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Abstract

Disentangled representation learning strives to extract the intrinsic factors within
observed data. Factorizing these representations in an unsupervised manner is no-
tably challenging and usually requires tailored loss functions or specific structural
designs. In this paper, we introduce a new perspective and framework, demon-
strating that diffusion models with cross-attention itself can serve as a powerful
inductive bias to facilitate the learning of disentangled representations. We propose
to encode an image into a set of concept tokens and treat them as the condition
of the latent diffusion model for image reconstruction, where cross-attention over
the concept tokens is used to bridge the encoder and U-Net of diffusion model.
We analyze that the diffusion process inherently possesses the time-varying infor-
mation bottlenecks. Such an information bottlenecks and cross-attention act as
strong inductive biases for promoting disentanglement. Without any regularization
term in loss function, this framework achieves superior disentanglement perfor-
mance on the benchmark datasets, surpassing all previous methods with intricate
designs. We have conducted comprehensive ablation studies and visualization
analyses, shedding a light on the functioning of this model. We anticipate that
our findings will inspire more investigation on exploring diffusion model for dis-
entangled representation learning towards more sophisticated data analysis and
understanding.

1 Introduction

Disentangled representation learning strive to uncover and understand the underlying causal factors
of observed data [1, 13]. This is believed to possess immense potential to enhance a multitude of
machine learning tasks, facilitating machines to attain better interpretability, superior generalizability,
controlled generation, and robustness [33]. Over the years, the field of disentangled representation
learning has attracted significant academic interest and many research contributions. Numerous
methods, encompassing Variational Autoencoders (VAE) based techniques (such as β-VAE [14, 2],
FactorVAE [19]), Generative Adversarial Networks (GAN) based approaches (such as InfoGAN [5],
InfoGAN-CR [23]), along with others [37, 28], have have been proposed to advance this field further.
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Figure 1: Average attention map across all time steps in stable diffusion. We draw inspiration from
the process of text-to-image generation using a diffusion model with cross-attention. Utilizing the
highly ‘disentangled’ words as the condition for image generation, the cross-attention maps observed
from the diffusion model exhibit a strong text semantic and spatial alignment, indicating the model
is capable of incorporating each individual word into the generation process for a final semantic
aligned generation. This leads us to question whether such a diffusion structure could be inductive to
disentangled representation learning.

Originally, Variational Autoencoders (VAEs) are conceived as deep generative probabilistic models,
primarily focusing on image generation tasks [20]. The core idea behind VAEs is to model data
distributions from the perspective of maximizing likelihood using variational inference. Subsequent
research has revealed that VAEs possess the potential to learn disentangled representations with
appropriate regularizations on simple datasets. To enhance disentanglement, a range of regularization
losses have been proposed and integrated within the VAE framework [14, 19, 21]. Similarly, GANs
have incorporated regularizations to enable the learning of disentangled features [5, 23, 44]. Despite
significant progress, the disentanglement capabilities of these models remain less than satisfactory,
and the disentangled representation learning is still very challenging. Locatello et al. demonstrate that
relying solely on regularizations is insufficient for achieving disentanglement [24]. They emphasize
the necessity of inductive biases on both the models and the data for effective disentanglement. A
fresh perspective is eagerly anticipated to shed light on this field.

Recently, diffusion models have surfaced as compelling generative models known for their high
sample quality [36]. Drawing inspiration from the evolution of VAE-based disentanglement methods,
we are intrigued by the question of whether diffusion models, also fundamentally designed as deep
generative probabilistic models, possess the potential to learn disentangled representations. Obtaining
a compact and disentangled representation for a given image from diffusion models is non-trivial.
Diffusion Autoencoder (Diff-AE) [26] and PDAE [42] move a step forward towards using diffusion
models for representation learning by encoding the image into a feature vector, incorporating this into
the diffusion generation process. However, these representations have not exhibited disentanglement
characteristics. What inductive biases are essential for the learning of disentangled representations?
Could we have a diffusion-based framework possessing such inductive biases?

Notably, in text-to-image generation, a conditional diffusion model integrates the ‘disentangled’ text
tokens through cross attention, demonstrating the ability to generate semantically aligned images
[30, 36, 12]. Interestingly, the observed cross-attention map reveals that different words have their
corresponding spatial regions of high affinities, exhibiting strong semantic and spatial alignment as
illustrated in Figure 1. These disentangled representations of ‘word’s could potentially contribute to a
more streamlined generation process. Inspired by this, we wonder whether such diffusion structure
with cross attention can act as an inductive bias to facilitate the disentangled representation learning.

In this paper, we endeavour to investigate this question and explore the potential of diffusion
models in disentangled representation learning. We discover that the diffusion model with cross-
attention can serve as a strong inductive bias to drive disentangled representation learning, even
without any additional regularization. As illustrated in Figure 2 (a), we employ an encoder to
transform an image into a set of concept tokens, which we treat as ‘word’ tokens, acting as the
conditional input to the latent diffusion model with cross attention. Here, cross-attention bridges
the interaction between the diffusion network and the image encoder. We refer to this scheme as
EncDiff. EncDiff is powered by two valuable inductive biases, i.e., information bottleneck in diffusion,
and cross attention for fostering ‘word’ (concept token) and spatial alignment, contributing to the
disentanglement. Experimental results on benchmark datasets demonstrate that EncDiff achieves
excellent disentanglement performance, surpassing all the previous methods with elaborate designs.
Comprehensive ablation studies show that the strong disentanglement capability is mainly attributed
to 1) the diffusion modelling and 2) the cross-attention interaction. Visualization analysis provides
insights into the effectiveness of the disentangled representations.
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(a) Framework of our EncDiff. (b) KL divergence curves.

Figure 2: (a) Illustration of our framework EncDiff. We employ an image encoder τϕ to transform an
image I into a set of disentangled representations, which we treat them as the conditional input to the
latent diffusion model with cross attention. Here cross attention bridges the interaction between the
diffusion network and the image encoder. For simplicity, we only briefly show the diffusion model
which consists of an encoder E, a denoising U-Net and a decoder D that reconstructs the image from
the latent xt. (b) Information bottleneck reflected by KL divergence in reverse diffusion process.
The KL divergence between the data distribution q(xt−1|xt, x0) and the Gaussian prior distribution
N (0, I) under four different variance (β) schedules: cosine, linear, sqrt linear and sqrt. The results
have been normalized by the number of dimensions.

We have four main contributions.

• We uncover that the diffusion model with cross-attention can serve as a strong inductive bias for
enabling disentangled representation learning.

• We introduce a simple yet effective framework, EncDiff, powered by a latent diffusion model with
cross attention and an ordinary image encoder, for disentangled representation learning.

• This framework inherently incorporates two valuable inductive biases: the information bottleneck
in diffusion, and cross attention, fostering concept token and spatial alignment. We analyze that the
diffusion process inherently possesses the time-varying information bottlenecks.

• Without additional regularization or specific designs, our framework achieves state-of-the-art
disentanglement performance, even outperforming the latest methods with more complex designs.

We anticipate the new perspective will illuminate the field of disentanglement and inspire deeper
investigations, paving the way for future sophisticated data analysis, understanding, and generation.

2 Related Work

Disentangled Representation Learning Disentangled Representation Learning endeavours to train
a model proficient in disentangling the underlying factors of observed data [1, 13, 33]. A plethora of
methods have been proposed to augment the generative models of VAEs and GANs, endowing them
with disentanglement capability. These methods primarily rely on probability-based regularizations
applied to the latent space. To improve disentanglement, most approaches focus on how to regularize
the original VAE. For instance, this includes weighting the evidence lower bound (ELBO) as in
β-VAE [14], or introducing different terms to the ELBO, such as mutual information (InfoVAE [43],
InfoMax-VAE [29]), total correlation (Factor-VAE [19]), and covariance (DIP-VAE [21]). Locatello
et al. [24] demonstrate that relying solely on these regularizations is insufficient for achieving
disentanglement. DIP-VAE [21] introduces a regularizer on the expectation of the approximate
posterior over observed data, by matching the moments of the distributions of latents. In this work,
we analyze and identify two valuable inductive biases of diffusion that promote the disentangled
representation learning in our framework. Inductive biases on both the models and the data are
necessary. In this paper, we investigate the disentanglement capability of diffusion models and
demonstrate that diffusion models with cross-attention can serve as a powerful inductive bias for
disentanglement.

Diffusion Models Diffusion models have emerged as a powerful new family of deep probabilistic
generative models [36], surpassing VAEs and GANs for image generation and many other tasks.
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Diffusion models progressively perturb data by injecting noise and then learn to reverse this process for
the generation. A question arises as to whether diffusion models can effectively serve as disentangled
representation learners. It is challenging to obtain a compact yet disentangled representation of an
image from a diffusion model. Diff-AE [26] and PDAE [42] investigate the possibility of using DPMs
for representation learning, whereby an input image is autoencoded into a latent vector. However,
these representations do not manifest disentangled characteristics. SlotDiffusion [35] and LSD [17]
integrate diffusion models into object-centric learning, where diffusion acts as a improved slot-to-
image decoder, and slot attention is still the key for promoting object-centric learning. Moreover, they
aim to learn object-wise representation but still cannot disentangle the factors/attributes of an object/a
scene. Limited research has explored disentangled representation learning by leveraging diffusion
models. InfoDiffusion [34] encourages the disentanglement of the latent feature of Diff-AE [26]
by introducing mutual information and prior regularization, similar to InfoVAE [43]. CL-Dis [18]
introduces a VAE to guide diffusion model to learn disentangled representation. DisDiff [40] employs
a pre-trained diffusion model for disentangled feature learning. DisDiff adopts an encoder to learn
the disentangled representations and a decoder to learn the sub-gradient field for each disentangled
factor. It requires multiple decoders to predict these sub-gradient fields for all the factors and complex
disentanglement losses, resulting in a costly and intricate process. The recent work SODA [16]
leverages a diffusion model to generate novel view of image for representation learning, revealing
the capability of capturing visual semantics to diffusion model. Is it necessary to impose these
complicated regularizations upon diffusion models as [40]? Does a strong inductive bias facilitating
disentanglement already exist within diffusion models? In this paper, we endeavour to answer these
questions and illustrate that a simple framework driven by a diffusion model without any additional
regularization is capable of achieving superior disentanglement performance.

3 Method

We aim to investigate the potential of diffusion models in disentangled representation learning. We
propose a simple yet effective framework, EncDiff, that exhibits strong disentanglement capabilities,
even without additional regularizations. We analyze and identify two valuable inductive biases, i.e.,
information bottleneck in diffusion, and the cross attention for fostering ‘word’ (concept token) and
spatial alignment, thereby promoting disentanglement. We elaborate on the framework design in
subsection 3.1 and the analysis in subsection 3.2, respectively.

3.1 Framework of EncDiff

Figure 2 (a) illustrates the flowchart. It consists of an image encoder that transforms an input image
into a set of concept tokens and a diffusion model that serves as the decoder to reconstruct the image.
Cross-attention is employed as the bridge for the diffusion network and the image encoder.

Image Encoder For a given input image I , the image encoder τϕ aims to provide a set of concept
tokens S = {s1, · · · , sN}, which act similarly to the word embeddings in the prompts for text-to-
image generation in the latent diffusion models (LDMs) [30]. Without loss of generality, we use
an ordinary CNN network as the image encoder to obtain concept tokens. Following the design of
the encoder in VAE [20], we use a fully connected layer to transform the feature map into a feature
vector. We treat each dimension of the encoded feature vector as a disentangled factor and map each
factor to a vector (i.e., concept token) by non-shared MLP layers (as illustrated by Figure 3).

Diffusion Model with Cross Attention We follow LDM [30] to construct our diffusion model in the
latent space, which demonstrates superior generation ability. LDM is one of the most popular diffusion
models, proposing to conduct diffusion denoising in the latent space. To condition the concept
tokens during image generation, cross-attention is used to map these tokens into the intermediate
representations of the U-Net in the diffusion model. This is accomplished by using the cross-attention
defined as Attention(Q,K, V ) = softmax

(
QKT

√
d

)
·V , where the spatial feature in the intermediate

feature map in diffusion model serves as a query, the concept tokens act as keys and values.

End-to-End Training We conduct an end-to-end training of the encoder and the diffusion model,
utilizing the optimization objective of reconstructing noise, which is a methodology aligned with that
employed in LDM [30].
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3.2 Inductive Biases

We analyze that there are two crucial inductive biases in diffusion models: the information bottleneck
in diffusion, and the cross-attention interaction. We analyze that the diffusion process inherently
possesses the time-varying information bottlenecks.

3.2.1 Information Bottleneck in Diffusion

β-VAE [14] and AnnealVAE [2] utilize the original Kullback–Leibler (KL) divergence in VAEs
to enhance the disentanglement capability, where the KL divergence constraint plays a role of an
information bottleneck. Here, we analyze the presence of an information bottleneck mechanism that
promotes the disentanglement in diffusion models. Without loss of generality, our analysis focuses
on the diffusion model in image latent space [30]. The analysis also holds in pixel space.

Within the framework of the latent diffusion model, we add Gaussian noise to an image latent x0

over T steps according to a variance schedule β1, · · · , βT . This process yields a sequence of noisy
samples x1, · · · , xT ,

q(xt|xt−1) := N (xt;
√
1− βtxt−1, βtI). (1)

Let αt = 1− βt and ᾱt =
∏t

i=1 αt. xt can be obtained using the following equation [15, 36]:

xt =
√
ᾱtx0 +

√
1− ᾱtϵ, (2)

where the noise ϵ is sampled from a Gaussian distribution N (0, I).

The diffusion model optimizes a network (e.g., U-Net) ϵθ to predict the noise from the noisy input xt

and the conditioning input S (concept tokens), with the loss function defined as

Lr = Ex0,ϵ,t∥ϵθ(xt, t,S)− ϵ∥. (3)

Here, we omit the weighting terms of loss function for simplicity. The latent x0 can be reconstructed
based on the predicted noises.

Let’s analyze the inherent information bottleneck at each time step t in the reverse diffusion process.
In the reverse diffusion process, the reverse conditional distribution is tractable as [15]:

q(xt−1|xt, x0) = N (xt−1|µ̃t, β̃tI),

where µ̃t =

√
ᾱt−1βt

1− ᾱt
x0 +

√
αt(1− ᾱt−1)

1− ᾱt
xt, β̃t =

1− ᾱt−1

1− ᾱt
βt.

(4)

We formulate the Kullback-Leibler (KL) divergence Ct between q(xt−1|xt, x0) and the Gaussian
prior distribution p(xt−1) = N (0, I) at step t− 1 as:

Ct = DKL(q(xt−1|xt, x0)||p(xt−1)) =
n

2
(− log β̃t − 1− β̃t + µ̃T

t µ̃t/n), (5)

where n denotes the number of dimension of signal x (i.e., x0, xt, xt−1).

In Figure 2 (b), we present a plot illustrating the KL divergence Ct under different variance (β)
schedules, including linear, sqrt linear, cosine [25, 15], and sqrt schedules [6, 30]. We can see that
as the time step t decreases, the KL divergence Ct increases, indicating the information carried by
xt−1 increases and leading to an increasingly looser information bottleneck over xt−1. According
to [2, 14], such a time-varying information bottleneck may play an important role in promoting
disentanglement. Different variance (β) schedules results in different KL divergence curves. We
found that these different variance schedules lead to different disentanglement performance (see
Subsection 4.4).

Actually, optimizing the loss of conditional diffusion model as in (3) is equivalent to push the reverse
conditional distribution pθ(xt−1|xt,S) to approach q(xt−1|xt, x0) (see the explanation in Appendix
B). By this means, the information bottlenecks C̃t = DKL(pθ(xt−1|xt,S)||p(xt−1)) over xt−1 tend
to approach Ct = DKL(q(xt−1|xt, x0)||p(xt−1)) in training for all the time steps. According to
theorem in Appendix C, the information bottleneck over latent xt−1 is transferred to the condition
S (i.e., concept tokens). Intuitively, this is because xt−1 is controlled by the concept tokens and
the network parameters θ, as indicated by pθ(xt−1|xt,S). The concept token representations S are
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learnable, and the information bottleneck is transferred to and imposed on S. With time-varying
information bottlenecks, the diffusion process encourages a range of different information capacities
on S during the diffusion process, promoting the disentanglement of concept tokens.

Discussion The information bottleneck described above shares a certain similarity with the opti-
mization objective in AnnealVAE [2]. The minimizing objective of AnnealVAE is expressed as
follows:

L(ϕ, φ) =− Eqϕ(z|x)[log pφ(x|z)] + γ∥DKL(qϕ(z|x)||p(z))− C∥, (6)

where ϕ, φ are the parameters of the encoder and decoder; the latent representation and data are
denoted as z, x, respectively. C is a handcrafted constant used to control the information bottleneck
of the latent space. Different factors to be disentangled may contain different amounts of information.
Instead of using a constant during training, AnnealVAE dynamically allocates larger amount of
information (larger C) to the latent units as the training iteration increases. So that different factors
can be learned at various training stages.

In diffusion models, where the KL divergence characterizes the information amount, we observe that
the information amount varies in reverse diffusion steps, see Figure 2 (b).

3.2.2 Cross-Attention for Interaction

The information bottleneck sheds a light on disentangling, acting as an inductive bias for diffusion.
However, using the information bottleneck still only has theoretical feasibility. Its effectiveness
also relies on the structure design of diffusion model. We believe that the cross-attention design in
conditional diffusion model is crucial for disentanglement, serving as another effective inductive bias.

Our objective is to train an encoder that obtains a set of concept tokens taking an image as input under
the guidance of the diffusion model. We take the output of the encoder as the condition of the U-Net
of diffusion model for image generation. We incorporate the concept tokens into diffusion model
through cross-attention. Intuitively, a spatial position of an image is related to several concepts, e.g.,
object color and shape in Shapes3D. Each spatial feature is composed of several related concept-based
representations. Interestingly, cross-attention in the U-Net play a similar role, where each spatial
feature servers as the query, and the learned concept tokens are used as the keys and values to
refine the query. In subsection 4.4, we validate the necessity of the two inductive biases leading to
disentanglement.

4 Experiments

4.1 Experimental Setup

Implementation Details The trainable parts are the encoder and diffusion model. We employ the
popular diffusion structure of latent diffusion [30] by default. Without loss of generality, following
[30], we use the VQ-reg to avoid arbitrarily high-variance latent spaces and sample images in 200
steps. We adopt the cosine as the variance (β) schedule in the diffusion model by default. By default,
we use a CNN encoder for the image encoder to obtain a set of disentangled concept tokens. We use
a CNN encoder similar to that used in [40]. We denote our scheme as EncDiff.

Training Details During the training phase of EncDiff, we maintain a consistent batch size of 64
across all datasets. The learning rate is consistently set to 1× 10−4. We adopt the standard practice
of employing an Exponential Moving Average (EMA) with a decay factor of 0.9999 for all model
parameters. The training hyper-parameters follows DisDiff [40] and DisCo [28]. For each concept
token, we follow DisDiff [40] to use a 32 dimensional representation vector. We train EncDiff on a
single Tesla V100 16G GPU. A model takes about 1 day for training.

Datasets To evaluate the disentanglement performance, we utilize the commonly used benchmark
datasets: Shapes3D [19], MPI3D [10] and Cars3D [27]. Shapes3D [19] consists of a collection of
3D shapes. MPI3D is a dataset of 3D objects created in a controlled setting. Cars3D is a dataset
consisting of 3D-rendered cars. For real-world data, we conduct our experiments using CelebA, a
dataset of celebrity faces with attributes. Our experiments are carried out at a 64×64 image resolution,
consistent with previous studies [19, 4, 28, 40].
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Table 1: Comparisons of disentanglement on the FactorVAE score and DCI disentanglement metrics
(mean ± std, higher is better). EncDiff outperforms the state-of-the-art methods with a large margin
except on Cars3D.

Method Cars3D Shapes3D MPI3D

FactorVAE score↑ DCI↑ FactorVAE score↑ DCI↑ FactorVAE score↑ DCI↑
VAE-based:

FactorVAE [19] 0.906± 0.052 0.161± 0.019 0.840± 0.066 0.611± 0.082 0.152± 0.025 0.240± 0.051
β-TCVAE [4] 0.855± 0.082 0.140± 0.019 0.873± 0.074 0.613± 0.114 0.179± 0.017 0.237± 0.056

GAN-based:

InfoGAN-CR [23] 0.411± 0.013 0.020± 0.011 0.587± 0.058 0.478± 0.055 0.439± 0.061 0.241± 0.075

Pre-trained GAN-based:

LD [32] 0.852± 0.039 0.216± 0.072 0.805± 0.064 0.380± 0.062 0.391± 0.039 0.196± 0.038
GS [11] 0.932± 0.018 0.209± 0.031 0.788± 0.091 0.284± 0.034 0.465± 0.036 0.229± 0.042

DisCo [28] 0.855± 0.074 0.271± 0.037 0.877± 0.031 0.708± 0.048 0.371± 0.030 0.292± 0.024

Diffusion-based:

DisDiff [40] 0.976± 0.018 0.232± 0.019 0.902± 0.043 0.723± 0.013 0.617± 0.070 0.337± 0.057
EncDiff (Ours) 0.773± 0.060 0.279± 0.022 0.999± 0.000 0.969± 0.030 0.872± 0.049 0.685± 0.044
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Figure 3: Illustration of the encoder τϕ, which
transforms an image into a feature vector of di-
mension N , with each dimension (scalar) en-
coding a disentangled factor. We then use non-
shared three-layer MLP layers to map each scalar
into a vector (concept token). The concept to-
kens will be treated as the conditional input to
the latent diffusion model with cross attention.

Table 2: Comparisons of disentanglement perfor-
mance and generation quality in terms of TAD
and FID metrics (mean ± std) on real-world
dataset CelebA. EncDiff achieves the state-of-
the-art performance on both aspects compared
to all baselines.

Model TAD ↑ FID ↓
β-VAE [14] 0.088± 0.043 99.8± 2.4
InfoVAE [43] 0.000± 0.000 77.8± 1.6
Diff-AE [26] 0.155± 0.010 22.7± 2.1
InfoDiffusion [34] 0.299± 0.006 23.6± 1.3
DisDiff [40] 0.305± 0.010 18.2± 2.1

EncDiff 0.638± 0.008 14.8± 2.3

Baselines & Metrics We compare the performance of our method with VAE-based, GAN-based,
and diffusion-based methods, following the experimental protocol as in DisCo [28]. The VAE-based
models we use for comparison are FactorVAE [19] and β-TCVAE [4], while the GAN-based baselines
include InfoGAN-CR [23], GANspace (GS) [11], LatentDiscovery (LD) [32] and DisCo [28].
Each method utilizes scalar-valued representations. DisDiff [40] uses vector-valued representations.
EncDiff has two kinds of representations simultaneously. We focus on the scalar-valued in the main
paper. We follow DisDiff to set N to 20. For these vector-valued representations, we follow [7, 40, 38]
to perform PCA as a post-processing on the representation before evaluation. To assess the potential
variability in performance due to random seed selection, we have fifteen runs for each method for
reliable evaluation, reporting the mean and variance. Regarding evaluation metrics, we adopt two
representative metrics, the FactorVAE score [19] and the DCI [8].

4.2 Comparison with the State-of-the-Arts

We compare the disentanglement ability of our EncDiff with the state-of-the-art methods. Table
1 shows quantitative comparison results of disentanglement under different metrics. We can see
that EncDiff achieves the best performance on all the datasets except Cars3D, showcasing the
model’s superior disentanglement ability. EncDiff achieves superior performance by leveraging the
strong inductive bias from the diffusion model with cross-attention without using any additional
regularization losses. EncDiff also outperforms InfoDiffusion [34] and DisDiff [40] by a significant
marginal, even though DisDiff uses complex disentanglement loss and inference the decoder multiple
times for prediction sub-gradient fields. On the Cars3D dataset, the quantitative evaluation is not
so reliable because some factors, such as color and shape, are not included in the labels. From the
visualization in Figure 6 of Appendix E, we can see that EncDiff achieves superior disentanglement
compared to DisDiff despite the lower FactorVAE score.
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Figure 4: The qualitative results on Shapes3D and MPI3D. The source (SRC) images provide the
representations of the generated image. The target (TRT) image provides the representation for
swapping. Other images are generated by swapping the representation of the corresponding factor.
For Shapes3D, the learned factors on Shapes3D are wall color (Wall), floor color (Floor), object color
(Color), and object shape (Shape), orientation (Orien), scale. See Appendix E for more visualizations.

Image Wall Floor Color Shape Oren Scale Image Orien BG C Pos Thick OB C Size

Figure 5: Visualization of the cross-attention maps on Shapes3D and MPI3D. The first column shows
the original image while the other columns show the attention masks for different concept tokens.
See Appendix F for more visualizations. “Pos” represents “Position”.

Moreover, we have conducted experiments on real-world dataset CelebA. Table 2 shows the compar-
isons of disentanglement performance and generation quality in terms of TAD and FID metrics (mean
± std). EncDiff achieves the state-of-the-art performance on both aspects compared to all baselines.

In addition, our EncDiff achieves superior reconstruction quality (see Appendix G for more details).

4.3 Visualization

Visualization Analysis on the Disentanglement We qualitatively examine the disentanglement
properties of our proposed method. We interchange the concept tokens (factors) of the learned repre-
sentation of two distinct images and observe the generated images conditioned on these exchanged
representations. For illustration purposes, we focus on the widely used Shapes3D dataset from the
disentanglement literature and show the results in Figure 4. We can see that our EncDiff successfully
isolates factors. Notably, in comparison to VAE-based methods, EncDiff delivers superior image
quality quantitatively (please refer to Appendix H).

Visualization of Learned Cross-Attention Maps As mentioned in Section 1, our model draws
inspiration from the alignment between ’word’ tokens (disentangled representations) and spatial
features. The alignment is demonstrated by the learned cross-attention maps. We verify whether our
learned concept tokens present the disentangled characteristics by visualizing the alignment of concept
tokens with spatial positions through cross-attention maps. As depicted in Figure 5, the results of our
model exhibit exemplary alignment between concept tokens and spatial positions. Distinct concept
tokens are associated with varying attended spatial regions, corresponding to different semantics
that are comprehensible by humans, such as the region of “Floor” and “Color” for the images from
Shapes3D.
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Table 3: Influence of the two inductive biases.
For EncDec w/o Diff, we replace the diffusion
model with a decoder while cross-attention is
preserved. For EncDiff w/ AdaGN, we replace
the cross-attention with AdaGN.

Method FactorVAE score↑ DCI↑
EncDec w/o Diff 0.537± 0.074 0.178± 0.050
EncDiff w/ AdaGN 0.911± 0.101 0.637± 0.068

EncDiff 0.999± 0.000 0.969± 0.030

Table 4: Ablation study on the influence of the
variance (β) schedule. We use four kinds of
variance schedules: sqrt, cosine, linear, and sqrt
linear.

Method FactorVAE score↑ DCI↑
EncDiff w/sqrt 0.997± 0.011 0.950± 0.041
EncDiff w/sqrt linear 0.988± 0.026 0.924± 0.050
EncDiff w/linear 0.999± 0.002 0.930± 0.045

EncDiff w/cosine 0.999± 0.001 0.969± 0.030

4.4 Ablation Study

In our framework, in order to analyze and understand the key factors contributing to the advancement
of disentangled representation learning, we conduct ablation studies covering three aspects in the
design: 1) whether to use diffusion as the decoder; 2) whether to use cross-attention as the bridge for
interaction; 3) The influence of different variance (β) schedules. We conduct these ablation studies
on the Shapes3D dataset. Please see Appendix H for more ablation studies.

Using Diffusion as Decoder or Not To validate whether the use of a diffusion model as an inductive
bias for disentangled representation learning is crucial, we employ a network structure similar to the
U-Net in our used diffusion model as the decoder, utilizing reconstruction l2 loss to optimize the
entire network. We designed a variant (EncDec w/o Diff) of EncDiff to have an autoencoder-like
structure, by reusing the image encoder as encoder and the lower half of the U-Net structure as
decoder for reconstruction. In contrast to EncDiff, we discard the multiple step diffusion process
and only run once feedforward inference to get the reconstruction. If the autoencoder’s performance
drops significantly, this will provide evidence about the importance of the diffusion process instead of
the U-Net architecture. Specifically, we remove the encoder part of the U-Net and the skip connection
between it and the decoder part of the U-Net. We then feed the U-Net decoder with a randomly
initialized learnable spatial tensor to maintain the structure of the decoder U-Net. Similarly to
EncDiff, the encoded disentangled representations are input to the decoder through cross-attention
(CA). We refer to this scheme as EncDec w/o Diff. Table 3 shows the results. The performance
of EncDiff with diffusion significantly outperforms EncDec w/o Diff by 0.46 and 0.79 in terms of
FactorVAE score and DCI, respectively. This indicates that inductive bias from diffusion modelling
is crucial for achieving effective disentanglement.

Using Cross-Attention for Interaction To incorporate the image representation to the diffusion
model as a condition, we use cross-attention by treating each disentangled representation as a
conditional token (similar to the use of ‘word’ token in text-to-image generation in stable diffusion
model [30]). As an alternative, similar to that in Diff-AE [26] and InfoDiffusion [34], we use adaptive
group normalization (AdaGN) to incorporate the representation vector (by concatenating the concept
tokens) to modulate the spatial features. We name this scheme as EncDiff w/ AdaGN. Table 3 presents
the results. We can see that EncDiff w/ AdaGN is inferior to EncDiff, with a significant decrease
of 0.33 in terms of DCI. Cross-attention facilitates the alignment of each concept token with the
corresponding spatial features, akin to the alignment of the ‘word’ token to spatial features in the
text-to-image generation. In contrast, AdaGN did not efficiently promote disentanglement.

Influence of Different Variance (β) Schedules We investigate the influence of the different variance
(β) schedules, including including linear, sqrt linear, cosine [25, 15], sqrt schedules [6, 30], on the
disentanglement performance. From Table 4, we can see that distinct schedules result in different
performance, demonstrating the influence on disentanglement of different information bottleneck
schedules. Note that the FactorVAE scores are all very high and cannot well reflect the performance.
We prefer to use DCI metric here for evaluation. We can see that the cosine schedule performs the
best and we adopt it by default. The linear schedule approaches that of the sqrt linear in terms of the
curve shape, please see Figure 2 (b) and achieves the similar performance in terms of DCI.

Scalar-valued vs. Vector-valued Manners We treat each dimension of the encoded feature vector as
a disentangled factor, followed by a mapping to concept token (vector) for each factor. Another design
alternative is to directly split the feature vector into N chunks, with each chunk being a concept
token, similar to DisDiff [40]. We name this vector-valued design and refer to it by DisDiff-V. Table 5
shows that EncDiff outperforms EncDiff-V obviously. The intermediate scalar design in EncDiff
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Table 5: Ablation study on the two design alter-
natives on obtaining the token representations.

Method FactorVAE score ↑ DCI↑
EncDiff-V 0.999± 0.000 0.900± 0.045
EncDiff 0.999± 0.001 0.969± 0.030

Table 6: Ablation study on the space applying
diffusion model.

Method FactorVAE score↑ DCI↑
EncDiff pixel 1.0± 0.000 0.981± 0.015
EncDiff 0.999± 0.000 0.969± 0.030

Table 7: Computational complexity comparison.

Method Params.↓ (M) FLOPs↓ (M) Time↓ (s)

Diff-AE [26] 67.8 3955.1 31.0
DisDiff [40] 57.1 5815.8 35.3

EncDiff 42.3 2898.5 11.8

may serve a bottleneck role and contribute to the disentanglement. We think that the vector-based
representation potentially extracts more information and hence enforces a looser bottleneck than
scalar-valued representation. Note that the more information encoded, there is a higher probability
that the encoded information is correlated, which is contradictory for disentanglement. Therefore, the
tighter bottleneck from scalar-valued representation leads to (a slightly) better performance.

Results on Pixel Space As stated in Section 3.2.1, our analysis is applicable in pixel space as well.
In order to verify this, we trained EncDiff directly in pixel space on the Shapes3D dataset, which
we denote the scheme as EncDiff pixel. The results of the disentanglement analysis are presented
in Table 6. The performance of our framework in pixel space remains robust, indicating that the
operation in latent space is not a critical factor for achieving effective disentanglement.

4.5 Computational Complexity

We compare the computational complexity of Diff-AE [26], DisDiff [40], and our EncDiff in terms
of the parameters (Params.), floating-point operations (FLOPs), and inference time (seconds/sample)
for sampling an image. As shown in Table 7, our EncDiff demonstrates much higher computational
efficiency than Diff-AE and DisDiff.

5 Limitations

Our method operates in a fully unsupervised manner and exhibits strong disentanglement capability
on simple datasets. Similar to other disentanglement-based methods [14, 19, 5, 23, 37], obtaining
satisfactory performance on complex data remains a challenge. As a diffusion-based method, the
generation speed of EncDiff is faster than DisDiff [40]. However, it is still slower compared to
VAE-based and GAN-based methods. More effective sampling strategies, as employed in DPM-based
methods, could be utilized for accelerating in the future.

6 Conclusion

This paper unveils a fresh viewpoint, demonstrating that diffusion models with cross-attention
can serve as a strong inductive bias to foster disentangled representation learning. Within our
framework EncDiff, we reveal that the diffusion model structure with cross-attention can drive an
image encoder to learn superior disentangled representations, even without any regularization. Our
comprehensive ablation studies demonstrate that the strong capability is mainly attributed to diffusion
modelling and cross-attention interaction. This work will inspire further investigations on diffusion
for disentanglement, paving the way for sophisticated data analysis, understanding, and generation.
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A Impact Statements

This paper presents work whose goal is to advance the field of disentanglement learning. Our
research is designed to be a positive force for innovation purpose. Viewed from a societal lens, the
potential negative impacts is the malicious use of the models. This highlights the critical necessity of
incorporating ethical considerations in the utilization of our method for responsible AI.

B Optimization of the Reverse Conditional Probability pθ(xt−1|xt,S)

Two distinct approaches exist for decomposing the loss function, Variational Lower Bound(VLB), of
the diffusion model. The derivations presented herein closely follow the methodology outlined by Ho
et al. [15]. Without loss of generality, we could incorporate the conditional input denoted by S to the
diffusion.

For the first decomposition alternative, we can derive the following equations:

L = Eq

[
− log

pθ(x0:T |S)
q(x1:T |x0)

]
= Eq

[
log

ΠT
t=1q(xt|xt−1)

p(xT )ΠT
t=1pθ(xt−1|xt,S)

]
= Eq

[
− log p(xT ) + Σt≥1 log

q(xt|xt−1)

pθ(xt−1|xt,S)

]
= Eq

[
− log p(xT )− Σt>1 log

pθ(xt−1|xt,S)
q(xt|xt−1)

− log
pθ(x0|x1)

q(x1|x0)

]
.

(7)

By applying Bayes’ Rule and the Markov property of the diffusion process, we conclude that

q(xt−1|xt, x0) =
q(xt|xt−1, x0)q(xt−1|x0)

q(xt|x0)
=

q(xt|xt−1)q(xt−1|x0)

q(xt|x0)
. (8)

This leads to

L = Eq

[
− log p(xT )− Σt>1 log

pθ(xt−1|xt,S)
q(xt−1|xt, x0)

q(xt−1|x0)

q(xt|x0)
− log

pθ(x0|x1)

q(x1|x0)

]
= Eq

[
− log

p(xT )

q(xT |x0)
− Σt>1 log

pθ(xt−1|xt,S)
q(xt−1|xt, x0)

− log pθ(x0|x1)

]
= Eq [DKL(q(xT |x0)||p(xT )) + Σt>1DKL(q(xt−1|xt, x0)||pθ(xt−1|xt,S))− log pθ(x0|x1)] .

(9)

For the second alternative, the loss function is derived to be Ex0,ϵ,t∥ϵθ(xt, t,S)− ϵ∥ [15].

The optimization of conditional diffusion model by predicting the noises through minimiz-
ing Ex0,ϵ,t∥ϵθ(xt, t,S) − ϵ∥ is thus equivalent to minimizing the second term of (9), i.e.,
Σt>1DKL(q(xt−1|xt, x0)||pθ(xt−1|xt,S)), which pushes the reverse conditional probability
pθ(xt−1|xt,S) to approach q(xt−1|xt, x0).

C The Transfer of Information Bottleneck

Theorem C.1. The Kullback-Leibler divergence is invariant under a differentiable mapping f , i.e .

DKL(p(x)|q(x)) = DKL(p(S)|q(S))

where x = f(S) is a differentiable function between x and S and p(x) and q(x) are the probability
density functions of the probability distributions P and Q, respectively.

Proof : The Kullback-Leibler divergence (KL divergence) is defined as

DKL(p(x)|q(x)) =
∫

p(x) log
p(x)

q(x)
dx
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According to the change of variable theorem, we have

p(x) = p(f(x))|f ′(x)| = p(S)|f ′(x)|
q(x) = q(f(x))|f ′(x)| = q(S)|f ′(x)|

(10)

where |f ′(x)| denotes the Jacobian of f(x), p(S) is the corresponding distribution of p(x) under the
mapping f . q(S) is the corresponding distribution of q(x) under the mapping f . Combine the two
equations, we have

DKL(p(x)|q(x)) =
∫

p(f(x))|f ′(x)| log p(f(x))|f ′(x)|
q(f(x))|f ′(x)|

dx =

∫
p(f(x)) log

p(f(x))

q(f(x))
|f ′(x)|dx.

(11)
Considering the property of integral that for S = f(x) we have dS = |f ′(x)|dx. We then have the
following:

DKL(p(x)|q(x)) =
∫

p(S) log
p(S)

q(S)
dS = DKL(p(S)|q(S)). (12)

This indicates that the information bottleneck on x is transferable to the input S of the function.

D Implementation Details

For our EncDiff (scalar-valued), following the approach of [22], each dimension of the encoded
feature vector is treated as a disentangled factor. Each factor is then mapped to a vector (i.e., concept
token) using non-shared MLP layers, as illustrated in Figure 3. For vector-valued EncDiff (EncDiff-
V), inspired by DisDiff [40], we partition the feature vector into N (e.g., 20) chunks, referred to as
concept tokens, to encode different factors.

Image Encoder Architecture To ensure an equitable comparison, we employ the encoder architec-
ture, consistent with DisCo [28] and DisDiff [40]. The encoder specifications are detailed in Table
8.

Table 8: Encoder architecture used in EncDiff.

Conv 7× 7× 3× 64, stride = 1
ReLu
Conv 4× 4× 64× 128, stride = 2
ReLu
Conv 4× 4× 128× 256, stride = 2
ReLu
Conv 4× 4× 256× 256, stride = 2
ReLu
Conv 4× 4× 256× 256, stride = 2
ReLu
FC 4096× 256
ReLu
FC 256× 256
ReLu
FC 256×K

Diffusion U-Net Architecture The diffusion architecture adheres to the design principles of latent
diffusion [30] and DisDiff [42]. Table 9 provides a detailed overview of the network structure, similar
to the structure of Latent Diffusion Probabilistic Model.

We pretrain VQ-VAE in diffusion. Then the diffusion network and our image encoder are jointly
trained.

E More Visualizations

We present qualitative results for Cars3D in Figure 6. Notably, on the synthetic dataset Cars3D, EncD-
iff demonstrates the acquisition of disentangled representations, presenting better disentanglement
ability than DisDiff [40]). We can see that our EncDiff can capture the factors of “Color”, “Azimuth”,
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Table 9: U-Net architecture used in EncDiff.

Parameters Shapes3D / Cars3D/ MPI3D /CelebA

Base channels 16
Channel multipliers [ 1, 2, 4, 4 ]
Attention resolutions [ 1, 2, 4]
Attention heads num 8
Model channels 64
Dropout 0.1
Images trained 0.48M / 0.28M / 1.03M
β scheduler Cosine (Sqrt/Sqrt linear/Linear)
Training T 1000
Diffusion loss MSE with noise prediction ϵ

SRC

TRT

None

None

Azimuth

Grey

None

Car color

SRC

TRT

Color

Azimuth

Shape

Orien

None

None

DisDiff EncDiff (Ours)

Figure 6: The qualitative comparison on Cars3D. The source (SRC) images provide the representa-
tions of the generated image. The target (TRT) image provides the representation for swapping. Other
images are generated by swapping the representation of the corresponding factor. “Orien” refers to
Orientation. We can see that our EncDiff can capture the factors of “Color”, “Azimuth”, and “Shape”
while DisDiff failed to capturing them.

and “Shape” while DisDiff failed to capturing them. Furthermore, we include three rows of images
demonstrating the manipulation of representations lacking informative content, denoted as “None”.

We present the qualitative outcomes for MPI3D in Figure 7. Remarkably, on the challenging
disentanglement dataset MPI3D, EncDiff showcases its ability to obtain disentangled representations.

F More Visualizations on Attention Maps

We showcase the visualization of attention maps for our model’s disentangled representations on
the Cars3D dataset, as depicted in Figure 8. Similar to EncDiff, the attention maps provide insights
into the acquisition of disentangled representations in the synthetic setting of Cars3D. Notably, our
attention maps reveal distinct alignments between concept tokens and spatial features, demonstrating
the disentangled characteristics learned by our model.

For the MPI3D dataset, Figure 8 demonstrate the qualitative outcomes of attention map visualization.
In this challenging disentanglement scenario, EncDiff excels in acquiring disentangled representations.
The attention maps further illustrate the alignment between concept tokens and spatial positions,
affirming the model’s ability to disentangle complex features in MPI3D.
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SRC

TRT
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OB Shape

None

None

None
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TRT
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BG Color

Size
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DisDiff EncDiff (Ours)

Figure 7: The qualitative results on MPI3D. The source (SRC) images provide the representations of
the generated image. The target (TRT) image provides the representation for swapping. Other images
are generated by swapping the representation of the corresponding factor. The learned factors on
MPI3D are thickness, BG (Background) color, object (OB) color, and object (OB) shape, orientation
(Orien), Pos (Background bar position).

Image Orien BG C Pos Thick OB C Size Image Color Type Azimuth Orien

Figure 8: Visualization of the cross-attention maps on MPI3D and Cars3D. The first column shows
the original image, while the other columns show the attention masks for different concept tokens.

G Autoencoding Reconstruction Quality

Autoencoding Reconstruction Quality To investigate the autoencoding reconstruction quality of
EncDiff, we conduct the same quantitative experiments with PDAE, DisDiff and Diff-AE. We follow
them to evaluate the reconstruction quality using averaged SSIM, LPIPS, and MSE. The results are
shown in Table 10. It is evident that EncDiff outperforms DisDiff on all metrics. EncDiff achieves
the state-of-the-art performance of SSIM and LPIPS with a strong disentanglement capability.

Table 10: Reconstruction quality comparison on the Shape3D dataset.

Method SSIM↑ LPIPS↓ MSE↓ DCI↑ Factor VAE↑
PDAE 0.9830 0.0033 0.0005 0.3702 0.6514
Diff-AE 0.9898 0.0015 8.1983e− 05 0.0653 0.1744
DisDiff 0.9484 0.0006 9.9293e− 05 0.723 0.902
EncDiff (Ours) 0.9997 0.0003 9.6299e− 05 0.999 0.969

H More Ablation Related with EncDiff

Measuring on Scalar-valued vs. Vector-valued Representations in our EncDiff For EncDiff, each
dimension of the scalar-valued representation is mapped to a representation vector, resulting in two
representations in EncDiff: a scalar-valued one and a mapped vector-valued one. From Table 11, we
can see that these two representations have similar performance.
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Table 11: Comparison of the two different representations (scalar-valued vs vector-valued) in EncDiff.

Method FactorVAE score ↑ DCI↑
EncDiff (Vector) 0.998± 0.006 0.955± 0.030
EncDiff (Scalar) 0.999± 0.001 0.969± 0.030

Influence of the Number of Concept Tokens Similar to other disentanglement methods, the number
of disentangled latent units influences performance. To study such an effect on EncDiff, we train
our model with the following number of tokens: 5, 10, 15, 20 and 30, respectively. As shown in
Table 12, when the number of tokens is fewer than the number of ground truth factors, the performance
significantly drops. With the use of more tokens, the performance improves. In accordance with the
setup proposed by [39], EncDiff adopts the default setting of 20 tokens for a fair comparison with
other methods [39, 40, 28].

Table 12: Influence of the number of concept tokens in EncDiff.

# Tokens FactorVAE score ↑ DCI ↑
5 0.605± 0.084 0.536± 0.073
10 0.985± 0.032 0.900± 0.058
15 0.996± 0.015 0.936± 0.039
20 0.999± 0.001 0.969± 0.030
30 0.995± 0.014 0.961± 0.039

Efficacy of Additional Regularization We are wondering whether additional regularization can
further promote the disentanglement. To validate this, we conducted the following experiments to
investigate the effectiveness of incorporating two types of constraints: sparsity and orthogonality,
respectively.

We explored the orthogonality constraint proposed in [3], which enforces orthogonality from a group
theory perspective. We adapted their method of transforming representations using Euler encoding to
enforce orthogonality within EncDiff. We adopted the official implementation on github to modify
EncDiff, denoted as EncDiff with [3]. We integrated the sparsity regularization terms proposed in
[9] into EncDiff to facilitate disentanglement, denoted as EncDiff with [9]. We take the techniques
proposed in [41], which involve matrix decomposition and matrix exponentiation to construct
orthogonal matrices. We replaced the scalar MLP mappings with a series of learnable orthogonal
vectors to ensure orthogonality in the representations, denoted as EncDiff with [41].The results are
shown in Table 13. We observed that the regularization can slightly improve the performance further
on our EncDiff. For simplicity, we do not incorporate any regularization on all other results.

Table 13: Ablation study on the additional regularization over EncDiff. We use a CNN encoder by
default.

Method FactorVAE score↑ DCI↑
EncDiff w/[3] 0.999± 0.000 0.965± 0.040
EncDiff w/[41] 0.999± 0.002 0.972± 0.029
EncDiff w/[9] 0.999± 0.001 0.975± 0.031

EncDiff 0.999± 0.001 0.969± 0.030

Influence of the Image Encoder Architecture To investigate the influence of encoder design, we use
a powerful encoder to replace the CNN encoder used in the EncDiff. We adopt a transformer encoder
with a set of learnable tokens as the disentangled representations, as introduced in [39], which are
refined through cross-attention. We refer to this scheme EncDiff w/Trans. For fair comparison, the
model size of the encoders is similar. As shown in Table 14, EncDiff w/Trans is comparable to
EncDiff. When considering the performance gap between DisDiff [40] and our EncDiff, the influence
of encoder structures is small and is not the key factor for influencing disentangling capabilities. A
similar phenomenon is observed in vector-valued one.
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Table 14: Ablation study on image encoder. EncDiff w/Trans denotes the scheme in which we replace
CNN encoder with a transformer encoder.

Method FactorVAE score↑ DCI↑
DisDiff [40] 0.902± 0.043 0.723± 0.013
EncDec w/Trans 0.962± 0.034 0.898± 0.033
EncDiff 0.999± 0.001 0.969± 0.030

I More Ablation Study on EncDiff-V

We also perform ablation study related with EncDiff-V to validate the effects of the two inductive
bias, the inefficacy of additional regularization. Similar trends as EncDiff are observed.

Ablation on Two Inductive Bias of EncDiff-V In alignment with the main paper, we also conducted
an experiment to assess the effectiveness of the two inductive biases in EncDiff-V. We adopt the
same decoder used in Section 4.4 to substitute the diffusion in EncDiff-V. We denote this model
as EncDec-V w/o Diff. On the other hand, to study the effectiveness of cross-attention, we use the
same conditional decoder of EncDiff w/ AdaGN in EncDiff-V, denoted as EncDiff-V w/ AdaGN. The
performance of both of these two models drops significantly, as indicated by the results in Table 15.

Table 15: Ablation study on the influence of the two different inductive biases of EncDiff-V. For
EncDec-V w/o Diff, we replace the diffusion model with a decoder while cross attention is preserved
for the interaction. For EncDiff-V w/ AdaGN, we replace the cross attention with AdaGN.

Method FactorVAE score↑ DCI↑
EncDec-V w/o Diff 0.682± 0.092 0.246± 0.073
EncDiff-V w/ AdaGN 0.956± 0.039 0.520± 0.083

EncDiff-V 0.999± 0.000 0.900± 0.045

J Ablation Study on MPI3D

Besides Shapes3d, we conducted the main ablation study on another dataset MPI3D. The results are
shown in Table 16 and 17 below. We can observe that the trends are consistent with that on Shapes3D
(see Table 3).

Table 16: Influence of the two inductive biases on MPI3D. For EncDec w/o Diff, we replace the
diffusion model with a decoder while cross-attention is preserved. For EncDiff w/ AdaGN, we replace
the cross-attention with AdaGN.

Method FactorVAE score↑ DCI↑
EncDiff w/o diff 0.355± 0.075 0.143± 0.038
EncDiff w/ AdaGN 0.592± 0.111 0.268± 0.062
EncDiff 0.872± 0.049 0.685± 0.044

Table 17: Ablation study on the two design alternatives on obtaining the token representations.

Method FactorVAE score↑ DCI↑
EncDiff-V 0.863± 0.075 0.629± 0.047
EncDiff 0.872± 0.049 0.685± 0.044

K Computational Complexity on More Methods

The computational complexity of the VAE-based and GAN-based methods are also listed as shown in
Table. The computational complexity and inference time VAEs and GANs still have strength, but
diffusion has much better generation and disentangling ability. Among the diffusion models, our
EncDiff has better generation and disentangling ability but less computational cost and inference
time.
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Table 18: Computational complexity comparison.
Method Params.↓ (M) FLOPs↓ (M) Time↓ (s)

FactorVAE [19] 11.9 892.1 < 1
BetaTCVAE [4] 7.9 542.1 < 1
DisCo [28] 12 907.2 < 1

EncDiff 42.3 2898.5 11.8

L Comparison with Diff-AE

Diff-AE shows disentanglement qualities. One maybe interested in a comparison of disentanglement
between Diff-AE and EncDiff. The results of Diff-AE on Shapes3D as shown in Table 19, which
is consistent with the trends on CelebA (see Table 2 in the main paper), our method outperforms
Diff-AE with a large margin on Shapes3D.

Table 19: Performance comparison with Diff-AE on Shapes3D.

Method FactorVAE score↑ DCI↑
Diff-AE 0.1744 0.0653
EncDiff 0.872 0.685

M EncDiff for Stable Diffusion, i.e., EncDiff (SD)

Q
K V

Q
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Figure 9: Illustration of applying EncDiff for disentangling DreamBooth i.e., EncDiff (SD).

In order to discuss the disentanglement of EncDiff on real-world data, a newly designed architecture
is introduced in Figure 9, named EncDiff(SD).In this architecture, we use a strong pretrained model
(stable diffusion v1.4) to replace the original diffusion in EncDiff. Motivated by DreamBooth [31]
for customized representation learning, we assign several latent units for each object for inverting and
learning object semantic representation. As shown in Figure 9, in order to disentangle these latent
units, we use a set of non-shared MLPs to map these latent units into concept tokens. Different from
EncDiff, the instance for disentangling is not an image but the semantics of objects. The target is to
disentangle concepts or properties (e.g., color, long-hair, big-eared) from the inverted objects (dog).

Figure 10 shows sampling process of EncDiff (SD), we denote the image on the left as image1 and
image on the right as image2. We use a prompt “A <token from image1, token from image2> dog
is playing a blue ball” to sample image. The <token from image1> encodes the color of the dog.
The <token from image2> encodes the type of the dog. We can sample images of new objects that
combine color of dog1 and type of dog2.
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Figure 10: Sampling of EncDiff(SD). We can combine different concepts by sampling EncDiff (SD)
with combined tokens from different images.

We take the new prompt as the condition of Stable Diffusion, so that we can use diffusion as an
inductive bias for disentangling. The process above is the same as EncDiff. Firstly, to disentangle
the objects from the background, we replace the Diffusion Loss with DisenBooth Loss. Secondly, to
learn multiple concepts, we follow Custom Diffusion to finetune only the KV layer in cross attention.
Lastly, for the ease of learning disentangled concept with a few images, we take an image from each
object to construct a training batch. The results are shown in Figure 11, 12, 13. Our model also
demonstrates the ability to disentangled semantic factors on real and complex data.

Figure 11: Sampling of EncDiff(SD). Prompt: ”A <new concept tokens> dog is playing a blue ball“.
The images of the first column provide source representation and the image (target image) in the first
row provides the target representation. The concept write color is disentangled in representation of
target image.
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Figure 12: Sampling of EncDiff(SD). We can combine different concept in images by sampling.
Prompt ”A <new concept tokens> dog is playing a blue ball“. The images of the first column provide
source representation and the image (target image) in the first row provides the target representation.
The concept long ear is disentangled in representation of target image.

Figure 13: Sampling of EncDiff(SD). We can combine different concept in images by sampling.
Prompt ”A <new concept tokens> dog is playing a blue ball“. The images of the first column provide
source representation and the image (target image) in the first row provides the target representation.
The concept long hair is disentangled in representation of target image.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We introduce a new perspective and framework, demonstrating that diffusion
models with cross-attention can serve as a powerful inductive bias to facilitate the learning
of disentangled representations.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Please see Section 5 in the main paper.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Section 3, 4, and Appendix D have presented the necessary information to
reproduce the main experimental results of the paper. The used datasets are all public
datasets. We will release the code.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]

Guidelines:
• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We have described the necessary information in Section 3, Appendix D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Following other papers in this field to report error bar in our tables.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the information of computer resources used in Appendix D.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have read the NeurIPS Code of Ethics and confirm that we follow that.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Please see appendix A.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: When we release our models, we ask the users to follow the user guidelines to
assure the positive usage.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have cited the original papers of the datasets. We have checked the licenses
of used datasets and followed them.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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