethics, including principles of fairness, transparency, and research integrity.

7 REPRODUCIBILITY STATEMENT

To ensure reproducibility, we release all resources, including the dataset, task splits, and
evaluation code, in an anonymous repository: https://anonymous.4open.science/r/
EngiBench-05DF/.
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A THE USE OF LARGE LANGUAGE MODELS

In this work, LLMs were used in three ways: (1) grammar checking and language polishing during
paper writing, (2) generating controlled problem variants in the benchmark construction process, and
(3) serving as both the models under evaluation and auxiliary judges for rubric-based scoring.

B FUTURE WORKS

While EngiBench establishes a strong foundation for evaluating LLMs on engineering problem-
solving, several avenues remain for further development and expansion:

Scalability Across Engineering Domains. EngiBench currently covers three core engineering
subfields—Systems & Control, Physical & Structural, and Chemical & Biological—which together
span a wide range of disciplines such as Mechanical, Electrical, and Chemical/Biological Engineering.
The benchmark framework is designed to be broadly applicable and adaptable across domains. In
future work, we plan to expand the dataset by incorporating problems from additional engineering
disciplines to further enhance data volume and subject diversity.

Multimodal Evaluation Extensions. Future versions of EngiBench will introduce a dedicated
multimodal subset to evaluate models on tasks involving vision-language reasoning. This will enable
systematic assessment of model performance in scenarios that demand visual interpretation alongside
textual understanding.

Support for Long-Context Reasoning. We plan to extend the benchmark to include long-context
engineering tasks by leveraging models with expanded context windows or hierarchical processing
capabilities. This will allow for evaluation of more complex, information-rich tasks currently excluded
due to input length limitations.
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C LIMITATIONS

While EngiBench provides the first systematic evaluation of LLMs on real-world engineering prob-
lems—including multi-level tasks, variant-based reasoning diagnostics, and open-ended model-
ing—several limitations remain that we plan to address in future work.

Multimodal Support. Many real-world engineering problems require interpreting visual elements
such as diagrams, schematics, or structured tables. However, the current version of EngiBench
excludes such tasks due to the lack of multimodal input capabilities in most existing LLMs. To ensure
consistency across evaluations, we restrict all inputs to text-only formats.

Long-Context Support. Some engineering tasks involve long problem descriptions or extensive
tabular data that exceed the input length limits of current LLMs. To avoid unfair model truncation
effects and ensure uniform evaluation settings, such problems are not included in this version of the
benchmark.

Human-in-the-loop Curation. Building the dataset involves substantial human effort, including
problem collection, answer generation, and variant validation. This ensures data quality and alignment
with engineering standards, but also reflects the significant manual effort behind the benchmark.

D DATASET CURATION- ADDITIONAL DETAILS

D.1 LEVEL 1 & LEVEL 2 EXTRACTION PROCESS

To construct a high-quality and diverse dataset for Level 1 and Level 2, we systematically extract
relevant tasks from a range of established public benchmarks, including MMLU (Hendrycks et al.,
2021), MATH (Hendrycks et al., 2021), GSM8k (Cobbe et al., 2021), Orca-Math (Mitra et al., 2024),
HARP (Yue et al., 2024), Omni-MATH (Gao et al., 2024b), Big-MATH (Albalak et al., 2025), and
competition datasets such as cn_k12, Olympiads, AOPS forum, and AMC-AIME (Huang et al., 2023).
In addition to these public sources, we also incorporate university-level engineering educational
materials, including assignments, examinations, and instructor-provided teaching content, to further
increase task diversity and real-world relevance.

To transform mathematical and logic-oriented problems into engineering-relevant evaluation tasks,
we design a structured data processing pipeline that combines LLM-based analysis with human
verification to ensure engineering relevance and classification accuracy. This pipeline ensures that all
included problems align with real-world engineering semantics and reasoning demands, forming the
basis for Level 1 and Level 2 in EngiBench.

The processing pipeline consists of the following steps:

1. Engineering Relevance Filtering: Each problem is evaluated for its applicability to engi-
neering scenarios. Problems lacking domain relevance are excluded to maintain the technical
integrity of the benchmark. The prompt used to determine whether a problem pertains to
engineering is as follows:

1 """Determine if ORIGINAL problem can be solved with ONLY
mathematical knowledge (NO engineering background):

2 - False if requires any domain-specific knowledge
3 - True if solvable through pure mathematical calculations"""
4

2. Discipline and Subfield Classification: Relevant problems are first assigned to a specific
engineering discipline (e.g., Electrical, Civil, Mechanical), and then grouped into one of
EngiBench’s three high-level analytical subfields: Systems & Control, Physical & Structural,
or Chemical & Biological. The prompt used for assigning a problem to a specific engineering
discipline is as follows:

1 """If yes, which engineering category? (Chemical/
Bioengineering/Geotechnical/Energy/Nuclear/Aerospace/Automotive
/Biomedical/Civil/Control/Electrical/Industrial/Mechanical/
Ocean/Environmental/Other) (Please try to avoid Other)
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2 If not an engineering problem, return "N/A"."""
3

3. Difficulty Level Assignment: Based on the complexity of the required reasoning process,
tasks are categorized into Level 1 or Level 2. Level 1 includes basic knowledge recall and
single-step computation, while Level 2 involves multi-step inference, contextual understand-
ing, and integration of structured constraints. The prompt used for classifying the difficulty
level of a problem is as follows:

1 """Difficulty level? (Level 1/Level 2) (Please try to avoid
unknown):

2 - Level 1: The problem can be solved by a direct retrieval of
information or by directly substituting values into a known
f o r m u l a i .e., the shortest possible solution path. No
chaining of intermediate steps is required. (Example: Using Ohm
’s Law, V = IR, to directly compute voltage when given current
and resistance.)

3 - Level 2: The problem requires multi-step reasoningmeaning
that it involves chaining together several logical deductions,
intermediate calculations, or systematic strategies beyond a
single direct formula application. (Example: Analyzing a
circuit to compute total resistance by first calculating
individual branch resistances and then combining them.)"""

4

D.2 LEVEL 3 DATA COLLECTION AND PROCESSING

To construct the Level 3 dataset in EngiBench, we focus on real-world, open-ended engineering tasks
sourced from major mathematical modeling competitions. Specifically, we collect problems from
publicly accessible archives of contests such as the China Undergraduate Mathematical Contest in
Modeling (CUMCM), the Mathematical Contest in Modeling / Interdisciplinary Contest in Modeling
(MCM/ICM), and the Asia and Pacific Mathematical Contest in Modeling (APMCM), covering the
years 2010 to 2024.

To ensure domain relevance and evaluation consistency, we apply strict filtering criteria. We retain
only problems with clear engineering context and official scoring rubrics, and exclude those that
depend heavily on complex diagrams or large external tables requiring multimodal input.

We standardize the selected problems using a structured pipeline that combines LLM-based processing
with human oversight. This ensures language clarity, formatting consistency, and reduced risk of data
contamination. The pipeline includes the following steps:

1. Language Normalization: Non-English problems are translated into fluent English using
machine translation, while preserving the original engineering semantics.

2. Expression Rewriting: To minimize potential overlap with pretraining data, each problem
is paraphrased by the LLM using diverse sentence structures and reasoning styles. While
surface expressions are significantly altered, the core logic, numerical values, and solution
paths remain unchanged. This step produces the perturbed version of each task, which is
used to evaluate model robustness to superficial input variations.

3. Multimodal Simplification: For problems containing simple figures or tables, we extract
and describe the essential information using plain text or LATEX-formatted representations to
support uniform text-based evaluation.

LLM Prompt Template: The following instruction prompt is used to guide the LLM in modifying
each problem:

1 """Assuming you are a question expert, please translate this question
into English. And while ensuring that the meaning of the question

remains unchanged (preserving all logic, values, and the type of
reasoning required), change the way the question is expressed by
rewriting it in a way that is radically different from your regular
logical structure, simulating the randomness of manual rewriting by
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human experts, and using as many sentence variations as possible. If
there is a table, please convert it into a table form using LaTeX.
For simple pictures, please describe them directly. The question is
required to be converted into is in str format."""

2

To ensure the technical rigor and domain consistency of the Level 3 dataset, the entire generation and
transformation process was closely supervised and iteratively revised by doctoral-level professionals
with extensive expertise in engineering and mathematical modeling. These experts reviewed both the
selection of source problems and the outputs produced by the language model, verifying that each
task preserved the original problem’s intent, accurately reflected real-world engineering reasoning,
and met the standards expected in academic and professional modeling contexts.

The details of how the original contest scoring standards were mapped into EngiBench’s formal
scoring rubrics are described in the later subsection (see Section F.2).

D.3 VERSION VARIANT GENERATION

To assess model robustness and isolate specific reasoning limitations, we generate three structured
variants for each Level 1 and Level 2 problem: Perturbed, Knowledge-Enhanced, and Math Abstrac-
tion. These variants are created through LLM prompting, with manually verified outputs to ensure
alignment with the original problem logic and correctness. Below, we describe the purpose and
generation criteria for each variant, accompanied by illustrative prompts.

• Perturbed Version. This variant alters the surface form of the original problem—either
through numerical or linguistic changes—while preserving its core logic and computational
requirements. The purpose is to test whether model performance stems from true reasoning
ability or superficial pattern matching. A rewriting suitability code (0–3) guides the type
of modification to apply. The prompt used to generate the perturbed version and related
content is as follows:

1 """
2 1. Rewriting Suitability: Determine the type (0-3):
3 - 0: Non-rewritable (use only when necessary)
4 - 1: Modify expressions only
5 - 2: Modify numerical values only
6 - 3: Modify both expressions and numerical values
7 // Note: All rewrites must maintain the original problem logic,

engineering context, and reasoning/computational requirements
8

9 2. Rewritten Problem: Rewrite the problem according to the type of
rewriting suitability above. Make the answer as difficult as

possible while ensuring that the answer is correct. (Please
rewrite the problem in a way that is radically different from
your regular logical structure by: (1) avoiding common
reasoning patterns in your model, (2) simulating human expert
manual rewriting randomness, and (3) using maximum sentence
variation.)

10 - If 0, return original problem unchanged
11 - If 1, modify expressions only
12 - If 2, modify numerical values only
13 - If 3, modify both expressions and values
14

15 3. Rewritten Solution Process: Provide step-by-step explanation
including all reasoning, calculations and logic. Clearly state
if answer can be obtained directly through formula substitution
(shortest solution path without intermediate steps).

16

17 4. Rewritten Answer: Provide correct answer for rewritten problem
(only types 2/3 may change)"""

18

• Knowledge-enhanced Version. In this version, relevant domain knowledge—such as
formulas, constants, and conversions—is explicitly provided before the original question.

17
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This allows us to evaluate whether performance deficits are due to missing knowledge or
failures in application. The question itself is unchanged to isolate the impact of added
context. The prompt used to generate the knowledge-enhanced version is as follows:

1 """Knowledge-Enhanced Version:
2 WARNING: Make sure the final numerical answer to the converted

mathematical problem is exactly the same as the original
problem.

3

4 Given:
5 - List all relevant formulas or principles (e.g., Ohm’s Law: V = I

* R)
6 - Include physical constants with values if they are involved (e.g

., g = 9.8 m/s^2)
7 - Specify unit conversions if applicable (e.g., 1 kWh = 3.6 * 10^6

J)
8 - State any assumptions or ideal conditions if necessary (e.g.,

assume no heat loss)
9

10 Problem:
11 Repeat the original question exactly as stated
12

13 Example:
14 Original: "Calculate voltage across 5 Ohm resistor with 2 A

current"
15 Enhanced:
16 "Given:
17 - Ohm’s Law: V = I * R
18 - Problem: Calculate voltage across 5 Ohm resistor with 2 A

current" """
19

• Math Abstraction Version. This version reformulates the original engineering problem
into a purely mathematical format by removing all domain-specific context. Variables and
operations are explicitly defined to preserve the exact calculation logic. This allows us
to isolate whether reasoning failure arises from contextual understanding or mathematical
ability. The prompt used to generate the math abstraction version is as follows:

1 """Rewrite the given problem into a purely mathematical version by
:

2

3 a. Remove all domain-specific context (e.g., chemistry, physics,
economics).

4 b. Keep only numbers, variables, and math operations.
5 c. If domain-specific knowledge is required (e.g., reaction ratio,

atomic mass), extract only the final numerical ratio or
constant and include it directly.

6 d. Maintain the exact calculation logic and final answer.
7 e. Use structured symbolic language in a compact form:
8 - Introduce variables explicitly (e.g., "Let x = 2 and y = 3.")
9 - Define the calculation clearly (e.g., "Total z = min(x, y) * 2."

)
10 - End with "Find the result."
11

12 WARNING: Make sure the final numerical answer to the converted
mathematical problem is exactly the same as the original
problem.

13

14 Examples:
15

16 Original: "In the reaction: Cl2 + H2 -> 2HCl, 1 mole of Cl2 reacts
with 2 moles of H2. How many moles of HCl can be formed?"

17 converted_problem: "Let x = 1 and y = 2. They react in the ratio x
: y : z = 1 : 1 : 2. Total product z = min(x, y) * 2. Find the
result."

18
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18

19 Original: "A 2m wide platform sinks 0.01m under 60kg. Estimate its
length assuming water density = 1000 kg/m^3."

20 converted_problem: "Let x = 60 / (2 * 0.01 * 1000). Find the
result." """

21

E DATASET URLS, LICENSE, AND HOSTING PLAN

E.1 DATASET INSTANCE METADATA

For the EngiBench dataset, each instance corresponds to an engineering task and is stored in a
structured format. Instances are categorized according to task difficulty (Level 1, 2, or 3) and are
constructed with multiple versions to enable fine-grained evaluation of different capabilities. The
metadata fields for each level are described below:

Level 1 and Level 2 Each row in the Level 1 & 2 dataset corresponds to a closed-form or structured
engineering problem, and includes the following fields:

• problem – Original natural language problem statement.
• answer – Ground truth answer to the original problem.
• subfield – Engineering subfield to which the problem belongs (e.g., Systems & Control).
• category – Topic-specific classification within the subfield (e.g., Thermodynamics).
• difficulty – Either Level 1 (Foundational Knowledge Retrieval) or Level 2 (Contextual

Reasoning).
• converted_problem – Abstract mathematical formulation of the problem.
• converted_problem_llm_answer – LLM-generated response to the converted problem.
• knowledge_enhanced_problem – Problem reformulated with explicit formulas and domain

definitions.
• rewritten_problem – Semantically or numerically perturbed variant of the original problem.
• rewritten_answer – Answer to the rewritten problem.
• rewritten_converted_problem – Mathematical abstraction of the rewritten problem.
• rewritten_converted_problem_llm_answer – LLM response to the rewritten converted

problem.
• rewritten_knowledge_enhanced_problem – Knowledge-enhanced version of the rewritten

problem.

Level 3 Each Level 3 instance represents an open-ended modeling task and includes both the
problem prompt and a rubric-based evaluation across multiple capability dimensions:

• question_original_language – Native language version of the open-ended task (typically
Chinese).

• question – English translation of the open-ended modeling task.
• question_modified – Semantically perturbed variant of the task.
• subquestion_original_language – Rubric sub-criteria in the original language.
• subquestion – English translation of the rubric sub-criteria.
• subquestion_modified – Semantically perturbed variant of the sub-criteria.
• source_detail – Source of the modeling task (e.g., MCM, coursework).
• official_scoring_standard_original_language – Original rubric definition.
• official_scoring_standard – English translation of rubric criteria.
• subfield – Engineering subfield of the task.
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• category – Domain or topic under which the task is categorized.
• information_extraction_score – Score for identifying relevant variables and constraints.
• multi_objective_decision_score – Score for resolving trade-offs across objectives.
• uncertainty_handling_score – Score for reasoning under ambiguity or variable inputs.
• domain_specific_reasoning_score – Score for applying engineering-specific logic and

formulas.

F EVALUATION DETAILS

F.1 LEVEL 1 & LEVEL 2 EVALUATION DETAILS

Level 1 and Level 2 tasks consist of well-structured problems with clearly defined solutions. Therefore,
we adopt a binary scoring method. Each model-generated answer is compared against a reference
answer and marked as either correct (1) or incorrect (0). Final performance is reported as overall
accuracy.

To improve evaluation robustness, we introduce an automated comparison prompt executed by a large
language model. This prompt is carefully designed to evaluate whether the generated answer matches
the reference answer based on mathematical correctness, unit validity, and reasoning soundness. For
numerical questions, a tolerance of ±2% is allowed to account for rounding differences in complex
calculations. The model is instructed to output only a Boolean result (“True” or “False”) to ensure
consistent scoring across all instances. The evaluation prompt used for this process is as follows:

1 """Please analyze these two answers carefully:
2 Generated Answer: {generated_answer}
3 Standard Answer: {correct_answer}
4

5 Follow these rules for comparison:
6 1. For calculation-focused problems:
7 - If the numerical values match, consider it correct even if units are

missing
8 - Focus on the mathematical reasoning and final numerical result
9 - Check if the core calculation steps are correct

10 - For complex calculations, allow 2 % tolerance in the final
numerical result

11

12 2. For conceptual or unit-specific problems:
13 - Units and their consistency must be considered
14 - The complete answer including units is required
15

16 3. Consider the answer correct if:
17 - The mathematical reasoning is sound
18 - The final numerical value matches (within 2 % tolerance for complex

calculations)
19 - For calculation-focused problems, matching units are not mandatory
20

21 Reply only with "True" or "False". """

F.2 LEVEL 3 EVALUATION DETAILS

To convert open-ended modeling problems into evaluable tasks suitable for benchmarking LLMs, we
systematically transform official scoring standards into structured rubrics aligned with the four key
capabilities identified in Section 3.1: information extraction, domain-specific reasoning, multi-
objective decision-making, and uncertainty handling. These capabilities form the foundation of
Level 3 evaluation.

To construct these scoring rubrics from the official contest-provided evaluation standards, we used
an LLM to transform raw scoring descriptions into a capability-oriented rubric aligned with our
four target assessment dimensions. Each contest problem was paired with its corresponding official
scoring criteria, and this combined input was passed to the LLM using a carefully designed instruction
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prompt. The goal was to generate specific, well-structured rubrics that are detailed enough to capture
subtle distinctions in model outputs, while remaining concise and practical for use in benchmark-scale
evaluations. The overall scoring workflow is illustrated in Figure 8.

In Level 3 open-ended tasks, each problem was independently annotated and cross-checked by two
annotators with engineering backgrounds. When disagreements occurred, the final decision was made
by experts who have won national or international first prizes in engineering modeling competitions,
ensuring technical rigor and accuracy.

Information Extraction 
Scoring Rubric

Domain-specific Reasoning
Scoring Rubric

Multi-objective Decision-making
Scoring Rubric

Uncertainty Handling
Scoring Rubric

Problem

Official Scoring Standard

LLM

Human

LLM

Human

Tested LLM

Generated Answer

Answer Evaluation

Figure 8: Workflow for generating the modified scoring rubrics. The official scoring standard and contest
problem are first provided to a LLM to generate draft rubrics aligned with four core capabilities: Information
Extraction, Domain-Specific Reasoning, Multi-Objective Decision-Making, and Uncertainty Handling. The
resulting rubrics are then reviewed and refined by domain experts to ensure technical accuracy and alignment
with modeling principles.

The prompt used for rubric generation is provided below:

1 """Assume you are an expert in problem design and grading, with deep
familiarity with mathematical modeling. Please help me design an
evaluation rubric for assessing large language models’ engineering
capabilities. Specifically, I will provide a problem and its scoring
criteria, and you will tell me which of the following capabilities
are assessed by this rubric: redundant_information_filtering_score,
multi_objective_tradeoff_score, uncertainty_handling_score, and
deep_knowledge_integration_score. In particular, please identify how
each capability is assessed through specific aspects of the problem
or rubric.

2

3 For each capability that is covered, provide a scoring rubric in the
following format:

4

5 Problem [(Problem ID)]:
6 redundant_information_filtering_score: (1)(2)...
7 multi_objective_tradeoff_score: (1)(2)...
8 uncertainty_handling_score: (1)(2)...
9 deep_knowledge_integration_score: (1)(2)...

10

11 Notes: Each capability has a total possible score of 10 points. In other
words, the total score for each listed capability should sum to 10
points. Capabilities that are not covered in this problem receive 0
points. The rubric should further specify, under each capability, the
different score levels (e.g., 1 point, 2 points, 3 points, etc.) and
the corresponding specific behaviors or response characteristics

associated with each level.
12

13 Please read the problem and rubric carefully and provide a capability-
based evaluation rubric for how this problem assesses the output of
large language models."""

The prompt used to evaluate the generated answer against the rubric is as follows:
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1 f"""
2 You are a professional modeling competition judge with extensive

experience in evaluating mathematical and engineering models. Please
conduct a rigorous evaluation of the following answer based on the
provided criteria.

3

4 Answer to evaluate:
5 {answer}
6

7 Evaluation Criteria:
8 {score_criteria}
9

10 Please evaluate strictly according to the criteria and provide your
assessment in the following JSON format:

11 {{
12 "score": <score between 0-10, can use decimal points for

precision>,
13 "reason": "Detailed evaluation breakdown:\n
14 1. [Specific criterion] - [sub-score] points: [

justification]\n
15 2. [Specific criterion] - [sub-score] points: [

justification]\n
16 3. [Specific criterion] - [sub-score] points: [

justification]\n
17 Final score: [total] points"
18 }}
19

20 Note:
21 - Break down your scoring into specific components
22 - Provide clear justification for each sub-score
23 - Be objective and consistent in your evaluation
24 - Consider both the technical accuracy and the methodology
25 """

F.3 LEVEL 3 SCORING EXAMPLES

As results shown in section 4.2.3, the answers of LLMs to open-ended tasks show significant
differences in four dimensions of information extraction, multi-objective decision making, uncertainty
handling and domain-specific reasoning. Figure 7 preliminarily presents two scoring segments, 3
points and 8 points, for the evaluation of models’ answers. To demonstrate the response performance
of different segments more clearly and intuitively, we provide the following examples with more
Level 3 scoring details:

1. Full Mark (Avg. Score: 9.475): The problem requires optimizing Hu sheep farm pen
utilization under stochastic conditions (conception rates, gestation periods, litter sizes) while
adhering to strict capacity constraints and cohabitation rules. The solution must minimize
expected losses from idle pens (1 unit/day) or shortages (3 units/day) through dynamic
scheduling and statistical validation.

• Information Extraction (10/10):
Exclusion of Deterministic Assumptions (5/5): Section 1 (System Overview) clarifies
all critical parameters modeled as random variables (e.g., “Xc ∼ Binomial(Nm, 0.85):
Number of successful conceptions; G ∼ U [147, 150]: Gestation days; Ls ∼
Poisson(λ = 2.2): Liveborn lambs per ewe, with 3% mortality (La = Ls · 0.97);
Ld ∼ U [35, 45]: Lactation days”). Section 3A (Scenario Generation) replaces fixed
values with dynamic sampling (e.g., “For each scenario, sample: - Which ewes con-
ceive (Bernoulli, 85%) - Their gestation (G) - Number of lambs (Ls), apply mortality
- Lactation length (Ld)”). Section 6B (Robust Planning) makes flexible scheduling
responsive to stochastic outcomes (e.g., “Adjust mating/rest period within allowed
windows to shift animal flows.”).
Identification of Valid Uncertainty Parameters (5/5): Section 1 clarifies explicit distri-
butions for all uncertainties (e.g., “Xc ∼ Binomial(Nm, 0.85)... G ∼ U [147, 150]...
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Ls ∼ Poisson(2.2)... Ld ∼ U [35, 45]”). Section 3A ensures consistent application in
scenario generation (e.g., “Sample conception (Bernoulli), gestation (G), litter size
(Ls), lactation (Ld).”). Section 5 (Loss Function) offers loss calculation integrating
stochastic inputs (e.g., “Escenario [

∑
t[It + 3St]]”).

• Multi-objective Decision making (9.2/10):
Minimized Expected Loss & Output Maximization (4.5/5): Section 5 (Loss Func-
tion) contains rigorous mathematical formulation balancing idle (1 unit) vs. shortage
(3 unit) costs (e.g., “Objective: minEscenario [

∑
t[It + 3St]] It = Idle pens, St =

Shortages”). Section 7B (Robust Planning) includes statistical validation of tradeoffs
(e.g., “Monte Carlo over Scenarios: Simulate losses across all scenarios for each candi-
date policy.”) Section 8 (Results Table) applies quantitative comparison of policies.
Lactation Flexibility & Fattening Tradeoffs (4.7/5): Section 1 (System Overview)
makes explicit dynamic linkage between lactation and fattening (e.g., “Ld ∼ U [35, 45]:
Lactation days → Fd = 210 + 2 · (40− Ld): Fattening days”). Section 6B (Robust
Planning) considers operational use of flexibility to smooth demand (e.g., “Adjust rest
periods to align cohorts, minimizing ‘loner pens’.”). Section 3A (Scenario Generation)
has stochastic integration of tradeoff (e.g., “Sample lactation length (Ld), impact on
fattening (Fd).”).

• Uncertainty Handling (9.2/10):
Stochastic Process Models (4/4): Section 1 (System Overview) specifies explicit
distributions for all stochastic parameters (e.g., “Xc ∼ Binomial(Nm, 0.85), G ∼
U [147, 150], Ls ∼ Poisson(2.2), Ld ∼ U [35, 45]”). Section 3A (Scenario Generation)
implements full Monte Carlo (e.g., “Generate 1000 scenarios... sample conception
(Bernoulli), gestation (G), litter size (Ls), lactation (Ld).”). Section 7B (Robust Plan-
ning) includes statistical validation of stochastic outcomes (e.g., “For each candidate
policy, simulate losses across all scenarios.”).
Dynamic Adjustment Strategies (2.7/3): Section 1 (Fattening Calculation) establishes
mechanistic linkage of lactation-fattening tradeoff (e.g., “Fd = 210 + 2 · (40− Ld):
Fattening days adjusted by lactation.”). Section 6B (Robust Planning) makes adaptive
scheduling but lacks two-way feedback (e.g., “Adjust rest periods to align cohorts...
weekly rolling re-optimization.”).
Contingency Sets (2.5/3): Section 2 (Cohabitation Rules) contains hard-coded tolerance
for uncertainty (e.g., “Group into largest feasible penfuls within 7-day windows.”).
Section 8 (Statistical Assessment) analyzes multi-scenario sensitivity (e.g., “Tabulate
average loss, shortage probability, and max pen use.”).

• Domain-specific Reasoning (9.5/10):
Integration of Empirical Rules (4/4): Section 2 (Cohabitation Rules) adds hard-codes
industry constraints into algorithms (e.g., “7-day tolerance window for nursing ewes,
lambs, and resting ewes... Group into largest feasible penfuls (14 fattening lambs/pen,
6 nursing ewes/pen).”). Section 1 (System Overview) uses embeds empirical flexibility
ranges as distributions (e.g., “Ld ∼ U [35, 45]: Lactation days... R ∼ U [18, 22]:
Adjustable rest period.”) Section 6B (Robust Planning) operationalizes flexible rest
rules (e.g., “Extend rest periods to align cohorts if pens would otherwise idle.”).
Expected Loss Functions (3/3): Section 5 (Loss Function) has rigorous probabilistic
loss aggregation (e.g., “minEscenario [

∑
t[It + 3St]] It = max(Pavail − Preq(t), 0),

St = max(Preq(t)−Pavail, 0).”). Section 8 (Results Table) quantifies loss distribution
across scenarios. Section 3B (State Evolution) links stochastic occupancy to loss
calculation (e.g., “For each day t: Compute Preq(t) from sampled cohorts.”).
Stochastic Optimization Algorithms (2.5/3): Section 7B (Robust Planning) applies
sample average approximation (SAA) method (e.g., “Monte Carlo simulation over 1000
scenarios to evaluate policies.”). Section 6A (Rolling Horizon) uses heuristic dynamic
programming (e.g., “Re-optimize mating batches weekly to maximize cohabitation.”).

2. 5 points (Avg. Score: 5.375): The problem involves modeling a team coordination exercise
(“Unity Drum”) where 8 members control a drum’s tilt by pulling ropes to bounce a ball.
Key tasks include: 1. Calculating the drum’s tilt angle at t=0.1s based on force/timing inputs
(Table 1), accounting for initial 11cm displacement. 2. Ensuring physics-based accuracy in
torque, angular acceleration, and geometric relationships.
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• Information Extraction (7.5/10):
Error Source Analysis (5/6): Explicit Recognition: Timing errors-“Some members may
apply force slightly before others” (Algorithm section); strength variation-“Members
likely have different strengths” (Considerations). Partial Implementation: Timing logic
in code (if timing[i] ≤ 0.1) is noted but lacks vector-time coupling; force scaling
(effective_force = force(member_id−1)

10 ) is arbitrary.
Physical Model Simplification (2.5/4): Justified Simplifications: “Ignores damping
for short-duration calculation” (Considerations); Drum as uniform cylinder (I =
0.5 · drum_mass · r2). Over-Simplifications: Fixed torque angle (sin

(
π
2

)
) ignores

vector geometry; rope tautness assumption (“If the drum tilts too far, ropes could
slack”) not modeled.

• Multi-objective Decision making (6.5/10):
Tilt Angle and Force Relationship (4.5/6): Physics Foundation: Correctly derives torque
(τ = r ·F · sin(θ)), inertia (I = 0.5 ·m · r2), and angular kinematics (θ = θ0 +

1
2αt

2);
maps rope geometry (angle_radians = (member_id − 1) ·

(
2π
8

)
). Implementation

Gaps: Timing logic (if timing[i] ≤ 0.1) is crude; forces are binary (on/off) rather than
time-interpolated; no optimization for tilt minimization (e.g., predictive control or force
balancing).
Computational Efficiency (2/4): Basic Looping-iterates over 8 members with O(1)
operations per member (e.g., torque = drum_radius · force · sin

(
π
2

)
). No Advanced

Techniques-lacks vectorization, memoization, or scalability for larger teams.
• Uncertainty Handling (2/10):

Error Propagation Analysis (2/4): Acknowledgment Only: Mentions “members likely
have different strengths and reaction times” (Considerations); suggests “extended to
simulate more realistic distributions” but provides no math or implementation. No
Quantification: Lacks sensitivity analysis or error bounds on tilt angle.
Numerical Simulation Estimation (0/4): No Monte Carlo: Code calculates tilt for
fixed inputs only (force_data); no randomization of force/timing or statistical output
(mean/variance).
Methodological Clarity (N/A): Physics steps are clear but irrelevant to uncertainty
scoring.

• Domain-specific Reasoning(5.5/10):
3D Mechanics Modeling (2.5/6): 2D Limitation: Explicitly states “our coordinate
system will be planar (X and Y only)” (Key Equations); torque calculation (τ =
r · F · sin(θ)) ignores out-of-plane forces. Partial Physics: Correctly models drum as
cylinder (I = 0.5 ·m · r2) but lacks 3D rotation dynamics.
Model-Based Optimization Strategy (3/4): Suggestions Without Implementation: Pro-
poses “damping term proportional to angular velocity” (Considerations); mentions
“member variation” but no adaptive control (e.g., PID for tilt correction).

3. 1 point (Avg. Score: 1.25): The problem involves coordinating multiple meteorological
units (each with 1 primary and 2 secondary stations) to ensure reliable hourly weather data
collection and full data sharing under strict communication constraints. Key challenges
include managing transmission reliability (80% for secondaries, 100% for primaries), mes-
sage capacity limits, and achieving 97% success probability within 8 minutes for primary
data exchange. The goal is to determine the maximum number of units (Nmax), design
transmission schemes, and compute performance metrics.

• Information Extraction (2/10): High-Probability Constraint Processing (0/5): Failure
to Address Probabilistic Guarantee: The answer calculates secondary transmission
success as “expected number of reports received... is 4× 0.8 = 3.2” (Step 4) but never
models retransmissions or redundancy to achieve 97% success. The assumption of
direct success ignores the problem’s explicit probability requirement. Missing Critical
Logic: No discussion of how to compensate for the 20% failure rate (e.g., retrying
failed transmissions, acknowledgments, or error correction).
Time Window Isolation (2/5): Interleaved Logs Without Justification: The primary
and secondary transmission logs (Tables 1 2) are interleaved in the solution (“Round
1: Primary 1→2; Round 1: Secondary 1→1a”), but no protocol ensures collision
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avoidance (e.g., TDMA, priority scheduling). Unverified Simultaneity Assumption:
The answer states “Simultaneous reception allowed during transmission” (Step 1) but
doesn’t prove this suffices for concurrent primary/secondary transmissions under the
8-minute constraint.

• Multi-objective Decision making (2/10):
3D Parameter Optimization (0/6): Single-Parameter Focus: The answer only optimizes
for N_max (“N(N − 1)/28 → Nmax = 4”, Step 2) but ignores joint optimization of
capability (no analysis of 158-character message limits or segment splitting efficiency),
reliability (no adjustment for secondary station 80% success rate such as no retrans-
mission strategy) and time (assumes 8 minutes suffice without validating secondary
transmission overhead). Missed Pareto Frontier: Fails to explore tradeoffs (e.g., “Could
N=5 work if secondary transmissions are reduced?”).
Resource Allocation Strategy (2/4): Equal Bandwidth Only: Primary stations follow a
round-robin schedule (“1→2, 1→3, 1→4, 2→3, ...”, Table 1), and secondaries transmit
uniformly (“1→1a, 1→1b, 2→2a, ...”, Table 2). No Prioritization: Critical objectives
(e.g., ensuring 97% success) aren’t prioritized in scheduling.

• Uncertainty Handling (0/10):
High-Order Probability Events (0/6): No Threshold Calculation: The answer states
secondary stations have an “80% transmission/reception success rate” (Step 1) but never
computes the probability of achieving 97% success (e.g., via binomial distribution for
multiple retries). Misleading Metric: The “mean secondary reports received per primary
station (3.2)” (Step 4) is irrelevant to the cumulative success probability requirement.
Asymmetric Loss (0/4): No Cost Analysis: The solution ignores idle time cost (unused
transmission slots due to failures) and rental loss (penalties for delayed data delivery
implied by "critical rescue operations").

• Domain-specific Reasoning (1/10):
Mixed-Integer Programming (0/5): No Optimization Model: The answer derives
Nmax = 4 via a simple inequality (“N(N−1)

2 ≤ 8”, Step 2) but lacks an objective
function (e.g., “maximize N while meeting time/reliability constraints”), and omits
integer constraints (N must be discrete) or linear relaxation techniques. Ad-Hoc
Calculation: No use of MINLP (Mixed-Integer Nonlinear Programming) to jointly
optimize N, transmission scheduling, and reliability.
Fault-Tolerant Protocol Design (1/5): Basic Segmentation: Mentions “reports can
split into two 50-character segments” (Step 1) but no dual verification (never states if
segments are sent redundantly to different primaries) and no formal protocol (assumes
secondary stations report to all primaries without fault recovery like checksums, ACKs).

G ADDITIONAL ANALYSIS

G.1 LEVEL 1 ANALYSIS

Minor perturbations cause performance drops, revealing shallow generalization. Figure 9
(left) presents model accuracy on Level 1 tasks across four input variants: Original, Perturbed,
Knowledge-enhanced, and Math Abstraction. When problems are perturbed through minor changes
in wording or numerical values, average model accuracy drops from 82.9% to 81.5%. Notably, Llama
3.3 and Qwen2.5-72B decline by 6.6% and 5.1%, respectively. This indicates that some models
exhibit limited robustness and often rely on memorized phrasing or surface patterns rather than
generalizable reasoning.

Explicit knowledge prompts mitigate reasoning failures in weaker models. When explicit
domain knowledge—such as formulas, constants, or unit conversions—is added to the input, accuracy
improves to 85.5% on average. Weaker models benefit the most: GPT-4.1 Mini gains 6.2% and
Mixtral-8x7B improves by 9.3%. This pattern suggests that many errors are not caused by a complete
lack of knowledge, but rather by the inability to retrieve and apply relevant concepts without targeted
prompting. Explicitly embedding domain knowledge thus serves as an effective intervention for
enhancing reasoning activation.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

0 20 40 60 80 100
Accuracy (%)

Level 1 Accuracy (sorted by perturbed L1)

Mixtral-8x7B

Qwen2.5-7B

DeepSeek-R1 7B

GLM-4-9B

Llama 3.3

Qwen2.5-72B

Claude 3.5 Sonnet

GPT-4.1 Mini

GLM-4-32B

Claude 3.7 Sonnet

GPT-4.1 Nano

Gemini 2.0 Flash

DeepSeek-V3

GPT-4.1

Llama 4

Gemini 2.5 Flash

64.8
60.3

69.6
79.0

77.6
73.0

76.8
84.0

77.1
75.7

81.8
82.6

75.3
75.8

81.1
84.5

83.5
76.9

82.4
85.4

82.7
77.6

82.3
86.0

80.7
82.1
82.2

92.0

84.5
83.5

89.7
90.6

84.6
83.5

85.8
89.8

80.8
84.1

85.2
92.7

81.2
84.7

88.9
91.6

91.0
86.3

90.2
94.5

89.5
87.5

89.5
90.6

90.2
87.5

91.9
95.3

90.1
90.2

93.2
93.9

92.7
95.1

97.2
97.7

Original Perturbed Knowledge-enhanced Math Abstraction

Mixtral-8x7B

Qwen2.5-7B

GLM-4-9B

Llama 3.3

DeepSeek-R1 7B

Qwen2.5-72B

GPT-4.1 Nano

Claude 3.5 Sonnet

GLM-4-32B

DeepSeek-V3

GPT-4.1 Mini

Gemini 2.0 Flash

Claude 3.7 Sonnet

Llama 4

GPT-4.1

Gemini 2.5 Flash

38.3
30.0

42.9
57.7

48.7
37.3

53.9
69.4

56.5
50.5

61.3
70.2

60.2
52.5

55.3
73.2

60.4
52.5

65.7
73.0

60.1
54.4

55.4
74.6

68.4
59.1

74.5
83.3

64.8
62.4

68.5
80.3

62.0
63.0

65.0
77.0

72.8
63.6

72.0
82.0

71.5
69.0

71.9
82.5

78.2
69.6

75.7
87.4

73.5
73.0

77.2
84.1

76.5
76.3

78.9
89.8

80.0
81.5

85.3
87.8

92.9
91.7

94.1
94.2

0 20 40 60 80 100
Accuracy (%)

Level 2 Accuracy (sorted by perturbed L2)

Original Knowledge-enhancedPerturbed Math Abstraction

Figure 9: Accuracy of LLMs on Level 1 (left) and Level 2 (right) tasks across four variants: Original, Perturbed,
Knowledge-enhanced, and Math Abstraction. Drops in the Perturbed version indicate sensitivity to input changes,
while gains in the latter two show that current LLMs require external knowledge or reformulation to improve
accuracy—highlighting their lack of these abilities.

Removing contextual language highlights semantic limitations. Performance further increases
to 89.4% when problems are rewritten into abstract mathematical form, removing all contextual
language. For example, Qwen2.5-7B and Mixtral-8x7B improve by 10.9% and 18.8%, respectively.
This reveals that most Level 1 failures are not due to weak computational ability, but rather arise
during semantic interpretation and variable binding. Once language ambiguity is removed, models
can more reliably execute the required calculations, underscoring a gap between symbolic proficiency
and contextual understanding.

G.2 LEVEL 2 ANALYSIS

Level 2 tasks emphasize multi-step reasoning under structured constraints, making them more
sensitive to input variability. As shown in Figure 9 (right), the average model accuracy declines from
66.6% on the Original version to 61.6% on the Perturbed variant. This 5.0% drop indicates that
even minor changes to semantic phrasing or numerical values can significantly disrupt reasoning
chains. For instance, GPT-4.1 Nano drops by 9.3% and Qwen2.5-7B by 11.4%, revealing their limited
robustness when facing contextual and structural perturbations in problem inputs.

Incorporating explicit domain knowledge helps reduce ambiguity and recover performance. With
knowledge-enhanced inputs, the average accuracy rises to 68.6%, a 7.0% improvement over the
perturbed baseline. Larger gains are observed for models such as GPT-4.1 Nano (+15.4%) and
Qwen2.5-7B (+16.6%), suggesting that knowledge prompts assist in constraint interpretation and
formula selection. However, some models such as DeepSeek-V3 show minimal improvement,
implying that knowledge access alone may not compensate for limitations in multi-step reasoning
capabilities.

Symbolic abstraction of Level 2 tasks into pure mathematical form results in the largest performance
gains. The average accuracy increases to 79.2%, with many models gaining over 15%. This trend is
especially prominent for weaker models like Qwen2.5-7B (from 37.3% to 69.4%) and Mixtral-8x7B
(from 30.0% to 57.7%). These improvements confirm that many model failures stem not from
computational weakness, but from difficulties parsing, organizing, and executing the reasoning steps
embedded in natural language problem statements. This underscores the importance of assessing
upstream cognitive processes that precede symbolic computation—dimensions often underexamined
in traditional mathematical benchmarks.

G.3 LEVEL 3 ANALYSIS

Figure 10 presents the performance of various models across four key capabilities: Redundant
Information, Multi-Objective Decision, Domain Knowledge, and Uncertainty Handling. The results
are further separated into original and rewritten problem formulations. Overall, human experts
substantially outperform all models across all dimensions, with average scores of 8.552 (original) and
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Figure 10: Level 3 Model Evaluation. The figure presents average model performance on Level 3
tasks across four capability dimensions—information extraction, domain-specific reasoning, multi-
objective decision-making, and uncertainty handling—under both original and rewritten problem
formulations.

8.736 (rewritten). In contrast, LLMs demonstrate significantly lower scores, revealing a persistent
gap between current LLMs’ capabilities and human-level reasoning. The average model scores before
and after rewriting are 5.663 and 5.617, respectively—a marginal difference of only 0.81%. This
indicates that most models possess a reasonable degree of generalization, and the benchmark shows
no signs of data contamination across reformulated prompts, preserving task consistency.

Based on the overall average scores, we categorize model performance into three tiers:

Tier 1 (Average Score > 6.5) This tier includes GPT-4.1, Claude 3.7 Sonnet, and GPT-4.1 Mini.
These models demonstrate strong performance across all four evaluated capabilities. In particular,
their scores in Information Extraction and Multi-Objective Decision often exceed 7, approaching
human expert levels. Their performance in Domain Knowledge and Uncertainty Handling also
remains consistently above 6, indicating robust reasoning capabilities and broad task adaptability.

Tier 2 (Average Score ≈ 5.7–6.5) This tier consists of DeepSeek-V3, Gemini 2.5 Flash, Gemini 2.0
Flash, GPT-4.1 Nano, and GLM-4-32B. These models achieve reasonable performance in Information
Extraction and Multi-Objective Decision, but exhibit noticeable weaknesses in Domain Knowledge
and Uncertainty Handling, where scores commonly fall below 6. Some models approach the 5-point
threshold in these dimensions, reflecting limitations in complex reasoning and knowledge integration.

Tier 3 (Average Score < 5.7) This tier includes GLM-4-9B, Claude 3.5 Sonnet, Llama 3.3,
Qwen2.5-72B, Qwen2.5-7B, Llama4, DeepSeek-R1 7B, and Mixtral-8x7B. These models consis-
tently underperform across all four capabilities, typically scoring between 3 and 5. Their weakest
areas are Domain Knowledge and Uncertainty Handling, where some models fall below 4. These
results indicate substantial deficiencies in background reasoning and generalization to ambiguous or
underspecified tasks.

G.4 SUBFIELD PERFORMANCE ANALYSIS

Model performance varies substantially across engineering subfields. Chemical and biological
engineering demonstrates the strongest robustness, with large models maintaining accuracies above
85%, while structural and physical engineering achieves 70–80% and systems and control engineering
performs the worst, with large models dropping to 60–70% and small models often below 40%. These
results suggest that robustness to contextual perturbations is closely tied to the task characteristics:
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chemical and biological problems rely more on formulaic knowledge and are less sensitive to input
variations, whereas systems and control problems involve more complex reasoning chains and are
more vulnerable to perturbations.

Problem variants reveal subfield-specific differences in knowledge use, reasoning, and ro-
bustness, showing that these abilities differ significantly between engineering domains. The
knowledge-enhanced variant substantially improves performance in chemical and biological engi-
neering, moderately benefits structural and physical engineering, and shows limited gains in systems
and control engineering, suggesting the latter’s inability to effectively leverage explicit knowledge.
Similarly, the math abstraction variant, which isolates mathematical reasoning by removing context,
favors chemical and biological engineering, followed by structural and physical engineering, while
systems and control engineering remains the weakest. These patterns indicate that the ability to
utilize injected knowledge and maintain mathematical reasoning varies considerably across subfields.

The robustness and capability differences across subfields become even more evident under
higher task complexity in Level 2. Compared to Level 1, Level 2 shows larger performance drops
under perturbed inputs, highlighting more severe robustness issues. The positive effects of knowledge-
enhanced and math abstraction variants remain concentrated in chemical and biological engineering,
with only marginal improvements in structural and physical engineering and negligible gains in
systems and control engineering. This indicates that in more complex reasoning and contextual
integration tasks, current large language models struggle even more to handle input perturbations,
exploit external knowledge effectively, and maintain consistent reasoning, further widening the
capability gap across subfields.
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Figure 11: Accuracy across engineering subfields and problem variants in Level 1.
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Figure 12: Accuracy across engineering subfields and problem variants in Level 1.
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