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Abstract

In this study, we consider a variant of the Follow
the Regularized Leader (FTRL) dynamics in two-
player zero-sum games. FTRL is guaranteed to con-
verge to a Nash equilibrium when time-averaging
the strategies, while a lot of variants suffer from
the issue of limit cycling behavior, i.e., lack the
last-iterate convergence guarantee. To this end,
we propose mutant FTRL (M-FTRL), an algo-
rithm that introduces mutation for the perturba-
tion of action probabilities. We then investigate the
continuous-time dynamics of M-FTRL and pro-
vide the strong convergence guarantees toward sta-
tionary points that approximate Nash equilibria
under full-information feedback. Furthermore, our
simulation demonstrates that M-FTRL can enjoy
faster convergence rates than FTRL and optimistic
FTRL under full-information feedback and sur-
prisingly exhibits clear convergence under bandit
feedback.

1 INTRODUCTION

Our study focuses on the problem of learning an equilib-
rium in two-player zero-sum games. In order to find an equi-
librium in two-player zero-sum games, we need to solve
a minimax optimization (or saddle-point optimization) in
the form of minxmaxy f(x, y). Motivated by advances of
multi-agent reinforcement learning [Busoniu et al., 2008]
and Generative Adversarial Networks (GANs) [Goodfellow
et al., 2014], the development of algorithms that efficiently
approximate the solution of the minimax optimization is
attracting considerable interest [Blum and Monsour, 2007,
Daskalakis et al., 2018].

There are a lot of studies focusing on developing no-regret
learning algorithms where the iterate-average strategy pro-
file converges to a Nash equilibrium of two-player zero-sum

games [Banerjee and Peng, 2005, Zinkevich et al., 2007,
Daskalakis et al., 2011]. However, well-known no-regret
learning algorithms such as Follow the Regularized Leader
(FTRL) are shown to cycle and fail to converge without time-
averaging [Mertikopoulos et al., 2018, Bailey and Piliouras,
2018]. In recent years, several studies have developed and
analyzed algorithms whose trajectory of updated strategies
directly converges to an equilibrium without forming a cy-
cle, such as optimistic FTRL (O-FTRL) [Daskalakis et al.,
2018, Daskalakis and Panageas, 2019, Mertikopoulos et al.,
2019, Wei et al., 2021, Lei et al., 2021]. This convergence
property is known as last-iterate convergence. However, es-
tablishing the explicit convergence rates of optimistic multi-
plicative weights update, which is tantamount to O-FTRL
with entropy regularization, requires that the equilibrium in
underlying games must be unique [Daskalakis and Panageas,
2019, Wei et al., 2021].

In this study, as an alternative, we propose mutant FTRL1

(M-FTRL), an algorithm that introduces mutation for the
perturbation of action probabilities. We first identify the
discrete-time version of the M-FTRL dynamics and then
modify it to the continuous-time version to provide the
theoretical analysis. We prove the followings: 1) M-FTRL
dynamics induced by the entropy regularizer is equivalent to
replicator-mutator dynamics (RMD) [Hofbauer et al., 2009,
Zagorsky et al., 2013, Bauer et al., 2019]; 2) for general
regularization functions, the strategy trajectory of M-FTRL
converges to a stationary point of the RMD; 3) the trajectory
of M-FTRL with the entropy regularizer converges to an
approximate Nash equilibrium at an exponentially fast rate.
To the best of our knowledge, we are the first to provide the
convergence result for RMD in two-player zero-sum games.

Furthermore, our simulation demonstrates that M-FTRL can
enjoy faster convergence rates than FTRL and optimistic
FTRL under full-information feedback, i.e., M-FTRL con-
verges to a stationary point, which approximates a Nash

1An implementation of our method is available at https:
//github.com/CyberAgentAILab/mutant-ftrl.
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Figure 1: Learning dynamics of RD and RMD in biased Rock-Paper-Scissors. The red dot represents the Nash equilibrium
point of the game.

equilibrium, faster. It also exhibits clear convergence under
partial-information or bandit feedback, where each player
takes the feedback about the payoffs from his or her chosen
actions. We empirically observe the last-iterate convergence
behavior in the M-FTRL dynamics, as well as under full-
information feedback, while neither FTRL nor O-FTRL re-
veals such behavior. This is surprising because it is an open
question if a last-iterate convergence guarantee is provided
under bandit feedback.

2 RELATED LITERATURE

Average-iterate convergence There are a lot of previ-
ous studies focusing on developing no-regret learning algo-
rithms that enjoy average-iterate convergence in two-player
zero-sum games [Cesa-Bianchi and Lugosi, 2006, Zinkevich
et al., 2007, Hofbauer et al., 2009, Syrgkanis et al., 2015].
FTRL is one of the most widely studied no-regret learn-
ing algorithm and has been shown to be convergent if the
equilibrium is deterministic or strict [Mertikopoulos et al.,
2018, Giannou et al., 2021]. If the equilibrium strategy is a
mixed strategy with full support, FTRL’s trajectory can be
recurrent [Mertikopoulos et al., 2018]. For extensive-form
games, counterfactual regret minimization [Zinkevich et al.,
2007] and its variants have been developed as a no-regret
learning algorithm [Gibson et al., 2012, Tammelin, 2014,
Lanctot et al., 2017, Schmid et al., 2019, Brown and Sand-
holm, 2019, Davis et al., 2020]. However, most of these
algorithms have not been proven that the last-iterate strategy
converges.

Last-iterate convergence In recent years, various al-
gorithms using an optimistic online learning framework
[Rakhlin and Sridharan, 2013a,b] have been proposed for
last-iterate convergence in minimax optimization. Opti-
mistic gradient descent ascent [Daskalakis et al., 2018, Mer-
tikopoulos et al., 2019, Wei et al., 2021] and optimistic mul-
tiplicative weights update [Daskalakis and Panageas, 2019,
Wei et al., 2021, Lei et al., 2021] are the variants of O-FTRL,

and they have been shown to enjoy the last-iterate conver-
gence guarantee in constrained and unconstrained saddle
optimization problems. Furthermore, Nguyen et al. [2021]
have proposed the no-regret learning algorithm, which ex-
hibits the last-iterate convergence in asymmetric repeated
games. In contrast to their optimistic modification of FTRL,
which boosts updates for expected utitilities, our method is
motivated by replicator-mutator dynamics and provides an
alternative way to enjoy the last-iterate convergence guaran-
tee.

Replicator-mutator dynamics Evolutionary game theory
has been strongly related to learning dynamics. In fact, it is
well-known that cross learning converges to the replicator
dynamics (RD) in the continuous-time limit [Börgers and
Sarin, 1997, Bloembergen et al., 2015], similarly to FTRL.
On the other hand, RMD [Hofbauer and Sigmund, 1998]
has been overlooked in the context of learning. Introducing
mutation empirically makes numerical errors in computation
small [Zagorsky et al., 2013]. However, it makes difficult to
analyze the properties. Some notable exceptions report that
mutation stabilizes the dynamics [Bomze and Burger, 1995,
Bauer et al., 2019]. Let πµ be an interior stationary point of
RMD with mutation rate µ, then πµ is ε-Nash equilibrium
of the underlying game for ε = µ [Bauer et al., 2019]. Also,
evolutionary game dynamics such as RD typically exhibits
continua of stationary points and is unlikely to converge to a
unique, stable stationary point. Mutation dissolves continua
of neutrally stable equilibria into isolated, asymptotically
stable ones [Bomze and Burger, 1995].

3 PRELIMINARIES

3.1 TWO-PLAYER ZERO-SUM NORMAL-FORM
GAME

A two-player normal-form game is defined by utility func-
tions ui ∈ [−umax, umax]

A1×A2 , where Ai is the finite
action space for player i ∈ {1, 2}. In a two-player zero-sum



normal-form game, ui satisfies u1(a1, a2)+u2(a1, a2) = 0
for all a1 ∈ A1 and a2 ∈ A2. In this game, each player
i selects action ai ∈ Ai simultaneously. Then, player i
receives utility ui(a1, a2). Let us denote πi ∈ ∆(Ai) as
a mixed strategy for player i, where ∆(Ai) := {p ∈
[0, 1]|Ai| |

∑
ai∈Ai

p(ai) = 1} represents the probability
simplex on Ai. We define a strategy profile as π = (π1, π2).
For a given strategy profile π, the expected utility for player
i is given by vπi = Ea∼π [ui(a1, a2)]. We further define
the conditional expected utility of taking action ai ∈ Ai as
qπi (ai) = Ea−i∼π−i

[ui(ai, a−i)|ai], where −i represents
the opponent of player i. Finally, we denote the conditional
expected utility vector as qπi = (qπi (ai))ai∈Ai .

3.2 NASH EQUILIBRIUM AND EXPLOITABILITY

A common solution concept for two-player games is a Nash
equilibrium [Nash, 1951], where no player cannot improve
his/her expected utility by deviating from his/her speci-
fied strategy. In two-player zero-sum normal-form games,
a Nash equilibrium π∗ = (π∗

1 , π
∗
2) ensures the following

condition: ∀π1 ∈ ∆(A1),∀π2 ∈ ∆(A2),

v
π∗
1 ,π2

1 ≥ vπ
∗
1 ,π

∗
2

1 ≥ vπ1,π
∗
2

1 .

An ϵ-Nash equilibrium (π1, π2) is an approximation of a
Nash equilibrium, which satisfies the following inequality:

max
π̃1∈∆(A1)

vπ̃1,π2

1 + max
π̃2∈∆(A2)

vπ1,π̃2

2 ≤ ϵ.

Furthermore, we call exploit(π) := maxπ̃1∈∆(A1) v
π̃1,π2

1 +

maxπ̃2∈∆(A2) v
π1,π̃2

2 as exploitability of a given strategy
profile π. Exploitability is a metric for measuring how close
π is to a Nash equilibrium π∗ in two-player zero-sum games
[Johanson et al., 2011, 2012, Lockhart et al., 2019, Timbers
et al., 2020, Abe and Kaneko, 2021]. From the definition, a
Nash equilibrium π∗ has the lowest exploitability of 0.

3.3 PROBLEM SETTING

In this study, we consider the setting where the game is
played repeatedly for T iterations. At each iteration t ∈ [T ],
each player i determines the (mixed) strategy πti ∈ ∆(Ai)
based on the past-observed feedback. Then, each player
i observes the new feedback. In this study, we focus on
two feedback cases: full-information feedback and bandit
feedback. At the end of the iteration t under full-information
feedback, player i observes the conditional expected utility
vector (qπ

t

i (ai))ai∈Ai as feedback. Under bandit feedback,
each player i chooses an action ati according to πti . Then,
each player observes the realized utility ui(at1, a

t
2).

FTRL is a widely used learning algorithm in the repeated
game setting. For player i, FTRL methods are defined with
regularization function ψi : ∆(Ai)→ R, which is strictly

convex and continuously differentiable on ∆(Ai). In FTRL,
each player i determines her strategy πti at iteration t as
follows:

πti = arg max
p∈∆(Ai)

{
η
〈
yti , p

〉
− ψi(p)

}
,

yti(ai) =

t−1∑
s=1

qπ
s

i (ai),

where η > 0 is the learning rate.

3.4 OTHER NOTATIONS

We denote the interior of the probability simplex ∆(Ai)
by ∆◦(Ai) := {p ∈ ∆(Ai) | ∀ai ∈ Ai, p(ai) > 0}.
For a strictly convex and continuously differentiable func-
tion ψ, the associated Bregman divergence is defined as
Dψ(x, x

′) = ψ(x) − ψ(x′) − ⟨∇ψ(x′), x − x′⟩. The
Kullback-Leibler divergence, which is the Bregman diver-
gence with the entropy regularizer ψ(x) =

∑
i xi lnxi,

is denoted by KL(x, x′) =
∑
i xi ln

xi

x′
i
. Besides, we de-

fine the sum of Bregman divergences and sum of Kullback-
Leibler divergences as Dψ(π, π

′) =
∑2
i=1Dψi

(πi, π
′
i) and

KL(π, π′) =
∑2
i=1 KL(πi, π

′
i), respectively.

4 MUTANT FOLLOW THE
REGULARIZED LEADER

In this section, we introduce Mutant Follow the Regularized
Leader (M-FTRL), which is inspired by the RMD [Hof-
bauer and Sigmund, 1998, Zagorsky et al., 2013]. Let us
see what happens in a biased version of the Rock-Paper-
Scissors game, see Table 1. Figure 1 compares trajectories
of RD and RMD with varying mutation parameters µ (see
(RMD for the differential equation of RMD). Note that µ
represents the parameter that controls the strength of mu-
tation. Figure 1a shows that the trajectories form a cycle
and never converge to the Nash equilibrium because the
game is intransitive. Note, however, that the time-averaged
trajectory of FTRL converges to interior Nash equilibria in
two-player zero-sum games [Hofbauer et al., 2009]. In con-
trast, Figures 1b and 1c exhibit a clear convergence to the
unique stationary point, which is almost equivalent to the
interior Nash equilibrium (the red dot) without taking the
time average. As the mutation parameter increases to 1.0,
although the stationary point becomes far from the Nash
equilibrium, it is still asymptotically stable in Figure 1d.
Thus, mutation is expected to ensure that the trajectory of a
learning dynamics reaches an approximated equilibrium.

4.1 ALGORITHM

We propose a discrete-time version of the M-FTRL algo-
rithm under two feedback cases: full-information feedback



Algorithm 1 Mutant Follow the Regularized Leader with
adaptive reference strategies for player i.

Require: Time horizon T , learning rate η, regularization
function ψi, mutation parameter µ, update frequency
N , initial strategy π0

i

1: ci ←
(

1
|Ai|

)
ai∈Ai

2: τ ← 0
3: Initialize z0i so that π0

i = arg max
p∈∆(Ai)

{〈
z0i , p

〉
− ψi(p)

}
4: for t = 1, 2, · · · , T do
5: Compute strategy πti by

πti = arg max
p∈∆(Ai)

{〈
zti , p

〉
− ψi(p)

}
6: for a ∈ Ai do
7: zt+1

i (a)←zti(a)+η
(
qπ

t

i (a)+ µ
πt
i(a)

(ci(a)−πti(a))
)

8: end for
9: τ ← τ + 1

10: if τ = N then
11: ci ← πti
12: τ ← 0
13: end if
14: end for

and bandit feedback. First, we provide the strategy update
rule under full-information feedback:

πti = arg max
p∈∆(Ai)

{
η

〈
t−1∑
s=1

qµ,si , p

〉
− ψi(p)

}
, (1)

qµ,si (ai) = qπ
s

i (ai) +
µ

πsi (ai)
(ci(ai)− πsi (ai)) ,

where η > 0 is the learning rate, µ > 0 is the mutation
parameter, and ci ∈ ∆◦(Ai) is the reference strategy.

As shown in Figure 1b-1d, strategies πti updated by (1)
would converge to the stationary point, which is different
from the Nash equilibrium of the original game. The station-
ary point is a 2µ-Nash equilibrium of the original game, and
the stationary point is not Nash equilibrium unless (c1, c2)
is a Nash equilibrium (see Theorem 5.4). Therefore, for
convergence to a Nash equilibrium of the original game, we
introduce a technique to adapt the reference strategy. That
is, we copy probabilities from πti into ci every N(≤ T ) iter-
ations. This technique is similar to the direct convergence
method by [Perolat et al., 2021]. The pseudo-code of our
algorithm with adaptive reference strategies is presented in
Algorithm 1.

Under bandit feedback, each player i needs to estimate
qµ,ti =

(
qπ

t

i (ai) +
µ

πt
i(ai)

(ci(ai)− πti(ai))
)
ai∈Ai

from

the realized utility ui(at1, a
t
2). Similarly to [Wei and Luo,

2018, Ito, 2021], we construct the following estimator q̂µ,ti :

q̂µ,ti (ai)=
ui(a

t
1, a

t
2)

πti(a
t
i)

1[ai = ati]+
µ

πti(ai)

(
ci(ai)−πti(ai)

)
.

(2)

It is easy to confirm that q̂µ,ti is an unbiased estimator of
qµ,ti . Under bandit feedback, M-FTRL updates the strategy
πti by the following update rule, which uses q̂µ,ti instead of
qµ,ti in (1):

πti = arg max
p∈∆(Ai)

{
η

〈
t−1∑
s=1

q̂µ,si , p

〉
− ψi(p)

}
.

Note that M-FTRL does not require any information about
the opponent’s strategy πt−i under bandit feedback.

5 THEORETICAL ANALYSIS

In this section, we provide the theoretical relationship be-
tween RMD and M-FTRL and the last-iterate convergence
guarantee of M-FTRL. Instead of the discrete-time version
of M-FTRL algorithm, we analyze the theoretical proper-
ties of the following continuous-time version of M-FTRL
dynamics:

πti = arg max
p∈∆(Ai)

{〈
zti , p

〉
− ψi(p)

}
, (3)

zti(ai) =

∫ t

0

(
qπ

s

i (ai) +
µ

πsi (ai)
(ci(ai)− πsi (ai))

)
ds.

First, we show that this dynamics is a generalization of
RMD [Bauer et al., 2019]. That is, the dynamics of M-FTRL
with the entropy regularizer ψi(p) =

∑
ai∈Ai

p(ai) ln p(ai)
induces RMD:

Theorem 5.1. The dynamics defined by (3) with the entropy
regularizer ψi(p) =

∑
ai∈Ai

p(ai) ln p(ai) is equivalent to
replicator-mutator dynamics:

d

dt
πti(ai) =π

t
i(ai)

(
qπ

t

i (ai)− vπ
t

i

)
+ µ

(
ci(ai)− πti(ai)

)
.

(RMD)

The proof of this theorem is shown in Appendix D.1.

From here, we derive the relationship between the stationary
point πµ of (RMD) (i.e., the strategy profile that satisfies
d
dtπ

µ
i (ai) = 0 for all i ∈ {1, 2} and ai ∈ Ai) and the

updated strategy profile πt. Note that, from Lemma 3.3
in [Bauer et al., 2019], for any µ > 0 there exists πµ ∈∏2
i=1 ∆

◦(Ai) such that πµ is a stationary point of (RMD).
Thus, πµ is well-defined. We first derive the time derivative
of the (sum of) Bregman divergence between πµ and πt:



Theorem 5.2. Let πµ ∈
∏2
i=1 ∆(Ai) be a stationary point

of (RMD). Then, πt updated by M-FTRL satisfies that:

d

dt
Dψ(π

µ, πt)

= −µ
2∑
i=1

∑
ai∈Ai

ci(ai)

(√
πti(ai)

πµi (ai)
−

√
πµi (ai)

πti(ai)

)2

.

Furthermore, if the regularizer is entropy ψi(p) =∑
ai∈Ai

p(ai) ln p(ai), then πt satisfies that:

d

dt
KL(πµ, πt) ≤ −µξKL(πµ, πt),

where ξ = mini∈{1,2},ai∈Ai

ci(ai)
πµ
i (ai)

.

The first statement implies that d
dtDψ(π

µ, πt) = 0 holds
if and only if πt = πµ, and ∀πt ̸= πµ, ddtDψ(π

µ, πt) < 0.
Thus, by Lyapunov arguments [Khalil, 2015], the Bregman
divergence between πµ and πt converges to 0, and then
πt converges to πµ. Note that Theorem 5.2 holds for all
stationary points of (RMD). This means that for a fixed µ
and (ci)

2
i=1, the stationary point is unique. From the second

statement, we can show that exponential convergence rates
can be achieved when using the entropy regularizer:

Corollary 5.3. Assume that the regularizer is entropy
ψi(p) =

∑
ai∈Ai

p(ai) ln p(ai). Then, M-FTRL’s trajec-
tory converges to a stationary point of (RMD) exponentially
fast, i.e.,

KL(πµ, πt) ≤ KL(πµ, π0) exp (−µξt) .

Finally, combining this corollary and Lemma 3.5 in [Bauer
et al., 2019], we can derive the exploitability bound of πt.

Theorem 5.4. Assume that the regularizer is entropy
ψi(p) =

∑
ai∈Ai

p(ai) ln p(ai). Then, the exploitability for
M-FTRL is bounded as:

exploit(πt) ≤ 2µ

+ 2umax

√
(ln 2)KL(πµ, π0) exp

(
−µξ

2
t

)
.

Theorem 5.4 means that πt converges to a 2µ-Nash equilib-
rium exponentially fast. The proof of the theorem is shown
in Section 5.2.

5.1 PROOF SKETCH OF THEOREM 5.2

We sketch below the proof of Theorem 5.2. The complete
proof and the associated lemmas are presented in Appendix
D.2-D.4.

Proof of the first part of Theorem 5.2. First, we derive
the time derivative of the Bregman divergence between π ∈∏2
i=1 ∆(Ai) and πt:

Lemma 5.5. For any π ∈
∏2
i=1 ∆(Ai), πt updated by

M-FTRL satisfies that:

d

dt
Dψ(π, π

t)

=

2∑
i=1

v
πt
i ,π−i

i + 2µ− µ
2∑
i=1

∑
ai∈Ai

ci(ai)
πi(ai)

πti(ai)
.

The proof of Lemma 5.5 stems
from the fact that Dψ(π, π

t) =∑2
i=1

(
maxp∈∆(Ai) {⟨zti , p⟩−ψi(p)} − ⟨zti , πi⟩+ ψi(πi)

)
.

Next, we derive the relationship between the expected utili-
ties vπ

µ

and vπ
′
i,π

µ
−i for any π′

i ∈ ∆(Ai):

Lemma 5.6. Let πµ ∈
∏2
i=1 ∆(Ai) be a stationary point

of (RMD). Then, for any i ∈ {1, 2} and π′
i ∈ ∆(Ai):

v
π′
i,π

µ
−i

i = vπ
µ

i + µ− µ
∑
ai∈Ai

ci(ai)
π′
i(ai)

πµi (ai)
.

This result can be shown by the fact that πµ is the sta-
tionary point of (RMD), i.e., πµi (ai)

(
qπ

µ

i (ai)− vπ
µ

i

)
+

µ (ci(ai)− πµi (ai)) = 0 for all i ∈ {1, 2}.

By combining Lemmas 5.5 and 5.6, we can obtain:

d

dt
Dψ(π

µ, πt)

=

2∑
i=1

v
πt
i ,π

µ
−i

i + 2µ− µ
2∑
i=1

∑
ai∈Ai

ci(ai)
πµi (ai)

πti(ai)

=

2∑
i=1

vπ
µ

i +4µ−µ
2∑
i=1

∑
ai∈Ai

ci(ai)

(
πti(ai)

πµi (ai)
+
πµi (ai)

πti(ai)

)

=4µ− µ
2∑
i=1

∑
ai∈Ai

ci(ai)

(
πti(ai)

πµi (ai)
+
πµi (ai)

πti(ai)

)

=− µ
2∑
i=1

∑
ai∈Ai

ci(ai)

(√
πti(ai)

πµi (ai)
−

√
πµi (ai)

πti(ai)

)2

,

where the third equality follows from
∑2
i=1 v

πµ

i = 0 by
the definition of zero-sum games. This concludes the first
statement of the theorem.

Proof of the second part of Theorem 5.2. Let us define
ξi = minai∈Ai

ci(ai)
πµ
i (ai)

. From the first part of the theorem,



we have:

d

dt
Dψ(π

µ, πt)

= −µ
2∑
i=1

∑
ai∈Ai

ci(ai)

(
πti(ai)

πµi (ai)
+
πµi (ai)

πti(ai)
− 2

)

= −µ
2∑
i=1

∑
ai∈Ai

ci(ai)

πµi (ai)

(πti(ai)− π
µ
i (ai))

2

πti(ai)

≤ −µ
2∑
i=1

ξi
∑
ai∈Ai

(πti(ai)− π
µ
i (ai))

2

πti(ai)

≤ −µ
2∑
i=1

ξi ln

(
1 +

∑
ai∈Ai

(πti(ai)− π
µ
i (ai))

2

πti(ai)

)

= −µ
2∑
i=1

ξi ln

( ∑
ai∈Ai

πµi (ai)
πµi (ai)

πti(ai)

)

≤ −µ
2∑
i=1

ξi
∑
ai∈Ai

πµi (ai) ln

(
πµi (ai)

πti(ai)

)

= −µ
2∑
i=1

ξiKL(πµi , π
t
i) ≤ −µξ

2∑
i=1

KL(πµi , π
t
i), (4)

where the second inequality follows from x ≥ ln(1 + x)
for all x > 0, and the third inequality follows from the
concavity of the ln(·) function and Jensen’s inequality
for concave functions. On the other hand, if ψi(p) =∑
ai∈Ai

p(ai) ln p(ai), then Dψi
(πµ, πt) = KL(πµ, πt).

From this fact and (4), we have:

d

dt
KL(πµ, πt) ≤ −µξKL(πµ, πt).

This concludes the second statement of the theorem.

5.2 PROOF OF THEOREM 5.4

From the definition of exploitability, we have:

exploit(πt) =

2∑
i=1

max
π̃i∈∆(Ai)

v
π̃i,π

t
−i

i

=

2∑
i=1

(
max

π̃i∈∆(Ai)
v
π̃i,π

µ
−i

i

+ max
π̃i∈∆(Ai)

v
π̃i,π

t
−i

i − max
π̃i∈∆(Ai)

v
π̃i,π

µ
−i

i

)
≤

2∑
i=1

(
max

π̃i∈∆(Ai)
v
π̃i,π

µ
−i

i + max
π̃i∈∆(Ai)

(
v
π̃i,π

t
−i

i − vπ̃i,π
µ
−i

i

))

≤
2∑
i=1

(
max

π̃i∈∆(Ai)
v
π̃i,π

µ
−i

i

+∥πµi − π
t
i∥1 max

π̃−i∈∆(A−i)
∥qπ

t
i ,π̃−i

i ∥∞
)

≤
2∑
i=1

(
max

π̃i∈∆(Ai)
v
π̃i,π

µ
−i

i + umax

√
2(ln 2)KL(πµi , π

t
i)

)
,

(5)

where the second inequality follows from Hölder’s inequal-
ity, and the last inequality follows from Lemma 11.6.1 in
[Cover and Thomas, 2006].

From Lemma 3.5 of [Bauer et al., 2019], a stationary
point πµ of (RMD) satisfies that for all i ∈ {1, 2} and
ai ∈ Ai, qπ

µ

i (ai) − vπ
µ

i ≤ µ. Therefore, the term of

maxπ̃i∈∆(Ai) v
π̃i,π

µ
−i

i can be bounded as:

2∑
i=1

max
π̃i∈∆(Ai)

v
π̃i,π

µ
−i

i =

2∑
i=1

(
max

π̃i∈∆(Ai)
v
π̃i,π

µ
−i

i − vπ
µ

i

)

=

2∑
i=1

(
max
ai∈Ai

qπ
µ

i (ai)− vπ
µ

i

)
≤ 2µ, (6)

where the second equality follows from
∑2
i=1 v

πµ

i = 0 by
the definition of zero-sum games. By combining (5), (6),
and Corollary 5.3, we have:

exploit(πt) ≤ 2µ+ umax

2∑
i=1

√
2(ln 2)KL(πµi , π

t
i)

≤ 2µ+ umax

√
2(ln 2)

√√√√2

2∑
i=1

KL(πµi , π
t
i)

≤ 2µ+ 2
√
ln 2umax

√
KL(πµ, π0) exp (−µξt)

= 2µ+ 2umax

√
(ln 2)KL(πµ, π0) exp

(
−µξ

2
t

)
,

where the second inequality follows from
√
a +
√
b ≤√

2(a+ b) for a, b > 0. This concludes the statement.

6 EXPERIMENTS

In this section, we empirically evaluate M-FTRL. We com-
pare its performance to those of FTRL and O-FTRL.

We conduct experiments on the following games: biased
rock-paper-scissors (BRPS), a normal-form game with mul-
tiple Nash equilibria (M-Eq), and random utility games.
BRPS and M-Eq have the following utility matrix, respec-
tively:

Table 1: Biased RPS utilities

R P S
R 0 −0.1 0.3
P 0.1 0 −0.1
S −0.3 0.1 0

Table 2: M-Eq utilities

y1 y2
x1 0.1 −0.2
x2 −0.4 0.3
x3 −1 0.9
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Figure 2: Exploitability of πt for M-FTRL, FTRL, and O-FTRL under full-information feedback.
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(a) M-FTRL with a fixed refer-
ence strategy

0.0

0.2

0.4

0.6

0.8

1.0

1.0

0.8

0.6

0.4

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0 R

P

S

Equilibrium Point
Start Point
End Point

(b) M-FTRL with adaptive refer-
ence strategies
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(c) FTRL
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Figure 3: Trajectories of πt for M-FTRL, FTRL and O-FTRL in BRPS under full-information feedback. We set the initial
strategy profile to π0

i = 1
|Ai| for i ∈ {1, 2}. The black point represents the equilibrium strategy. The blue/red points represent

the initial/final points, respectively.
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(a) M-FTRL with a fixed refer-
ence strategy
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(b) O-FTRL

Figure 4: Initial strategies and final strategies for player 1 in
100 instances (M-Eq under full-information feedback). The
green dashed line represents the set of equilibrium strategies
for player 1. The blue/red points represent the initial/final
points, respectively.

The set of Nash equilibria in M-Eq is given by:

Π∗
1=

{
x ∈ ∆3| x2 = −22

12
x1 +

19

12
; x3 =

10

12
x1 −

7

12

}
,

Π∗
2 =

{(
1

2
,
1

2

)}
.

For random utility games, we generate each component in a
utility matrix uniformly at random in [0, 1]. We consider ran-
dom utility games with action sizes |A1| = |A2| = 10 and
|A1| = |A2| = 50. For each game, we average the results

for 100 instances. We generate the initial strategy profile π0

uniformly at random in
∏2
i=1 ∆

◦(Ai) for each instance. We
use the entropy regularizer ψi(p) =

∑
ai∈Ai

p(ai) ln p(ai)
in all experiments.

6.1 FULL-INFORMATION FEEDBACK

First, we provide the results under full-information feedback.
In these experiments, we analyze the performance of M-
FTRL with a fixed reference strategy ci =

(
1

|Ai|

)
ai∈Ai

and

one with adaptive reference strategies (Algorithm 1). We
set the learning rate to η = 10−1 for all algorithms, and set
the mutation parameter to µ = 10−2 for M-FTRL. For M-
FTRL with adaptive reference strategies, we set N = 4, 000
in BRPS and M-Eq, and N = 20, 000 in the random utility
games.

Figure 2 shows the average exploitability of πt updated
by each algorithm. We find that the exploitability of M-
FTRL converges to a constant value faster than FTRL and
O-FTRL. Furthermore, by adapting the reference strategy,
the exploitability of M-FTRL’s strategy profile quickly
converges to 0. We provide additional experimental re-
sults with varying mutation parameters µ ∈ {10−3, 5 ×
10−3, 10−2, 10−1, 1} in Appendix B.

Next, we compare the trajectories of strategies updated by
each algorithm. Figure 3 shows the trajectories of πt up-
dated by each algorithm from an instance of RBPS. Note
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Figure 5: Exploitability of πt for M-FTRL, FTRL, and O-FTRL under bandit feedback.
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(a) M-FTRL with a fixed reference strategy
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(b) FTRL
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Figure 6: Trajectories of πt for M-FTRL, FTRL and O-FTRL in BRPS under bandit feedback. We set the initial strategy
profile to π0

i = 1
|Ai| for i ∈ {1, 2}. The black point represents the equilibrium strategy. The blue/red points represent the

initial/final points, respectively.

that in this figure, we set the initial strategy to π0
i = 1

|Ai|
for i ∈ {1, 2}. We can observe that FTRL’s strategies cycle
around the Nash equilibrium strategy, and O-FTRL’s strate-
gies gradually approach the Nash equilibrium strategy. Un-
like these methods, M-FTRL’s strategies quickly approach
the stationary point. Figure 4 shows the initial strategies and
final strategies for player 1 in M-Eq. We find that M-FTRL’s
strategy profile converges to a unique stationary point re-
gardless of the setting of the initial point, while O-FTRL’s
strategy profile converges to a different Nash equilibrium for
each instance. This result highlights the uniqueness property
of the stationary point from Theorem 5.2.

6.2 BANDIT FEEDBACK

Next, we provide the results under bandit feedback. We set
the learning rate to η = 10−4 for all algorithms, and set the
mutation parameter to µ = 10−2 for M-FTRL. In the bandit
feedback experiments, we focus on the performance of M-
FTRL with a fixed reference strategy ci = 1

|Ai| . In FTRL
and O-FTRL algorithms, we use the unbiased estimator
by [Lattimore and Szepesvári, 2020] as the estimator of
qπ

t

i so that the estimator takes values in (−∞, umax] for
computational stability. We provide further details on the
estimator in Appendix A. Note that M-FTRL does not need
this estimator, but it is sufficient to use the importance-

weighted estimator in (2).

Figure 5 shows the average exploitability of πt updated
by each algorithm, and Figure 6 shows the trajectories of
πt updated by each algorithm from an instance of RBPS.
We can see that unlike the experimental results under full-
information feedback, O-FTRL’s trajectory does not con-
verge to a Nash equilibrium. On the other hand, M-FTRL’s
trajectory converges near a stationary point. These results
suggest that M-FTRL has the last-iterate convergence prop-
erty even under bandit feedback.

7 CONCLUSION

In this study, we proposed M-FTRL, a simple FTRL algo-
rithm that incorporates mutation for last-iterate convergence
to a stationary point. We proved that the M-FTRL dynamics
induced by the entropy regularizer is equivalent to RMD.
Besides, we showed that the trajectory of M-FTRL with
general regularization functions converges to a stationary
point of the RMD. The numerical simulation reveals that M-
FTRL outperforms the state-of-the-art FTRL and O-FTRL
in a variety of two-player zero-sum games. In future studies,
we will extend M-FTRL algorithm and provide a theoretical
analysis to more complex games, such as extensive-form
games and Markov games.
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