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ABSTRACT

Language agents have achieved considerable performance on various complex
question-answering tasks by planning with external tools. Despite the incessant
exploration in this field, existing language agent systems still struggle with costly,
non-reproducible data reliance and face the challenge of compelling a single
model for multiple functions. To this end, we introduce AUTOACT, an automatic
agent learning framework for QA that does not rely on large-scale annotated
data and synthetic planning trajectories from closed-source models (e.g., GPT-4).
Given limited data with a tool library, AUTOACT first automatically synthesizes
planning trajectories without any assistance from humans or strong closed-source
models. Then, AUTOACT leverages a division-of-labor strategy to automatically
differentiate based on the target task information and synthesized trajectories,
producing a sub-agent group to complete the task. We conduct comprehensive
experiments with different LLMs, which demonstrates that AUTOACT yields better
or parallel performance compared to various strong baselines. Further analysis
demonstrates the effectiveness of the division-of-labor strategy, with the trajectory
quality generated by AUTOACT generally outperforming that of others.'.

1 INTRODUCTION

Language agents (Wang et al., 2023a; Xi et al., 2023; Guo et al., 2024), which leverage the powerful
reasoning capabilities (Qiao et al., 2023b; Zhang et al., 2023b) of Large Language Models (LLMs)
to interact with executable tools, have emerged as essential components of Al systems designed to
address complex question-answering tasks (Torantulino, 2023; Osika, 2023; Nakajima, 2023; Tang
et al., 2023; Xie et al., 2023). The process of endowing LLMs with such interactive capabilities is
referred to as Agent Learning wherein planning (Huang et al., 2024) plays a pivotal role, which is
responsible for decomposing complex questions into simpler ones (Yao et al., 2023; Team, 2023; Qian
et al., 2023), invoking external tools (Shen et al., 2023; Lu et al., 2023; Qin et al., 2023), reflecting on
past mistakes (Shinn et al., 2023; Madaan et al., 2023), and aggregating information from various
sources to reach the final answer.

There have been a lot of works (Li et al., 2023a; Shen et al., 2023; Hong et al., 2023; Talebirad &
Nadiri, 2023; Chen et al., 2023d;b) that directly prompt closed-source off-the-shelf LLMs to plan
on particular tasks. Despite their convenience and flexibility, closed-source LLMs inevitably suffer
from unresolved issues, as their accessibility often comes at a steep price and their black-box nature
makes the result reproduction difficult. In light of this, some recent endeavors have shifted their focus
towards imbuing open-source models with planning capabilities through fine-tuning (Chen et al.,
2023a; Zeng et al., 2023; Yin et al., 2023).

However, despite the achievements of the existing fine-tuning-based methods, they are not without
limitations. On the one hand, training open-source models necessitates a substantial amount of
annotated QA data pairs and still relies on closed-source models to synthesize planning trajectories.
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Table 1: Comparison of related works. Data and Trajectory Acquisitions refer to the way for obtaining
training data and trajectories. Planning represents the way of planning based on whether each step’s action
is determined globally or iteratively. Multi-Agent indicates whether the framework contains multi-agent.
Fine-Tuning stands for whether the method is a fine-tuning-based framework. Generality signifies whether the
method is applicable to various tasks. Reflection denotes whether the planning process incorporates reflection.

Data Trajectory

Method Acquisiti L Planning Multi-Agent Fine-Tuning Generality Reflection
cquisition Acquisition
REACT (Yao et al., 2023) User Prompt Tterative X X 4 X
Reflexion (Shinn et al., 2023) User Prompt Iterative X X v (%4
Chameleon (Lu et al., 2023) User Prompt Global X X 4 X
HuggingGPT (Shen et al., 2023) User Prompt Global X X v X
BOLAA (Liu et al., 2023) User Prompt Tterative v X v X
AgentVerse (Chen et al., 2023d) User Prompt Iterative 4 X v X
Agents (Zhou et al., 2023b) User Prompt Iterative v X v X
AgentTuning (Zeng et al., 2023) Benchmark GPT-4 Iterative X v X X
FIREACT (Chen et al., 2023a) Benchmark GPT-4 Iterative X (4 X (%4
Lumos (Yin et al., 2023) Benchmark Benchmark + GPT-4 Both (4 (4 X X
AUTOACT (ours) User + Self-Instruct Self-Planning Iterative v v v (4

However, fulfilling these requirements in many real-world scenarios, such as private personal bots or
sensitive company business, often proves to be rocky. On the other hand, from the perspective of
agent framework, fine-tuning-based methods compel one single language agent to learn all planning
abilities, placing even greater pressure on them. These contradict Simon’s principle of bounded
rationality (Mintrom, 2015), which states that “precise social division-of-labor and clear individual
tasks can compensate for the limited ability of individuals to process and utilize information”.
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Figure 1: The basic framework of AUTOACT. Armed
with just one tool library, the META-AGENT can auto-

instruct (Wang et al., 2023b). Then, armed with
a prepared tool library, the META-AGENT can
automatically synthesize planning trajectories

matically differentiate based on the target task informa-
tion and produce a sub-agent group that can collaborate
to complete the task.

without any assistance from humans or strong

closed-source models. Finally, we propose the division-of-labor strategy which resembles cell dif-
ferentiation based on the self-synthesized trajectories (genes), where the META-AGENT acts as a
stem cell (Colman, 2008) and differentiates into three sub-agents with distinct functions: task decom-
position, tool invocation, and self-reflection, respectively. Our differentiation process is essentially
a parameter-efficient training process on the self-synthesized trajectories with low-consumption
resources. We list the differences between AUTOACT and prior works in Table 1.

Experiments on complex QA tasks with different LLMs demonstrate that our AUTOACT yields
better or parallel performance compared to various strong baselines. We summarize our main
contributions as follows: 1) We propose AUTOACT, an automatic agent learning framework for QA
that does not rely on large-scale annotated data and synthetic trajectories from closed-source models
while adhering to the principle of bounded rationality. 2) We conduct comprehensive experiments with
different LLMs, which demonstrates that AUTOACT yields better or parallel performance compared
to various strong baselines. 3) Extensive empirical analysis demonstrates the effectiveness of our
appropriate division-of-labor strategy and the trajectory quality generated by AUTOACT outperforms
that of other methods from multiple aspects.

2 AUTOACT

2.1 CRITICAL COMPONENTS OF AUTOACT

META-AGENT. The META-AGENT stands at the central position of our AUTOACT. Itis responsible
for all the preparatory work before self-differentiation and serves as the backbone model for the
self-differentiation process. Given limited target task information and a pre-prepared tool library, the
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Figure 2: The overview of our proposed framework AUTOACT. We initiate with self-instruct to extend
the task database from scratch. Then self-planning is applied to conduct automatic agent learning, including
automatic tool selection, trajectories synthesis, self-differentiation and group planning. Our self-differentiation
is a parameter-efficient fine-tuning process to achieve resource-efficient learning.

META-AGENT can differentiate into an agent group capable of collaborating to accomplish the target
task. In AUTOACT, the META-AGENT can be initialized with any open-source model.

Target Task Information. In this paper, we mainly focus on agent learning from scratch, which
means the task information at hand is quite limited, primarily encompassing three aspects: task
name M, task description P, task data examples C. Concretely, P represents a detailed description

of the task’s characteristics, properties, and other relevant information. C = {g¢;, al} _, indicates
|C| question-answer example pairs of the task, where |C| is very small which users can effortlessly
provide (e.g., a few demonstrations). For a more in-depth view of task information, please refer to
Appendix B. Note that the task information serves as the only user-provided knowledge of the task
for AUTOACT to conduct automatic agent learning.

Tool Library. To facilitate our agents in automatic task planning, we provide a comprehensive tool
library at their disposal. The tool library can be denoted as T = {m;, d;, ui}zll, where m represents
the name of each tool, d defines the functionality of each tool, u details the usage instruction of each
tool, and | 7| stands for the tools amount of the library. In our automatic procedure, the META- AGENT
has the autonomy to select appropriate tools from the tool library based on the task information.
Users also have the option to expand the tool library according to their specific needs, allowing for

more flexible utilization. We list part of our tool library in Appendix C.

2.2  STARTING FROM SCRATCH VIA SELF-INSTRUCT

To acquire a sufficient amount of task data and provide an ample training resource, it is necessary to
augment the data based on the examples at hand. We accomplish this process through self-instruct.
Initially, the database D is set to be equal to the task data examples C, with C as the seed for data
generation. In each round, the META-AGENT generates new question-answer pairs by few-shot
prompting, and the few-shot prompt examples are randomly sampled from D. The generated data
will be added to D followed by filtering, with the exclusion of format erroneous and duplicate data

before its inclusion. Eventually, we obtain a database D = {q¢;, ai}lzil, where the number of data |D|
satisfies |D| > |C|. The prompt we use for self-instruct can be seen in Appendix D.1.



2.3 AUTOMATIC AGENT LEARNING VIA SELF-PLANNING

Automatic Tool Selection. With the tool library at hand, we ask the META-AGENT to select
applicable tools for each task automatically. Specifically, we put 7 = {m;, d;, u;} ‘17:—|1 in the form of a
tool list as part of the prompt. Along with 7, the prompt also includes the task’s description C. Finally,
we instruct the META-AGENT to select an appropriate set of tools T (7, C 7)) for synthesizing

trajectories. The prompt we use for automatic tool selection can be seen in Appendix D.2.

Trajectories Synthesis. Without relying on closed-source models, we enable the META-AGENT to
synthesize planning trajectories on its own. Equipped with 7, we instruct the META-AGENT
to synthesize trajectories in a zero-shot manner on the database D adhering to the format of
Thought-Action-Observation as defined in Yao et al. (2023). In order to obtain high-
quality synthesized trajectories, we filter out all the trajectories with reward < 1 and collect
trajectories with exactly correct answers (reward = 1) as the training source for self-differentiation.
The prompt for trajectories synthesis can be seen in Appendix D.3.

Self-Differentiation. In order to establish a clear division-of-labor, we leverage synthesized plan-
ning trajectories to differentiate the META- AGENT into three sub-agents with distinct functionalities:

* = PLAN-AGENT 7., undertakes task decomposition and determines which tool to
invoke in each planning loop (Eq.2).

¢ 38 TOOL-AGENT Ty, is responsible for how to invoke the tool (Eq.3) by deciding the
parameters for the tool invocation.

* & REFLECT-AGENT T,qqect €ngages in reflection by considering all the historical trajec-
tories and providing a reflection result (Eq.4).

We assume that the planning loop at time ¢ can be denoted as (7, o, 0¢ ), where 7 denotes Thought,
« signifies Action, and o represents Observation. « can be further expressed as (o™, aP),
where o is the name of the action, and o is the parameters required to perform the action. Then
the historical trajectory at time ¢ can be signaled as:

Ht = (TOua07007Tla~~7Tt717at7170t71)~ (1)

Eventually, supposing that the prompts of target task information, planning format requirements, and
the question are all combined as S, the responsibilities of each sub-agent can be defined as:

Tt, aln = Wplan(Sa 7;7 Ht)a (2)
O‘f = 7rt001(877;77-[t77-t70[;n)7 (3)
TT; O/‘ = Treflect (87 7?5‘5 H)a (4)

where 7" and o represent the thought and action of the reflection process respectively, and H is
the planning history after finishing the answer. The trajectories can be reorganized based on the
responsibilities above and fed to the META-AGENT for self-differentiation. Our differentiation is a
parameter-efficient fine-tuning process to achieve resource-efficient learning. Particularly, for each
sub-agent, we train a specific LoRA (Hu et al., 2022).

Group Planning. At inference time, once the tool name ;" generated by the PLAN-AGENT
is triggered at time ¢, the TOOL-AGENT is roused to determine the parameters o transferred to
the specific tool. The return result of the tool is treated as the observation o; and handed to the
PLAN-AGENT. After the collaboration between the PLAN-AGENT and TOOL-AGENT finishes with a
prediction, the REFLECT-AGENT comes on the stage to reflect on the history and provide a reflection
result contained in the reflection action «”. If the reflection result indicates that the prediction is
correct, the whole planning process concludes. Otherwise, the PLAN-AGENT and TOOL-AGENT
will continue the planning based on the reflection information. The specific sequence of the group
planning process can be referred to the trajectory example on the right side of Figure 2.

3 EXPERIMENTAL SETUP

Tasks. We evaluate our method on HotpotQA (Yang et al., 2018) and ScienceQA (Lu et al., 2022).
We randomly select 300 questions for HotpotQA and 360 questions for ScienceQA divided into



Table 2: Main results of AUTOACT compared to various baselines. The icon @ indicates prompt-based
agent learning without fine-tuning, while @ means fine-tuning-based agent learning. & denotes single-agent
learning and &% symbolizes multi-agent learning. The best results of each model are marked in bold and the
second-best results are marked with underline. *We compare the zero-shot plan performance of GPT-3.5-Turbo
to ensure fairness in our evaluation since our setup does not include annotated trajectory examples.

Backbone Method HotpotQA ScienceQA
Easy Medium Hard All Gl14 G5-8 G912 Al
GPT-3.5 @ & CoT 48.21 44.52 3422 4232 60.83 5583 65.00 60.56
Turbo @ & Zero-Shot Plan*  50.71 45.17 38.23 4470 76.67 61.67 7833 7222
@ & CoT 35.80 26.69 1820 2690 59.17 50.00 59.17 56.11
@ & ReAct 25.14 19.87 17.39 20.80 5250 47.50 54.17 51.39
Llama-2 o a Cham;leon 37.73 26.66 21.83 2874 59.17 54.17 60.00 57.78
7B-chat @ & Reflexion 35.55 28.73 2435 29.54 60.83 57.50 59.17 58.06
Q@ ‘& BOLAA 27.55 21.47 21.03 23.35 5833 5333 5250 54.72
@ ‘& ReWOO 27.53 21.02 20.22 2292 50.83 49.17 55.83 5194
© & FireAct 38.83 30.19 2230 3044 50.83 5333 60.00 54.72
© ‘& AUTOACT 34.60 27.73 2522 29.18 62.50 49.17 4833 5333
@ & CoT 37.90 25.28 21.64 2827 61.67 5250 69.17 61.11
@ & ReAct 28.68 22.15 21.69 24.17 57.50 51.67 65.00 58.06
Llama-2 o a Chamgleon 40.01 25.39 22.82 2941 69.17 60.83 73.33 67.78
13B-chat @ & Reflexion 44.43 37.50 28.17 36.70 67.50 64.17 73.33 68.33
@ & BOLAA 33.23 25.46 2523 2797 60.00 54.17 65.83 60.00
Q@ & ReWOO 30.09 24.01 21.13  25.08 57.50 54.17 65.83 59.17
© & FireAct 45.83 38.94 26.06 36.94 60.83 57.50 67.50 61.94
© ‘& AUTOACT 47.29 41.27 3292 4049 70.83 66.67 76.67 71.39
@ & CoT 45.37 36.33 3227 3799 7417 64.17 75.83 71.39
@ & ReAct 39.70 37.19 33.62 36.83 64.17 60.00 7250 65.56
Llama-2 o a Chamgleon 46.86 38.79 3443 40.03 77.83 69.17 76.67 74.56
70B-chat @ & Reflexion 48.01 46.35 35.64 4333 7583 67.50 7833 73.89
Q@ :& BOLAA 46.44 37.29 3349 39.07 70.00 67.50 75.00 70.83
Q@ & ReWOO 42.00 39.58 3532 3896 6500 61.67 76.67 67.78
© & FireAct 50.82 4143 3586 4270 7250 68.33 75.00 71.94
© ‘& AUTOACT 56.94 50.12 38.35 4847 8250 72,50 80.83 78.61

three levels for evaluation. For HotpotQA, the reward € [0, 1] is defined as the F1 score grading
between the prediction and ground-truth answer. Since ScienceQA is a multi-choice QA task, the
reward € {0, 1} is exactly the accuracy. Due to the limitations of LMs in generating images, for
ScienceQA, during the self-instruct stage, we directly generate captions for the images instead.

Baselines. We choose the open-source Llama-2 models (Touvron et al., 2023) as the backbones
of our META-AGENT and sub-agents. The compared baselines are as follows: 1) CoT (Wei et al.,
2022), the naive Chain-of-Thought reasoning method. 2) REACT (Yao et al., 2023), a well-known
single-agent framework based on few-shot learning that performs planning and action iteratively.
3) Chameleon (Lu et al., 2023), another few-shot single-agent framework that performs planning
before action. 4) Reflexion (Shinn et al., 2023), a single-agent framework to reinforce language
agents through linguistic feedback. 5) BOLAA (Liu et al., 2023), a multi-agent framework that
customizes different agents through prompts. 6) ReWOO (Xu et al., 2023a), a multi-agent framework
that decouples reasoning from observations. 7) FIREACT (Chen et al., 2023a), a single-agent
framework with fine-tuning on diverse kinds of trajectories generated by GPT-4 (OpenAl, 2023). To
ensure fairness, we maintain an equal training trajectory volume of 200 for FIREACT and AUTOACT
(200 synthesized data). As Reflexion provides answer correctness labels during reflection but other
methods including AUTOACT do not, we test all the other methods twice and choose the correct one
for evaluation. For all the prompt-based baselines, we uniformly provide 2 examples in the prompt.

Training Setups. We fine-tune all our models with LoRA (Hu et al., 2022) in the format proposed

in Alpaca (Taori et al., 2023). Our fine-tuning framework leverages FastChat (Zheng et al., 2023)
using DeepSpeed (Rasley et al., 2020). We detail the hyper-parameters for training in Appendix A.

4 RESULTS

4.1 COMPARE TO PROMPT-BASED AGENT LEARNING BASELINES

As shown in Table 2, the 13b and 70b models consistently outperform various prompt-based baselines.
The 70b model even surpasses the agent performance of GPT-3.5-Turbo, achieving a rise of 13.77%



on HotpotQA and 16.39% on ScienceQA. The performance of the 7b model is comparable to
other methods to some extent. Therefore, whether in a single-agent or multi-agent architecture,
prompt-based methods relying on few-shot demonstrations fail to precisely customize the behavior
of the agent, which is also supported by the fact that FIREACT widely outperforms REACT and
BOLAA in the context of iterative planning. In addition, our investigation reveals a visible disparity in
open-source models between the performance of many prompt-based planning baselines (relying on
various external tools) and CoT (relying on the models’ intrinsic reasoning abilities). This discrepancy
underscores the formidable challenge of unlocking planning capabilities by prompting.

4.2 COMPARE TO FINE-TUNING-BASED AGENT LEARNING BASELINES

Further focusing on FIREACT in Table 2, despite the assistance of GPT-4, FIREACT’s approach
of assigning the entire planning task to a single model proves to be burdensome. As a result, its
performance on ScienceQA even falls short compared to the prompt-based global planning method,
Chameleon. AUTOACT employs self-differentiation to decouple the planning process and reaches
a clear division-of-labor among sub-agents for group planning, resulting in an improvement than
FIREACT, with an enhancement of 15.77% on HotpotQA and 16.67% on ScienceQA with 70b
model. Additionally, AUTOACT achieves self-planning without relying on closed-source models
and large-scale labeled datasets, which paves the way for automatic agent learning with open-source
models from scratch. In ablation study (§4.4) and human evaluation (§5.3), we will further validate
that the quality of trajectories synthesized by AUTOACT is not inferior to FIREACT trained on
trajectories synthesized using GPT-4.

4.3 SINGLE-AGENT LEARNING VS. MULTI-AGENT LEARNING

Table 3: Approach ablations of AUTOACT. - reflec- Under identical settings, multi-agent archi-
tion symbolizes removing the reflect-agent in AUTOACT. tectures generally exhibit better performance
- multi denotes feeding all the differentiated data into one  han single-agent (REACT vs. BOLAA, FIRE-
model for fine-tuning. - fine-tuning indicates zero-shot ACT vs. AUTOACT), which aligns V\;ith Si-
prompt planning with the three agents defined in AU- mon’s theory of bou r; ded rationality. Seem-
TOACT. - filtering represents self-differentiation on all . 1 . d o bei
the trajectories generated in zero-shot planning without mngly contrary to expectatlons, espite being
a single-agent architecture, Chameleon out-

filtering wrong cases. :
performs BOLAA (even FIREACT on Sci-

enceQA). However, we analyze that this can

be attributed to the way it leverages tools. In

HotpotQA  ScienceQA
AUTOACT 48.47 78.61

- reflection 45.66,2.51  75.28,3.33 Chameleqn, the process of deciding toql pa-
~multi 4281566 69.72,5.50 rameters is considered a form of tool invo-

- fine-tuning 32~84i15'463 61-94¢1é.67 cation, and specialized few-shot prompts are
- filtering  32.5115.96  59.1719.44 designed to guide the model through this pro-

cess. From this aspect, Chameleon, despite
being nominally a single-agent architecture, exhibits characteristics that resemble a multi-agent
architecture, which does not contradict our initial conclusion. Indeed, we can also explain from
the perspective of optimizing objectives. Another well-known economic principle, Goodhart’s Law
(Goodhart, 1984), states that “When a measure becomes a target, it ceases to be a good measure”.
This implies that optimizing one objective on the same agent will inevitably harm other optimization
objectives to some extent. Therefore, it is not optimal to optimize all objectives on a single agent, and
a multi-agent architecture happens to address this issue. However, we analyze in §5.2 that excessive
fine-grained division-of-labor is not the best approach, and a moderate division of labor benefits
group performance.

4.4 APPROACH ABLATIONS

Table 3 presents the performance of AUTOACT on the 70b model after removing certain key processes.
It can be observed that the least impactful removal is the - reflect. We investigate that in the zero-
shot scenario, the model tends to be over-confident in its answers. It typically only recognizes its
errors when there are obvious formatting mistakes or significant repetitions in the planning process.
Consistent with previous findings, the removal of the - multi agents leads to a noticeable decrease
in performance. A more exciting discovery is that the results of - multi are comparable to those of
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Figure 3: Performance of AUTOACT on different training data scales. (a-c) represents the results of the
model trained on self-synthesized trajectories. (d-f) represents the results of the model trained on trajectories
synthesized by a stronger model, where the dashed line is the baseline trained on self-synthesized trajectories.
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Figure 4: Performance of AUTOACT based on different degrees of labor division. One is training a single
model with all the differentiated data. Three represents the differentiation into three agents: plan, tool, and
reflect. Tool Specified indicates further differentiating the tool-agent with one tool, one agent.

FIREACT. This indirectly suggests that the trajectory quality generated by the 70b model may be
no worse than that of GPT-4. As expected, the performance deteriorates after - fine-tuning, which
once again confirms the previous conclusion. To demonstrate the necessity of filtering out planning
error data, we specifically remove the filtering process (- filtering) to examine the performance of
AUTOACT. The results indicate that the damage caused by training on unfiltered data is even greater
than that of - fine-tuning.

5 ANALYSIS

5.1 LARGER TRAINING DATA SCALE DOES NOT NECESSARILY MEAN BETTER RESULTS

We evaluate the influence of different training data scales on the performance of self-planning in
Figure 3(a-c). It can be observed that the overall performance of different models goes to stability
with minimal fluctuations once the data scale exceeds 200. We speculate that this may be due to
the limited ability of naive self-instruct to boost internal knowledge of the language model. As
the training data increases, the knowledge which can be extracted through self-instruct decreases.
Despite our efforts to filter out duplicate data, similar data will inevitably reoccur. So the mindless
increase in data scale can lead to a significant surge in similar data, which undermines the benefits of
increasing the data scale and ultimately makes it challenging to improve model performance or even
leads to over-fitting. To further confirm the role of training data, we decouple the models from the
training data and evaluate their training results on trajectories synthesized by other stronger models.
From Figure 3(d-f), we can see consistent conclusions with previous findings. The performance
improvement becomes increasingly challenging beyond a dataset size of 200, regardless of the size
matching between the backbone model and the data-synthetic model. Therefore, maximizing the
diversity of the synthesized data in the database may be a key improvement direction for AUTOACT.
Some previous works (Xu et al., 2023b; Yu et al., 2023; Li et al., 2023b) have attempted to improve



(a) ReAct (b) AutoAct
Question: The Bass Rock Lighthouse was next to what Castle?

Question: The Bass Rock Lighthouse was next to what Castle? Thought: The Bass Rock Lighthouse is located on Bass Rock.
Thought: Maybe | should retrieve Bass Rock Lighthouse. Action: Retrieve[Bass Rock]

Action: Retrieve[Bass Rock Lighthouse] ) Observation: The Bass Rock, or simply the Bass () ...
Observation: The Bass Rock Lighthouse on Bass Rockis a ... Thought: The Bass Rock Lighthouse is located near a castle.

Action: Lookup[castle] Observation: (Result 1/7) The Bass Rock, ... and 5 km (3 mi)
Observation: (Result 1/1) The Bass Rock Lighthouse is built in north-east of North Berwick.

Thought: What | want to know now is what castle is it next to. O Action: Lookup[castle]
1902 by David Stevenson, who ... and some other buildings Thought: The Bass Rock Lighthouse is near North Berwick.

within the castle for the stone. ... Action: BingSearch[North Berwick Castle]

Thought: The Bass Rock Lighthouse is next to a castle Observation: ... Tantallon Castle. Near North Berwick, ...

demolished by David Stevenson. Thought: The Bass Rock Lighthouse is next to Tantallon Castle.

Action: Finish[David Stevenson demolished the castle] x Action: Finish[Tantallon Castle] v
'~/ \_(Reflection omitted) CJ/

/—m () AutoAct [
Question: Tenth Avenue Freeze-Out is the second song on

which of Bruce Springsteen's breakthrough album, that is the Question: Where did the form of music played by Die Rhéner

third studio album by Bruce Springsteen? Sauwantzt originate?

Thought: Bruce Springsteen's breakthrough album is Born to Thought: Die Rhoner Sduwantzt is a band from Germany.

Run. “~~-___ verify the correct Action: BingSearch[German music] ._~--.__, continue with the

Action: Retrieve[Born to Run] -~~~ inner answer C Observation: ... wrong inner answer

Observation: ..."Tenth Avenue Freeze-Out"... vs Thought: German music has a rich history and diverse genres.

Thought: The song "Tenth Avenue Freeze-Out" is on the Action: BingSearch[German folk music]

album Born to Run. Observation: ...

Action: Lookup[Tenth Avenue Freeze-Out] Thought: Die Rhéner Sauwantzt plays a style of music

Observation: ... influenced by German folk music.

Thought: The answer to the question is "Born to Run". Action: Finish[German folk music]

Action: Finish[Born to Run] @ (Reflection omitted) x
uReflection omitted) j \ j

Figure 5: Case study. AUTOACT (b) successfully addresses the failure in REACT (a) by employing a
more scientific combination of tools and making more accurate tool invocations. With more planning rounds,
AUTOACT (c) can validate its inner answers by continuing more rounds of self-verification. While this can also
lead to a longer context, gradually deviating AUTOACT (d) from the original question.

upon the naive self-instruct, but none of them have focused on better mobilizing the language model’s
internal knowledge without external information, and we leave this for our future work.

5.2 MODERATE DIVISION-OF-LABOR BENEFITS GROUP PLANNING PERFORMANCE

To explore the impact of the different granularity of self-differentiation and group planning, we further
subdivide the tool agent, assigning dedicated agents to manipulate each specific tool. We contrast
the performance of One agent, Three agents (vanilla AUTOACT), and the Tool-Specified setting in
Figure 4. It can be observed that finer task allocation does not necessarily lead to better performance.
This is consistent with the findings in Qiao et al. (2023a) which indicate that multi-tool joint learning
often outperforms single-tool individual learning. Therefore, appropriate differentiation (7hree) can
alleviate the pressure on individual agents, aligning with Simon’s principle of bounded rationality.
However, excessive differentiation (Zool-Specified) not only fails to achieve better results but can
sometimes even be less effective than not differentiating (One) at all. Moreover, it appears that the
performance loss of tool-specific agents compared to the three-agent approach is more significant
on harder problems. This is because challenging problems typically require more planning steps
and higher levels of collaboration among tools. By unifying tool invocations under one agent, it
becomes possible to effectively learn the interplay and interconnectedness between tools, thereby
compensating for potential information gaps arising from using tool-specific agents.

5.3 HUMAN EVALUATION

To get a deeper understanding of the capability of AUTOACT, we manually compare the quality of
trajectories generated by different methods from five aspects. We ask five NLP experts to individually
select the optimal trajectories generated by all methods in terms of the number of planning rounds,
the logical correctness of thoughts, action types, action parameters, and overall coherence. The final
results are determined based on major votes. During the evaluation, it is hidden for the evaluators of
the correspondence between the trajectories and the methods. We delete the reflection-related parts
from the trajectories generated by AUTOACT and randomly shuffle the order of trajectories of each
method in each data to minimize the potential bias as much as possible.

The evaluation results are depicted in Figure 6 and we further provide some cases in Figure 5. We
can observe a clear advantage for AUTOACT over other methods in determining the action type and
action parameters. This indicates that decoupling the missions of planning and tool invocation can



lead to better performance for both, alleviating the overwhelming pressure on a single agent. A
more intuitive comparison can be observed in Figure 5 (a)(b). AUTOACT successfully addresses the
failure in REACT by employing a more scientific combination of tools and making more accurate tool
invocations. Furthermore, AUTOACT tends to consume more planning rounds than other methods.
This allows AUTOACT to perform better on harder problems. However, this characteristic can be a
double-edged sword when it comes to simple problems. A surprising aspect is that AUTOACT can
validate its inner (Thought) answers by continuing more rounds of self-verification (see Figure 5
(c)). Unfortunately, this can also lead to a longer context, gradually deviating AUTOACT from the
original question (see Figure 5 (d)).

6 RELATED WORK

LLM-Powered Agents. The rise of LLMs [ AutoAct [] ReAct [] BOLAA [I] FireAct
has positioned them as the most promising key
to unlocking the door to Artificial General In-
telligence (AGI), providing robust support for Thought4- 2] s ] m Jlll®
the development of LLM-centered Al agents
(Wang et al., 2023a; Xi et al., 2023; Wang et al.,
2023c;d). Related works focus primarily on
agent planning (Yao et al., 2023; Song et al., Overall 2 s\
2022; Chen et al., 2023a), external tools har- T T T T
nessing (Patil et al., 2023; Qiao et al., 2023a; ’ 2 4&“ Rate(.)/i;) * 10
Qin et al., 2023), collective intelligence among

multi-agents (Liang et al., 2023; Liu'et al., 2023; by Llama-2-70b-chat on HotpotQA. We compare the
Chen et al., 2023¢), human and social property  pumber of planning rounds, the logical correctness of
inside agents (Zhang et al., 2023a; Park et al.,  thoughts, action types, action parameters, and the overall
2023; Mao et al., 2023), etc. However, despite coherence of each trajectory.

their success, existing methods still face two ma-

jor troubles. Firstly, most agents heavily rely on prompts for customization, which makes it difficult
to precisely tailor the behavior of the agent, resulting in unexpected performance at times. Secondly,
each agent is compelled to master all skills, making it challenging for the agent to achieve expertise in
every domain. In response, our approach leverages a proper division-of-labor strategy and fine-tuning
each sub-agent to equip different agents with distinct duties. These agents collaborate to accomplish
tasks orderly and effectively.

Rounds 58 | 16 | 16 |10

Action Type 3 =z

Action Para-| 30 | 22 | 24 | 24

Figure 6: Human evaluation of trajectories generated

Agent Fine-Tuning. Despite the vast interest in LLM-powered agents, the construction of agents
through fine-tuning has received limited attention. Most early works concentrate on fine-tuning to
optimize the model’s reasoning capabilities (Liu et al., 2022; Fu et al., 2023) or tool proficiency (Patil
et al., 2023; Qiao et al., 2023a; Qin et al., 2023). Recently, Chen et al. (2023a) attempt to fine-tune
agents with diverse tasks and trajectories for a better planning capability. Zeng et al. (2023) apply a
hybrid instruct-tuning strategy that enhances the agent’s abilities while preserving its generalization.
However, these methods still require a model to be a generalist. Moreover, the trajectories in the
training data are annotations from GPT-3.5/GPT-4 (OpenAl, 2022; 2023), which incurs significant
costs. Our approach enables the META-AGENT to autonomously synthesize trajectories and achieve
self-planning in a zero-shot manner, without relying on closed-source models or human labor.

7 CONCLUSION AND FUTURE WORK

In this paper, we propose AUTOACT, an automatic agent learning framework that does not rely on
large-scale annotated data and synthetic trajectories from closed-source models, while alleviating the
pressure on individual agents by explicitly dividing the workload. Experimental results demonstrate
that AUTOACT performs superior on challenging question-answering benchmarks compared to
various strong baselines. Interesting future directions include: 1) expanding AUTOACT to more
realistic task scenarios (Zhou et al., 2023a; Puig et al., 2018; Ichter et al., 2022), 2) boosting more
knowledge via self-instruct (as analyzed in §5.1), 3) iteratively enhancing synthetic trajectories via
self-improvement (Huang et al., 2023; Giilcehre et al., 2023; Aksitov et al., 2023). We will make our
code and data publicly available, in the hope that our work will foster future research in the field.
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A  HYPER-PARAMETERS

See Table 4.
Name Llama-2-7b&13b-chat Llama-2-70b-chat
lora_r 8 8
lora_alpha 16 16
lora_dropout 0.05 0.05
lora_target_modules q-proj, v_proj q-proj, v_proj
model_max_length 4096 4096
per_device_batch_size 2 2
gradient_accumulation_steps 1 1
warmup_ratio 0.03 0.03
epochs 5 3
batch size 4 1
learning rate le-4 le-4

Table 4: Detailed hyper-parameters we use for training.

B TASK INFORMATION

Task Name: HotpotQA

Task Description: This is a question-answering task that includes high-quality multi-hop questions.
It tests language modeling abilities for multi-step reasoning and covers a wide range of topics. Some
questions are challenging, while others are easier, requiring multiple steps of reasoning to arrive at
the final answer.

Task Data Examples:

Question: From 1969 to 1979, Arno Schmidt was the executive chef of a hotel located in which
neighborhood in New York?

Answer: Manhattan

Question: Are both Shangri-La City and Ma’anshan cities in China?
Answer: yes

Task Name: ScienceQA
Task Description: This is a multimodal question-answering task that necessitates a model to utilize
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tools for transforming image information into textual data. Simultaneously, this task incorporates
substantial background knowledge, requiring the language model to acquire external information to
enhance its comprehension of the task.

Task Data Examples:

Question: Which of these states is the farthest north?

Options: (A) West Virginia (B) Louisiana (C) Arizona (D) Oklahoma

Caption: An aerial view of a painting of a forest.

Answer: A. West Virginia

Question: Identify the question that Tom and Justin’s experiment can best answer.

Context: The passage below describes an experiment. Read the passage and then follow the
instructions below. Tom placed a ping pong ball in a catapult, pulled the catapult’s arm back to a
45 angle, and launched the ball. Then, Tom launched another ping pong ball, this time pulling the
catapult’s arm back to a 30 angle. With each launch, his friend Justin measured the distance between
the catapult and the place where the ball hit the ground. Tom and Justin repeated the launches with
ping pong balls in four more identical catapults. They compared the distances the balls traveled when
launched from a 45 angle to the distances the balls traveled when launched from a 30 angle. Figure:
a catapult for launching ping pong balls.

Options: (A) Do ping pong balls stop rolling along the ground sooner after being launched from
a 30-angle or a 45-angle? (B) Do ping pong balls travel farther when launched from a 30-angle
compared to a 45-angle?

Caption: A wooden board with a wooden head on top of it.

Answer: B. Do ping pong balls travel farther when launched from a 30 angle compared to a 45 angle?

C TooL LIBRARY

See Table 5.

D PROMPT

D.1 PROMPT FOR SELE-INSTRUCT

See Table 6.

D.2 PROMPT FOR TOOL SELECTION

See Table 7.

D.3 PROMPT FOR TRAJECTORIES SYNTHESIS

See Table 8.
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Name

Definition

Usage

BingSearch

BingSearch engine can search for
rich knowledge on the internet based
on keywords, which can compensate
for knowledge fallacy and knowl-
edge outdated.

BingSearch[query], which searches
the exact detailed query on the In-
ternet and returns the relevant in-
formation to the query. Be spe-
cific and precise with your query
to increase the chances of get-
ting relevant results. For example,
Bingsearch[popular dog breeds in
the United States]

Retrieve

Retrieve additional background
knowledge crucial for tackling
complex problems. It is especially
beneficial for specialized domains
like science and mathematics,
providing context for the task

Retrieve[entity], which retrieves the
exact entity on Wikipedia and re-
turns the first paragraph if it exists.
If not, it will return some similar
entities to retrieve. For example, Re-
trieve[Milhouse]

Lookup

A Lookup Tool returns the next sen-
tence containing the target string in
the page from the search tool, sim-
ulating Ctrl+F functionality on the
browser.

Lookup[keyword], which returns
the next sentence containing the key-
word in the last passage successfully
found by Retrieve or BingSearch.
For example, Lookup(river].

Image2Text

Image2Text is used to detect words
in images convert them into text
by OCR and generate captions for
images. It is particularly valuable
when understanding an image se-
mantically, like identifying objects
and interactions in a scene.

Image2Text[image], which gener-
ates captions for the image and de-
tects words in the image. You are
recommended to use it first to get
more information about the image
to the question. If the question
contains an image, it will return
the caption and OCR text, else, it
will return None. For example, Im-
age2Text[image].

Text2Image

Text2Image Specializes in convert-
ing textual information into visual
representations, facilitating the in-
corporation of textual data into
image-based formats within the
task.

Text2Image[text], which generates
an image for the text provided by
using multimodal models. For ex-
ample, Text2Image[blue sky]

Code Interpreter

Code Interpreter is a tool or soft-
ware that interprets and executes
code written in Python. It analyzes
the source code line by line and
translates it into machine-readable
instructions or directly executes the
code and returns Execution results

Code[python], which interprets and
executes Python code, providing a
line-by-line analysis of the source
code and translating it into machine-
readable instructions. For instance,
Code[print(’hello world!”)]

Table 5: Part of our tool library.
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Prompt for Self-Instruct

I want you to be a QA pair generator to generate high-quality questions for use in Task described as
follows:

Task Name: [task_name]

Task Description: [task_description]

Here are some Q&A pair examples from the Task:

[QA _pairs]

Modeled on all the information and examples above, I want you to generate new different
[gen_num_per_round] Question-Answer pairs that cover a wide range of topics, some of which are
difficult, some of which are easy, and require multiple steps of reasoning to get to the final answer.
The format is like below:

[one_example]

Table 6: Prompt used for self-instruct.

Prompt for Automatic Tool Selection

To successfully complete a complex task, the collaborative effort of three types of agents is typically
required:

1. Plan Agent. This agent is used to plan the specific execution process of the benchmark, solving a
given task by determining the order in which other expert language models are invoked;

2. Tool Agent. This agent is employed to decide how to use a specific tool when addressing a task.
Tools encompass interactive tools within the task environment as well as external tools or models.
The Tool Agent includes various tools that can be flexibly chosen;

3. Reflect Agent. This agent reflects on historical information and answers to assess whether the
response aligns with the provided query.

Above all, the Tool Agent includes many tools that can be flexibly selected. Now your task is to select
3 tools from the Tool Library for solving a given task. Note that all tools are based on language models,
and their inputs and outputs must be text. You only need to provide the names and descriptions of the
tools in order, without any additional output.

Task Prompt Template

The following is the given task name and description, and you need to choose 3 corresponding tools
from the Tool Library according to the above rules in the format of one line, one tool.

Task Name: [task_name]

Task Description: [task_description]

Tool Library: [list_of_tools]

Table 7: Prompt used for automatic tool selection.

Prompt for Trajectories Synthesis

I expect you to excel as a proficient question answerer in the task.

Task Name: [task_name]

Task Description: [task_description]

Solve a question-answering task with interleaving Thought, Action, and Observation steps. Thought
can reason about the current situation, and Action can be [action_num] types:

list of action selected from automatic tool selection [name, definition , usage]

Question: [question][scratchpad]

Table 8: Prompt used for trajectories synthesis.
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