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Abstract

Models developed using longitudinal electronic health record (EHR) data can
demonstrate inconsistent abilities to generalize to new data at different institutions.
Rather than relying only only external validity of performance, we consider how
distributional shifts in EHR data can inform multi-site generalizability without the
need for task-specific models or annotations. Extending statistical dataset shift
detection to time series through feature-based temporal analysis, we compare the
EHR data from five different institutions and four different prior patient conditions
for patients requiring the administration of an inpatient diuretic. We illustrate
which sites exhibit greater variability as well as the EHR measures contributing to
the variation, providing valuable insight into downstream deployment.

1 Introduction

There is increasing potential in the ability to harness time series data to improve healthcare. With the
adoption of electronic health records (EHRs), many health systems now have comprehensive data
representing patient information over time. Indeed, the number of data-driven models developed
from EHR-based datasets has expanded significantly [1–5]. Yet despite efforts towards external
validation, an extant challenge is ascertaining how such models generalize across myriad sites. There
is a well-understood notion that EHR data not only reflect underlying knowledge about health and
disease, but also site-specific practices and populations [6]. Consequently, the external validity of
models may be inconsistent across different test sites (e.g., a model developed at Site A works well at
Site B, but not Site C) [7–14]. Moreover, in uncovering model performance differences between sites,
there is a need to provide explanations for these differences – implicitly demanding an understanding
of distributional shifts beyond technical performance metrics [15–18]. As such, detection of dataset
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shift, agnostic of model inference, is a burgeoning issue to provide the necessary insights into model
utility within clinical settings. Still, the challenge for models employing EHR datasets – and more
broadly time series data – is that deeper dataset comparisons are non-trivial, instead relying on
parametric assumptions or a small set of transformations to provide estimates of statistics [19–21].
So while the phenomenon of site variation in performance is acknowledged [6, 7, 13], strategies for
identification, understanding, and robust adaptation remain lacking.

Recently, attention has turned to feature-based analysis of time series, in a manner akin to radiomics in
imaging [22]. These generalized quantitative metrics describe a range of characteristics related to time
series data, providing a simpler approach to assessing distributional shifts in data. Here, we explore
a feature-based approach to assess dataset shift in multi-site EHR data, particularly in the context
of external validation. The simplicity of the approach offers a framework extensible to different
datasets and feature extraction methods, as a way to provide diagnostic support to generalizability.
We demonstrate preliminary utility in a multi-institution EHR dataset focused on assessing the
dynamics of inpatients given a diuretic. Notably, the use of diuretics is extensive in clinical care, but
with different approaches to delivery and monitoring depending on site, underlying condition, and
medical domain. We identify notable and inconsistent variations across multi-site temporal EHR data,
providing insight into the diversity of the EHR data as a way to inform downstream development and
implementation of subsequent models.

2 Related Work

There has been extensive work on comparing time series using statistical tests [19–21]. Currently,
there is a stronger emphasis on the extraction of a diverse array of informative features from time series,
whether through interpretable characterizing algorithms [23–25] or deep representation learning
[26–30]. The primary objective of these approaches has been to improve predictive or forecasting
capabilities of different models. Makredly, these features can also be used to provide insight into cross-
site time series dataset shifts. Work on detecting dataset shift is also extensive, but focuses on static
distributions with minimal consideration for different temporal characteristics [15–18]. Existing
approaches to assess EHR dataset shifts focus on variation in coding practices and phenotypic
variations rather than collected observations (e.g., laboratory measures, vital signs) over time [31–34].
There is also focus on inter- and intra-site changes in disease characterization over time due to the
evolution of technology, quality of observations, and clinical understanding, requiring the detection
and mitigation of such temporal shifts [35–37]. We aim to demonstrate initial utility of bridging the
developments of feature-based time series analysis and dataset shift characterization to inform the
generalizability of models learned from EHR data.

3 Methods

We obtained data from the University of California Health Data Warehouse (UCHDW) provided
by the Center for Data-driven Insights and Innovation at UC Health (CDI2). This data warehouse
collects data from five academic medical sites: UC Irvine (UCI), UC Davis (UCD), UC San Diego
(UCSD), UC San Fransico (UCSF), and UC Los Angeles (UCLA). From this data repository, we
identified 138,822 patients across four different prior conditions (coronary artery disease (CAD),
chronic kidney disease (CKD), diabetes, congestive heart failure) with inpatient encounters requiring
the administration of a diuretic between 2019-2024 (Table 1). For these patients, we gather the
hourly data of 17 longitudinal lab (blood urea nitrogen, creatinine, estimated glomerular filtration
rate, glucose, magnesium, platelet count, potassium, sodium) and vital measurements (diastolic blood
pressure, systolic blood pressure, mean arterial pressure, oxygen flow rate, heart rate, respiration rate,
oxygen saturation, temperature, weight) for their first 96 hours of inpatient admission. Missing data
is imputed using the last observation carried forward.

From the time series profiles of multiple users and measures, we extract 22 CAnonical Time-series
CHaracteristic (catch22) features for each measure [25]. Over all pairs of the five different UC
sites, we compare each feature using Dunn’s test with Holm correction for multiple testing [38]. As
each measure is decomposed into multiple (correlated) features, the significance of each measure is
obtained via an omnibus permutation test approach [39, 40]. Concretely, the number of significantly
different features for each measure is compared against the estimated count under the null hypothesis
through multiple permutations of the outcome variable (i.e., site) to obtain a single p-value for
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Table 1: Baseline data characteristics across sites. Abbreviations: LOS (length of stay), CAD
(coronary artery disease), CKD (chronic kidney disease), CHF (congestive heart failure).

UCI UCSD UCD UCSF UCLA

n 19,727 35,060 19,598 29,191 35,246
LOS, mean (SD) 10.1 (12.4) 11.1 (14.3) 13.4 (21.6) 11.7 (16.7) 11.9 (15.4)
Age, mean (SD) 62.6 (16.0) 62.7 (15.5) 62.8 (15.9) 62.4 (16.8) 64.0 (16.8)
Female, n (%) 8,348 (42.3) 14,731 (42.0) 8,071 (41.2) 13,205 (45.2) 15,997 (45.4)
CAD, n (%) 2,093 (10.6) 3,380 (9.6) 1,304 (6.7) 2,482 (8.5) 3,824 (10.8)
CKD, n (%) 2,642 (13.4) 7,467 (21.3) 3,024 (15.4) 4,100 (14.0) 8,340 (23.7)
Diabetes, n (%) 6,530 (33.1) 11,854 (33.8) 5,815 (29.7) 7,385 (25.3) 11,409 (32.4)
CHF, n (%) 6,447 (32.7) 16,224 (46.3) 7,987 (40.8) 9,201 (31.5) 14,598 (41.4)

Figure 1: Heatmaps illustrating the number of significantly different time series features between
sites for each prior condition.

significance of one time series measure, regardless of the decomposition of the measure into multiple
features. To mitigate Type 1 error due to differences in population size, we calculate the effect size
using Glass’s rank-biserial correlation and identify significant features with non-negligible effect
[41, 42]. While we used catch22 features as proof-of-concept in this study, the permutation test
approach is extensible to compare cross-site differences in temporal EHR data, regardless of the
number of features extracted and approach to extract the features. This process is outlined in A.1.

We consolidate the results into visualizations that illustrate cross-site variations. Specifically, we
highlight not only which sites exhibit greater differences, but the constituent time series variables
contributing to these differences. Using one site as a reference, we identify variables that differ
between the reference site and others. We collect the sets of differing variables and identify if they
are unique to a particular site comparison, or if they differ across multiple sites. To this end, we use
UpSet plots to illustrate, for different site-to-site comparisons, which measures differ across one site,
few sites, or across all sites [43].

4 Results

Figure 1 demonstrates the emergence of variation across sites and prior condition, suggesting
differences in the extent of dataset drift between sites. Across all prior conditions, the top row of each
heatmap illustrates the number of time series features that differ between patients from UCI and the
other sites; there are notably more differences between the patients from UCI vs. UCLA and fewer
differences between patients from UCI vs. UCSF especially for those with prior CAD. Overall, the
UCLA site exhibits a higher rate of variation towards all other sites. Figure 2 shows the distribution
of time series feature differences across the multiple site comparisons. The right-skew indicates
that differences are more heterogeneous across the site-comparisons. These histograms demonstrate
that the variability of a longitudinal EHR measure is not necessarily consistent across different sites.
While some may be consistently different, reflecting institutional variation in population or reporting,
others are different with select sites, indicating the potential for selective translation of models.

Figure 3 focuses on UCI as the reference institution and illustrates common vs. unique differences
relative to other sites. After applying permutation testing to identify measures differing according to
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Figure 2: Histograms illustrating frequency of a features difference across all cross-site comparisons.

Figure 3: UpSet plots illustrating which measures differ across sets of sites. UCI is used as the
reference. Abbreviations: BUN (blood urea nitrogen), DBP (diastolic blood pressure), eGFR
(estimated glomerular filtration rate), HR (heart rate), MAP (mean arterial pressure), Resp (respiration
rate), SBP (systolic blood pressure), SpO2 (blood oxygen saturation), Temp (temperature).

the comparisons across the multiple extracted features, we analyze the sets of measures across the
site comparisons with respect to the reference. Particularly, we observe if a significantly different
variable only exhibits variation across one site comparison or across multiple sites. For example,
for patients with a history of CAD, patients at UCI differ the most from patients from UCLA but
no lab measures emerge as uniquely different between these two sites. Rather, most differences are
shared across multiple sites. In contrast, for patients with a history of CKD, we observe a bimodality
such that a large number of differences between UCI and UCD are attributable to unique differences
in laboratory and vital measures (sodium, potassium, heart rate, and eGFR), while another set of
differences are shared across all sites (weight, mean arterial pressure, magnesium, and oxygen flow
rate). For patients with prior diabetes, differences are generally shared across sites, with variations in
weight, platelets, and oxygen flow rate. Lastly, for patients with a history of CHF, there is a relatively
uniform distribution of differences, indicating higher and more inconsistent cross-site variation.

5 Conclusion

Through a feature-based comparison of temporal EHR data, we elucidated variability across sites to
provide insight into the generalizability of models developed on site-specific data. Findings from
this exploration are key sources of variability between patients at the different sites (e.g., UCLA and
UCI, especially for patients with a history of CAD). This result highlights how extra care may be
advised when developing EHR-based models when developing models on combined data and the
impact of the variability on learning useful patterns. Conversely, there may be more confidence in the
ability of models developed using data from some sites to generalize to each other (e.g., UCI and
UCSF). These considerations can also be made in the context of features used to develop models. For
example, labs like potassium and sodium exhibit unique differences between patients with CKD from
UCI and UCD, potentially reflecting different monitoring frequency and diuretic aggressiveness; this
may be more important and require site calibration in certain clinical applications than others, such
as predictive models of electrolyte derangement. In comparison, shared differences in weight for
patients with a history of diabetes between UCI and all other sites suggest more general population
differences requiring careful consideration of generalizability. Importantly, these differences should
be identified early-on, providing useful insight into downstream decisions.
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Our approach combines current advances in time series feature extraction and basic statistical
techniques to analyze dataset drift. As such, there is no dependency on annotations to train and
evaluate predictive models, nor on the models themselves to assess changes in cross-site performance,
enabling a way to perform dataset shift evaluation early on and irrespective of model development.
There are several limitations and future steps we will further explore. We have not disentangled
whether differences are due to underlying patient characteristics or site-specific data collection
practices, which is an ongoing goal in the understanding of generalizability of models for healthcare.
We also aim to confirm the impact of decisions made due to early exploration of shift on downstream
deployment [44]. Lastly, the features we extracted, while intentionally simple for this preliminary
work, are not the only possibility. Deep features from recurrent, Transformer, or foundation models
can provide more expressive representations of time series at the expense of interpretability – but also
improve consideration of additional complexities such as cross-series correlations.
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A Supplementary Material

A.1 Outline of procedure
Input
Data: EHR time series across B sites for a total of N patients and M measures over t timepoints,
such that D = (X1, X2, . . . , XN ), where Xi = (mi,1,mi,2, . . . ,mi,M ),mi,j ∈ Rt

Feature extractor: f : Rt → Rz .

Steps
Feature extraction
initialize D∗ = []
for patient Xi in D do

initialize Zi = []
for measure mi,j in Xi do

zij = f(mij)
append Zi ← Zi + zij ▷ append

end for
append D∗ ← D∗ + Zi ▷ append

end for ▷ D ∈ RN,M,t to D ∈ RN,(M×z)

Multi-site comparison
for measure j in M do

for feature k in z do
p (per feature)← Dunn’s test (Holm’s correction) for feature k of measure j over B sites
eff ← Glass’s biserial rank correlation for feature k of measure j over B sites

end for
p (per measure)← permutation test of number of significant features over 1000 iterations

end for
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