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ABSTRACT

General-purpose robots in real-world settings require diverse repertoires of behav-
iors to complete challenging tasks in unstructured environments. To address this
problem, goal-conditioned reinforcement learning aims to train policies that can
reach configurable goals for a wide range of tasks on command. However, such
goal-conditioned policies are notoriously difficult and time-consuming to train
from scratch. In this paper, we propose Planning to Practice (PTP), a method that
makes it practical to train goal-conditioned policies for long-horizon tasks that re-
quire multiple distinct types of interactions to solve. Our approach is based on two
key ideas. First, we decompose the goal-reaching problem hierarchically, with a
high-level planner that sets intermediate subgoals using conditional subgoal gen-
erators in the latent space for a low-level model-free policy. Second, we propose
a hybrid offline reinforcement learning approach with online fine-tuning, which
uses previously collected data to pre-train both the conditional subgoal generator
and the policy, and then fine-tune the policy via online exploration. This fine-
tuning process is itself facilitated by the planned subgoals, which break down the
original target task into short-horizon goal-reaching tasks that are significantly
easier to learn. We conduct experiments in both the simulation and real world, in
which the policy is pre-trained on demonstrations of short primitive behaviors and
fine-tuned for temporally extended tasks that are unseen in the offline data. Our
experimental results show that PTP can generate feasible sequences of subgoals
that enable the policy to efficiently solve the target tasks. 1

1 INTRODUCTION

Developing controllers that can solve a range of tasks and generalize broadly in real-world settings is
a long-standing challenge in robotics. Such generalization in other domains such as computer vision
and natural language processing has been attributed to training large machine learning models on
massive datasets Krizhevsky et al. (2012). Consequently, one promising approach to robustly handle
a wide variety of potential situations that a robot might encounter is to train on a large dataset of
robot behaviors. Prior work in robotics has demonstrated effectively generalization from training on
large datasets for individual tasks, such as grasping Levine et al. (2017); Yu et al. (2021). However, a
general-purpose robot should be able to perform a wide range of skills, and should also be taskable.
That is, it must be able to complete a specific task when specified by a human, including temporally
extended tasks that require sequencing many skills together to complete. This topic has been studied
in prior work on goal-conditioned reinforcement learning, where a robot aims to perform a task given
a desired end state Khazatsky et al. (2021); Chebotar et al. (2021); Kalashnikov et al. (2021). What
remains to make these methods widely applicable for real-world robotics?

While goal-conditioned policies can be trained effectively for relatively short tasks, temporally ex-
tended multi-stage can pose a significant challenge for current methods. These tasks present a major
exploration challenge during online learning, and a major challenge for credit assignment during
offline learning. In this paper, we aim to address these challenges by combining two ideas. The first
is that long-horizon goal-reaching tasks can be decomposed into shorter-horizon tasks consisting of
subgoals.

∗Authors contributed equally to this work.
1Supplementary video: sites.google.com/view/planning-to-practice
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Figure 1: Our method, Plan to Practice (PTP),
solves long-horizon goal-conditioned tasks by
combining planning and fine-tuning. We begin
with an offline dataset containing a variety of be-
haviors, and train a subgoal generator and goal-
conditioned policy on this data. To learn a more
complex multi-stage tasks, we optimize over sub-
goals using the subgoal generator, which corre-
sponds to a planning procedure over (visual) sub-
goals, and fine-tune the policy with online RL by
practicing these subgoals. This enables the robot
to solve multi-stage tasks directly from images.

The second is that these subgoals can be used to
fine-tune a goal-conditioned policy online, even
if its performance from offline data is poor.

The first idea enables us to address the explo-
ration challenge, by automatically generating
intermediate subgoals that can be “practiced”
on the way to a longer-horizon final goal. In
the framework of goal-conditioned RL, solving
long horizon tasks can be reduced to the prob-
lem of optimization over a sequence of sub-
goals for the goal-conditioned policy, and this
optimization over subgoals can be regarded as
a kind of high-level planning, where the opti-
mizer selects “waypoints” for achieving a dis-
tant goal. The high-level planner itself can use
a learned high-level model.

However, if we rely entirely on offline data,
credit assignment challenges make it difficult
to perform longer-horizon tasks even with sub-
goal planning. Even if the offline RL policy
performs well on each individual skill, there
may be errors from stitching skills together be-
cause the initial states of each stage diverge
from the offline data when they are composed
together. In practice, this leads to poor perfor-
mance when using only offline training. There-
fore, the second key idea in our work is to uti-
lize subgoal planning not merely to perform a
multi-stage task, but also to make it possible to
practice that task to finetune it online. While
online training for temporally extended tasks is ordinarily difficult, by addressing the exploration
challenge with subgoal planning, we make it possible for the robot to practice a series of relatively
short-horizon tasks, which makes this kind of finetuning feasible. Thus, the planner acts both as
a higher level policy when performing the task, and as a scaffolding curriculum for finetuning the
lower-level goal-conditioned policy By collecting data actively in a specific environment, we can di-
rectly experience the distribution shift and can use reinforcement learning to improve performance
under this shift.

To this end, we propose Planning to Practice (PTP), an approach that efficiently trains a goal-
conditioned policy to solve multi-step tasks by setting subgoals to exploit the compositional struc-
ture of the offline data. An outline is shown in Fig. 1. Our approach is based around a planner
that composes generated subgoals to guide the goal-conditioned policy during an online fine-tuning
phase. To propose diverse and reachable subgoals to form the candidate plans, we design a condi-
tional subgoal generator based on conditional variational autoencoder (CVAE) Sohn et al. (2015).
Through training on the offline dataset, the conditional subgoal generator captures the distribution
of reachable subgoals from a given state and generates sequences of subgoals from the learned latent
space in a recursive manner. Our subgoal planning algorithm hierarchically searches for subgoals
in a coarse-to-fine manner using multiple conditional subgoal generators that trained to generate
goals at different temporal resolutions. Both the goal-conditioned policy and the conditional sub-
goal generators are pre-trained on the offline data, and the policy is fine-tuned on the novel target
task.

Our main contribution is a system for learning to solve long-horizon goal-reaching tasks by fine-
tuning the goal-conditioned policy with subgoal planning in a learned latent space. We evaluate our
approach on multi-stage robotic manipulation tasks with raw image observations and image goals
in both simulation and the real world. After being pre-trained on short demonstrations of primitive
interactions, our approach is able to find feasible subgoal sequences as plans for unseen final goals
by recursively generating subgoals with the learned conditional subgoal generators. By comparing
our approach with both model-free methods and prior approaches that optimize over subgoals, we
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demonstrate that the produced plans significantly improve the learning efficiency and the resultant
success rates during the online fine-tuning.

2 RELATED WORK

We propose to use a combination of optimization-based planning and fine-tuning with goal-
conditioned reinforcement learning from prior data in order to allow robots to learn temporally
extended skills. In this section, we cover prior methods in offline RL, planning, goal-conditioned
RL, and how they relate to our method.

Learning from prior data. Offline reinforcement learning methods learn from prior data Lange
et al. (2012); Fujimoto et al. (2019); Kumar et al. (2019); Zhang et al. (2021a); Kumar et al. (2020);
Fujimoto & Gu (2021); Singh et al. (2020), and can also finetune through online interaction Nair
et al. (2020); Villaflor et al. (2020); Lu et al. (2021); Khazatsky et al. (2021); Lee et al. (2021);
Meng et al. (2021). Such methods have been used in a variety of robotic settings Kalashnikov
et al. (2018); Cabi et al. (2019); Kalashnikov et al. (2021); Lu et al. (2021). Our focus is not
on introducing new offline RL methods. Rather, our work shows that planning over subgoals for
a goal-conditioned policy that is pretrained offline can enable finetuning for temporally extended
skills that would otherwise be very difficult to learn.

Goal-conditioned reinforcement learning. The aim of goal-conditioned reinforcement learning
(GCRL) is to control the agent to efficiently reach specified goal states Kaelbling (1993); Schaul
et al. (2015); Eysenbach et al. (2021). Compared to policies that are trained to solve a fixed task, the
same goal-conditioned policy can perform a variety of tasks when it is commanded with different
goals. Such flexibility allows GCRL to better share knowledge across different tasks and make use
of goal relabeling techniques to improve the sample efficiency without meticulous reward engineer-
ing Andrychowicz et al. (2017); Pong et al. (2020); Fang et al. (2019); Ding et al. (2019); Gupta
et al. (2019); Sun et al. (2019); Eysenbach et al. (2020); Ghosh et al. (2021). Prior has explored var-
ious strategies for proposing goals for exploration Nair et al. (2018; 2019); Khazatsky et al. (2021);
Chane-Sane et al. (2021), and studied goal-conditioned RL from offline data Chebotar et al. (2021).
However, such works generally aim to learn short-horizon behaviors, and learning to reach goals
that require multiple stages (e.g., several manipulation primitives) is very difficult, as shown in our
experiments. Our work aims to extend model-free goal-conditioned RL methods by incorporating
elements of planning to enable effective finetuning for multi-stage tasks.

Planning. A wide range of methods have been developed for planning in robotics. At the most
abstract level, symbolic task planning searches over discrete logical formulas to accomplish abstract
goals Fikes & Nilsson (1971). Motion planning methods solve the geometric problem of reach-
ing a goal configuration with dynamics and collision constraints Kavraki et al. (1996); Koenig &
Likhachev (2002); Karaman & Frazzoli (2011); Zucker et al. (2013); Kalakrishnan et al. (2011).
Prior methods have also considered task and motion planning as a combined problem Srivastava
et al. (2014). These methods generally assume high-level structured representations of environ-
ments and tasks, which can be difficult to actualize in real-world environments. Since in our setting
we only have image inputs and not structured scene representations, we focus on methods that can
handle raw images for observations and task specification.

Combining goal-conditioned RL and planning. A number of recent works have sought to inte-
grate concepts from planning with goal-conditioned policies in order to plan sequences of subgoals
for longer-horizon tasks Nasiriany et al. (2019); Eysenbach et al. (2019); Charlesworth & Montana
(2020); Pertsch et al. (2020); Sharma et al. (2021); Zhang et al. (2021b). These prior methods either
propose subgoals from the set of previously seen states, or directly optimize over subgoals, often
by utilizing a latent variable model to obtain a concise representation of image-based states Nair
et al. (2018); Ichter et al. (2018); Nair & Finn (2019); Nasiriany et al. (2019); Pertsch et al. (2020);
Khazatsky et al. (2021); Chane-Sane et al. (2021). The method we employ is most closely related
conceptually to the method proposed by Pertsch et al. Pertsch et al. (2020), which also employs a hi-
erarchical subgoal optimization, and the method proposed by Nasiriany et al. Nasiriany et al. (2019),
which also optimizes over sequences of latent vectors from a generative model. Our approach makes
a number of low-level improvements, including the use of a conditional generative model Nair et al.
(2019), which we show leads to significantly better performance. More importantly, our method
differs conceptually from these prior works in that our focus is specifically on utilizing subgoal opti-

3



mization as a way to enable finetuning goal-conditioned policies for longer-horizon tasks. We show
that it is in fact this capacity to enable effective finetuning that enables our method to solve more
complex multi-stage tasks in our experiments.

3 PROBLEM STATEMENT

In this paper, we consider the problem of learning to complete a long-horizon task specified by a goal
image. The robot learns over a variety of initial configurations and goal distributions, which cover a
range of behaviors such as opening or closing a drawer, and picking, placing, or pushing an object.
As prior data, the robot has access to an offline dataset of trajectories Doffline = {τ1, τ2, . . . , τN} for
offline pre-training. In each trajectory, the robot is controlled by a human tele-operator or a scripted
policy to achieve one of the goals the environment affords. A goal-conditioned policy is pre-trained
on this dataset using offline RL algorithms.

After offline pre-training, the robot is placed in a particular environment that it has online access
to interact in. Even though the initial configuration of this environment may have been included
in the set of training environments, the goal distribution for this environment at test time requires
sequencing multiple skills together, which is not present in the offline data. For instance, as shown
in Fig. 1, the robot would need to first slide away the can that blocks the drawer, then reaches the
handle of the drawer, and finally opens the drawer.

Naı̈vely running offline RL may not solve the long-horizon test tasks for two reasons. First, the robot
is given a test goal distribution that is long horizon but offline dataset consists of individual skills.
The method needs to somehow compose these individual skills autonomously in order to succeed at
goals drawn from the test distribution. Second, offline RL may not solve the task due to distribution
shift. Distribution shift appears in two forms: distribution shift between transitions in the prior data
and transitions obtained by the actively rolling out the policy, and the distribution shift introduced
when performing tasks sequentially. If the robot may actively interact in the new environment to
improve its policy, how can the robot further practice and improve its performance?

4 PRELIMINARIES

We consider a goal-conditioned Markov Decision Process (MDP) denoted by a tuple M =
(S,A, ρ, P,G, γ) with state space S, action space A, initial state probability ρ, transition proba-
bility P , a goal space G, and discount factor γ. In each episode, a desired goal sg ∈ G is sampled
for the robot to reach. At each time step t, a goal-conditioned policy π(at|st, sg) selects an action
at ∈ A conditioned on the current state st and goal sg . After each step, the robot receives the
goal-reaching reward rt(st+1, sg). The robot aims to reach the goal by maximizing the average cu-
mulative reward E[Σtγ

trt]. Our approach learns a goal-conditioned policy π for solving the target
task specified by a desired final goal sg . The goal-conditioned policy is pre-trained on a previously
collected offline dataset Doffline and then fine-tuned to reach sg by accumulating data into an online
replay buffer Donline. Doffline contains diverse short-horizon interactions with objects in the environ-
ment. During online fine-tuning, we would like the policy to learn to improve and compose these
short-horizon behavior for multi-stage tasks specified by sg .

Defining informative goal-reaching rewards and extracting useful state representations from high-
dimensional raw observations such as images can be challenging. Following the practice in prior
work Nair et al. (2018); Khazatsky et al. (2021), we pre-train a state encoder h = ϕ(s) to extract
the latent state representation h. By encoding the states and goals to the latent space, we can obtain
an informative goal-reaching reward function rt = R(ht+1, hg) by computing ht+1 = ϕ(st+1) and
hg = ϕ(sg). Specifically, R(ht+1, hg) returns 0 when ||ht+1, hg|| < ϵ and -1 otherwise, where ϵ is
a selected threshold. In addition, we also use ϕ(st+1) as the backbone feature extractor in all of our
models that take s as an input. For simplicity, we directly use s to denote h in the rest of the paper.
The details of the state encoder are explained in Appendix A.
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5 PLANNING TO PRACTICE

We propose Planning to Practice (PTP), an approach that efficiently fine-tunes a goal-conditioned
policy to solve novel tasks. To enable the robot to efficiently learn to solve the target task, we propose
to use subgoals to facilitate the online fine-tuning of the goal-conditioned policy. Given the initial
state s0 and the goal state sg , we search for a sequence of K subgoals ŝ1 : K = ŝ1, ..., ŝK to guide
the robot to reach sg . Such subgoals will inform the goal-conditioned policy π(a|s, sg) what is the
immediate next step on the path to sg and provide the policy more dense reward signals compared to
directly using the final goal. We choose the sequence of subgoals at the beginning of each episode
and feed the first subgoal in the sequence to the goal-conditioned policy. The policy will switch to
the next subgoal in the sequence when the current subgoal is reached or the time budget assigned
for the current subgoal runs out.

The main challenge is to search for a sequence of subgoals that can lead to the desired final goals
while ensuring each subgoal is a valid state that can be reached from the previous subgoal. Particu-
larly when the states correspond to full images, most vectors will not actually represent valid states,
and indeed naı̈vely optimizing over image pixels may simply result in out-of-distribution inputs that
lead to erroneous results when input into the goal-conditioned policy.

As outlined in Fig. 1, we devise a method to effectively propose and select valid subgoal sequences
to guide online fine-tuning by means of a generative model. At the heart of our approach is a
conditional subgoal generator g(·|s0) that recursively produces candidate subgoals in a hierarchical
manner conditioned on the initial state s0. To find the optimal sequence of subgoals ŝ∗1:K , we
first sample N candidate sequences ŝ11:K , ..., ŝN1:K from the state space using the conditional subgoal
generator. Then we rank the candidate sequences using a cost function c(s0, ŝ1:K , sg). The sequence
that corresponds to the lowest cost will be selected as ŝ∗1:K for the goal-conditioned policy. Through
this sampling-based planning procedure, we choose the subgoal for guiding the goal-conditioned
policy π during online fine-tuning. The overall algorithm is summarized in Algorithm 1. Next we
describe the design of each module in details.

Algorithm 1 Planning To Practice (PTP)

Require: set of final goals G, time horizon T , offline
data Doffline, number of subgoals K.

1: Train π(a|s, sg) and g(s, z) on Doffline.
2: Initialize the online replay buffer Donline ← ∅.
3: while not converged do
4: Reset the environment and observe s0.
5: Sample sg from G.
6: Plan for the subgoals ŝ1:K .
7: k ← 1
8: for t = 1, ..., T do
9: Compute the action at ← π(at|st, ŝK)

10: Observe the state st+1 and the reward rt
11: Donline ← Donline ∪ (st, at, rt, st+1).
12: if t (mod ∆t) == 0 or ||st+1− ŝK || < ϵ

then
13: k ← min(k + 1,K)
14: end if
15: end for
16: Train π on batches sampled from Doffline and
Donline.

17: end while

Algorithm 2 Plan(s0, sg, L,K,M,N)

Require: the initial state s0, the goal state
sg , number of subgoals K, number of
levels L, multiplier M , number of sam-
ples N .

1: Sample N latent action sequences
{zi1:K}Ni=1.

2: Recursively generate subgoals
{ŝi1:K}Ni=1 using g(s, z).

3: Select z∗1:K and ŝ∗1:K of the lowest cost.
4: Update z∗1:K and ŝ∗1:K using MPPI.
5: if L = 1 then
6: return ŝ∗1:K
7: else
8: Denote ŝ∗0 ← s0.
9: Initialize the plan Ŝ as an empty list

10: for i = 1, ...,K do
11: Append Plan(ŝ∗i−1, ŝ

∗
i , L −

1,M,M,N) to S
12: end for
13: return Ŝ
14: end if

5.1 CONDITIONAL SUBGOAL GENERATION

The effectiveness of our planner relies on the generation of diverse and feasible sequences of sub-
goals as candidates. Specifically, we would like to generate the candidates by sampling from
the distribution of suitable subgoal sequences p(ŝ1, ..., ŝK |s0) conditioned on the initial state s0.
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Most existing methods independently sample the subgoal at each step from a learned prior distribu-
tion Pertsch et al. (2020) or a replay buffer Eysenbach et al. (2019), which is unlikely to propose
useful plans for tasks with large, combinatorial state spaces (i.e., with multiple objects).

We propose to break down p(ŝ1, ..., ŝK |s0) into p(ŝ1|s0)Πk
i=1p(ŝi|ŝi−1) through modeling the con-

ditional distribution p(s′|s) of the reachable next subgoal s′. By utilizing temporal compositionality,
the conditional subgoal generation paradigm improves generalization and enables generation of se-
quences of arbitrary lengths.

We use a conditional variational encoder (CVAE) Sohn et al. (2015) to capture the distribution of
reachable goals p(s′|s). In the CVAE, we define the decoder as g(s, z) and the encoder as q(z|s, s′),
where z is the learned latent representation of the transitions and it is sampled from a prior proba-
bility p(z). To propose a sequence of subgoals, we use g(s, z) as the conditional subgoal generator.
Conditioned on the initial state s0, the first subgoal ŝ1 can be generated as ŝ1 = g(s0, z1) given the
sampled z1. Then the ith subgoal can be recursively generated by sampling zi ∼ p(z) and computing
ŝi = g(ŝi−1, zi) given the previous subgoal ŝi−1. In this way, we could sample a sequence of i.i.d.
latent representations z1, ..., zK and recursively generate ŝ1, ..., ŝK conditioned on the initial state
s0 using the conditional subgoal generator.

The CVAE is trained to minimize the evidence lower bound (ELBO) Kingma & Welling (2014) of
p(s′|s) given the offline dataset D. During training, we sample transitions (st, sτ ) from the offline
dataset to form the minibatches, where τ = t + ∆t is a future step that is ∆t steps ahead. Instead
of using a fixed ∆t, we sample ∆t from a range for each transition to provide richer data. To
encourage the trained model to be robust to compounding errors, we sample sequences composed of
multiple states and use the subgoal reconstructed at the previous step as the context in the next step.
Therefore, the objective for training the conditional subgoal generator is:

Eq(z|st,sτ )||sτ − g(st, z)||2 +DKL[q(z|st, sτ )||p(z)] (1)

where DKL[·||·] indicates the KL-Divergence.

5.2 EFFICIENT PLANNING IN THE LATENT SPACE

We build a planner that efficiently searches for sequences of subgoals in the latent space as shown
in Algorithm 2. To tackle the large search space of candidate subgoal sequences, we design a
hierarchical planning algorithm that searches for subgoals in a coarse-to-fine manner and re-use the
previously selected subgoals as candidates in new episodes.

The hierarchical planning is conducted at L levels with different temporal resolutions ∆t1, ..., ∆tL.
The temporal resolution of each level is an integral multiple of that of the previous level, i.e.,
∆ti = M∆ti−1, where M is a scaling factor and is set to 2 in our experiments. We first plan
for the subgoals ŝ11, ŝ

1
2, ... on the first level. Then the subgoals ŝl1:K of finer temporal resolution are

planned on each level l to connect the subgoals planned on the previous level l − 1. Specifically,
given the adjacent subgoals ŝl−1

i and ŝl−1
i+1 produced on the previous level, we plan for a segment

of M subgoals ŝli∗M+1, ..., ŝ
l
(i+1)∗M on the level l, by treating ŝl−1

i and ŝl−1
i+1 as the initial state and

final goal state in Eqn. 3. The planned segments are returned to the previous level and concatenated
as a more fine-grained plan. For this purpose, we train L conditional subgoal generators to propose
subgoals that are ∆t1, ..., ∆tL steps away, respectively. In contrast to the prior work Pertsch et al.
(2020), the conditional subgoal generators enable us to plan for unseen goals that are beyond the
temporal horizon of the demonstrations in the offline dataset by exploiting the compositional struc-
ture of the demonstrations. By recursively generating the subgoals across time at each level, we
only need to enforce that the temporal resolution of the top level ∆tL is smaller than since the the
conditional subgoal generator f1(s, z) needs to be trained on trajectories at least ∆tL + 1 steps in
length.

We maintain a latent plan buffer for each level to further facilitate the planning with the conditional
subgoal generator. After each episode, the selected latent representations on each level are appended
to the corresponding latent plan buffer. In each target task, the subgoals are supposed to have the
same semantic meaning. In spite of the variations of the initial and goals state in each episode, the
optimal plans in the latent space can often be similar to each other. Therefore, we sample half of the
latent representations from the prior distribution p(z) and the other half from the latent plan buffer
among the initial samples to enhance the chance of finding a close initial guess.
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We build our planner upon the model predictive path integral (MPPI) Gandhi et al. (2021), which
iteratively optimizes the plan through importance sampling. In each interaction, we perturb the
chosen plan in the latent space with a small Gaussian noise as new candidates.

5.3 COST FUNCTION FOR FEASIBLE SUBGOALS

To provide informative guidance to the policy π(a|s, sg), we would like that the final goal sg can
be reached at the end of the episode while encouraging the transition between each pair of subgoals
to be feasible within a limited time budget. As explained in Sec. 4, the goal state is considered to
be reached when the Euclidean distance between the last subgoal in the plan and the desired goal
is less than a threshold δ in the learned latent space. The feasibility of each transition between
adjacent subgoals can be measured using the goal-conditioned value function V (s, s′) trained by
the reinforcement learning algorithm. Therefore, finding the subgoals ŝ∗1:K can be formulated as a
constrained optimization problem:

minimize ||sg − ŝK || (2)
subject to V (ŝi, ŝi+1) ≥ δ, for i = 0, ...,K − 1

where we use ŝ0 = s0 to denote the initial state for convenience. By re-writing Eq. 2 as a Lagrangian,
we obtain the cost function with a weight η:

c(s0, ŝ1:K , sg) = ||sg − ŝK ||+ η

K−1∑
i=0

V (ŝi, ŝi+1) (3)

The details of our method are explained in Appendix A.

6 EXPERIMENTS

In our experiments, we aim to answer the following questions: 1) Can PTP propose and select
feasible subgoals as plans for real-world robotic manipulation tasks? 2) Can the subgoals planned
by PTP facilitate online fine-tuning of the goal-conditioned policies to solve target tasks unseen in
the offline dataset? 3) How does each design option affect the performance of PTP?

6.1 EXPERIMENTAL SETUP

Environment. As shown in Fig. 2, our experiments are conducted in a table-top manipulation en-
vironment with a Sawyer robot. At the beginning of each episode, a fixed drawer and two movable
objects are randomly placed on the table. The robot can change the state of the environment by
opening/closing the drawer, sliding the objects, and picking and placing objects into different desti-
nations, etc. At each time step, the robot receives a 48 x 48 RGB image via a Logitech C920 camera
as the observation and takes a 5-dimensional continuous action to change the gripper status through
position control. The action dictates the change of the coordinates along the three axes, the change
of the rotation, and the status of the fingers. We use PyBullet Coumans & Bai (2016–2021) for our
simulated experiments.

Prior data. The prior data consists of varied demonstrations for different primitive tasks. In each
demonstrated trajectory, we randomly initialize the environment and perform primitive interactions
such as opening the drawer and poking the object. These trajectories are collected using teleopera-
tion in the real world, and a scripted policy that uses privileged information of the environment (e.g.,
the object pose and the status of the drawer) in simulation. The trajectories vary in length from 5 to
150 time steps, with 2,344 trajectories in the real world and 4,000 in simulation.

Target tasks. In each target task, a desired goal state is specified by a 48 x 48 RGB image (same
dimension with the observation). The robot is tasked to reach the goal state by interacting with the
objects on the table. Task success for our evaluation is determined based on the object positions at
the end of each episode (this metric is not used for learning). As shown in Fig. 2, we design three
target tasks that require multi-stage interactions with the environment to complete. These target
tasks are designed with temporal dependencies between stages (e.g.the robot needs to first move
away a can that blocks the drawer before opening the drawer). The transitions from the initial state
to the goal state are unseen in the offline data. The episode length is 400 steps in simulation and 125
steps in the real world, which are much longer than the time horizon of the demonstrations.
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Task A

Task B

Task C

Task A

Task B

Task C

Real World Simulation

Figure 2: Target tasks. Three multi-stage tasks
are designed for our experiments in the simula-
tion and the real world respectively. In each target
task, the robot needs to strategically interact with
the environment (e.g.first take out an object in the
drawer then close the drawer). The initial state
and desired goal state are shown for each task.

Baselines and ablations. We compare PTP
with 3 baselines and 3 ablations. Model-Free
uses a policy directly conditioned on the fi-
nal goal and conducts online fine-tuning with-
out using any subgoals. LEAP Nasiriany
et al. (2019) learns a variational auto-encoder
(VAE) Kingma & Welling (2014) to capture
the prior distribution of states and plans for
subgoals without conditioning on any context.
GCP Pertsch et al. (2020) learns a goal pre-
dictor that hierarchically generates intermediate
subgoals between the initial state and the goal
state. To analyze the design options in PTP, we
also compare with variations of our method by
removing the latent plan buffer (PTP (w/o B)),
the hierarchical planning algorithm (PTP (w/o
H)), and both of these two designs (PTP (w/o H
and B)). All methods use the same neural net-
work architecture in the goal-conditioned pol-
icy and are pre-trained on the same offline dataset.

6.2 QUANTITATIVE COMPARISONS

We evaluate PTP and baselines on three unseen target tasks. We use simulated versions of these
tasks for comparisons and ablations, and real-world tasks, where all pretraining and finetuning uses
only real-world data, to evaluate the practical effectiveness of the method.

Simulation. We first pre-train the goal-conditioned policy on the offline dataset for 100 epochs and
the run online fine-tuning for the target task for 150 epochs. Each epoch takes 2,000 simulation steps
(only during fine-tuning) and 2,000 training iterations. We run online fine-tuning using each method
with 3 different random seeds. After each epoch, we test the policy in the target task for 5 episodes.
We report the average success rate across 3 runs in Fig. 4 where the negative x-axis indicates the
offline pre-training epochs and positive x-axis indicates the online fine-tuning epochs.

As shown in Fig. 4, our full model consistently outperforms baselines with a large performance
gap. The generated subgoals not only enables the pre-trained policy to achieve higher success rate
by breaking down the hard problems into easier pieces, but also introduces larger performance im-
provements during online fine-tuning. After fine-tuning for 150 epochs, the policy achieves the
success rates of 84.9%, 59.9%, 49.3% in the three target tasks respectively. Compared to the policy
pre-trained on the offline dataset, the performance is significantly improved (+31.6%, +37.8%, and
+13.8%). When directly using the final goal or subgoals generated by baseline methods, the policy’s
performance plateaus at around 0.0% to 30.0% and doesn’t improve much during online fine-tuning.

We found that the hierarchical planner and the latent plan buffer are crucial for PTP’s performance.
Without these two design options, the planner often suffers from the large search space of possible
subgoal sequences and the resultant success rates decrease. The latent plan buffer significantly
improves the performance of non-hierarchical PTP while it has a minor effect on hierarchical PTP.

Table 1: The real-world success rates before and
after online fine-tuning. The tasks are described
in Sec. 6.1.

Task PTP (Ours)
Offline→ Online

GCP
Offline→ Online

Task A 12.5%→ 62.5% 12.5%→ 0.0%
Task B 75.0%→ 100.0% 50.0%→ 75.0%
Task C 25.0%→ 50.0% 25.0%→ 12.5%

Real-world evaluation. We pre-train the pol-
icy for 200 epochs and fine-tune it for 10
epochs. In each epoch, we run 10,000 train-
ing iterations and collect 1,000 steps in the real
world. We train on three target tasks which are
shown in Figure 2, and report the success rate
of the goal-conditioned policy before and after
online fine-tuning in Table 1. Planning enables
the robot to succeed partially with just the of-
fline initialized policy, achieving success rates
of 12.5%, 75.0% and 25.0% on the three tasks.
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Figure 4: Quantitative comparison in simulation. The average success rate across 3 runs is shown
with the shaded region indicating the standard deviation. The negative x-axis indicates the epochs of
offline pre-training and positive x-axis indicates epochs of online fine-tuning. Using offline learning
and planning, our method PTP is able to solve these tasks partially (at 0 epochs). Then with online
finetuning the performance improves further. In contrast, prior methods have lower offline perfor-
mance and do not fine-tune successfully in most cases, as they do not collect coherent online data.

(When the offline policy is conditioned on only the final goal image without planning, the success
rate is 0%.) Then in each task, we fine-tune to a significantly higher success rate.

Qualitatively, at the beginning of fine-tuning, the robot often fails, deviating from the planned sub-
goals or colliding with the environment. With the planned subgoals, the original long-horizon task
is broken down to short snippets that are easier to complete. Even if a subgoal is not reached
successfully at first, the data is useful to collect additional experience and fine-tune the policy. Af-
ter fine-tuning for 4-5 epochs, we already observe that the robot’s performance reaching subgoals
during training time significantly improves, collecting even more coherent and useful data. After 10
epochs, we achieve success rates of 62.5%, 100.0% and 50.0%. In comparison, GCP cannot provide
useful guidance to the policy when the generated goals are noisy.

6.3 GENERATED SUBGOALS

Figure 3: Planned subgoal sequences. Each row
shows the sequence of subgoals produced by each
method. The initial state and the final goal are
shown at the two ends.

In Fig. 3, we present qualitative results of the
generated subgoals for each task in the real
world. Each row shows a sequence of gener-
ated subgoals produced by the planner in each
method. In all the three target tasks, PTP suc-
cessfully plans for a sequence of subgoals that
can lead to the desired final goal. The transition
between adjacent subgoals are feasible within
a short period of time. By comparison, both
of the baseline methods fail to generate reason-
able plans. Without conditioning on the cur-
rent state, LEAP Nasiriany et al. (2019) can
hardly produce any realistic images of the en-
vironment. Most of the generated subgoals are
highly noisy images with duplicated robot arms
and objects. The quality of the subgoals pro-
duced by GCP Pertsch et al. (2020) is higher
than that of LEAP but still much worse than
ours. GCP cannot generalize well for the initial
state and the goal state that are out of the dis-
tribution of the offline dataset, which contains
only short snippets of demonstrations.

7 CONCLUSION AND DISCUSSION

We presented PTP, a method for real-world learning of temporally extended skills by utilizing plan-
ning and fine-tuning to stitch together skills from prior data. First, planning is used to convert a
long-horizon task into achievable subgoals for a lower level goal-conditioned policy trained from
prior data. Then, the goal-conditioned policy is further fine-tuned with active online interaction,
mitigating the distribution shift between the offline data and actual states seen during rollouts. This
procedure allows robots to extend their capabilities autonomously, composing previously seen data
into more complicated and useful skills.
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A IMPLEMENTATION DETAILS

Following Khazatsky et al. (2021), we use a vector quantized variational autoencoder (VQ-
VAE) van den Oord et al. (2017) as the state encoder, which encodes a 48 × 48 × 3 image to a
720-dimensional encoding. The conditional subgoal generator is implemented with a U-Net archi-
tecture Ronneberger et al. (2015) and decodes the subgoal from a 8-dimensional latent represen-
tations conditioned on the encoding of the current state. In our planner, we use L = 3, K = 8,
M = 2, N = 1024, and we run MPPI for 5 iteration on each level. g is trained to predict subgoals
that are 15, 30, and 60 steps away. Implicit Q-Learning (IQL) Kostrikov et al. (2021) is used as the
underlying RL algorithm for offline pre-training and online fine-tuning with default hyperparame-
ters. We use the same network architectures for the policy and the value functions from Khazatsky
et al. (2021) for simulation experiments. For real-world experiments, we use a convolutional neural
network instead. We use Adam optimizer with a learning rate of 3 · 10−4 and a batch size of 1024.
During training, we relabel the goal with future hindsight experience replay Andrychowicz et al.
(2017) with 70% probability. We use ϵ = 3 for the reward function defined in Sec. 4, η = 0.01 in
Eqn. 3.
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