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ABSTRACT

One of the key challenges for the success of the energy transition is the anal-
ysis of the dynamic stability of power grids. Graph Neural Networks (GNNs)
are a promising method to reduce the computational effort of predicting dynamic
stability of power grids, however datasets of appropriate complexity and size do
not yet exist. In this paper we introduce new datasets of synthetic power grids
and node-wise dynamic stability based on Monte-Carlo simulations. The datasets
consist of a total of 20,000 grids instead of previously published work that has
2,000 grids. This enables the training of more complex models and can signifi-
cantly increase the performance. The investigated grids have two sizes (20 and 100
nodes), which enables the application of out-of-distribution evaluation and trans-
fer learning from a small to a large domain. Lastly, we provide several benchmark
models to establish the feasibility of predicting dynamic stability from graph fea-
tures. These models achieve surprisingly high performance and even generalize
to out-of-distribution settings, which opens the door for future application on real
power grids. All Code and Data will be made available upon publication. We in-
vite the community to improve on our benchmark models and thus aid the energy
transition with better tools.

1 INTRODUCTION

Increasing the share of renewable energies in total energy production is one of the key targets on the
path to carbon-neutral societies. In contrast to conventional power plants, renewable energies are
more decentralized, have less inertia and their production is more volatile. Those aspects pose chal-
lenges to the current power grid infrastructure, both in terms of grid expansion and stable operation
with large shares of renewable energies. Classical ”static” approaches of computational modeling
and analysis of power grids, like load flow analysis, are no longer sufficient. In the near future,
they have to be complemented by dynamical simulations, which rely on graph theory as well as dif-
ferential equations. Since such dynamical simulations are computationally much more demanding,
a reliable and efficient prediction of dynamical behaviour of power grids using machine learning
(ML) methods might be a better alternative. Furthermore, the analysis of the decision process of
ML-models trained to predict dynamic stability might lead to new unknown relations. For these
purposes, we introduce new datasets that consist of synthetic models of power grids and statistical
results of dynamic simulations. The task is to predict the dynamic stability of power grids, which
characterizes the resilience of the power grid towards non-linear perturbations.

Dynamic stability of power grids We quantify dynamic stability with single-node basin stability
(SNBS)(Menck et al., 2013), a probabilistic measure that captures non-linear, dynamical effects
after perturbations at a single node. Crucially, SNBS is not the result of a single simulation but
describes a statistical behaviour (expected value of a Bernoulli experiment), where higher values
indicate more stability. Due to its probabilistic nature, all values of SNBS are ∈ [0, 1]. Furthermore,
despite its name, it captures the reaction of the entire grid and hence is not a purely local property.

Related work Since power grids have an underlying graph structure, the recent development of
graph representation learning (Bronstein et al., 2021; Hamilton, 2020) makes it possible to use ma-
chine learning to analyze power grids. There are a number of applications using Graph Neural
Networks (GNNs) for different flow-related tasks: (Donon et al., 2019; Kim et al., 2019; Bolz et al.,
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2019; Retiére et al., 2020; Wang et al., 2020; Owerko et al., 2020; Gama et al., 2020; Misyris et al.,
2020; Liu et al., 2021). In (Nauck et al., 2022) GNNs are used to predict the dynamic stability of
power grids and we extend this work by introducing datasets that have ten times as many grids to
enable the training of more complex models. In this work, we show that by increasing the complex-
ity of the GNN-models and training on a larger data set, high accuracies can be achieved, which
demonstrates the feasibility of using ML to aid power grid modeling.

Potential of our datasets The newly introduced, large datasets deal with a very complex problem
and set an exciting challenge for GNNs. Even though we applied several simplifications regard-
ing the modelling of power grids, the task is still challenging and the datasets are an important
step towards the analysis of the dynamics of power grids. By reducing some of the complexity,
new methods can be explored more easily. Working with these datasets opens an opportunity for
researchers in the field of graph representation learning to contribute to the energy transition.

Our main contributions are: First, we introduce new synthetic datasets based on dynamic mod-
eling of power grids as new challenges for GNN models. Second, we briefly explain the underlying
physics to generate the datasets and we present selected properties of the datasets. Third, we com-
pare the performance of multiple GNN models and set benchmark performances, which include an
out-of-distribution evaluation.

2 GENERATION OF THE DATASETS

2.1 PHYSICAL MODELING OF DYNAMICAL STABILITY OF POWER GRIDS

To generate the datasets, we conduct dynamical simulations. Power grids are complex systems
consisting of different nodes and edges. It is not possible to consider all properties of real power
grid to conduct dynamical simulations, so we rely on simplified models that are commonly used. In
our case, all nodes are represented by the 2nd-order-Kuramoto model (Kuramoto, 2005; Rodrigues
et al., 2016), which is also called swing equation and we use the following notation:

φ̈i = Pi − αφ̇i −
n∑
j

Kij sin(φi − φj), (1)

where φ, φ̇, φ̈ denotes the voltage angle and its time derivatives. The parametrization is as follows:
the injected power Pi ∈ {−1, 1} where

∑
i Pi = 0 to guarantee power balance, the damping

coefficient α = 0.1 , the coupling matrix K is based on the graphs’ adjacency matrix A which
encodes the graph topology and we use a uniform coupling strength, that is Kij = 9Aij . Using
homogeneous coupling strength can be interpreted as considering power grids that only have one
type of power line and equal distances between all nodes.

To estimate SNBS we use the same approach as in Nauck et al. (2022): “[F]or every node in a graph,
M = 10, 000 samples of perturbations per node are constructed by sampling a phase and frequency
deviation from a uniform distribution with (φ, φ̇) ∈ [−π, π] × [−15, 15] and adding them to the
synchronized state. Each such single-node perturbation serves as an initial condition of a dynamic
simulation of our power grid model, [cf. equation 1]. At t = 500 the integration is terminated and
the outcome of the Bernoulli trial is derived from the final state. A simulation outcome is referred to
as stable if at all nodes φ̇i < 0.1. Otherwise it is referred to as unstable. The classification threshold
of 0.1 is chosen accounting for minor deviations due to numerical noise and slow convergence rates
within a finite time-horizon.”

2.2 DESIGN CHOICES AND PROPERTIES OF THE DATASETS

We pursue several goals during the design process of the datasets. First, to obtain a somewhat
realistic representation of power grids, we use the package Synthetic Networks (Schultz et al., 2014)
1 to generate topologies with basic features of power grids. The generated graphs are sparse (degree
distribution has a maximum at two and an exponential tail) similar to real-world power grids. To

1This tool is available on Github (Schultz, 2020)
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Figure 1: Examples of the power grids of the datasets and the corresponding distributions of SNBS
of the entire datasets with 20 nodes (left) and 100 nodes (right). The blue color denotes sources and
the orange sinks. The distributions are normalized so that bin heights sum to 1.

investigate different topological properties of differently sized grids, we generate two datasets with
either 20 or 100 nodes per grid, referred to as dataset20 and dataset100. Second, we use a power grid
model with reduced complexity to achieve a solvable problem. The most important simplifications
are homogeneous edges, fixed magnitudes of sources/sinks and modeling all nodes by the swing
equation. Third, we fine-tune parameters such as the coupling constant and perturbation strength
to obtain a bi-modular shape of the SNBS distribution. Examples of each dataset as well as the
distributions of SNBS are given in fig. 1. Fourth, we reduce the numerical and statistical errors
to a minimum by using higher order Runge-Kutta methods with low tolerances and adaptive time
steps and we conduct 10,000 simulations per node, resulting in standard errors of only ±0.01. This
ensures the reliability of the results. Lastly, to enable the training of complex models, both datasets
consist of 10,000 graphs.
Overall, the power grid datasets consist of the adjacency matrix and the binary injected power P per
node as inputs, and nodal SNBS as target values.

3 PERFORMANCE OF SELECTED GNN MODELS

In this section we show the performance of different GNN models. The GNN models are based
on the following types of convolution: GNNs with ARMA filters by Bianchi et al. (2021), Graph
Convolutional Networks (GCN) by Kipf & Welling (2017), SAmple and aggreGatE (SAGE) by
Hamilton et al. (2017) and Topology Adaptive Graph Convolution (TAG) by Du et al. (2017). We
refer to the models by ArmaNet, GCNNet, SAGENet and TAGNet. We conduct hyperparameter
studies to set model properties such as the number of layers and channels as well as model-specific
parameters e.g. the number of stacks in case of ArmaNets. As baseline, we use the best model
from (Nauck et al., 2022) referred to as ArmaNet-bench. The only adjustment to that model is the
removal of the fully connected layer after the second Arma-Convolution and before applying the
Sigmoid-layer, which improves the training. The details of the models are given in appendix B.1.

3.1 METRICS FOR EVALUATION

To evaluate the performance, the coefficient of determination (R2-score) and a self-defined dis-
cretized accuracy is used. The detailed computation of R2 is given in appendix B.4. For the
discretized accuracy, we rephrase the evaluation as a classification problem. Predictions are con-
sidered to be correct, if the predicted output y is within a certain threshold to the target value, i.e.,
t: |y − t| < threshold. We set this threshold to 0.1, because this is small enough to differentiate
between the modes in the distributions, compare fig. 1). We compute the accuracy of the classifier
based on this discretization of the predictor as discretized accuracy = 1− true positives+true negatives

number of samples. and
refer to it as discretized accuracy.

3.2 EXPERIMENT SETUP AND RESULTS

The GNNs are trained on a nodal regression task. The power grids are represented by the adjacency
matrix and a binary feature vector representing sources and sinks. Both are fed into the GNN as
input, the GNN is trained to predict SNBS for each node. We split the datasets in training, validation
and testing sets (70:15:15). The validation set is used for the hyperparameter studies, we report the
performance on the test set. Details of the training process including the used software is given in
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Table 1: Results represented by R2 score and discretized accuracy in %

model dataset20 dataset100 tr20ev100
R2 discr. accu R2 discr. accu R2 discr. accu

ArmaNet-bench 51.82 88.93 54.19 83.58 38.80 70.32
ArmaNet 80.63 94.90 85.66 94.31 66.75 83.57
GCNNet 70.90 93.13 75.49 91.09 58.30 80.19
SAGENet 65.65 90.18 75.69 90.01 52.27 76.98
TAGNet 83.27 95.61 88.33 95.07 65.78 84.15
For dataset20 and dataset100, the models are both trained on their training and evaluated on
their test sections. To evaluate the out-of-distribution generalization capabilities, we use the term
tr20ev100 meaning that the model is trained on the dataset20, but evaluated on the dataset100.

Figure 2: SNBS over predicted output of the ArmaNet model for dataset20, dataset100 and trained
on dataset20, but evaluated on dataset100. The diagonal represents a perfect model (R2 = 1), the
band indicates the region for correct predictions based on the discretized accuracy.

appendix B.2. To minimize the effect of initializations we use 5 different initializations per model
and consider the three best only (selection of the models based on the maximum ofR2 and validation
set, reported values are from the test set) to compute average performances.

The results are given in table 1 and visualized in fig. 2. The key result is the surprisingly high
performance across all datasets. SNBS is a highly nonlinear property and the obtained performance
exceeds expectations. By training on the newly introduced large datasets and using more complex
models, we significantly outperform previous work. In particular, the modalities of the datasets (c.f.
fig. 1) are clearly separated, as the high discretized accuracy across all experiments indicates. Most
interestingly, the high performance is relatively stable even under transfer from grids of size 20 to
such of size 100. We would like to emphasize the significance of that finding. Given sufficient size
and complexity in the source dataset, GNNs can robustly predict highly nonlinear stability metrics
for grids several times larger than the source. We did not expect grids of size 20 to be large enough
to contain enough relevant structures to generalize to larger grids. However, we expect grids of size
100 to generalize well to even larger grids and are encouraged by the out-of-distribution results.
Generalizing from small, numerically solvable grids to large grids is key for real world application.

4 CONCLUSION AND OUTLOOK

In this work, we introduce two new datasets of synthetical powergrids with nodal dynamical stability
values. We train several benchmark GNN models to estimate the feasibility of predicting dynamic
stability using GNNs. Our results show that i) dynamic stability can be predicted to a surprising
degree of accuracy; ii) the modes in dynamic stability are recovered with high precision; and iii)
prediction generalize from small grids of size 20 to grids of size 100. Those successes might quickly
lead to real world applications, because there is no shortcut to reliably predict the dynamic stability
of power grids up to today. In future we focus on reducing the simplifications step by step to get
closer to real power grids. Furthermore, applications of interpretabilty methods on the GNNs might
help to identify unknown patterns in power grids which are relevant for their dynamic stability.
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We took great care to ensure reproducibility. Code and data will be made available upon publication.
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B TRAINING OF GNNS

This section covers more information regarding the used models, the training parameters and the
hyperparameter optimization.
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Table 2: Properties of models. Number of parameters denotes the number of learnable weights of
the model.

name type of convolution number of layers number of parameters

ArmaNet-bench ARMA 2 1,050
ArmaNet ARMA 3 189,048
GCNNet GCN 7 523,020
SAGENet SAGE 8 728869
TAGNet TAG 13 415,320

B.1 MODEL DETAILS

Details of the models such as number of layers and parameters are provided in table 2.

B.2 TRAINING OF MODELS

The training is implemented in Pytorch (Paszke et al., 2019). For the graph handling and graph
convolutional layers we rely on the additional library PyTorch Geometric (Fey & Lenssen, 2019).
As loss function we use the mean squared error 2. Furthermore ray (Moritz et al., 2018) is used for
parallelizing the hyperparameter study.

B.3 HYPERPARAMETER STUDY

For different architectures, we investigate multiple hyperparameters to find appropriate models. For
all models we investigated the influence of different numbers of layers and the numbers of channel
between multiple layers. We limited the model size to little above four million parameters, so we
did not investigate the full presented space, but limited for example the number of channels when
adding more layers. T

B.4 COMPUTATION OF R2

The score R2 is computed by R2 = 1 − mse(y,t)
mse(tmean,t)

, where mse denotes the mean squared error,
y the output of the model, t the target value and tmean the mean of all considered targets of the test
dataset. R2 captures the mean square error relative to a null model that predicts the mean of the
test-dataset for all points. The R2-score is used to measure the portion of explained variance in a
dataset.

2corresponds to MSELoss in Pytorch
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