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Abstract

We consider a population protocol version of the
SIR model. In every round, an individual is chosen
uniformly at random. If the individual is suscepti-
ble, then it becomes infected w.p. βIt/N , where
It is the number of infections at time t and N is
the total number of individuals. If the individual
is infected, then it recovers w.p. γ, whereas, if the
individual is already recovered, nothing happens.
We prove sharp bounds on the probability of the
disease becoming pandemic vs extinguishing early
(dying out quickly). The probability of extinguish-
ing early, Pr [Eext], is typically neglected in prior
work since most use (deterministic) differential
equations. Leveraging on this, using Pr [Eext], we
proceed by bounding the expected size of the pop-
ulation that contracts the disease E [R∞]. Prior
work only calculated E

[
R∞ | Eext

]
, or obtained

non-closed form solutions.
We then study the two-country model also account-
ing for the role of Pr [Eext]. We assume that both
countries have different infection rates β(i), but
share the same recovery rate γ. In this model, each
round has two steps: First, an individual is chosen
u.a.r. and travels w.p. ptravel to the other country.
Afterwards, the process continues as before with
the respective infection rates.
Finally, using simulations, we characterise the in-
fluence of ptravel on the total number of infections.
Our simulations show that, depending on the β(i),
increasing ptravel can decrease or increase the ex-
pected total number of infections E [R∞].

1 INTRODUCTION

In this paper we consider the well-known SIR process which
is used to study the spread of a contagious disease. The

model was introduced in the early 20th century (Ross and
Hudson [1917], Kermack and McKendrick [1927]). The
population is split into three compartments (or states): sus-
ceptible (S), infected (I) and recovered (R). At the beginning
of an epidemic, a small number of individuals are infected
and the rest of the population is susceptible. Susceptible
individuals can be infected and infected individuals can
recover and become permanently immune to the disease.
The model is often used to study the spread of diseases like
COVID-19, measles, mumps and rubella.

When an epidemic starts, the number of infected individuals
increases rapidly. At some point, the proportion of still sus-
ceptible and already recovered individuals will be such that
the spread of the infection will begin to slow down to the
point of complete stop. The model is characterised by tran-
sition rates between the (compartments/states) depending
on the infection rate β and the recovery rate γ.

The so-called reproduction number of an SIR process is
defined as R0 = β/γ. This number is equal to the expected
number of secondary cases following the introduction of one
infected individual into a fully susceptible population. This
reproduction number determines how the process evolves
over time and how many individuals will get infected un-
til the infection dies out. In general SIR processes behave
as follows. If R0 < 1, the disease extinguishes early and
the number of total infections follows an exponential dis-
tribution. If R0 > 1, the number of infected individuals
first grows exponentially (in expectation). If the number
of infected and recovered individuals reaches a fraction of
1− 1/R0 the number of infected individuals decreases, in
expectation, until it reaches zero. The fraction 1− 1/R0 is
also called herd immunity threshold.

Looking closer at the case R0 > 1, one can see that the total
number of infections follows a bi-modal distribution. The
first peak represents early extinction, meaning the process
terminates early (see Section 2 for a precise definition). If
this unlikely event does not happen, then the process is
likely to reach the herd immunity threshold and a much
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larger number of individuals gets infected.

In this paper we study the SIR process as a population
protocol. We assume that the population has a fixed size
N and that the individuals are modelled as a finite state
machine. The state space of our protocol is simple, each
individual being in one of the three states S, I , or R. At
the beginning of time t, we denote by St, It and Rt the
number of individuals susceptible to a disease, infected
individuals and recovered individuals, respectively. At the
beginning of the process t = 0, one individual (or a small
subset of them) is infected and all other individuals are
susceptible. No individual is recovered yet. The process is
now defined as follows. In each step a pair of individuals
i, j is chosen uniformly at random and is allowed to change
state. If the individual i is currently infected, then it recovers
with probability γ. If i is susceptible and j is infected, then
i becomes infected with probability β.

As mentioned before, it may happen that the disease dies out
quickly without ever evolving into a pandemic, i.e., with-
out reaching the herd immunity threshold. In this paper
we calculate the probability of early extinction as a func-
tion of R0 = β/γ and we present a fully rigorous analysis
for such probability using coupling arguments. We show
that, if we start with s infected individuals, the probabil-
ity for early extinction Pr [Eext] is asymptotically (1/R0)

s

assuming β > γ + ε for some arbitrarily small constant
ε. If β < γ − ε, then Pr [Eext] = 1 − o(1). We then
calculate the expected size of the population that gets in-
fected throughout the process E [R∞]. Note that R∞ de-
notes the number of recovered individuals at the end of
the process. The recovered state is the only terminal state
and equals the number of individuals that were infected
throughout the process. We first show that E [R∞ | Eext]
is close to zero. Then we show, conditioning on Eext,
that E

[
r∞ | Eext

]
=
(
1 +W

(
−R0 · e−R0

)
/R0

)
± o(1),

where r∞ = R∞/N . Combining our results, we show that,
without any conditioning,

E [r∞] = E
[
r∞ | Eext

]
· (1−Pr [Eext])± o(1).

Many of the results found in the literature are based on first-
order methods (mean field approaches) (e.g., Kröger and
Schlickeiser [2020], Bicher and Popper [2013]) and they
give an expression similar to our term for E

[
r∞ | Eext

]
as

an estimation of E [r∞]. This is due to the fact that, with a
mean field approach, the process is regarded as deterministic,
which means that early extinctions cannot happen for R0 >
1. Furthermore, such approach neglects the variance of the
process, possibly crucial in the analysis of random processes
(see Berenbrink et al. [2017] for a majority type process
where the expected change is the same, but the variance in
the process determines the convergence time). Although, it
has been observed through simulations that the deterministic
and stochastic processes differ in terms of the total number
of infections (e.g., Fig.13 of Allen and Burgin [2000]).

In the second part of our paper we consider a two-country
setting: we show through simulations how travelling affects
the spread of the disease. A possible ban, or restriction,
on travelling has been considered and applied by govern-
ments in some cases, especially with respect to the cur-
rent pandemic. Such measure falls under the label of non-
pharmaceutical interventions (NPI). We introduce an ex-
tension of the model where each individual resides in one
of two countries. We assume that both countries can have
different infection rates, β(1) ̸= β(2), and each country has
population size N (1), N (2) with N = N (1) + N (2). The
process is similar to our original process. First, an indi-
vidual i is chosen uniformly at random among the whole
population of both countries (with probability 1/N ). The
chosen individual then travels to the other country with a
probability of ptravel and remains in the current country w.p.
1 − ptravel. After this, one of the two countries is chosen
with a probability proportional to its population and one step
of the single-country process is performed in that country.
We study, via simulations, the connection between ptravel
and the total number of infections over time. We obtain
interesting and surprising insights. For example, one would
think that increasing ptravel increases the total number of
infections. While this is generally true for small values of
ptravel, (though for some values of β and γ, not even this is
true) it turns out that this does not hold if one country has
R

(1)
0 = β(1)/γ > 1 and the other country has sufficiently

small R(2)
0 < 1. In that case for large enough values of

ptravel, the total number of infections is decreased. Our sim-
ulations suggest that early extinction affects the size of the
epidemic, leading its average to be reduced and its variance
to increase.

1.1 RELATED WORK

The SIR model is a very basic mathematical model for the
spread of diseases (e.g. it does not model birth and death
of individuals, the latter resulting from the illness or other
reasons) and a very large number of generalizations were
suggested in the literature. Due to the vast literature, we will
only discuss results in the SIR comparable to our results
and we will concentrate on analytical results. There are also
many compartmental models similar to the SIR model. See
Li [2018], Daley [1999] for a nice overview about different
mathematical models.

The SIR model was introduced in 1927 by Kermack and
McKendrick [1927], building on work by Ross and Hud-
son [1917]. The authors also introduced the well-known
set of non-linear ordinary differential equations (which we
introduce in this paper too) to describe the spread of the
disease. The authors showed the so-called threshold the-
orem, which predicts the critical fraction of susceptible
individuals in the population that must be exceeded if an
epidemic is to occur. The authors show that s∞ = 1−r∞ =



s0e
−R0(r∞−r0), where s∞ = |S∞|/N (fraction of suscep-

tible individuals as time goes to infinity), r∞ = |R∞|/N ,
st = |St|/N , and rt = |Rt|/N . This transcendental equa-
tion has a solution in terms of the Lambert W function:
s∞ = −R−1

0 W (−s0R0e
−R0(1−r0)).

Most of the publications investigating the SIR model use
numerical methods, employing a wide number of different
techniques (see Biazar [2006], Rafei et al. [2007a,b] and
the references therein). There is a huge amount of litera-
ture studying very diverse effects in the SIR compartmental
model. Much of it approximates the random process with a
deterministic process defined via ordinary differential equa-
tions. Hence an early extinction of the process is not pos-
sible. In Harko et al. [2014] the authors derived an exact
analytical solution to the SIR model in parametric form. A
similar result was shown by Miller [2012, 2017]. In Shabbir
et al. [2011] an exact analytical solution to the SIR and SIS
models with constant population is obtained with the help of
direct integration tools. Lefèvre and Simon [2020] propose
a block-structured Markov process to describe the spread of
epidemics of SIR type and they determine the distribution
of the final state of the process. In Black and Ross [2015]
the authors present a new method for the recursive computa-
tion of the epidemic size distributions. The authors do not
estimate the expected size of the epidemic nor do they give
a closed form of its distribution.

Pastor-Satorras et al. [2015] give a great overview about
epidemic processes in networks: Here the individuals are
connected by a network modelling social contacts, such that
the infection spreads from a node to its neighbours. The
authors of Janson et al. [2014] consider random graphs with
a given degree sequence and prove that there is a threshold
as a function for γ, β, and given vertex degrees. Below the
threshold, only a small number of infections occurs, while
above it most of the graph gets infected. Kempe et al. [2003]
consider influence maximisation in the independent cas-
cade model introduced in Goldenberg et al. [2001a,b]. The
process works in parallel rounds and it starts with a set of
active (infected) nodes. Every active node infects every non-
infected neighbour with a probability of p. Then the active
nodes become inactive and the newly infected neighbours
become active. The process runs until no more activations
are possible. The optimization problem of selecting the most
influential nodes to be activated in the beginning is NP-hard
and the authors provide the first provable approximation
guarantees for efficient algorithms. For an overview about
results in this model see Shakarian et al. [2015].

Bohman and Picollelli [2012] consider an SIR process of
random graphs with a given degree sequence in an contin-
uous time model. Each infected node sends infections to
each of its neighbors at times determined by independent
exponential random variables with parameter λ. An infected
node recovers at a random time given by an independent ex-
ponential random variable with parameter r∞. The authors

assume that the infection spreads from a single infected
node and show that either the disease halts after infecting
only a small number of nodes, or an epidemic spreads to
infect a linear number of nodes. The authors also show that,
conditioned on the event that more than a small number
of nodes are infected, the epidemic is likely to follow a
trajectory given by the solution of an associated system of
ordinary differential equations. Their approach gives bounds
on the total number of infected nodes.

There is also related work that considers an agent-based
modelling of the SIR model (e.g. Bicher and Popper [2013]).
These investigate some form of non-homogeneous popu-
lations (e.g. distances between agents given by a graph),
and analyse results empirically, either using geographic in-
formation systems Perez and Dragicevic [2009], or social
relationships Alzu’bi et al. [2021].

Many works model how different societal factors play a role
in the evolution of an epidemic. In the case of the COVID-19
pandemic, many of them focus on accounting for different
factors, like social distancing measures and testing regi-
mens in order to build a reliable model. In Levesque et al.
[2021] the authors create a Crump-Mode-Jagers continuous
time branching process modelling COVID-19 propagation
in order to decide which mitigation strategies are more effec-
tive. Similar works developed mathematical and data-driven
models in order to establish the efficacy of such measures
Sun et al. [2020], Choi and Shim [2021], Liu et al. [2021].
However, there is still a lack of work studying the role trav-
elling has on the epidemic. In Arino and Van Den Driessche
[2003], the authors incorporate the concept of travel into the
ordinary differential equations for a Susceptible-Exposed-
Infected-Removed-Susceptible (SEIRS) model. They derive
bounds on R0 and show that a disease-free equilibrium is
reached, though they hint at its uniqueness through simu-
lations and no discussion is made about the final expected
size of the population. Their model is complex and detailed,
with the central assumption that individuals come back to
the origin country before leaving again for any other country.
This is different from our work, where we do not require
individuals to follow travel patterns. In Zakary et al. [2017]
a multi-regions discrete-time model describes the spatial-
temporal spread of an epidemic. Starting from one region,
this enters to regions connected with their neighbors by any
mean favouring movement. Like in our case, the authors
consider homogeneous SIR populations.

2 MODELS AND RESULTS

In this section we introduce formally the two models consid-
ered in this paper. Both models work in sequential rounds
and are population protocols Angluin et al. [2006]. At ev-
ery round, two individuals i and j are picked uniformly at
random. Individual i can either become infected, recover, or
stay susceptible, depending on the current state of i and j. In



our or second model, individuals can also travel. We study
discrete-time models, where in each integer step, an action
occurs. One major advantage the discrete-time models have
over continuous time models is that they allow to study the
early extinction phenomenon. Note that continuous systems
and, in particular, differential equations fail to capture early
extinctions.

Single Country Model. Let St, It, Rt be the number of
susceptible, infected and recovered individuals at time t,
with St + It + Rt = N , where N is the total number of
individuals. Our SIR process is defined as follows. In every
round two individuals i, j are picked uniformly at random.

1. If individual i is infected, then it recovers w.p. γ.
2. If individual i is susceptible and j is infected, then i

will becomes infected w.p. β.
Note that β · It/N is the probability that the selected sus-
ceptible individual i becomes infected. We assume that β
and γ are both constants. In expectation, the system evolves
as follows.

E [It+1] = It + β(It/N)(St/N)− γ(It/N) (1)
E [St+1] = St − β(It/N)(St/N) (2)
E [Rt+1] = Rt + γ(It/N) (3)

The reproduction number is defined as R0 = β/γ. This
number is equal to the expected number of infections caused
by an infected individual assuming that S = N . Over time,
the number St decreases such that every newly infected indi-
vidual introduces less and less infections into the population.
The herd immunity threshold is defined as 1− 1/R0. This
is the value of St/N such that R0 · St/N = 1.

In Last [2001], a pandemic is defined as “an epidemic oc-
curring worldwide, or over a very wide area, crossing inter-
national boundaries and usually affecting a large number
of individuals”. In this work we assume a simplified no-
tion of pandemic, depending only on the total number of
infected individuals. We say a process results in a pandemic
if at one point of time the number of active infections (It)
reaches

√
N .1 Moreover, if the process does not result in

a pandemic, then we say it extincts early. We denote the
corresponding events by Epan and Eext. Theoretically, over
time a constant fraction of the population might become
infected, even though at any point of time the number of
current infections stays below

√
N . However, with the same

techniques as we use in this paper, one can show that this

1Our results suggest that any value > logN scaled with β and
γ will work, as reaching it will ensure that eventually a constant
fraction of N will become infected with very high probability. The
reason for

√
N is it avoids using terms of γ and β in the definition,

assuming they are both constants (independent of N ). There is
virtually no difference between a threshold of say C logn and any
value in n1−ε for constants C = C(β, γ) and ε < 1, since, if an
infection reaches size C logn, then it will also reach n1−ε with
high probability.

event happens with an exponentially small probability—it
is akin to a biased random walk on a line remaining in the
interval (1,

√
N) for a linear number of rounds. Finally, we

define R∞ as the epidemic final size; since all individuals
eventually recover this corresponds to R∞ = limt→∞ Rt.
We define r∞ = R∞/N . Let W denote the Lambert W-
function, which is the inverse of function f(W ) = WeW

considered for W ∈ [−1,∞) (where function f increases
monotonically from −1/e to infinity).

Model for two countries. In this case we assume that the
N individuals are distributed over two countries. N (1)

t and
N

(2)
t denotes the number of individuals staying in country

1 and 2 at time t. We assume N
(1)
t = N

(1)
t = N/2. The

number of susceptible, infected and recovered individuals
at time t in country i is denoted by S

(i)
t , I

(i)
t and R

(1i)
t for

i ∈ {1, 2}. Initially we have I
(1)
t = I

(2)
t = s for s ≥ 1.

We assume that every country has its own infection rate:
β(1) and β(2). The recovery rate in both countries is γ. The
process has two selection steps and step t works as follows.

1. Pick an individual i uniformly at random (with prob.
1/N ). With probability ptravel individual i travels from
its current country to the other country. Adjust N (1)

t

and N
(2)
t accordingly.

2. Pick country ℓ as follows: ℓ = 1 w.p. N (1)
t /N and 2

otherwise.
An SIR step as described above is applied on the chosen
country.

(a) Pick a pair of individuals i and j uniformly at
random from country ℓ.

(b) If individual i is infected, then it recovers w.p. γ.
(c) If individual i is susceptible and j is infected,

then i will become infected w.p. β(ℓ).

Compared to existing works, this model is simpler and pos-
ing minimal constraints to the movement of individuals.
This makes it easily adaptable, for example in the case of
a change in the number of countries involved. Further, a
simpler model might facilitate future analytical results re-
garding the expected size of the epidemic.

2.1 RESULTS

Our main result Theorem 4 shows a very tight characterisa-
tion of the early extinction probability. Recall that a process
extincts early if the number of infected dies out before ever
reaching It ≥

√
N , where N is the size of the population.

Recall that R0 = β/γ is the reproduction number, R∞ is
the total number of infected individuals and r∞ = R∞/N .
First we present a simplified version of Theorem 4.

Theorem 1 (Simplified version of Theorem 4). Let β +
γ ≤ 1. Consider the single country model starting with



I0 = s ≤
√
N

2 logN log logN infections. Let ε = 5 logN/
√
N

and let Pr [Eext] be the probability of early extinction.

1. If β < γ − ε, then Pr [Eext] ≥ 1− o(1).

2. If β > γ + ε, then Pr [Eext] = (1/R0)
s ± o(1).

For the case where β > γ and s = 1 the probability of
early extinction is essentially 1/R0 = γ/β. If s > 1 the
probability decreases exponentially in s. If β < γ, then
the process is very likely to reach an early extinction. We
leave the case β = γ open but note that ε will be arbitrary
small with growing N . The challenging part in the proof of
Theorem 4 is non-linear update rule of our process. Note
that rewriting (1)-(3) by replacing Rt = N−St−It reveals
the non-linearity. To overcome these challenges, we use a
series of couplings, allowing us to relate our SIR process to
a biased random walk.

Note that in the above result Eext is defined as the event
of having

√
N many infected individuals at the same time.

Hence, it is still possible that R∞ = Ω(N), i.e., at the
end of the process the number of recovered individuals
(which equals the total number of infections) is linear in
N . In Proposition 1 (see Section 3.1) we show that this is
not the case; in the event of Eext the number of recovered
individuals never exceeds

√
N logN , w.h.p. This means

that our bounds on the the early extinction still hold even if
the definition was changed to requiring R∞ ≤

√
N logN .

The next theorem shows a bound on the the expected number
of total infections E [R∞], expressed in terms of the Lam-
bert function W . Note that W (x) < 0 for x ∈ [−1/e, 0). As
mentioned before, many approaches like first-order methods,
mean field approaches and ordinary differential equations
ODE (see e.g., Kröger and Schlickeiser [2020], Bicher and
Popper [2013]), cannot account for early extinction due to
the underlying determinism. Instead, they obtain bounds
of the kind E

[
r∞ | Eext

]
. There has also been been some

work based on stochastic differential equations (e.g., Allen
[2008], Williams et al. [2012]), complemented with simu-
lations results. We are not aware of results based on SDEs
that obtain closed-form results for E [r∞].

Theorem 2. Assume that |β − γ| ≥ ε for an arbitrarily
small constant ε. Assume N = N(ε) is large enough. Let
W : [−1/e,∞) −→ [−1,∞) be the Lambert function.
Consider the single country model starting with I0 = s ≤√

N
2 logN log logN infections.

1. If β < γ − ε, then the expected total number of infec-
tions is sublinear, i.e., E [r∞] = o(1).

2. If β > γ + ε, then

E [r∞] ∼
(
1 +

W(−R0·e−R0)
R0

)(
1−

(
1
R0

)s)
.

See Fig. 1 for a depiction.

Figure 1: The Plot Shows r∞ for Different Values of R0 =
β/γ and s = 1.

The following theorem estimates the expected number of
infections conditioned on not having early extinction. It is
used to show Theorem 2. The following theorem yields a
result similar to the one obtained through first-order methods
used by Allen [2008], Williams et al. [2012], but adapted
to our population based model. In Theorem 6 (in Section 4)
we provide a generalisation of the following theorem.

Theorem 3. Consider the single country model. Assume
that β > γ are constants. Let W : [−1/e,∞) −→ [−1,∞)
be the Lambert function. Then, for large n,

E
[
r∞ | Eext

]
∼

(
1 +

W
(
−R0 · e−R0

)
R0

)
. (4)

Furthermore, r∞ is concentrated around its expected value.

3 EARLY EXTINCTION

The SIR model described in Section 2, often results in herd-
immunity, where a large fraction of the population was
infected such that only very few susceptible individuals re-
main. From then on, the number of infections decreases
slowly until it finally reaches zero. However, in some case,
even when β > γ, it can happen that the number of infec-
tions remains low and the virus vanishes very suddenly. This
is what we refer to as an early extinction and which is the
focal point of this section. We will derive bounds on the
probability of an early extinction in terms of the parameters
γ and β. The formal statement is given in the next theorem
and implies the theorem given in Theorem 1.

Theorem 4. Consider the single country SIR model as
described in Section 2. Define τ =

√
N logN , ε =

5 logN/
√
N , and ε′ = ε(N − τ)/N , and assume I0 = s

for any s ≤
√
N

2 logN log logN . Then we have for β > γ + ε(
γ
β

)s
− 3

N ≤ Pr [Eext] ≤
(
1 + sτ

N−sτ

)(
γ
β

)s
+ 2

N

and for β < γ − ε



1−
(

γ
β

)s−√
N

− 2
N ≤ Pr [Eext] ≤ 1

To show Theorem 4 our approach is as follows. Ideally, we
would like to bound the number of infections as a (biased)
random walk over the number of infected individuals. The
probability that such a random walk reaches either of its end
points are well-understood. Unfortunately, here the proba-
bility to ’walk’ from It to It − 1 or It + 1 is a function of
both It and St. We avoid the dependency on It by consid-
ering active steps only. Recall, these are steps in which the
number of infected individuals either increases by one or
decreases by one. This allows us to drop the terms It/N in
the transition probabilities. We circumvent the dependency
on St by defining a family of processes and by coupling
them with which each other (see Section 3.1). The processes
will be defined and motivated later in this section. Once both
problems are solved, we are left with four biased random
walks (upper vs lower bounds and β < γ vs β > γ). This
allows us in Theorem 4 to derive almost tight bounds on
Pr [Eext].

3.1 COUPLINGS

In this section our goal is to show Theorem 5 which upper
and lower bounds the probability of early extinction of our
process by the extinction probability of two biased random
walk process. Theorem 5 shows that the approximation
error is tiny and has only a second-order impact on the
extinction probability. In order to prove Theorem 5, we
will define two intermediate processes and provide three
pairwise couplings.

In this section, unless stated otherwise, we only consider ac-
tive steps, i.e., steps where It+1 ̸= It. The subscript t counts
now only the active steps. Recall that Eext (early extinction)
is the event that the number of infections reaches zero be-
fore ever having

√
N infected individuals at the same time.

Define stopping time as T = mint

{
It = 0 or It =

√
N
}

.
Hence, T refers to the number of active steps until there
are either zero or

√
N many infected individuals, and Eext

is the event that IT = 0. For any SIR process P , we de-
note by ξ

(P )
t the configuration of P at time t, which is

given by the triplet ξ(P )
t =

(
S
(P )
t , I

(P )
t , R

(P )
t

)
. We de-

fine τ =
√
N logN and a second stopping time Tτ =

mint{It = 0, It =
√
N or t = τ} = min{T, τ}.

Compared to the stopping time T , here the process does
not only stop if the number of infected individuals reaches
zero or

√
N but also if that does not happen during the

first τ (active) time steps. All our processes are stopped at
time either T or Tτ . We assume that for every t larger that
the stopping time we have ξ

(P )
t = ξ

(P )
T or ξ(P )

t = ξ
(P )
Tτ

,
respectively. Now we are ready to define our processes,
which we call P, Pτ,∗, P∗,S , Pτ,S .

no time limit time limit τ
S not fixed P Pτ,∗
S fixed P∗,S Pτ,S

Table 1: Description of the processes.

P Pτ,∗ P∗,S Pτ,S
Prop 1 Prop 2 Prop 3

Figure 2: Diagram of the couplings

1. P is our original process with the stopping time T .
2. Pτ,∗ is our original process with the stopping time Tτ .
3. Fixing St over time to a constant S ∈ {N − τ,N}, we

define the following biased random walk process P∗,S .
At each round the following is done.

(a) Draw random numbers XI , XS , Xa i.i.d. and
u.a.r. from [0, 1]

(b) If XI ∈ [0, I
(P∗,S)
t /N), then

i. if Xa ∈ [0, β) and Xs ∈ [0, S/N ], increase
I
(P∗,S)
t ;

ii. if Xa ∈ [β, β + γ), decrease I
(P∗,S)
t .

The nice property about process P∗,S is that (since we
only consider active time steps) the process behaves
exactly like a biased random walk. The increase prob-
ability of It is βS/N and the decreas probability is γ.
For this process we apply the stopping time T .

4. For S ∈ {N−τ,N}, we define the process Pτ,S . Pτ,S

behaves like P∗,S but we apply the stopping time Tτ .

Table 1 sums up the four processes, while Fig. 2 shows the
couplings we are going to prove in the following sections.
In this section we will show the following result.

Theorem 5. Consider the processes P and P∗,S . We have

Pr
[
I
(P∗,N−τ )
T =

√
N
]
− 2/N ≤ Pr

[
I
(P )
T =

√
N
]
≤

≤ Pr
[
I
(P∗,N )
T =

√
N
]
+ 2/N, and

Pr
[
I
(P∗,N )
T = 0

]
− 2/N ≤

Pr
[
I
(P )
T = 0

]
≤ Pr

[
I
(P∗,N−τ )
T = 0

]
+ 2/N

From this it follows that we can analyse the early extinction
time of P∗,S instead of P . To show Theorem 5 we use
3 couplings: Proposition 1 couples processes P and Pτ,∗,
Proposition 2 couples Pτ,∗ and Pτ,S , and Proposition 3
connects Pτ,S and P∗,S .

Proposition 1. With prob 1−1/N we have I(P )
T = I

(Pτ,∗)
Tτ

.

Proposition 2. Consider the processes Pτ,∗ and Pτ,S for

S ∈ {N,N − τ}. Let P = Pr
[
I
(Pτ,∗)
Tτ

=
√
N
]
. We have

Pr
[
I
(Pτ,N−τ )
Tτ

=
√
N
]
≤ P ≤ Pr

[
I
(Pτ,N )
Tτ

=
√
N
]
.



Proposition 3. Consider the processes Pτ,S and P∗,S for
S ∈ {N − τ,N}. Then we have

Pr
[
I
(Pτ,N )
Tτ

=
√
N
]
≤ Pr

[
I
(P∗,N )
T =

√
N
]
+ 1/N, and

Pr
[
I
(P∗,N−τ )
T =

√
N
]
− 1/N ≤ Pr

[
I
(Pτ,N−τ )
Tτ

=
√
N
]

Proof. This proof is similar to proof of Proposition 1.

Putting all three couplings together yields Theorem 5. From
this we are finally able to conclude Theorem 4, since now
we can analyse a biased random walk instead. The proof
distinguishes between two cases, depending on whether β
or γ is larger and builds on known results for biased random
walks. It can be found in the supplementary material.

4 TOTAL NUMBER OF INFECTIONS

In this section we analyse the total number of infections for
the SIR model for one country. The proof can be found in
the full version.

Theorem 6. Consider the single country model. Assume
that β − γ ≥ ε for an arbitrarily small constant ε. As-
sume N = N(ε) is large enough. Let W : [−1/e,∞) −→
[−1,∞) be the Lambert function. Consider a time step
t∗ = ω(1). Let E ′ be the event It∗ ∈ [ω(1), o(N)] and
Rt∗ = o(N). Then, for large n,

E [r∞ | E ′] ∼

(
1 +

W
(
−R0 · e−R0

)
R0

)
. (5)

Furthermore, r∞ is concentrated around its expected value.
Moreover, E [r∞ | E ′] is concave for R0.

5 SIMULATIONS FOR TWO COUNTRIES

In this section, we study the impact of travelling and its
relationship to early extinction on the total number of in-
fections. Recall that ptravel is defined as the travelling
rate. Without loss of generality we set γ = 0, 2 in all our
simulations.2 We set the initial size of each country to be
N

(1)
0 = N

(2)
0 = 2000. Note that these size vary to a small

extent throughout the process due to traveling individuals.
The total population is N = N

(1)
0 +N

(2)
0 = 4000. Initially,

there is one infection per country (I(1)0 = I
(2)
0 = 1) and

the rest of the population is susceptible. In our simulations
we vary the travelling rate ptravel and the infection rates
β(1) and β(2). W.l.o.g. we assume β(1) ≤ β(2). For each
value of ptravel, β(1), and β(2), we output the average of

2By changing β one can get arbitrary reproduction numbers
R0. Similarly, one can vary ptravel to obtain arbitrary ratios of
ptravel/γ.

10.000 iterations. The outcome of the simulations can be
found in Fig. 3 and Fig. 4. For each value of ptravel we

plot the average number of infections R̂(1)
∞ in country one

in light green and in light blue we plot the average num-

ber of infections in country two R̂
(2)
∞ . Note that we write

R̂∞ instead of E [R∞] to emphasise the difference between
the average and the expected value. The total number of

infections across both countries R̂∞ = R̂
(1)
∞ + R̂

(2)
∞ is plot-

ted in red. We plot the smoothed version of R̂∞ in black.
Let R∞(ptravel) denote the total number of infections for
a given travelling rate ptravel. Finally, the corresponding
standard deviation is plotted using vertical bars.

First, note that the standard deviation appears large: this
is inherent to the process and due to the fact that early ex-
tinctions (in this case, when R̂∞ ≤

√
2N =

√
4000 ≈ 63)

occur with constant probability. Indeed, the plots are the
result of averaging among all the iterations, included the
ones resolving in early extinction. By excluding runs with
an early extinction, the standard deviation becomes neg-
ligible. Another effect of this exclusion is that the values
of R̂∞ turn up to be visibly smaller (see Fig. 3). Another
interesting detail with respect to this is shown in Fig. 4a. In
there, the error bars representing the variance significantly
decrease with increasing ptravel. This tells us that R̂∞ be-
comes small because the percentage of runs that terminate
with early extinction increases significantly, compared to
the case where no or little travel is present. This to the point
that these runs do not constitute the variance of the process
anymore, but the most likely outcome, hence the reduction
in the variance.

It is perhaps natural to assume that increasing ptravel also
increases R̂∞. While this is true for some values of the βs,
there are also values for which R̂∞ first increases mono-
tonically and then decreases monotonically. In addition, for
large ptravel the number of total infections can drop below
the value where no travelling occurs, i.e., R̂∞(1) < R̂∞(0).
Table 2, Fig. 3 and Fig. 4.

Simulation Result 1. Assume that γ = 0.2.

1. β(1) = 0 and β(2) = 0.3 results in R∞(ptravel) being
non-monotone. Moreover, R∞(1/2) = O(1) (Fig. 4a).

2. β(1) = 0 and β(2) = 0.5 results in R∞(ptravel) being
non-monotone. (Fig. 4b).

3. β(1) = 0.5 and β(2) = 0.8 results in R∞(ptravel)
increasing monotonically. (Table 2, and also Fig. 4c).

Based on this, we believe that the simulation results can be
generalised to the following conjecture.

Conjecture 1. For all β(1), β(2) and γ we have

(i) β(1), β(2) < γ: E [R∞(ptravel)] = O(1) for all
ptravel ∈ [0, 1].



(a) Including Early Extinction.

(b) Excluding Early Extinction.

Figure 3: The Plots Show r∞ as Function of ptravel Aver-
aged Across 1000 Iterations. We Consider two Different
Settings. In the Plot of the l.h.s. we Plot R̂∞. For the Plot on
the r.h.s. we Plot R̂∞ Conditioned on Eext. The Plots Shows
that R̂∞ Conditioned on Eext has Only very Little Standard
Deviation whereas the Standard Deviation of R̂∞ is Consid-
erably Larger. However, this is Unavoidable since there is a
Positive Probability of an Early Extinction in which Case
the Total Infections is Close to 0. Therefore, the Standard
Deviation is Naturally of Linear Size. Note that in All Other
Experiments we have Ten Times More Iterations Suggesting
an Adequate Number of Iterations in our Experiments.

(ii) β(1) < γ < β(2) is non-monotone.

(iii) β(1), β(2) > γ: E [R∞(ptravel)] increases monoton-
ically. Note that Fig. 4c suggests that it is important

Table 2: The Table Shows Our Simulation Results for
R̂∞(ptravel) Given Different Values of βs over 10.000 It-
erations, with the Exception of (0.2, 0.7) – Where Early
Extinction (EE) Runs are Excluded (*) – that is Averaged
Over 1000 Iterations. We Round to the Nearest Integer.

β(1), β(2)

ptravel 0 0.05 0.1 0.2 0.5 0.95

0, 0.3 395 293 121 32 12 10
0, 0.5 1078 1514 1491 1352 1025 857
0, 0.8 1470 2266 2416 2497 2499 2500

0.2, 0.7 1399 2489 2655 2695 2679 2798
(*) 0.2, 0.7 1899 3181 3373 3454 3460 3445

0.3, 0.3 763 1276 1301 1282 1305 1294
0.3, 0.5 1467 2357 2433 2464 2419 2416
0.3, 0.8 1868 2926 3085 3132 3189 3185
0.5, 0.8 2543 3367 3407 3428 3443 3465
0.8, 0.8 2953 3673 3687 3688 3679 3682

for the βs to be strictly larger than γ in order for
E [R∞(ptravel)] to increase monotonically.

At the core of the conjecture is the following observation. As
ptravel increases, both β(1) and β(2) are blended together
resulting in a linear combination of both values. Consider
the following thought experiment where the βs fully blend
until the “effective” β of both cities is the average β =
(β(1) + β(2))/2. If we ignore the effect of travelling, all
statements of the conjecture follow from the Theorem 2.
On the other hand, for high values of ptravel, then we can
look at β and see in Fig. 4a that if β is below γ, then the
total number of infections R∞ is close to 0. We give the
following explanation. When travel becomes more likely,
infected agents might be selected to travel from one country
to the other one. In such starting country, then, there will be
less infected agents, making the infection step even more
less likely than the recovery step. This further reduces the
number of infected agents. On top of this, recovered or
susceptible agents can be selected to travel too, lowering the
ratio of infected agents in their destination country. Since
the process starts with a small number of infected agents,
travelling will undermine their influence significantly more
than the influence of susceptible or recovered agents.

For β larger than γ, R∞ is concave (see Theorem 6). The
concavity is the key to the understanding. For example,
when both original βs were above γ, then having β in both
countries increases R∞, due to the concavity. Let us con-
sider the cases of the conjecture one by one. Part (i) follows
since β < γ and any blending of the βs will yield “effec-
tive” βs less than γ. For part (ii) note that when ptravel = 0
and no blending of the βs occurs, then we have that in one
city R0 > 1 (expected pandemic) and in the other R0 < 1
(expected early extinction). When ptravel is slightly above 0
then the blending of the βs effectively decreases β(2) a little
bit, the number of infectable individuals also doubles once
ptravel > 0. This becomes clear when one considers the set-



ting where β(1) = 0 and β(2) = 1. Here E [R∞] > N and
thus clearly some individuals of country 1 contribute. Part
(iii) follows immediately from the concavity. The simula-
tions presented here are only a small fraction of the number
of our simulations covering the large variety of different val-
ues for β(1), β(2) and γ. All our simulations confirmed our
conjecture. Nonetheless, we were not able to turn the argu-
ments above into a rigorous proof. On one hand, considering
one country only is already immensely complicated and a
second country increases the number of variables and their
decencies even further. On the other hand, Pr [Eext] and
further considerations have to be accounted for. Indeed, one
cannot simply ignore ptravel and assume that both countries
have β. The simulations suggest that we have essentially
two values for R∞; one being R∞(0) and one being R∞(p),
for any p > 0. The reason for this is that if ptravel = 0, then
it can happen that one city has an early extinction. When
ptravel > 0, we believe that whenever only one of the coun-
tries has an early extinction, then the other country will
eventually send infected individuals over and rekindle the
infection until it succeeds. While the above shows the influ-
ence of effects when ptravel is small, ww believe that for
large values of ptravel our arguments capture the behaviour
of the process.

6 FUTURE WORK

In this work we adopted one of the many standard models
for disease spreading assuming pairwise interactions. Incor-
porating super spreaders is a great idea for further work. One
way to incorporate super spreaders is to assume an under-
lying social network with high degree nodes. Another one
is to first activate a random individual and then to choose
a random number of interaction partners using a suitable
distribution. Both models need a different analysis method
compared to the analysis in this paper. We believe it is very
interesting to study them in future work.
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(a) β(1) < γ < β(2) and β < γ. The Total Number of Infections
R̂∞(ptravel) Appears to be non-Monotone.

(b) β(1) < γ < β(2) and β > γ. The Total Number of Infections
R̂∞(ptravel) Appears to be non-Monotone.

(c) β(1), β(2) > γ. The Total Number of Infections R̂∞(ptravel)
Appears to be Monotonically Increasing. See also Table 2.

Figure 4: Simulation results for R̂∞ varying ptravel.
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