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Abstract
Many variants of Optimal Transport (OT) have
been developed to address its heavy computation.
Among them, notably, Sliced Wasserstein (SW)
is widely used for application domains by project-
ing the OT problem onto one-dimensional lines,
and leveraging the closed-form expression of the
univariate OT to reduce the computational bur-
den. However, projecting measures onto low-
dimensional spaces can lead to a loss of topo-
logical information. To mitigate this issue, in
this work, we propose to replace one-dimensional
lines with a more intricate structure, called tree
systems. This structure is metrizable by a tree
metric, which yields a closed-form expression
for OT problems on tree systems. We provide
an extensive theoretical analysis to formally de-
fine tree systems with their topological properties,
introduce the concept of splitting maps, which
operate as the projection mechanism onto these
structures, then finally propose a novel variant of
Radon transform for tree systems and verify its in-
jectivity. This framework leads to an efficient met-
ric between measures, termed Tree-Sliced Wasser-
stein distance on Systems of Lines (TSW-SL). By
conducting a variety of experiments on gradient
flows, image style transfer, and generative models,
we illustrate that our proposed approach performs
favorably compared to SW and its variants.

1. Introduction
Optimal transport (OT) (Villani, 2008; Peyré et al., 2019) is
a naturally geometrical metric for comparing probability dis-
tributions. Intuitively, OT lifts the ground cost metric among
supports of input measures into the metric between two in-
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put measures. OT has been applied in many research fields,
including machine learning (Nguyen et al., 2021b; Bunne
et al., 2022; Fan et al., 2022; Hua et al., 2023; Le et al.,
2024a;b; Nguyen & Ho, 2024; Kessler et al., 2025; Chapel
et al., 2025; Chapel & Tavenard, 2025), statistics (Mena &
Niles-Weed, 2019; Weed & Berthet, 2019; Liu et al., 2022;
Nguyen et al., 2022; Nietert et al., 2022; Wang et al., 2022;
Pham et al., 2024), multimodal (Park et al., 2024; Luong
et al., 2024), computer vision and graphics (Rabin et al.,
2011; Solomon et al., 2015; Lavenant et al., 2018; Nguyen
et al., 2021a; Saleh et al., 2022; Vu et al., 2025).

However, OT has a supercubic computational complexity
concerning the number of supports in input measures (Peyré
et al., 2019). To address this issue, Sliced-Wasserstein
(SW) (Rabin et al., 2011; Bonneel et al., 2015) exploits
the closed-form expression of the one-dimensional OT to
reduce its computational complexity. More concretely, SW
projects supports of input measures onto a random line and
leverage the fast computation of the OT on one-dimensional
lines. SW is widely used in various applications, such as
gradient flows (Bonet et al., 2022; Liutkus et al., 2019),
clustering (Kolouri et al., 2018; Ho et al., 2017), domain
adaptation (Courty et al., 2017), generative models (Desh-
pande et al., 2018; Wu et al., 2019; Nguyen & Ho, 2022),
thanks to its computational efficiency. Due to relying on
one-dimensional projection, SW limits its capacity to cap-
ture the topological structures of input measures, especially
in high-dimensional domains.

Related work. Prior studies have aimed to enhance the
Sliced Wasserstein (SW) distance (Nguyen et al., 2024a;
2020; Nguyen & Ho, 2024) or explore variants of SW
(Bai et al., 2023; Kolouri et al., 2019; Quellmalz et al.,
2023). These works primarily concentrate on improving
existing components within the SW framework, including
the sampling process (Nguyen et al., 2024a; 2020; Nadjahi
et al., 2021), determining optimal lines for projection (Desh-
pande et al., 2019), and modifying the projection mecha-
nism (Kolouri et al., 2019; Bonet et al., 2023). However, few
studies have focused on replacing one-dimensional lines,
which play the role of integration domains, with more com-
plex domains such as one-dimensional manifolds (Kolouri
et al., 2019), or low-dimensional subspaces (Alvarez-Melis
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et al., 2018; Bonet et al., 2023; Paty & Cuturi, 2019; Niles-
Weed & Rigollet, 2022; Lin et al., 2021; Huang et al., 2021;
Muzellec & Cuturi, 2019). In this paper, we concentrate on
the latter approach, aiming to discover novel geometrical
domains that meet two key criteria: (i) pushing forward
of high-dimensional measures onto these domains can be
processed in a meaningful manner, and (ii) OT problems
on these domains can be efficiently solved, ideally with a
closed-form solution.

Contribution. Our contributions are three-fold:

• We introduce the concept of tree systems, which con-
sist of copies of the real line equipped with additional
structures, and study their topology. A key property
of tree systems is that they form well-defined metric
spaces, with metrics being tree metrics. This property
is sufficient to guarantee that OT problems on tree
systems admit closed-form solutions.

• We define the space of integrable functions and prob-
ability measures on a tree system, and introduce a
novel transform, called Radon Transform on Systems
of Lines. This transform naturally transforms mea-
sures supported in high-dimensional space onto tree
systems, and is a generalization of the original Radon
transform. The injectivity of this variant holds, similar
to other Radon transform variants in the literature.

• We propose the Tree-Sliced Wasserstein distance on
Systems of Lines (TSW-SL), and analyze its efficiency
through the closed-form solution for the OT problem
on tree systems, achieving a similar computational
cost as the traditional SW.

Organization. The remainder of the paper is organized
as follows. Section 2 provides necessary backgrounds of
SW distance and Wasserstein distance on tree metric spaces.
Section 3 provides a brief and intuitive introduction of tree
systems and studies its properties, and Section 4 introduces
the Radon Transform on System of Lines. The novel Tree-
Sliced Wasserstein distance on Systems of Lines is proposed
in Section 5. Finally, Section 6 contains empirical results
for TSW-SL. Formal constructions, theoretical proofs of key
results, and additional materials are presented in Appendix.

2. Preliminaries
In this section, we review Sliced Wasserstein (SW) distance
and Wasserstein distances on metric spaces with tree metrics
(TW).

Wasserstein Distance. Let Ω be a measurable space with
a metric d on Ω, and let µ, ν be two probability distributions
on Ω. Let P(µ, ν) be the set of probability distributions π

on the product space Ω × Ω such that π(A × Ω) = µ(A),
π(Ω×B) = ν(B) for all measurable sets A, B. For p ⩾ 1,
the p-Wasserstein distance Wp between µ and ν (Villani,
2008) is defined as:

Wp(µ, ν) = inf
π∈P(µ,ν)

(∫
Ω×Ω

d(x, y)p dπ(x, y)

) 1
p

. (1)

Sliced Wasserstein Distance. For µ, ν ∈ P(Rd), the
Sliced p-Wasserstein distance (SW) (Rabin et al., 2011;
Bonneel et al., 2015) between µ, ν is defined by:

SWp(µ, ν) =

(∫
Sd−1

Wp
p(Rfµ(·, θ),Rfν(·, θ)) dσ(θ)

) 1
p

,

(2)

where σ = U(Sd−1) is the uniform distribution on Sd−1,
operator R : L1(Rd) ! L1(R×Sd−1) is the Radon Trans-
form (Helgason, 2011):

Rf(t, θ) =

∫
Rd

f(x) · δ(t− ⟨x, θ⟩) dx, (3)

and fµ, fν are the probability density functions of µ, ν, re-
spectively. Max Sliced Wasserstein (MaxSW) distance is
discussed in Appendix C.

Monte Carlo estimation for SW. The Monte Carlo
method is usually employed to approximate the intractable
integral in Equation (2) as follows:

ŜWp(µ, ν) =

(
1

L

L∑
l=1

Wp
p(Rfµ(·, θl),Rfν(·, θl))

) 1
p

,

(4)

where θ1, . . . , θL are drawn independently from U(Sd−1).
Using the closed-form expression of one-dimensional
Wasserstein distance, when µ and ν are discrete measures
that have supports of at most n supports, the computational
complexity of ŜWp is O(Ln log n + Ldn) (Peyré et al.,
2019).

Tree Wasserstein Distances. Given a rooted tree (T , r)
(T is a tree as a graph, with one certain node r called root)
with non-negative edge lengths, and the ground metric dT ,
i.e. the length of the unique path between two nodes. For
two distributions µ, ν supported on nodes of T , the Wasser-
stein distance with ground cost dT , i.e., tree-Wasserstein
(TW) (Le et al., 2019; Indyk & Thaper, 2003), admits a
closed-form expression:

WdT ,1(µ, ν) =
∑
e∈T

we ·
∣∣µ(Γ(ve))− ν(Γ(ve))

∣∣, (5)

where ve is the farther endpoint of edge e from r, we is the
length of e, and Γ(ve) is the subtree of T rooted at ve, i.e.
the subtree consists of all node x that the unique path from
x to r contains ve.
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Adding a tree structure

Figure 1: This illustration demonstrates the process of adding a tree structure to a system of lines. Left: An example of
a system of 5 lines in R2, where the lines intersect, making the system connected. Right: Adding a tree structure to the
connected system. In this example, only four pairs of lines are adjacent, shown by intersections, while the remaining pairs
are disconnected, represented by gaps. This structure is derived by taking a spanning tree from a graph with five nodes
(representing the five lines), with edges connecting nodes where lines intersect.

3. System of Lines with Tree Structures
This section provides an intuitive and brief introduction of
systems of lines and their additional tree structures. These
structures form metric spaces, called tree systems, which
serve as a generalization of one-dimensional lines within
the framework of the Sliced-Wasserstein distance. We then
explore the topological properties and the construction of
tree systems. The ideas are illustrated in Figures 1, 2, 3, and
a complete formal construction with theoretical proofs are
presented in Appendix A.

3.1. System of Lines and Tree System

A line in Rd can be fully described by specifying its direc-
tion and a point it passes through. Specifically, a line is
determined by (x, θ) ∈ Rd × Sd−1, and is parameterized as
x+ t · θ for t ∈ R.

Definition 3.1 (Line and System of Lines in Rd). A line in
Rd is an element (x, θ) of Rd × Sd−1. For k ⩾ 1, a system
of k lines in Rd is a set of k lines in Rd.

We denote a line in Rd as l = (xl, θl). Here, xl and θl
are called source and direction of l, respectively. Denote
(Rd × Sd−1)k by Ld

k, which is the space of systems of k
lines in Rd, and an element of Ld

k is usually denoted by L.
The ground set of a system of lines L is defined by:

L̄ :=
{
(x, l) ∈ Rd × L : x = xl + tx · θl for some tx ∈ R

}
.

For each element L̄, we sometimes write (x, l) as (tx, l),
where tx ∈ R presents the parameterization of x on l as
x = xl + tx · θl. By a point of L, we refer to a point of
the ground set L̄. Now consider a system of distinct lines
L in Rd. L is said to be connected if its points form a
connected set in Rd. In this case, L naturally has certain

tree structures. Figure 1 gives an example of a system of
lines with an added tree structure. A pair (L, T ) consists of
a connected system of lines L and its tree structure T of L,
is called a tree system. We also denote it as L for short.

3.2. Topological Properties of Tree Systems

A tree system L can be intuitively understood as a system of
lines that are connected in certain ways. It naturally forms a
topological space by taking disjoint union copies of R and
then taking the quotient at intersections of these copies. The
disjoint union is straightforward, and the quotient follows
the tree structure of L. The topological space resulting from
these actions is called the topological space of a tree system
L, and is denoted by ΩL. By its construction, ΩL naturally
carries a measure induced from the standard measure on
each copy of R. This measure is denoted by µL. Notice
that, due to the tree structure, a unique path exists between
any two points of ΩL. This leads to an important result
regarding the metrizability of ΩL.

Theorem 3.2 (ΩL is metrizable by a tree metric). Consider
dL : ΩL × ΩL ! [0,∞) defined by:

dL(a, b) := µL (Pa,b) , ∀a, b ∈ ΩL, (6)

where Pa,b is the unique path between a and b in ΩL. Then
dL is a metric on ΩL, which makes (ΩL, dL) a metric space.
Moreover, dL is a tree metric, and the topology on ΩL
induced by dL is identical to the topology of ΩL.

The proof is presented in Theorem A.11. Figure 2 illustrates
an example of a unique path between two points on a tree
system, providing an intuitive explanation of why dL is
indeed a metric.
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Figure 2: The same tree system L shown in Figure 1, naturally has a topology derived from five copies of R. Consider three
points a, b, c. The red zigzag line presents the unique path from a to b. Here the distance between a, b, i.e. dL(a, b), is the
sum of four red line segments. Similar for paths between b and c; a and c. This demonstrates that the triangle inequality is
satisfied for dL.

3.3. Construction of Tree Systems and Sampling Process

A tree system can be built inductively by sampling lines,
ensuring that each new line intersects one of the previously
sampled lines. We introduce a straightforward method to
construct a tree system: start by sampling a line, and at each
subsequent step, sample a new line that intersects the previ-
ously selected line. Specifically, the process is as follows:

• Step 1. Sampling x1 ∼ µ1 for an µ1 ∈ P(Rd), then
θ1 ∼ ν1 for an ν1 ∈ P(Sd−1). The pair (x1, θ1) forms
the first line;

• Step i. At step i, sampling xi = xi−1 + ti · θi−1

where ti ∼ µi for an µi ∈ P(R), then θi ∼ νi for an
νi ∈ P(Sd−1). The pair (xi, θi) forms the ith line.

The tree system produced by this construction has a chain-
like tree structure, where the ith line intersects the (i +
1)th line. A general approach for sampling tree systems is
provided in Appendix A.4. In practice, we simply assume
all the distributions µ’s and ν’s to be independent, and let:

• µ1 to be a distribution on a bounded subset of Rd, for
instance, the uniform distribution on the d-dimensional
cube [−1, 1]d, i.e. U([−1, 1]d);

• µi for i > 1 to be a distribution on a bounded subset of
R, for instance, the uniform distribution on the interval
[−1, 1], i.e. U([−1, 1]);

• θn to be a distribution on Sd−1, for instance, the uni-
form distribution U(Sd−1).

Using the distributions µ’s and ν’s, we get a distribution
on the space of all tree systems that can be sampled by this

way. We obtain a distribution over the space of all tree
systems that can be sampled in this manner. The algorithm
for sampling tree systems is summarized in Algorithm 1,
and illustrated in Figure 3.

Algorithm 1 Sampling (chain-like) tree systems.

Input: The number of lines in tree systems k.
Sampling x1 ∼ U([−1, 1]d) and θ1 ∼ U(Sd−1).
for i = 2 to k do

Sample ti ∼ U([−1, 1]) and θi ∼ U(Sd−1).
Compute xi = xi−1 + ti · θi−1.

end for
Return: (x1, θ1), (x2, θ2), . . . , (xk, θk).

Figure 3: Illustration of the sampled (chain-like)
tree systems in Algorithm 1.

4. Radon Transform on Systems of Lines
In this section, we introduce the notions of the space of
Lebesgue integrable functions and the Radon Transform for
systems of lines. Let L ∈ Ld

k be a system of k lines. Denote
L1(Rd) as the space of Lebesgue integrable functions on
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Rd with norm ∥ · ∥1, i.e.

L1(Rd) =

{
f : Rd ! R : ∥f∥1 =

∫
Rd

|f(x)| dx < ∞
}
.

(7)

Two functions f1, f2 ∈ L1(Rd) are considered to be iden-
tical if f1(x) = f2(x) almost everywhere on Rd. As a
counterpart, a Lebesgue integrable function on L is a func-
tion f : L̄ ! R such that:

∥f∥L :=
∑
l∈L

∫
R
|f(tx, l)| dtx < ∞. (8)

The space of Lebesgue integrable functions on L is denoted
by L1(L). Two functions f1, f2 ∈ L1(L) are considered to
be identical if f1(x) = f2(x) almost everywhere on L̄. The
space L1(L) with norm ∥ · ∥L is a Banach space.

Recall that L has k lines. Denote the (k − 1)-
dimensional standard simplex as ∆k−1 = {(al)l∈L : al ⩾
0 and

∑
l∈L al = 1} ⊂ Rk. Denote C(Rd,∆k−1) as the

space of continuous maps from Rd to ∆k−1. A map in
C(Rd,∆k−1) is referred to as a splitting map. Let L be a sys-
tem of k lines in Ld

k, α be a splitting map in C(Rd,∆k−1),
we define an operator associated to α that transforms a
Lebesgue integrable functions on Rd to a Lebesgue inte-
grable functions on L, analogous to the original Radon
Transform. For f ∈ L1(Rd), define:

Rα
Lf : L̄ −! R

(x, l) 7−!

∫
Rd

f(y) · α(y)l · δ (tx − ⟨y − xl, θl⟩) dy,

(9)

where δ is the 1-dimensional Dirac delta function. For
f ∈ L1(Rd), we can show that Rα

Lf ∈ L1(L). Moreover,
we have ∥Rα

Lf∥L ⩽ ∥f∥1. In other words, the operator
Rα

L : L1(Rd) ! L1(L) is well-defined, and is a linear
operator. The proof for these properties is presented in
Theorem B.2. We now propose a novel variant of Radon
Transform for systems of lines.
Definition 4.1 (Radon Transform on Systems of lines). For
α ∈ C(Rd,∆k−1), the operator Rα:

Rα : L1(Rd) −!
∏

L∈Ld
k

L1(L)

f 7−! (Rα
Lf)L∈Ld

k
.

is called the Radon Transform on Systems of Lines.
Remark. An illustration of splitting maps and the Radon
Transform on Systems of Lines is presented in Figure 4.
Intuitively, splitting map α indicates how the mass at a
given point is distributed across all lines of a system of lines.
In the case k = 1, there is only one splitting map which is
the constant function 1, and the Radon Transform for Ld

1 is
identical to the traditional Radon Transform.

Many variants of the Radon transform require the transform
to be injective. In the case of systems of lines, the injectivity
also holds for Rα.

Theorem 4.2. Rα is injective for all splitting maps α ∈
C(Rd,∆k−1).

The proof of this theorem is presented in Theorem B.1.
Denote P(Rd) as the space of all probability distribution
on Rd, and define a probability distribution on L to be a
function f ∈ L1(L) such that f : L̄ ! [0,∞) and ∥f∥L =
1. The space of probability distribution on L is denoted by
P(L). Then Rα

L transforms a distribution in P(Rd) to a
distribution in P(L). In other words, the restricted operator
Rα

L : P(Rd) ! P(L) is also well-defined.

5. Tree-Sliced Wasserstein Distance on
Systems of Lines

In this section, we present a novel Tree-Sliced Wasserstein
distance on Systems of Lines (TSW-SL). Consider T as
the space of tree systems consisting of k lines in Rd that
be sampled by Algorithm 1. By the remark at the end of
Subsection 3.3, we have a distribution σ on the space T.
General cases of T, as in Appendix A.4, will be handled
in a similar manner. For simplicity and convenience, we
occasionally use the same notation to represent both a mea-
sure and its probability distribution function, provided the
context makes the meaning clear.

5.1. Tree-Sliced Wasserstein Distance on Systems of
Lines

Consider a splitting function α in C(Rd,∆k−1). Given two
probability distributions µ, ν in P(Rd) with their density
function fµ, fν, respectively, and a tree system L ∈ T. By
the Radon Transform Rα

L in Definition 4.1, fµ and fν are
transformed to Rα

Lµ and Rα
Lν in P(L). By Theorem 3.2,

L has a tree metric dL, we compute Wasserstein distance
WdL,1(Rα

Lfµ,Rα
Lfν) between Rα

Lfµ and Rα
Lfν by Equa-

tion (5).

Definition 5.1 (Tree-Sliced Wasserstein Distance on Sys-
tems of Lines). The Tree-Sliced Wasserstein distance on
Systems of Lines between µ, ν in P(Rd) is defined by:

TSW-SL(µ, ν) :=
∫
T

WdL,1(Rα
Lfµ,Rα

Lfν) dσ(L). (10)

Remark. Note that, the definition of TSW-SL depends on
the space of sampled tree systems T, the distribution σ on
T, and the splitting function α. For simplifying the notation,
we omit them.

TSW-SL is a metric on P(Rd). The proof for the below
theorem is provided in Appendix D.1.

Theorem 5.2. TSW-SL is a metric on P(Rd).
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Figure 4: An illustration of Radon Transform on Systems of Lines. Given f ∈ L1(Rd) such that f(x) = 0.6, f(y) = 0.4,
and L is a system of 3 lines. For a splitting map α such that α(x) = (1/6, 3/6, 2/6) and α(y) = (1/4, 2/4, 1/4), f
is transformed to Rα

Lf . By Equation (9), for instance, the value of Rα
Lf at the projection of x onto line (2) of L is

f(x) · α(x)2 = 0.3.

Remark. If tree systems in T consist only one line, i.e.
k = 1, then in Definition 4.1, the splitting map α is the
constant map 1, and the Radon Transform Rα now becomes
identical to the original Radon Transform, as pushing for-
ward measures onto lines depends only on their directions.
Also, according to the sampling process described in Subsec-
tion 3.3, σ becomes the distribution of θ1, which is U(Sd−1).
In this case, TSW-SL in Equation (10) is identical to SW in
Equation (2). Furthermore, in Appendix C, we introduce
Max Tree-Sliced Wasserstein Distance on Systems of Lines
(MaxTSW-SL), an analog of MaxSW (Deshpande et al.,
2019).

5.2. Computing TSW-SL

We employ the Monte Carlo method to estimate the in-
tractable integral in Equation (10) as follows:

̂TSW-SL(µ, ν) =
1

L

L∑
i=l

WdLl
,1(Rα

Ll
fµ,Rα

Ll
fν), (11)

where L1, . . . ,LL
i.i.d∼ σ are referred to as project-

ing tree systems. We now discuss on how to compute
WdL,1(Rα

Lfµ,Rα
Lfν) for L ∈ T. In applications, consider

fµ, fν ∈ P(Rd) given as follows:

µ(x) =

n∑
i=1

ui · δ(x− ai) and ν(x) =

m∑
i=1

vi · δ(x− bi)

(12)

Rα
L pushes fµ, fν on L, resulting in discrete measures

Rα
Lfµ,Rα

Lfν in P(L). In details, from definition of Rα
Lfµ,

the support of Rα
Lfµ is the set of all projections of support

of µ onto lines of L. Moreover, the value of Rα
Lfµ at projec-

tions of ai onto l is equal to α(ai)l · ui. Similar for Rα
Lfν .

From this detailed description of Rα
Lfµ,Rα

Lfν , together
with Equation (5), we derive a closed-form expression of

WdL,1(Rα
Lfµ,Rα

Lfν) as follows:

WdL,1(Rα
Lfµ,Rα

Lfν)

=
∑
e∈T

we ·
∣∣∣Rα

Lfµ(Γ(ve))−Rα
Lfν(Γ(ve))

∣∣∣. (13)

This expression enables an efficient and highly parallelizable
implementation of TSW-SL, as it relies on fundamental oper-
ations like matrix multiplication and sorting. Appendix B.3
provides a detailed illustration of the underlying mechanism
of this expression.
Remark. Assume n ⩾ m, the time complexity for TSW-
SL is O(Lkn log n + Lkdn) since it primarily involves
projecting onto L×k lines and sorting n projections on each
line. This complexity is equivalent to that of SW when the
number of projection directions is the same. Therefore, in
our experiments, we ensure a fair comparison by evaluating
the performance of TSW-SL against SW or its variants using
the same number of projection directions.

We summarize this section with Algorithm 2 of computing
TSW-SL.

Algorithm 2 Tree Sliced Wasserstein distance on Systems
of Lines.

Input: µ and ν in P(Rd), the number of lines in each
tree system k, the number of tree systems L, a splitting
map α : Rd ! ∆k−1.
for l = 1 to L do

Sample tree system
Li =

(
(x

(l)
1 , θ

(l)
1 ), . . . , (x

(l)
k , θ

(l)
k )
)
.

Project µ and ν onto Ll to get Rα
Ll
fµ and Rα

Ll
fν .

Compute WdLl
,1(Rα

Ll
fµ,Rα

Ll
fν).

end for
Compute ̂TSW-SL = 1

L · ΣL
l=1WdLl

,1(Rα
Ll
fµ,Rα

Ll
fν).

Return: ̂TSW-SL(µ, ν).
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Table 1: Average Wasserstein distance between source and target distributions of 10 runs on Swiss Roll and 25 Gaussians
datasets. All methods use 100 projecting directions.

Swiss Roll 25 Gaussians

Methods Iteration Time/Iter(s) Iteration Time/Iter(s)
500 1000 1500 2000 2500 500 1000 1500 2000 2500

SW 5.73e-3 2.04e-3 1.23e-3 1.11e-3 1.05e-3 0.009 1.61e-1 9.52e-2 3.44e-2 2.56e-2 2.20e-2 0.006
MaxSW 2.47e-2 1.03e-2 6.10e-3 4.47e-3 3.45e-3 2.46 5.09e-1 2.36e-1 1.33e-1 9.70e-2 8.48e-2 2.38
SWGG 3.84e-2 1.53e-2 1.02e-2 4.49e-3 3.57e-5 0.011 3.10e-1 1.17e-1 3.38e-2 3.58e-3 2.54e-4 0.009
LCVSW 7.28e-3 1.40e-3 1.38e-3 1.38e-3 1.36e-3 0.010 3.38e-1 6.64e-2 3.06e-2 3.06e-2 3.02e-2 0.009
TSW-SL 9.41e-3 2.03e-7 9.63e-8 4.44e-8 3.65e-8 0.014 3.49e-1 9.06e-2 2.96e-2 1.20e-2 3.03e-7 0.010
MaxTSW-SL 2.75e-6 8.24e-7 5.14e-7 5.02e-7 5.00e-7 2.53 1.12e-1 8.28e-3 1.61e-6 7.32e-7 5.19e-7 2.49

6. Experimental Results
In this section, we present empirical results demonstrating
the advantages of our TSW-SL distance over traditional SW
distance and its variants, and how MaxTSW-SL enhances
the original MaxSW (Deshpande et al., 2019) through op-
timized tree construction. The splitting maps α will be
selected either as a trainable constant vector or a random
vector, while the tree systems will be sampled such that
the root is positioned near the mean of the target distribu-
tion, i.e. the data mean. It is worth noting that the paper
presents a simple alternative by substituting lines in SW with
tree systems, focusing mainly on comparing TSW-SL with
the original SW, without expecting TSW-SL to outperform
more recent SW variant. Further improvements to TSW-SL
could be made by incorporating advanced techniques devel-
oped for SW, but we leave this for future research, choosing
instead to focus on the fundamental aspects of TSW-SL.

In order to provide a comprehensive assessment, our ex-
periments focus on key tasks where SW has been widely
applied in the literature: gradient flows and generative mod-
els (including GANs and denoising diffusion models). We
first demonstrate TSW-SL’s performance on gradient flow
tasks using the 25 Gaussians and Swiss Roll datasets, high-
lighting its ability to capture complex topological properties,
with additional higher-dimensional results in the Appendix.
Next, we evaluate generative models across various datasets,
ranging from simple CIFAR-10 to complex STL-10, as-
sessing scalability and robustness. We refer the reader to
Appendix E for additional experiments on color transfer and
ablation studies on the effect of the number of lines k on the
performance of generative adversarial networks.

6.1. Gradient Flows

First of all, we conduct experiments to compare the effec-
tiveness of our methods with baselines in the gradient flow
task. In this task, we aim to minimize TSW-SL(µ, ν), where
ν is the target distribution and µ represents the source distri-
bution. The optimization process is carried out iteratively
as ∂tµt = −∇TSW-SL(µt, ν) with µ0 = N (0, 1), −∂tµt

represents the change in the source distribution over time
and ∇TSW-SL(µt, ν) is the gradient of TSW-SL with re-
spect to µt. We initialize with µ0 = N (0, 1) and iteratively
update µt over 2500 iterations. To compare the effective-
ness of various distance metrics, we employ alternative dis-
tances as loss functions (SW (Bonneel et al., 2015), MaxSW
(Deshpande et al., 2019), SWGG (Mahey et al., 2023) and
LCVSW (Nguyen & Ho, 2023)) instead of TSW-SL. Over
2500 timesteps, we evaluate the Wasserstein distance be-
tween source and target distributions at iteration 500, 1000,
1500, 2000 and 2500. We use L = 100 in SW variants and
L = 25, k = 4 in TSW-SL for a fair comparison. Detailed
training settings are presented in Appendix E.1.

We first utilize both the Swiss Roll (a non-linear dataset) and
25 Gaussians (a multimodal dataset) as described in (Kolouri
et al., 2019). In Table 1, we present the performance and
runtime of various methods on these datasets, emphasiz-
ing the reduction of the Wasserstein distance over itera-
tions. Notably, across both datasets, our TSW-SL method
demonstrates superior performance by significantly reduc-
ing the Wasserstein distance. Moreover, our MaxTSW-SL
method shows a significant decrease in the Wasserstein dis-
tance compared to MaxSW, highlighting its improved per-
formance and effectiveness. Furthermore, we provide addi-
tional results from experiments of 10, 50, 75, 100, 150, and
200-dimensional Gaussian distributions, where target distri-
bution supports were sampled from these high-dimensional
spaces to showcase the empirical advantages of our TSW-
SL in capturing topological properties. In this context, we
compare the Tree Sliced Wasserstein distance on a System
of Lines (TSW-SL) with Sliced Wasserstein distance (SW)
to demonstrate TSW-SL’s effectiveness when distribution
supports lie in high-dimensional spaces. The results pre-
sented in Table 2 highlight TSW-SL’s superior ability to
preserve the original data’s topological properties compared
to SW.
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Table 2: Average Wasserstein distance between source and target distributions of 10 runs on high-dimensional datasets.

Iteration 500 Iteration 1000 Iteration 1500 Iteration 2000 Iteration 2500 Time/Iter(s)

Dimension SW TSW-SL SW TSW-SL SW TSW-SL SW TSW-SL SW TSW-SL SW TSW-SL

10 4.32e-3 2.81e-3 2.94e-3 2.00e-3 2.81e-3 1.55e-3 2.23e-3 1.59e-3 2.28e-3 1.75e-3 0.010 0.015
50 50.41 39.26 45.69 21.91 42.56 11.91 38.81 4.08 35.75 1.72 0.014 0.018
75 92.39 79.71 90.79 67.99 90.07 53.92 86.58 44.91 90.31 31.61 0.015 0.018
100 130.12 117.66 128.13 103.23 128.58 93.41 129.80 80.46 128.29 75.28 0.018 0.019
150 214.09 203.30 213.71 190.62 215.05 186.77 212.90 183.52 216.32 182.63 0.020 0.022
200 302.84 289.83 301.35 283.34 303.07 276.94 302.70 279.24 301.51 279.08 0.020 0.021

Table 3: Average FID and IS score of 3 runs on CelebA and STL-10 of SN-GAN.

CelebA (64x64) STL-10 (96x96) CelebA (64x64) STL-10 (96x96)

FID(#) FID(#) IS(") FID(#) FID(#) IS(")

SW (L = 50) 9.97 ± 1.02 69.46 ± 0.21 9.08 ± 0.06 SW (L = 500) 9.62 ± 0.42 53.52 ± 0.61 10.56 ± 0.05
TSW-SL (L = 10, k = 5) 9.63 ± 0.46 61.15 ± 0.37 10.00 ± 0.03 TSW-SL (L = 100, k = 5) 8.90± 0.49 51.81 ± 1.02 10.74 ± 0.13
TSW-SL (L = 17, k = 3) 8.98± 0.75 65.91 ± 0.64 9.75 ± 0.10 TSW-SL (L = 167, k = 3) 8.90 ± 0.38 52.27± 0.96 10.62± 0.18

6.2. Generative Adversarial Network

We then explore the capabilities of our proposed TSW-SL
framework within the context of generative adversarial net-
works (GANs). We employ the SNGAN architecture (Miy-
ato et al., 2018). In detail, our approach is based on the
methodology of the Sliced Wasserstein generator (Desh-
pande et al., 2018), with details provided in the Appendix
E.3. Specifically, we conduct deep generative modeling ex-
periments on the non-cropped CelebA dataset (Krizhevsky,
2009) with image size 64× 64, and on the STL-10 dataset
(Wang & Tan, 2016) with image size 96× 96.

To demonstrate the empirical advantage of our method in
enhancing generative adversarial networks, we employ two
primary metrics: the Fréchet Inception Distance (FID) score
(Heusel et al., 2017) and the Inception Score (IS) (Salimans
et al., 2016). We omit to report the IS for the CelebA dataset
as it does not effectively capture the perceptual quality of
face images (Heusel et al., 2017). Table 3 presents the re-
sults of SW and TSW-SL methodologies on the CelebA and
STL-10 datasets, utilizing FID and IS as our metrics. We
conduct experiments with two configurations of projecting
directions: for 50 projecting directions, we use L = 50 in
SW compared to L = 10, k = 5 and L = 17, k = 3 in
TSW-SL; for 500 projecting directions, we use L = 500
in SW compared to L = 100, k = 5 and L = 167, k = 3
in TSW-SL. Our results reveal that TSW-SL significantly
outperforms SW, demonstrating a considerable performance
gap on both datasets in terms of IS and FID. We provide
additional qualitative results and ablation study for our meth-
ods with respect to the number of lines in Appendix E.3.

6.3. Denoising Diffusion Models

Finally, we concentrate on denoising diffusion models (Sohl-
Dickstein et al., 2015; Ho et al., 2020), which are among the
most complex generative frameworks for image generation.
Diffusion models consist of a forward process that gradually
adds Gaussian noise to data and a reverse process that learns
to denoise the data. The forward process is defined as a
Markov chain of T steps, where each step adds noise accord-
ing to a predefined schedule. The reverse process, parame-
terized by θ, aims to learn the denoising distribution. Tradi-
tionally, these models are trained using maximum likelihood
by optimizing the evidence lower bound (ELBO). However,
to accelerate generation, denoising diffusion GANs (Xiao
et al., 2021) introduce an implicit denoising model and em-
ploy adversarial training. In our work, we build upon the
framework in (Nguyen et al., 2024b) and replace the Aug-
mented Generalized Mini-batch Energy distance with our
novel TSW-SL distance as the kernel and conducting exper-
iments on the CIFAR-10 dataset (Krizhevsky, 2009). For a
detailed description of the model architecture and training
loss, we refer readers to Appendix E.4.

Table 4 demonstrates that our TSW-SL loss function signifi-
cantly enhances FID performance compared to conventional
SW, which is 22.43% over DDGAN and 2.4% over SW-DD.
This improvement underscores the efficacy of our approach
in generating high-quality samples with improved fidelity.

7. Conclusion
This paper proposes a novel method called Tree-Sliced
Wasserstein on Systems of Lines (TSW-SL), replacing the
traditional one-dimensional lines in the Sliced Wasserstein
(SW) framework with tree systems, providing a more geo-
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Table 4: Results for unconditional generation on CIFAR-10
of denoising diffusion models

Model FID # Time/Epoch(s)#

DDGAN ((Xiao et al., 2021)) 3.64 136
SW-DD ((Nguyen et al., 2024b)) 2.90 140
TSW-SL-DD (Ours) 2.83 163

metrically meaningful space. This key innovation enables
the proposed TSW-SL to capture more detailed structural
information and geometric relationships within the data
compared to SW while preserving computational efficiency.
We rigorously develop the theoretical basis for our approach,
verifying the essential properties of the Radon Transform
and empirically demonstrating the benefits of TSW-SL
across a range of application tasks. As this paper introduces
a straightforward alternative by replacing one-dimensional
lines in SW with tree systems, our primary comparison is
between TSW-SL and the original SW, without anticipating
that TSW-SL will surpass more recent SW variants. Fu-
ture research on adapting recent advance techniques within
the SW framework to TSW-SL remains an open area and
is anticipated to lead to improved performance for Sliced
Optimal Transport overall.
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Bonneel, N., Rabin, J., Peyré, G., and Pfister, H. Sliced and
Radon Wasserstein barycenters of measures. Journal of
Mathematical Imaging and Vision, 51:22–45, 2015.

Bunne, C., Papaxanthos, L., Krause, A., and Cuturi, M.
Proximal optimal transport modeling of population dy-
namics. In International Conference on Artificial Intelli-
gence and Statistics, pp. 6511–6528. PMLR, 2022.

Chapel, L. and Tavenard, R. One for all and all for one:
Efficient computation of partial wasserstein distances on
the line. In International Conference on Learning Repre-
sentations, 2025.

Chapel, L., Tavenard, R., and Vaiter, S. Differentiable
generalized sliced wasserstein plans. arXiv preprint
arXiv:2505.22049, 2025.

Courty, N., Flamary, R., Habrard, A., and Rakotomamonjy,
A. Joint distribution optimal transportation for domain
adaptation. Advances in neural information processing
systems, 30, 2017.

Deshpande, I., Zhang, Z., and Schwing, A. G. Generative
modeling using the sliced Wasserstein distance. In Pro-
ceedings of the IEEE conference on computer vision and
pattern recognition, pp. 3483–3491, 2018.

Deshpande, I., Hu, Y.-T., Sun, R., Pyrros, A., Siddiqui, N.,
Koyejo, S., Zhao, Z., Forsyth, D., and Schwing, A. G.
Max-sliced Wasserstein distance and its use for GANs.
In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 10648–10656, 2019.

Fan, J., Haasler, I., Karlsson, J., and Chen, Y. On the
complexity of the optimal transport problem with graph-
structured cost. In International Conference on Artificial
Intelligence and Statistics, pp. 9147–9165. PMLR, 2022.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y.
Generative adversarial networks. Communications of the
ACM, 63(11):139–144, 2020.

Hatcher, A. Algebraic topology. 2005.

Helgason, S. The Radon transform on Rn. Integral Geome-
try and Radon Transforms, pp. 1–62, 2011.

9

https://openreview.net/forum?id=Au1LNKmRvh
https://openreview.net/forum?id=Au1LNKmRvh


Tree-Sliced Wasserstein Distance: A Geometric Perspective

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., and
Hochreiter, S. GANs trained by a two time-scale update
rule converge to a local nash equilibrium. 12 2017.

Ho, J., Jain, A., and Abbeel, P. Denoising diffusion proba-
bilistic models. Advances in neural information process-
ing systems, 33:6840–6851, 2020.

Ho, N., Nguyen, X., Yurochkin, M., Bui, H. H., Huynh,
V., and Phung, D. Multilevel clustering via Wasserstein
means. In International conference on machine learning,
pp. 1501–1509. PMLR, 2017.

Hua, X., Nguyen, T., Le, T., Blanchet, J., and Nguyen, V. A.
Dynamic flows on curved space generated by labeled
data. In Proceedings of the Thirty-Second International
Joint Conference on Artificial Intelligence, IJCAI-23, pp.
3803–3811, 2023.

Huang, M., Ma, S., and Lai, L. A riemannian block co-
ordinate descent method for computing the projection
robust Wasserstein distance. In International Conference
on Machine Learning, pp. 4446–4455. PMLR, 2021.

Indyk, P. and Thaper, N. Fast image retrieval via embed-
dings. In International workshop on statistical and com-
putational theories of vision, volume 2, pp. 5, 2003.

Kessler, S., Le, T., and Nguyen, V. SAVA: Scalable learning-
agnostic data valuation. In The Thirteenth International
Conference on Learning Representations, 2025.

Kingma, D. P. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

Kolouri, S., Rohde, G. K., and Hoffmann, H. Sliced wasser-
stein distance for learning Gaussian mixture models. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 3427–3436, 2018.

Kolouri, S., Nadjahi, K., Simsekli, U., Badeau, R., and
Rohde, G. Generalized sliced Wasserstein distances.
Advances in neural information processing systems, 32,
2019.

Krizhevsky, A. Learning multiple layers of features
from tiny images. 2009. URL https://api.
semanticscholar.org/CorpusID:18268744.

Lavenant, H., Claici, S., Chien, E., and Solomon, J. Dynam-
ical optimal transport on discrete surfaces. In SIGGRAPH
Asia 2018 Technical Papers, pp. 250. ACM, 2018.

Le, T., Yamada, M., Fukumizu, K., and Cuturi, M. Tree-
sliced variants of Wasserstein distances. Advances in
neural information processing systems, 32, 2019.

Le, T., Nguyen, T., Phung, D., and Nguyen, V. A. Sobolev
transport: A scalable metric for probability measures with
graph metrics. In International Conference on Artificial
Intelligence and Statistics, pp. 9844–9868. PMLR, 2022.

Le, T., Nguyen, T., and Fukumizu, K. Generalized Sobolev
transport for probability measures on a graph. In Forty-
first International Conference on Machine Learning,
2024a.

Le, T., Nguyen, T., and Fukumizu, K. Optimal transport for
measures with noisy tree metric. In International Con-
ference on Artificial Intelligence and Statistics. PMLR,
2024b.

Lin, T., Zheng, Z., Chen, E., Cuturi, M., and Jordan, M. I.
On projection robust optimal transport: Sample complex-
ity and model misspecification. In International Confer-
ence on Artificial Intelligence and Statistics, pp. 262–270.
PMLR, 2021.

Lin, Y.-W. E., Coifman, R. R., Mishne, G., and Talmon, R.
Tree-Wasserstein distance for high dimensional data with
a latent feature hierarchy. In The Thirteenth International
Conference on Learning Representations, 2025.

Liu, L., Pal, S., and Harchaoui, Z. Entropy regularized
optimal transport independence criterion. In International
Conference on Artificial Intelligence and Statistics, pp.
11247–11279. PMLR, 2022.

Liutkus, A., Simsekli, U., Majewski, S., Durmus, A., and
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Notation

Rd d-dimensional Euclidean space
∥ · ∥2 Euclidean norm
⟨·, ·⟩ standard dot product
Sd−1 (d− 1)-dimensional hypersphere
θ unit vector
⊔ disjoint union
L1(X) space of Lebesgue integrable functions on X

P(X) space of probability distributions on X

µ, ν measures
δ(·) 1-dimensional Dirac delta function
U(Sd−1) uniform distribution on Sd−1

♯ pushforward (measure)
C(X,Y ) space of continuous maps from X to Y

d(·, ·) metric in metric space
Wp p-Wasserstein distance
SWp Sliced p-Wasserstein distance
Γ (rooted) subtree
e edge in graph
we weight of edge in graph
l line, index of line
L system of lines, tree system
L̄ ground set of system of lines, tree system
ΩL topological space of system of lines
Ld
k space of symtems of k lines in Rd

T tree structure in system of lines
L number of tree systems
k number of lines in a system of lines or a tree system
R original Radon Transform
Rα Radon Transform on Systems of Lines
∆k−1 (k − 1)-dimensional standard simplex
α splitting map
T space of tree systems
σ distribution on space of tree systems

13
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Supplement for
“Tree-Sliced Wasserstein Distance: A Geometric Perspective”

A. Tree System
In this section, we introduce the notion of a tree system, beginning with a collection of unstructured lines and progressively
adding a tree structure to form a well-defined metric space with a tree metric. It is important to note that while some
statements here differ slightly from those in the paper, the underlying ideas remain the same.

A.1. System of Lines

We have a definition of lines by parameterization. Observe that, a line in Rd is completely determined by a pair (x, θ) ∈
Rd × Sd−1 via x+ t · θ, t ∈ R.

Definition A.1 (Line and System of lines in Rd). A line in Rd is an element (x, θ) of Rd × Sd−1, and the image of a line
(x, θ) is defined by:

Im(x, θ) := {x+ t · θ : t ∈ R} ⊂ Rd. (14)

For k ⩾ 1, a system of n lines in Rd is a sequence of k lines.

Remark. A line in Rd is usually denoted, or indexed, by l = (xl, θl) ∈ Rd × Sd−1. Here, xl and θl are called source and
direction of l, respectively. Denote (Rd × Sd−1)k by Ld

k, which is the collection of systems of k lines in Rd, and an element
of Ld

k is usually denoted by L.

Definition A.2 (Ground Set). The ground set of a system of lines L is defined by:

L̄ :=
{
(x, l) ∈ Rd × L : x = xl + tx · θl for some tx ∈ R

}
.

For each element (x, l) ∈ L̄, we sometime write (x, l) as (tx, l), where tx ∈ R, which presents the parameterization of x on
l by source xl and direction θl, as x = xl + tx · θl.
Remark. In other words, the ground set L̄ is the disjoint union of images of lines in L:

L̄ =
⊔
l∈L

Im(l).

This notation seems to be redundant, but will be helpful when we define functions on L̄.

A.2. System of Lines with Tree Structures (Tree System)

Consider a finite system of lines L in Rd. Assume that these lines are geometrically distinct, i.e. their images are distinct.
Define the graph GL associated with L, where L is the set of nodes in GL, and two nodes are adjacent if the two corresponding
lines intersect each other. Here, saying two lines in Rd intersect means their images have exactly one point in common.

Definition A.3 (Connected system of lines). L is called connected if its associated graph GL is connected.

Remark. Intuitively, each edge of GL represents the intersection of its endpoints. If L is connected, for every two points that
each one lies on some lines in L, one can travel to the other through lines in L.

From now on, we will only consider the case L is connected. Recall the notion of a spanning tree of a graph G, which is a
subgraph of G that contains all nodes of G, and also is a tree.

Definition A.4 (Tree system of lines). Let L be a connected system of lines. A spanning tree T of GL is called a tree
structure of L. A pair (L, T ) consists of a connected system of lines L and a tree structure T of L is called a tree system of
lines.

Remark. For short, we usually call a tree system of lines as a tree system. In a tree system (L, T ), images of two lines of L
can intersect each other even when they are not adjacent in T .

Let r be an arbitrary line of L. Denote Tr as the tree T rooted at r, and denote the (rooted) tree system as (L, Tr) if we want
to specify the root.

Definition A.5 (Depth of lines in a tree system). Let (L, Tr) be a tree system. For each m ⩾ 0, a line l ∈ L is called a line
of depth m if the (unique) path from r to l in T has length m. Denote Lm as the set of lines of depth m.

14
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Remark. Note that L0 = {r}. Let T be the maximum length of paths in T start from r, which is called the depth of the line
system. L has a partition as L = L0 ⊔ L1 ⊔ . . . ⊔ LT .

For l ∈ L that is not the root, denote pr(l) ∈ L as the parent of l, i.e. the (unique) node on the unique path from l to r that is
adjacent to l. Note that, by definition, l and pr(l) intersect each other. We sometimes omit the root when the context is clear.

Definition A.6 (Canonical tree system). A tree system (L, T ) is called a canonical tree system if for all l ∈ L that is not the
root, the intersection of l and pr(l) is the source xl of l.

Remark. In other words, in a canonical tree system, a line that differs from the root will have its source lies on its parent.
For the rest of the paper, a tree system (L, T ) will be considered to be a canonical tree system.

A.3. Topological Properties of Tree Systems

We will introduce the notion of the topological space of a tree system. Let (L, T ) be a (canonical) tree system. Consider a
graph where the nodes are elements of L̄; (x, l) and (x′, l′) are adjacent if and only if one of the following conditions holds:

1. l = pr(l′), x = x′, and x′ is the source of l′.

2. l′ = pr(l), x = x′, and x is the source of l.

Let ∼ be the relation on L̄ such that (x, l) ∼ (x′, l′) if and only if (x, l) and (x′, l′) are connected in the above graph. By
design, ∼ is an equivalence relation on L̄. The set of all equivalence classes in L̄ with respect to the equivalence relation ∼
as ΩL = L̄/ ∼.
Remark. In other words, we identify the source of lines to the corresponding point on its parent.

We recall the notion of disjoint union topology and quotient topology in (Hatcher, 2005). For a line l in Rd, the image Im(l)
is a topological space, moreover, a metric space, that is homeomorphic and isometric to R via the map t 7! xl + t · θl. The
metric on Im(l) is dl(x, x′) = |tx − tx′ | for all x, x′ ∈ Im(l). For each l ∈ L, consider the injection map:

fl : Im(l) −!
⊔
l∈L

Im(l) = L̄

x 7−! (x, l).

L̄ =
⊔

l∈L Im(l) now becomes a topological space with the disjoint union topology, i.e. the finest topology on L̄ such that
the map fl is continuous for all l ∈ L. Also, consider the quotient map:

π : L̄ −! ΩL

(x, l) 7−! [(x, l)].

ΩL now becomes a topological space with the quotient topology, i.e. the finest topology on ΩL such that the map π is
continuous.

Definition A.7 (Topological space of a tree system). The topological space ΩL is called the topological space of a tree
system (L, T ).

Remark. In other words, ΩL is formed by gluing all images Im(l) along the relation ∼.

We show that the topological space ΩL is metrizable.

Definition A.8 (Paths in ΩL). For a and b in ΩL with a ̸= b, a path from a to b in ΩL is a continuous injective map
γ : [0, 1] ! ΩL where γ(0) = a and γ(1) = b. By convention, for a in ΩL, the path from a to a in ΩL is the constant map
γ : [0, 1] ! ΩL such that γ(t) = a for all t ∈ [0, 1]. For a path γ from a to b, the image of γ is defined by:

Im(γ) := γ([0, 1]) ⊂ ΩL. (15)

Theorem A.9 (Existence and uniqueness of path in ΩL). For all a and b in ΩL, there exist a path γ from a to b in
ΩL. Moreover, γ is unique up to a re-parameterization, i.e. if γ and γ′ are two path γ from a to b in ΩL, there exist a
homeomorphism φ : [0, 1] ! [0, 1] such that γ = γ′ ◦ φ.
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Proof. All previous results we state in this proof can be found in (Munkres, 2018; Rotman, 2013; Hatcher, 2005). For two
point a, b on the real line R, all paths from a to b are homotopic to each other. In other words, all paths from a to b are
homotopic to the canonical path:

γa,b : [0, 1] −! R
t 7−! (1− t) · a+ t · b.

Now consider two point a, b on space ΩL. Observe that ΩL is path-connected by design and by the fact that R is path-
connected. Consider a curve from a to b on ΩL, i.e. a continuous map f : [0, 1] ! ΩL, and consider the set consists of
sources of lines in L that lie on the curve f , i.e. all the sources that belong to f([0, 1]). We choose the curve f that has the
smallest set of sources. By the tree structure added to L, all curves from a to b have the set of sources that contains the set of
sources of f . We denote the sources belong to this set of f as s1, . . . , sk−1, and defined:

xi = inf f−1(si) for all 1 ⩽ i ⩽ k − 1.

We reindex si such that:

x1 ⩽ . . . ⩽ xk−1

For convention, we define s0 = a and sk = b. By design, for i = 0, . . . , k − 1, we have si and si+1 line on the same line in
L. So by the result of paths on R, there exist a path γi from si to si+1 on ΩL. Gluing γ0, γ1, . . . , γk−1 to get a path γ from
s0 = a to sk = b on ΩL by:

γ : [0, 1] −! ΩL

t 7−! γi(k · t− i) if t ∈
[
i

k
,
i+ 1

k

]
, i = 0, . . . , k − 1.

It is clear to check γ is a path from a to b on Ω, and the uniqueness (up to re-parameterization) of γ comes from homotopy
of paths in R.

Remark. The image of a path from a to b does not depend on the chosen path γ by the uniqueness property. Indeed, for a
homeomorphism φ : [0, 1] ! [0, 1], we have γ([0, 1]) = γ ◦ φ([0, 1]). Denote the image of any path from a to b by Pa,b.

Let µ be the standard Borel measure on R, i.e. µ ((a, b]) = b− a for every half-open interval (a, b] in R. For l ∈ L, denote
µl as the pushforward of µ by the map t 7! xl + t · θl, which is a Borel measure on Im(l). Denote the σ-algebra of Borel
sets in L̄ and ΩL as B(L̄) and B(ΩL), respectively.

Definition A.10 (Borel measure on L̄ and ΩL). The map µL̄ : B(ΩL) ! [0,∞) that is defined by:

µL̄(B) :=
∑
l∈L

µl

(
f−1
l (B)

)
, ∀B ∈ B(L̄),

is called the Borel measure on L̄. Define the Borel measure on ΩL, denoted by µΩL , as the pushforward of µL̄ by the map
π : L̄ ! ΩL.

It is straightforward to show that µL̄ is well-defined, and indeed a Borel measure of L̄. As a corollary, µΩL is also a Borel
measure of ΩL.
Remark. By abuse of notation, we sometimes simply denote both of µL̄ and µΩL as µL.

Theorem A.11 (ΩL is metrizable by a tree metric). Define the map dΩ : ΩL × ΩL ! [0,∞) by:

dL(a, b) := µL (Pa,b) , ∀a, b ∈ ΩL. (16)

Then dL is a metric on ΩL, which makes (ΩL, dL) a metric space. Moreover, dL is a tree metric, and the topology on ΩL
induced by dL is identical to the topology of ΩL.
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Proof. It is straightforward to check that dL is positive definite and symmetry. We show the triangle inequality holds for dL.
Let a, b, c be points of ΩL. It is enough to show that Pa,c is a subset of Pa,b ∪ Pb,c. Let γ0, γ1 be paths on Ω from a to b and
from b to c, respectively. Consider the curve from a to c on Ω defined by:

γ : [0, 1] −! ΩL

t 7−! γi(2 · t− i) if t ∈
[
i

2
,
i+ 1

2

]
, i = 0, 1.

It is clear that γ is a curve from a to c. We have γ([(0, 1)] is exactly the union of Pa,b and Pb,c. As in the proof of
Theorem A.9, the set of sources of γ contains the set of sources lying on the path from a to c. So γ([0, 1]) contains Pa,c.

We have the below corollary says that: If we take finite points on ΩL, together with the sources of lines, it induces a tree (as
a graph) with nodes are these points; Moreover, we have a tree metric on this tree which is dL.

Corollary A.12. Let y1, y2, . . . , ym be points on ΩL. Consider the graph, where {y1, . . . , ym} ∪ {xl : l ∈ L} is the node
set, and two nodes are adjacent if the (unique) path between this two nodes on ΩL does not contain any node, except them.
Then this graph is a rooted tree at xr, with an induced tree metric from dL.

A.4. Construction of Tree Systems

We present a way to construct a tree system in Rd. First, we have a way to describe the structure of a rooted tree by a
sequence of vectors.

Definition A.13 (Tree representation). Let T be a nonnegative integer, and n1, . . . , nT be T positive integer. A sequence
s = {xi}Ti=0, where xi is a vector of ni nonnegative numbers, is called a tree representation if x0 = [1], and for all
1 ⩽ i ⩽ T , ni is equal to the sum of all entries in vector xi−1.

Example A.14. For T = 5 and {ni}5i=1 = {1, 3, 4, 2, 3}, the sequence:

s : x0 = [1]

!x1 = [3]

!x2 = [2, 1, 1]

!x3 = [1, 0, 2, 0]

!x4 = [1, 2]

!x5 = [0, 0, 1].

is a tree representation.

For a tree representation s = {xi}Ti=0, a tree system of type s is a tree system that is inductively constructed step-by-step as
follows:

Step 0. Sample a point xr ∈ Rd and a direction θr ∈ Sd−1. Define r as the line that passes through xr with direction θr. We
call r as the line of depth 0.

Step i. On the j-th line of depth (i−1), sample (xi)j points where (xi)j is the j-th entry of vector xi. For each of these points,
denoted as xl, sample a direction θl ∈ Sd−1, and define l is the line that passes through xl with direction θl. We call
the set of all lines sampled at this step as the set of lines of depth i and order them by the order that they are sampled.

By this construction, we will get a system of lines L in Rd, together with a tree structure Tr. The pair (L, Tr) forms a tree
system, which is canonical by design, and is said to be of type s. Denote Ts as the set of all tree systems of type s.
Remark. A tree system in of type s has k =

∑T
i=0

∑ni

j=1(xi)j lines. Observe that constructing a tree system of type s only
depends on sampling k points and k directions, so by some assumptions on the probability distribution of these points and
directions, we will have a probability distribution on Ts. Note that:

1. xr is sampled from a distribution on Rd;
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2. For all l ̸= r, xl is sampled from a distribution on R;

3. For all l, θl is sampled from a distribution on Sd−1.

We have some examples of tree presentations s and distribution on Ts.

Example A.15 (Lines pass through origin). Consider the tree representation s:

s : [1], (17)

and the distributions on Ts is determined by:

1. xr = 0 ∈ Rd;

2. θr ∼ U(Sd−1).

In this case, Ts is identical to the set of lines that pass through the origin 0.

Example A.16 (Concurrent lines). Consider the tree representation s:

s : [1] ! [k − 1], (18)

and the distributions on Ts is determined by:

1. xr ∼ µr for an µr ∈ P(Rd);

2. For all l ̸= r, xl = xr;

3. For all l, θl ∼ U(Sd−1);

4. xr and all θl’s are pairwise independent.

In this case, Ts is identical to the set of all tuples of n concurrent lines.

Example A.17 (Series of lines). Consider the tree representation s:

s : [1] ! [1] ! . . . ! [1], (19)

and the distributions on Ts is determined by:

1. xr ∼ µr for an µr ∈ P(Rd);

2. For all l ̸= r, xl ∼ µl for an µl ∈ P(R);

3. For all l, θl ∼ U(Sd−1);

4. All xl’s and all θl’s are pairwise independent.

In this case, we call Ts as the set of all series of k lines. This is the same as the sampling process in Subsection 3.3 and
Algorithm 1.

Example A.18. For an arbitrary tree representation s, the distributions on Ts is determined by:

1. xr is sampled from the uniform distribution on a bounded subset of Rd, for instance, µr ∼ U([0, 1]d);

2. For l ̸= r, xl will be sampled from the uniform distribution on a bounded subset of R, for instance, µl ∼ U([0, 1]);

3. For all l, θl will be sampled from the uniform distribution on Sd−1, i.e θl ∼ U(Sd−1);

4. Together with assumptions on independence between all xr’s and all θl’s.
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B. Radon Transform on Systems of Lines
We introduce the notions of the space of Lebesgue integrable functions and the space of probability distributions on a system
of lines. Let L be a system of k lines.

B.1. Space of Lebesgue integrable functions on a system of lines

Denote L1(Rd) as the space of Lebesgue integrable functions on Rd with norm ∥ · ∥1:

L1(Rd) =

{
f : Rd ! R : ∥f∥1 =

∫
Rd

|f(x)| dx < ∞
}
. (20)

As usual, two functions f1, f2 ∈ L1(Rd) are considered to be identical if f1(x) = f2(x) almost everywhere on Rd.

Definition B.1 (Lebesgue integrable function on a system of lines). A Lebesgue integrable function on L is a function
f : L̄ ! R such that:

∥f∥L :=
∑
l∈L

∫
R
|f(tx, l)| dtx < ∞. (21)

The space of Lebesgue integrable functions on L is denoted by:

L1(L) :=

{
f : L̄ ! R : ∥f∥L =

∑
l∈L

∫
R
|f(tx, l)| dtx < ∞

}
. (22)

Remark. As an analog of integrable functions on Rd, two functions f1, f2 ∈ L1(L) are considered to be identical if
f1(x) = f2(x) almost everywhere on L̄. The space L1(L) with norm ∥ · ∥L is a Banach space.

Recall that L has k lines, we denote the (k − 1)-dimensional standard simplex as ∆k−1 ={
(al)l∈L : al ⩾ 0 and

∑
l∈L al = 1

}
⊂ Rk. Let C(Rd,∆k−1) be the space of continuous function from Rd to

∆k−1. A map in C(Rd,∆k−1) is called a splitting map. Let L be a system of lines in Ld
k, α be a map in C(Rd,∆k−1), we

define an operator associated to α that transforms a Lebesgue integrable functions on Rd to a Lebesgue integrable functions
on L. For f ∈ L1(Rd), define:

Rα
Lf : L̄ −! R

(x, l) 7−!

∫
Rd

f(y) · α(y)l · δ (tx − ⟨y − xl, θl⟩) dy,

where δ is the 1-dimensional Dirac delta function.

Theorem B.2. For f ∈ L1(Rd), we have Rα
Lf ∈ L1(L). Moreover, we have ∥Rα

Lf∥L ⩽ ∥f∥1. In other words, the
operator:

Rα
L : L1(Rd) ! L1(L), (23)

is well-defined, and is a linear operator.
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Proof. Let f ∈ L1(Rd). We show that ∥Rα
Lf∥L ⩽ ∥f∥1. Indeed,

∥Rα
Lf∥L =

∑
l∈L

∫
R
|Rα

Lf(tx, l)| dtx (24)

=
∑
l∈L

∫
R

∣∣∣∣∫
Rd

f(y) · α(y)l · δ (tx − ⟨y − xl, θl⟩) dy

∣∣∣∣ dtx (25)

⩽
∑
l∈L

∫
Rd

(∫
R
|f(y)| · α(y)l · δ (tx − ⟨y − xl, θl⟩) · dtx

)
dy (26)

=
∑
l∈L

∫
Rd

|f(y)| · α(y)l ·
(∫

R
δ (tx − ⟨y − xl, θl⟩) dtx

)
dy (27)

=
∑
l∈L

∫
Rd

|f(y)| · α(y)l dy (28)

=

∫
Rd

|f(y)| ·
∑
l∈L

α(y)l dy (29)

=

∫
Rd

|f(y)| dy (30)

= ∥f∥1 < ∞. (31)

So the operator Rα
L is well-defined, and is clearly a linear operator.

Definition B.3 (Radon transform on system of lines). For α ∈ C(Rd,∆k−1), the operator Rα:

Rα : L1(Rd) −!
∏

L∈Ld
k

L1(L)

f 7−! (Rα
Lf)L∈Ld

k
.

is called the Radon transform on a system of lines.

Many variants of Radon transform require the transforms to be injective. We show that the injectivity holds in the Radon
transform on a system of lines.

Theorem B.4. Rα is injective.

Proof. Since Rα is linear, we show that if Rαf = 0, then f = 0. Let f ∈ L1(Rd) such that Rαf = 0, which means
Rα

L = 0 for all L ∈ Ld
n. Fix a line index l, consider the operator:

∫
Rd

f(y) · α(y)l · δ (tx − ⟨y − xl, θl⟩) dy = 0 , ∀tx ∈ R, (xl, θl) ∈ Rd × Sd−1. (32)

Note that for index l, f(y) · α(y)l is a function of y. Let xl be fixed and θl varies in Rd. By the injectivity of the
usual Radon transform (Helgason, 2011), we have f(x) · α(x)l = 0 for all x ∈ Rd. This holds for all line index l, so
f(x) =

∑
l f(x) · α(x)l = 0. So Rα is injective.

Remark. By the proof, we can show a stronger result as follows: Let A be a subset of Ld
k such that for every index l and

θ ∈ Sd−1, there exists L ∈ A such that θl = θ, where θl is the direction of line with index l in L. Roughly speaking, the set
of directions in L is (Sd−1)k.
Remark. Observations in (Tran et al., 2024b; 2025b;c) suggest that imposing equivariance conditions on the splitting
maps may enhance the performance of the distance. Nonetheless, since the primary focus of these works is the geometric
formulation of the tree-sliced distance, this aspect is not explored in detail. More broadly, equivariance and invariance are
prevalent themes in machine learning, with applications across various domains, including equivariant models (Tran et al.,
2024c) and equivariant metanetworks (Vo et al., 2024; Tran et al., 2024d;a;d).
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B.2. Probability distributions on a system of lines

Denote P(Rd) as the space of all probability distribution on Rd:

P(Rd) =
{
f : Rd ! [0,∞) : ∥f∥1 = 1

}
⊂ L1(Rd).

Definition B.5 (Probability distribution on a system of lines). Let L be a system of lines. A probability distribution on L is
a function f ∈ L1(L) such that f : L̄ ! [0,∞) and ∥f∥L = 1. The space of probability distribution on L is defined by:

P(L) :=
{
f : L̄ ! [0,∞) : ∥f∥L = 1

}
⊂ L1(L). (33)

Corollary B.6. For f ∈ P1(Rd), we have Rα
Lf ∈ P(L). In other words, the restricted of Radon Transform:

Rα
L : P(Rd) ! P(L), (34)

is well-defined.

Proof. Let f ∈ P1(Rd). It is clear that Rα
Lf : L̄ ! [0,∞). We show that ∥Rα

Lf∥L = 1. Indeed,

∥Rα
Lf∥L =

∑
l∈L

∫
R
Rα

Lf(tx, l) dtx (35)

=
∑
l∈L

∫
R

(∫
Rd

f(y) · α(y)l · δ (tx − ⟨y − xl, θl⟩) dy

)
dtx (36)

=

∫
Rd

f(y) dy = 1. (37)

So Rα
Lf ∈ P(L), and Rα

L is well-defined.

B.3. An illustration of TSW-SL

In this section, we provide a visual illustration of TSW-SL through four figures: Figures 5, 6, 7, and 8. Each figure includes
an explanatory caption; however, Figure 7 is accompanied by a separate, detailed explanation below.

The explanation for Figure 7 is as follows:

The tree consists of 9 nodes. Of these, 6 correspond to projections of the original points, while the remaining 3 nodes—x1,
x2, and x3—are structural nodes introduced during the construction of the sampled tree. Their roles are defined as follows:

• x1 is the root of the tree.

• x2 is the source of line 2 and lies on line 1, representing the intersection of lines 1 and 2.

• x3 is the source of line 3 and lies on line 2, representing the intersection of lines 2 and 3.

We compute the aggregated mass Rα
Lfµ(Γ(ei)) for selected edges ei, where Γ(ei) denotes the subtree rooted at the endpoint

of ei that is farther from the root x1. Two examples are provided below:

For edge e3:
Γ(e3) = {x2, a2, b2, x3, b3, a3},

Rα
Lfµ(Γ(e3)) = fµ(x2) + fµ(a2) + fµ(b2) + fµ(x3) + fµ(b3) + fµ(a3)

= 0 +
9

30
+

6

30
+ 0 +

4

30
+

6

30
=

25

30
.

For edge e5:
Γ(e5) = {b2, x3, b3, a3},

Rα
Lfµ(Γ(e5)) = fµ(b2) + fµ(x3) + fµ(b3) + fµ(a3)

=
6

30
+ 0 +

4

30
+

6

30
=

16

30
.

Similar computations apply to the remaining edges in the tree.
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Figure 5: This figure presents the projections of two points, x and y, onto the three lines labeled 1, 2, and 3. The projections
of x are denoted by ai, and those of y by bi, for i = 1, 2, 3.

Figure 6: This figure presents the mass at each projection of x and y. For example, the mass at a1 is given by Rα
Lfµ(a1) =

fµ(x) · α(x)1 = 0.6× 1
6 = 3

30 .

C. Max Tree-Sliced Wasserstein Distance on Systems of Lines.
Max Sliced Wasserstein distance. Max Sliced Wasserstein (MaxSW) distance (Deshpande et al., 2019) uses only one
maximal projecting direction instead of multiple projecting directions as SW.

MaxSWp(µ, ν) := max
θ∈U(Sd−1)

[
Wp(Rfµ(·, θ),Rfν(·, θ))

]
, (38)

MaxSW requires an optimization procedure to find the projecting direction. It is a metric on space of probability distributions
on Rd.

We define the Max Tree-Sliced Wasserstein distance on System of Lines (MaxTSW-SL) as follows.

Definition C.1 (Max Tree-Sliced Wasserstein Distance on Systems of Lines). The Max Tree-Sliced Wasserstein Distance on
Systems of Lines between two probability distributions µ, ν in P(Rd) is defined by:

MaxTSW-SL(µ, ν) := max
L∈T

[
WdL,1(Rα

Lµ,Rα
Lν)
]
, (39)

MaxTSW-SL is a metric on P(Rd). The proof of the below theorem is in Appendix D.2.

Theorem C.2. MaxTSW-SL distance is a metric on P(Rd).

We provide an algorithm to compute the MaxTSW-SL in Algorithm 3.
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Figure 7: Resulting tree after projection with 9 nodes, including projection nodes and sampled tree nodes. The detailed
explanation for this Figure is provided is Section B.3

Figure 8: This figure presents the outcome when x and y are placed differently in space compared to Figure 5. The projection
and mass computation steps remain unchanged (though α(y) may differ due to the new location of y). However, the resulting
tree structure changes—for example, the subtree Γ(e3) now contains only the point b1, while Γ(e5) includes b2, x3, b3, and
a3.

Algorithm 3 Max Tree-Sliced Wasserstein distance on Systems of lines.

Input: Probability measures µ and ν, the number of lines in tree system k, a splitting function α : Rd ! ∆k−1, learning
rate η, max number of iterations T .
Initialize x1 ∈ Rd, t2, . . . , tk ∈ R, θ1, . . . , θk ∈ Sd−1.
Compute L corresponded to (x1, t2, . . . , tk, θ1, . . . , θk).
while L not converge or reach T do
x1 = x1 + η · ∇x1

WdL,1(Rα
Lµ,Rα

Lν).
for i = 2 to k do
ti = Ti + η · ∇tiWdL,1(Rα

Lµ,Rα
Lν).

end for
for i = 1 to k do
θi = θi + η · ∇θiWdL,1(Rα

Lµ,Rα
Lν).

Normalize θi = θi/∥θi∥2.
end for

end while
Compute L corresponded to (x1, t2, . . . , tk, θ1, . . . , θk).
Compute WdL,1(Rα

Lµ,Rα
Lν).

Return: L,WdL,1(Rα
Lµ,Rα

Lν).
23



Tree-Sliced Wasserstein Distance: A Geometric Perspective

D. Theoretical Proof for injectivity of TSW-SL
We will leave out “almost-surely-conditions” in the proofs, as they are straightforward to verify, and including them would
unnecessarily complicate the proofs.

D.1. Proof of Theorem 5.2

Proof. Need to show that:

TSW-SL(µ, ν) :=
∫
T

WdL,1(Rα
Lµ,Rα

Lν) dσ(L). (40)

is a metric on P(Rd).

Positive definiteness. For µ, ν ∈ P(Rn), one has TSW-SL(µ, µ) = 0 and TSW-SL(µ, ν) ⩾ 0. If TSW-SL(µ, ν) = 0,
then WdL,1(Rα

Lµ,Rα
Lν) = 0 for all L ∈ T. Since WdL,1 is a metric on P(L), we have Rα

Lµ = Rα
Lν for all L ∈ T. Since

T is a subset of Ld
k that satisfies the condition in the remark at the end of the proof of Theorem B.4, we conclude that µ = ν.

Symmetry. For µ, ν ∈ P(Rn), we have:

TSW-SL(µ, ν) =
∫
T

WdL,1(Rα
Lµ,Rα

Lν) dσ(L) (41)

=

∫
T

WdL,1(Rα
Lν,Rα

Lµ) dσ(L) (42)

= TSW-SL(ν, µ). (43)

So TSW-SL(µ, ν) = TSW-SL(ν, µ).

Triangle inequality. For µ1, µ2, µ3 ∈ P(Rn), we have:

TSW-SL(µ1, µ2) + TSW-SL(µ2, µ3) (44)

=

∫
T

WdL,1(Rα
Lµ1,Rα

Lµ2) dσ(L) +
∫
T

WdL,1(Rα
Lµ2,Rα

Lµ3) dσ(L) (45)

=

∫
T

(
WdL,1(Rα

Lµ1,Rα
Lµ2) + WdL,1(Rα

Lµ2,Rα
Lµ3)

)
dσ(L) (46)

⩾
∫
T

WdL,1(Rα
Lµ1,Rα

Lµ3) dσ(L) (47)

= TSW-SL(µ1, µ3). (48)

The triangle inequality holds for TSW-SL. We conclude that TSW-SL is a metric on P(Rd).

D.2. Proof of Theorem C.2

Proof. Need to show that:

MaxTSW-SL(µ, ν) = max
L∈T

[
WdL,1(Rα

Lµ,Rα
Lν)
]

(49)

is a metric on P(Rd).

Positive definiteness. For µ, ν ∈ P(Rn), one has MaxTSW-SL(µ, µ) = 0 and MaxTSW-SL(µ, ν) ⩾ 0. If
MaxTSW-SL(µ, ν) = 0, then WdL,1(Rα

Lµ,Rα
Lν) = 0 for all L ∈ T. Since WdL,p is a metric, we have Rα

Lµ = Rα
Lν for

all L ∈ T. Since T is a subset of Ld
k that satisfies the condition in the remark at the end of the proof of Theorem B.4, we

conclude that µ = ν.
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Symmetry. For µ, ν ∈ P(Rn), we have:

MaxTSW-SL(µ, ν) = max
L∈T

[
WdL,1(Rα

Lµ,Rα
Lν)
]

(50)

= max
L∈T

[
WdL,1(Rα

Lν,Rα
Lµ)

]
(51)

= MaxTSW-SL(ν, µ). (52)

So MaxTSW-SL(µ, ν) = MaxTSW-SL(ν, µ).

Triangle inequality. For µ1, µ2, µ3 ∈ P(Rn), we have:

MaxTSW-SL(µ1, µ2) + TSW-SL(µ2, µ3) (53)

= max
L∈T

[
WdL,1(Rα

Lµ1,Rα
Lµ2)

]
+max

L′∈T

[
WdL′ ,1(Rα

L′µ2,Rα
L′µ3)

]
(54)

⩾ max
L∈T

[
WdL,1(Rα

Lµ1,Rα
Lµ2) + WdL,1(Rα

Lµ2,Rα
Lµ3)

]
(55)

⩾ max
L∈T

[
WdL,1(Rα

Lµ1,Rα
Lµ3)

]
(56)

= MaxTSW-SL(µ1, µ3). (57)

The triangle inequality holds for MaxTSW-SL. We conclude that MaxTSW-SL is a metric on P(Rd).

E. Experimental details and additional results
E.1. Gradient flows

Gradient flow is a concept in differential geometry and dynamical systems that describes the evolution of a point or a
curve under a given vector field. In the field of Sliced Wasserstein distance, this is a synthetic task that is used to evaluate
the evolution of Wasserstein distance between 2 distributions (source and target distributions) while minimizing different
distances (Mahey et al., 2023; Kolouri et al., 2019) as a loss function.

Datasets. We use Swiss Roll, 25-Gaussians and high-dimensional Gaussian datasets as the target distribution as in (Kolouri
et al., 2019). The details of these datasets can be described as follows.

• The Swiss Roll dataset is a popular synthetic dataset used in machine learning, particularly for visualizing and
testing dimensionality reduction techniques. It is generated using the make swiss roll function of Pytorch, which
creates a non-linear, three-dimensional dataset resembling a swiss roll or spiral shape. In the original version, it is a
three-dimensional dataset with each dimension representing a coordinate in the 1 axis of the points. In order to simplify
it, we follow (Kolouri et al., 2019) to just consider the two-dimensional Swiss Roll dataset by reducing the second
coordinates and retaining only the first and the third coordinates. We set the number of samples to equal 100.

• The 25-Gaussians dataset is obtained by first create a grid of 25 points spaced evenly in a 5× 5 arrangement. For
each grid point, we generate a cluster by sampling points from a Gaussian distribution centered at that grid point, with
a small standard deviation. All the points from the 25 clusters are combined, shuffled randomly, and scaled to form the
final dataset.

• The High-dimensional Gaussian datasets are generated by initializing a mean vector, µs, consisting of ones across all
dimensions. Each element of this mean vector is scaled by a random value to introduce variability. The covariance
matrix, Σ, is created as an identity matrix scaled by a constant, ensuring independence among dimensions. Points are
then sampled from the multivariate normal distribution using these parameters, resulting in a dataset of N points in the
specified high-dimensional space.

The Swiss Roll and 25-Gaussians datasets are presented in Figure 9.
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Figure 9: Swiss Roll and 25-Gaussians datasets for Gradient Flows task

Hyperparameters. For TSW-SL, we use L = 25, k = 4 in all experiments, while L = 100 is set for SW and SW-variants,
with 100 points generated per distribution across datasets. Following (Mahey et al., 2023), the global learning rate for all
baselines is 5× 10−3. For our methods, we use 5× 10−3 for the 25-Gaussians and Swiss Roll datasets, and 5× 10−2 for
the high-dimensional Gaussian datasets. We also follow (Mahey et al., 2023) in setting 100 iterations for both MaxSW and
MaxTSW-SL, using a learning rate of 1× 10−4 for both methods.

Evaluation metrics. We use the Wasserstein distance as a neutral metric to evaluate how close the model distribution
µ(t) is to the target distribution ν. Over 2500 timesteps, we evaluate the Wasserstein distance between source and target
distributions at iteration 500, 1000, 1500, 2000 and 2500.

We utilize the source code adapted from (Mahey et al., 2023) for this task.

E.2. Color Transfer

In addition to the experimental results presented in the main text, we extend our results to show the emprical advantages of
TSW-SL over SW for transferring color between images to produce results that closely match the color distributions of the
target images. Given a source image and a target image, we represent their respective color palettes as matrices X and Y ,
each with dimensions n× 3 (where n denotes the number of pixels).

We follow Nguyen et al. (2024a) to first define the curve Ż(t) = −n∇Z(t)

[
SW2

(
PZ(t), PY

)]
where PX and PY are

empirical distributions over X and Y in turn. Here, the curve starts from Z(0) = X and ends at Y .

We then reduce the number of colors in the images to 1000 using K-means clustering. After that, we iterate through the
curve between the empirical distribution of colors in the source image PX and the empirical distribution of colors in the
target image PY using the approximate Euler method. However, owing to the color palette values (RGB) lying within the set
{0, . . . , 255}, an additional rounding step is necessary during the final Euler iterations. We increase the number of iterations
to 2000 and utilize a step size of 1 as in (Nguyen et al., 2024a) for baselines and a step size of 16 for our experiments. We
use L = 100 in SW variants and L = 25, k = 4 in TSW-SL for a fair comparison. We traverse along the curve connecting
PX and PY , where PX and PY denote the empirical distribution of the source and the target images respectively. More
specifically, this curve (denonted as Z(t)) starts from Z(0) = X and ends at Y . During optimization, we minimize the loss
Loss(Z(t), Y ) to make the color distribution of the obtained image close to that of the target image Y .
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We evaluate the color-transferred images obtained by various loss, including SW (Bonneel et al., 2015), MaxSW (Deshpande
et al., 2019), and SW variants proposed in (Nguyen et al., 2024a) to compare with our TSW-SL and MaxTSW-SL approaches.
For consistency, we set L = 100 for the SW variants and L = 25, k = 4 for TSW-SL in our comparisons. We report the
Wasserstein distances at the final time step along with the corresponding transferred images from various baselines in Figure
10. TSW-SL produces images that most closely resemble the target, demonstrating a significant reduction compared to SW
and its variants mentioned above with the same number of lines. In addition, MaxTSW-SL improves upon the original
MaxSW, as highlighted by both qualitative and quantitative results.

Figure 10: Color-transferred images from various baselines with 100 projecting directions.

Evaluation metrics. We present the Wasserstein distances at the final time step alongside the corresponding transferred
images to evaluate the performance of different methods.

We utilize the source code adapted from (Nguyen et al., 2021a) for this task.

E.3. Generative adversarial network

Architectures. We denote µ as our data distribution. Subsequently, we formulate the model distribution νϕ as a resultant
probability measure generated by applying a neural network Gϕ to transform a unit multivariate Gaussian (ϵ) into the data
space. Additionally, we employ another neural network Tβ to map from the data space to a singular scalar value. More
specifically, Tβ1 represents the subset neural network of Tβ that maps from the data space to a feature space, specifically
the output of the last ResNet block, while Tβ2 maps from the feature space (the image of Tβ1) to a single scalar. Formally,
Tβ = Tβ2 ◦ Tβ1 . We utilize the subsequent neural network architectures for Gϕ and Tβ :

• CIFAR10:

- Gϕ : z ∈ R128(∼ ϵ : N (0, 1)) ! 4×4×256 (Dense, Linear) ! ResBlock up 256 ! ResBlock up 256 ! ResBlock
up 256 ! BN, ReLU, ! 3× 3 conv, 3 Tanh .

−Tβ1
: x ∈ [−1, 1]32×32×3 ! ResBlock down 128 ! ResBlock down 128 ! ResBlock down 128 ! ResBlock

128 ! ResBlock 128.

−Tβ2
: x ∈ R128×8×8 ! ReLU ! Global sum pooling (128) ! 1( Spectral normalization ).

−Tβ(x) = Tβ2
(Tβ1

(x)).

• CelebA:

- Gϕ : z ∈ R128(∼ ϵ : N (0, 1)) ! 4×4×256 (Dense, Linear) ! ResBlock up 256 ! ResBlock up 256 ! ResBlock
up 256 ! ResBlock up 256 ! BN, ReLU, ! 3× 3 conv, 3 Tanh .

- Tβ1
: x ∈ [−1, 1]32×32×3 ! ResBlock down 128 ! ResBlock down 128 ! ResBlock down 128 ! ResBlock down

128 ! ResBlock 128 ! ResBlock 128.

−Tβ2 : x ∈ R128×8×8 ! ReLU ! Global sum pooling(128) ! 1( Spectral normalization ).

−Tβ(x) = Tβ2 (Tβ1(x)).
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SW L = 50 TSW-SL (50 lines) SW L = 500 TSW-SL (500 lines)

Figure 11: Randomly generated images of different methods on CIFAR10 and CelebA of SN-GAN

• STL-10:

- Gϕ : z ∈ R128(∼ ϵ : N (0, 1)) ! 3×3×256 (Dense, Linear) ! ResBlock up 256 ! ResBlock up 256 ! ResBlock
up 256 ! ResBlock up 256 ! ResBlock up 256 ! BN, ReLU, ! 3× 3 conv, 3 Tanh .

- Tβ1
: x ∈ [−1, 1]32×32×3 ! ResBlock down 128 ! ResBlock down 128 ! ResBlock down 128 ! ResBlock down

128 ! ResBlock down 128 ! ResBlock 128 ! ResBlock 128.

−Tβ2
: x ∈ R128×8×8 ! ReLU ! Global sum pooling(128) ! 1( Spectral normalization ).

−Tβ(x) = Tβ2 (Tβ1(x)).

We use the following bi-optimization problem to train our neural networks:

min
β1,β2

(Ex∼µ [min (0,−1 + Tβ(x))] + Ez∼ϵ [min (0,−1− Tβ (Gϕ(z)))]) ,

min
ϕ

EX∼µ⊗m,Z∼ϵ⊗m

[
S
(
T̃β1,β2

♯PX , T̃β1,β2
♯Gϕ♯PZ

)]
,

where the function T̃β1,β2 = [Tβ1(x), Tβ2 (Tβ1(x))] which is the concatenation vector of Tβ1(x) and Tβ2 (Tβ1(x)) ,S
is an estimator of the sliced Wasserstein distance.

Training setup. In our experiments, we configured the number of training iterations to 100000 for CIFAR10, STL-10 and
50000 for CelebA. The generator Gϕ is updated every 5 iteration, while the feature function Tβ undergoes an update each
iteration. Across all datasets, we maintain a consistent mini-batch size of 128. We leverage the Adam optimizer (Kingma,
2014) with parameters (β1, β2) = (0, 0.9) for both Gϕ and Tβ with the learning rate 0.0002. Furthermore, we use 50000
random samples generated from the generator to compute the FID and Inception scores. For FID score evaluation, the
statistics of datasets are computed using all training samples.

Results. For qualitative analysis, Figure 11 displays a selection of randomly generated images produced by the trained
models. It is evident that utilizing our TSW-SL as the generator loss significantly enhances the quality of the generated
images. Additionally, increasing the number of projections further improves the visual quality of images across all estimators.
This improvement in visual quality is corroborated by the FID and IS scores presented in Table 3.

We utilize the source code adapted from (Miyato et al., 2018) for this task.
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Table 5: Performance of different methods on STL-10 dataset on SN-GAN architecture

Methods Total line
No. of lines

per tree
No. of trees FID IS

SW 50 - - 69.46 9.08

Orthogonal-SW 50 - - 63.61 9.63

TSW-SL (ours) 51 3 17 65.93 9.75

TSW-SL (ours) 52 4 13 62.91 9.95

TSW-SL (ours) 50 5 10 61.15 10.00

Additional results. To fully show the empirical advantage of our methods, we conducted additional experiments on
Adversarial Neural Networks on the CIFAR-10 dataset and STL-10 dataset. First of all, Table 6 presents the average FID
and IS scores for different methods on the CIFAR-10 dataset. For 50 projecting directions, our TSW-SL method with 10
trees and 5 lines each (L = 10, k = 5) achieves the best performance, outperforming the standard SW method. Similarly,
for 500 projecting directions, TSW-SL (L = 100, k = 5) shows superior results compared to SW. This demonstrates the
consistent effectiveness of our approach across different numbers of projecting directions. Additionally, Table 5 illustrates
the performance of generative models on the STL-10 (96× 96) dataset with different numbers of trees and lines compared
with SW and orthogonal-SW. In our experiments, we utilize the SN-GAN architecture (Miyato et al., 2018) for STL-10.
For SW and Orthogonal-SW, we conduct experiments using 50 projecting directions. Our TSW-SL method is tested with
three distinct configurations: 10 trees with 5 lines each, 13 trees with 4 lines each, and 17 trees with 3 lines each. All
hyperparameters remain consistent with those used in our main paper. To evaluate the models, we generate 50000 random
images.

Table 6: Average FID and IS score of 3 runs on CIFAR-10 of SN-GAN

50 projecting directions 500 projecting directions

FID(#) IS(") FID(#) IS(")

SW (L = 50) 16.80 ± 0.45 7.97 ± 0.05 SW (L = 500) 14.23 ± 0.84 8.25 ± 0.05
TSW-SL (L = 10, k = 5) 15.44 ± 0.42 8.14 ± 0.05 TSW-SL (L = 100, k = 5) 13.27 ± 0.23 8.30 ± 0.01
TSW-SL (L = 17, k = 3) 15.9 ± 0.35 8.10 ± 0.04 TSW-SL (L = 167, k = 3) 14.18 ± 0.38 8.28 ± 0.07

E.4. Denoising diffusion models

In this section, we provide details about denoising diffusion models, a class of generative models that have shown remarkable
success in producing high-quality samples. We first describe the forward and reverse processes that form the foundation of
these models. Then, we introduce the concept of denoising diffusion GANs, which aims to accelerate the generation process.
Finally, we explain how our proposed TSW-SL distance can be integrated into this framework.

The process in diffusion models is typically divided into two main parts: the forward process and the reverse process.

The forward process is defined as:

q(x1:T |x0) =

T∏
t=1

q(xt|xt−1), q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI)

where the variance schedule β1, . . . , βT can be constant or learned hyperparameters. The reverse process is defined as:

pθ(x0:T ) = p(xT )

T∏
t=1

pθ(xt−1|xt), pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)),
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where µθ(xt, t) and Σθ(xt, t) are functions that provide the mean and covariance for the Gaussian and are defined using
MLPs.

The model is trained by maximizing the variational lower bound on the negative log-likelihood:

Eq[− log pθ(x0)] ⩽ Eq

[
− log

pθ(x0:T )

q(x1:T |x0)

]
= L,

While traditional models have successfully generated high-quality images without the need for adversarial training. However,
their sampling process involves simulating a Markov chain for multiple steps, which can be time-consuming. To accelerate
the generation process by reducing the number of steps T , denoising diffusion GANs (Xiao et al., 2021) propose utilizing an
implicit denoising model:

pθ(xt−1|xt) =

∫
pθ(xt−1|xt, ϵ)Gθ(xt, ϵ)dϵ, with ϵ ∼ N (0, I).

Subsequently, adversarial training is employed (Xiao et al., 2021) to optimize the model parameters

min
ϕ

T∑
t=1

Eq(xt)[Dadv(q(xt−1|xt)||pϕ(xt−1|xt))],

where Dadv refers to either the GAN objective or the Jensen-Shannon divergence (Goodfellow et al., 2020). We follow the
proposed Augmented Generalized Mini-batch Energy distances of (Nguyen et al., 2024b) leverage our TSW-SL distance for
Dadv .

More specifically, as described by Nguyen et al. (2024b), the adversarial loss is replaced by the augmented generalized
Mini-batch Energy (AGME) distance. For two distributions µ and ν, with a mini-batch size n ⩾ 1, the AGME distance
using a Sliced Wasserstein (SW) kernel is defined as:

AGME2
b(µ, ν; g) = GME2

b(µ̃, ν̃),

where µ̃ = f#µ and ν̃ = f#ν, with the mapping f(x) = (x, g(x)) for a nonlinear function g : Rd ! R. The GME is the
generalized Mini-batch Energy distance (Salimans et al., 2018), given by:

GME2
b(µ, ν) = 2E[D(PX , PY )]− E[D(PX , P ′

X)]− E[D(PY , P
′
Y )],

where X,X ′ i.i.d.∼ µ⊗m, Y, Y ′ i.i.d.∼ ν⊗m, and

PX =
1

m

m∑
i=1

δxi
, X = (x1, . . . , xm).

In the equation above, D denotes a distance function that can calculate the distance between two probability measures. To
evaluate how well TSW-SL compares to other SW variants in capturing topological information, particularly when the
supports lie in high-dimensional spaces, we replace D with both TSW and SW variants. We then train the generative model
to assess which distance metric better quantifies the divergence between two probability distributions. A lower FID score
indicates a more effective distance measure.

Experimental setup. For our experiments, we adopted the architecture and hyperparameters from Nguyen et al. (2024b),
training our models for 1800 epochs. For TSW, we employed the following hyperparameters: L = 2500, k = 4. For
the vanilla SW and its variants, we adhered to the approach outlined in Nguyen et al. (2024b), using L = 10000. This
consistent setup allowed us to effectively compare the performance of our proposed methods against existing approaches
while maintaining experimental integrity.
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FID plot. Figure 12 illustrates the FID scores of SW-DD and TSW-SL-DD across epochs. Due to the wide range of FID
values, from over 400 in the initial epoch to less than 3.0 in the final epochs, we present the results on a logarithmic scale for
improved visualization. The plot shows that TSW-SL-DD achieves a greater reduction in FID scores compared to SW-DD
during the final 300 epochs.

Figure 12: FID score over epochs between SW-DD and TSW-SL-DD

E.5. Computational infrastructure

The experiments on gradient flow, color transfer and generative models using generative adversarial networks are conducted
on a single NVIDIA A100 GPU. Training generative adversarial networks on CIFAR10 requires 14 hours, while CelebA
training takes 22 hours. Regarding gradient flows, each dataset’s experiments take approximately 3.5 hours. For color
transfer, the runtime is 15 minutes.

The denoising diffusion experiments were conducted parallelly on 2 NVIDIA A100 GPUs and each run takes us 81.5 hours.

F. Further Discussions
The proposed approach, tree-sliced-Wasserstein on tree-structured systems of lines (TSW-SL), lays a foundation for further
research for TSW on tree systems, especially, for its applications with dynamic-support measures. For examples, Tran et al.
(2025b) propose a novel splitting map for TSW-SL which takes into account the relative position between supports and lines
in the tree systems. (Tran et al., 2025c) derive the non-linear Randon transform for the TSW-SL. Additionally, Tran et al.
(2025a) extend the TSW-SL for probability measures supported on a sphere.

Notice that the QuadTree (i.e., partition-based) and clustering-based tree metric sampling for tree-Wasserstein (Le et al.,
2019; Indyk & Thaper, 2003; Lin et al., 2025) may not be applicable for applications with dynamic-support measures, e.g.,
diffusion models and generative models, since the constructed/sampled trees are bounded, i.e., from the root to leaves,
limited to a finite number of nodes. Additionally, these approaches may not include the Radon transforms and guarantee its
injectivity which play the key role for applications with dynamic-support measures.

For p-order Wasserstein with p > 1. The tree-Wasserstein (TW) is the 1-order Wasserstein for probability measures
on a tree. For more general settings, e.g., with p > 1, or for probability measures on a graph, one may consider a
scalable variant—Sobolev transport (Le et al., 2022) which also yields a closed-form expression for a fast computation, and
generalizes the TW (i.e., for p = 1, Sobolev transport is equal to TW).
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G. Broader Impact
The novel Tree-Sliced Wasserstein distance on a System of Lines (TSW-SL) introduced in this paper holds significant
potential for societal advancement. By refining optimal transport methodologies, TSW-SL enhances their accuracy and
versatility across diverse practical domains. This approach, which synthesizes elements from both Sliced Wasserstein (SW)
and Tree-Sliced Wasserstein (TSW), offers enhanced resilience and adaptability, particularly in dynamic scenarios. The
resulting improvements in gradient flows, color manipulation, and generative modeling yield more potent computational
tools. These advancements promise to catalyze progress across multiple sectors. In healthcare, for instance, refined
image processing could elevate the precision of medical diagnostics. The creative industries stand to benefit from more
sophisticated generative models, potentially revolutionizing artistic expression. Moreover, TSW-SL’s proficiency in handling
dynamic environments opens new avenues for real-time analytics and decision-making in fields ranging from finance
to environmental monitoring. By expanding the applicability of advanced computational techniques to a wider array of
real-world challenges, TSW-SL contributes to technological innovation and, consequently, to the enhancement of societal
welfare.
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