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Abstract

Models developed using longitudinal electronic health record (EHR) data can1

demonstrate inconsistent abilities to generalize to new data at different institutions.2

Rather than relying only only external validity of performance, we consider how3

distributional shifts in EHR data can inform multi-site generalizability without the4

need for task-specific models or annotations. Extending statistical dataset shift5

detection to time series through feature-based temporal analysis, we compare the6

EHR data from five different institutions and four different prior patient conditions7

for patients requiring the administration of an inpatient diuretic. We illustrate8

which sites exhibit greater variability as well as the EHR measures contributing to9

the variation, providing valuable insight into downstream deployment.10

1 Introduction11

There is increasing potential in the ability to harness time series data to improve healthcare. With the12

adoption of electronic health records (EHRs), many health systems now have comprehensive data13

representing patient information over time. Indeed, the number of data-driven models developed14

from EHR-based datasets has expanded significantly [1–5]. Yet despite efforts towards external15

validation, an extant challenge is ascertaining how such models generalize across myriad sites. There16

is a well-understood notion that EHR data not only reflect underlying knowledge about health and17

disease, but also site-specific practices and populations [6]. Consequently, the external validity of18

models may be inconsistent across different test sites (e.g., a model developed at Site A works well at19

Site B, but not Site C) [7–14]. Moreover, in uncovering model performance differences between sites,20

there is a need to provide explanations for these differences – implicitly demanding an understanding21

of distributional shifts beyond technical performance metrics [15–18]. As such, detection of dataset22

shift, agnostic of model inference, is a burgeoning issue to provide the necessary insights into model23

utility within clinical settings. Still, the challenge for models employing EHR datasets – and more24

broadly time series data – is that deeper dataset comparisons are non-trivial, instead relying on25

parametric assumptions or a small set of transformations to provide estimates of statistics [19–21].26

So while the phenomenon of site variation in performance is acknowledged [6, 7, 13], strategies for27

identification, understanding, and robust adaptation remain lacking.28

Recently, attention has turned to feature-based analysis of time series, in a manner akin to radiomics in29

imaging [22]. These generalized quantitative metrics describe a range of characteristics related to time30

series data, providing a simpler approach to assessing distributional shifts in data. Here, we explore31

a feature-based approach to assess dataset shift in multi-site EHR data, particularly in the context32

of external validation. The simplicity of the approach offers a framework extensible to different33

datasets and feature extraction methods, as a way to provide diagnostic support to generalizability.34

We demonstrate preliminary utility in a multi-institution EHR dataset focused on assessing the35

dynamics of inpatients given a diuretic. Notably, the use of diuretics is extensive in clinical care, but36
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Table 1: Baseline data characteristics across sites. Abbreviations: LOS (length of stay), CAD
(coronary artery disease), CKD (chronic kidney disease), CHF (congestive heart failure).

UCI UCSD UCD UCSF UCLA

n 19,727 35,060 19,598 29,191 35,246
LOS, mean (SD) 10.1 (12.4) 11.1 (14.3) 13.4 (21.6) 11.7 (16.7) 11.9 (15.4)
Age, mean (SD) 62.6 (16.0) 62.7 (15.5) 62.8 (15.9) 62.4 (16.8) 64.0 (16.8)
Female, n (%) 8,348 (42.3) 14,731 (42.0) 8,071 (41.2) 13,205 (45.2) 15,997 (45.4)
CAD, n (%) 2,093 (10.6) 3,380 (9.6) 1,304 (6.7) 2,482 (8.5) 3,824 (10.8)
CKD, n (%) 2,642 (13.4) 7,467 (21.3) 3,024 (15.4) 4,100 (14.0) 8,340 (23.7)
Diabetes, n (%) 6,530 (33.1) 11,854 (33.8) 5,815 (29.7) 7,385 (25.3) 11,409 (32.4)
CHF, n (%) 6,447 (32.7) 16,224 (46.3) 7,987 (40.8) 9,201 (31.5) 14,598 (41.4)

with different approaches to delivery and monitoring depending on site, underlying condition, and37

medical domain. We identify notable and inconsistent variations across multi-site temporal EHR data,38

providing insight into the diversity of the EHR data as a way to inform downstream development and39

implementation of subsequent models.40

2 Related Work41

There has been extensive work on comparing time series using statistical tests [19–21]. Currently,42

there is a stronger emphasis on the extraction of a diverse array of informative features from time series,43

whether through interpretable characterizing algorithms [23–25] or deep representation learning44

[26–30]. The primary objective of these approaches has been to improve predictive or forecasting45

capabilities of different models. Makredly, these features can also be used to provide insight into cross-46

site time series dataset shifts. Work on detecting dataset shift is also extensive, but focuses on static47

distributions with minimal consideration for different temporal characteristics [15–18]. Existing48

approaches to assess EHR dataset shifts focus on variation in coding practices and phenotypic49

variations rather than collected observations (e.g., laboratory measures, vital signs) over time [31–34].50

There is also focus on inter- and intra-site changes in disease characterization over time due to the51

evolution of technology, quality of observations, and clinical understanding, requiring the detection52

and mitigation of such temporal shifts [35–37]. We aim to demonstrate initial utility of bridging the53

developments of feature-based time series analysis and dataset shift characterization to inform the54

generalizability of models learned from EHR data.55

3 Methods56

We obtained data from the University of California Health Data Warehouse (UCHDW) provided57

by the Center for Data-driven Insights and Innovation at UC Health (CDI2). This data warehouse58

collects data from five academic medical sites: UC Irvine (UCI), UC Davis (UCD), UC San Diego59

(UCSD), UC San Fransico (UCSF), and UC Los Angeles (UCLA). From this data repository, we60

identified 138,822 patients across four different prior conditions (coronary artery disease (CAD),61

chronic kidney disease (CKD), diabetes, congestive heart failure) with inpatient encounters requiring62

the administration of a diuretic between 2019-2024 (Table 1). For these patients, we gather the63

hourly data of 17 longitudinal lab (blood urea nitrogen, creatinine, estimated glomerular filtration64

rate, glucose, magnesium, platelet count, potassium, sodium) and vital measurements (diastolic blood65

pressure, systolic blood pressure, mean arterial pressure, oxygen flow rate, heart rate, respiration rate,66

oxygen saturation, temperature, weight) for their first 96 hours of inpatient admission. Missing data67

is imputed using the last observation carried forward.68

From the time series profiles of multiple users and measures, we extract 22 CAnonical Time-series69

CHaracteristic (catch22) features for each measure [25]. Over all pairs of the five different UC70

sites, we compare each feature using Dunn’s test with Holm correction for multiple testing [38]. As71

each measure is decomposed into multiple (correlated) features, the significance of each measure is72

obtained via an omnibus permutation test approach [39, 40]. Concretely, the number of significantly73

different features for each measure is compared against the estimated count under the null hypothesis74

through multiple permutations of the outcome variable (i.e., site) to obtain a single p-value for75
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Figure 1: Heatmaps illustrating the number of significantly different time series features between
sites for each prior condition.

Figure 2: Histograms illustrating frequency of a features difference across all cross-site comparisons.

significance of one time series measure, regardless of the decomposition of the measure into multiple76

features. To mitigate Type 1 error due to differences in population size, we calculate the effect size77

using Glass’s rank-biserial correlation and identify significant features with non-negligible effect78

[41, 42]. While we used catch22 features as proof-of-concept in this study, the permutation test79

approach is extensible to compare cross-site differences in temporal EHR data, regardless of the80

number of features extracted and approach to extract the features. This process is outlined in A.1.81

We consolidate the results into visualizations that illustrate cross-site variations. Specifically, we82

highlight not only which sites exhibit greater differences, but the constituent time series variables83

contributing to these differences. Using one site as a reference, we identify variables that differ84

between the reference site and others. We collect the sets of differing variables and identify if they85

are unique to a particular site comparison, or if they differ across multiple sites. To this end, we use86

UpSet plots to illustrate, for different site-to-site comparisons, which measures differ across one site,87

few sites, or across all sites [43].88

4 Results89

Figure 1 demonstrates the emergence of variation across sites and prior condition, suggesting90

differences in the extent of dataset drift between sites. Across all prior conditions, the top row of each91

heatmap illustrates the number of time series features that differ between patients from UCI and the92

other sites; there are notably more differences between the patients from UCI vs. UCLA and fewer93

differences between patients from UCI vs. UCSF especially for those with prior CAD. Overall, the94

UCLA site exhibits a higher rate of variation towards all other sites. Figure 2 shows the distribution95

of time series feature differences across the multiple site comparisons. The right-skew indicates96

that differences are more heterogeneous across the site-comparisons. These histograms demonstrate97

that the variability of a longitudinal EHR measure is not necessarily consistent across different sites.98

While some may be consistently different, reflecting institutional variation in population or reporting,99

others are different with select sites, indicating the potential for selective translation of models.100

Figure 3 focuses on UCI as the reference institution and illustrates common vs. unique differences101

relative to other sites. After applying permutation testing to identify measures differing according to102
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Figure 3: UpSet plots illustrating which measures differ across sets of sites. UCI is used as the
reference. Abbreviations: BUN (blood urea nitrogen), DBP (diastolic blood pressure), eGFR
(estimated glomerular filtration rate), HR (heart rate), MAP (mean arterial pressure), Resp (respiration
rate), SBP (systolic blood pressure), SpO2 (blood oxygen saturation), Temp (temperature).

the comparisons across the multiple extracted features, we analyze the sets of measures across the103

site comparisons with respect to the reference. Particularly, we observe if a significantly different104

variable only exhibits variation across one site comparison or across multiple sites. For example,105

for patients with a history of CAD, patients at UCI differ the most from patients from UCLA but106

no lab measures emerge as uniquely different between these two sites. Rather, most differences are107

shared across multiple sites. In contrast, for patients with a history of CKD, we observe a bimodality108

such that a large number of differences between UCI and UCD are attributable to unique differences109

in laboratory and vital measures (sodium, potassium, heart rate, and eGFR), while another set of110

differences are shared across all sites (weight, mean arterial pressure, magnesium, and oxygen flow111

rate). For patients with prior diabetes, differences are generally shared across sites, with variations in112

weight, platelets, and oxygen flow rate. Lastly, for patients with a history of CHF, there is a relatively113

uniform distribution of differences, indicating higher and more inconsistent cross-site variation.114

5 Conclusion115

Through a feature-based comparison of temporal EHR data, we elucidated variability across sites to116

provide insight into the generalizability of models developed on site-specific data. Findings from117

this exploration are key sources of variability between patients at the different sites (e.g., UCLA and118

UCI, especially for patients with a history of CAD). This result highlights how extra care may be119

advised when developing EHR-based models when developing models on combined data and the120

impact of the variability on learning useful patterns. Conversely, there may be more confidence in the121

ability of models developed using data from some sites to generalize to each other (e.g., UCI and122

UCSF). These considerations can also be made in the context of features used to develop models. For123

example, labs like potassium and sodium exhibit unique differences between patients with CKD from124

UCI and UCD, potentially reflecting different monitoring frequency and diuretic aggressiveness; this125

may be more important and require site calibration in certain clinical applications than others, such126

as predictive models of electrolyte derangement. In comparison, shared differences in weight for127

patients with a history of diabetes between UCI and all other sites suggest more general population128

differences requiring careful consideration of generalizability. Importantly, these differences should129

be identified early-on, providing useful insight into downstream decisions.130

Our approach combines current advances in time series feature extraction and basic statistical131

techniques to analyze dataset drift. As such, there is no dependency on annotations to train and132

evaluate predictive models, nor on the models themselves to assess changes in cross-site performance,133

enabling a way to perform dataset shift evaluation early on and irrespective of model development.134

There are several limitations and future steps we will further explore. We have not disentangled135

whether differences are due to underlying patient characteristics or site-specific data collection136

practices, which is an ongoing goal in the understanding of generalizability of models for healthcare.137

We also aim to confirm the impact of decisions made due to early exploration of shift on downstream138

deployment [44]. Lastly, the features we extracted, while intentionally simple for this preliminary139

work, are not the only possibility. Deep features from recurrent, Transformer, or foundation models140

can provide more expressive representations of time series at the expense of interpretability – but also141

improve consideration of additional complexities such as cross-series correlations.142
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A Supplementary Material302

A.1 Outline of procedure303

Input304

Data: EHR time series across B sites for a total of N patients and M measures over t timepoints,305

such that D = (X1, X2, . . . , XN ), where Xi = (mi,1,mi,2, . . . ,mi,M ),mi,j ∈ Rt306

Feature extractor: f : Rt → Rz .307

308

Steps309

Feature extraction310

initialize D∗ = []311

for patient Xi in D do312

initialize Zi = []313

for measure mi,j in Xi do314

zij = f(mij)315

append Zi ← Zi + zij ▷ append316

end for317

append D∗ ← D∗ + Zi ▷ append318

end for ▷ D ∈ RN,M,t to D ∈ RN,(M×z)319

Multi-site comparison320

for measure j in M do321

for feature k in z do322

p (per feature)← Dunn’s test (Holm’s correction) for feature k of measure j over B sites323

eff ← Glass’s biserial rank correlation for feature k of measure j over B sites324

end for325

p (per measure)← permutation test of number of significant features over 1000 iterations326

end for327
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