
Topological Parallax: A Geometric Specification for
Deep Perception Models

Abraham D. Smith
Geometric Data Analytics, Inc.

343 W. Main Street
Durham, NC 27701 USA

abraham.smith@geomdata.com
University of Wisconsin-Stout

Math, Stats, and CS Dept
Menomonie, WI 54751 USA
smithabr@uwstout.edu

Michael J. Catanzaro
Geometric Data Analytics, Inc.

343 W. Main Street
Durham, NC 27701 USA

michael.catanzaro@geomdata.com

Gabrielle Angeloro
Geometric Data Analytics, Inc.

343 W. Main Street
Durham, NC 27701 USA

gabrielle.angeloro@geomdata.com

Nirav Patel
Geometric Data Analytics, Inc.

343 W. Main Street
Durham, NC 27701 USA

nirav.patel@geomdata.com

Paul Bendich
Geometric Data Analytics, Inc.

343 W. Main Street
Durham, NC 27701 USA

paul.bendich@geomdata.com
Duke University

Mathematics Dept
Durham, NC 27708 USA
bendich@math.duke.edu

Abstract

For safety and robustness of AI systems, we introduce topological parallax as a
theoretical and computational tool that compares a trained model to a reference
dataset to determine whether they have similar multiscale geometric structure.
Our proofs and examples show that this geometric similarity between dataset and
model is essential to trustworthy interpolation and perturbation, and we conjecture
that this new concept will add value to the current debate regarding the unclear
relationship between “overfitting” and “generalization” in applications of deep-
learning.
In typical DNN applications, an explicit geometric description of the model is
impossible, but parallax can estimate topological features (components, cycles,
voids, etc.) in the model by examining the effect on the Rips complex of geodesic
distortions using the reference dataset. Thus, parallax indicates whether the model
shares similar multiscale geometric features with the dataset.
Parallax presents theoretically via topological data analysis [TDA] as a bi-filtered
persistence module, and the key properties of this module are stable under pertur-
bation of the reference dataset.
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1 Introduction

Suppose X is a finite subset of V = Rn with the Euclidean metric.1 In data science—particularly
in applications of DNNs—we often encounter the situation where X is a dataset, and some opaque
algorithm has produced a trained model k : V → {0, 1}, where k(x) = 1 for all x ∈ X . This defines
the model as a set of accepted inputs K = {x : k(x) = (1)} ⊂ V , which has no available description
beyond evaluation of the perception function k on samples.

Our main contribution in this paper is a method we call topological parallax to estimate the multiscale
geometry of K from the persistent homology ([14, 37]) of X , in a situation where K does not have
an explicit description.2 This method provides meaningful geometric information about K through a
simple computational approach that can be applied to any perception model k. We prove that the
resulting criterion of homological matching satisfies a stability property. We propose homological
matching via parallax as a geometric specification that could be applied to many machine-learning
systems. The measurement of homological matching also admits a back-propagation scheme, which
could be used to improve the geometric similarity between the model K and the dataset X .

Because of the generality of Definition 1.1, it may be that V represents any layer of a neural network,
X represents any dataset mapped into that layer, and K represents an activated region in that layer.
For example, the “neural collapse” concept from Papyan et al. [29] can be seen as a special case of
this specification, because the conception from [29] is that the dataset X becomes a tight blob in the
penultimate layer, and the penultimate model is simply a Voronoi region K surrounding that blob.

1.1 Assumptions and Motivation

As discussed by Belkin [5], DNNs usually achieve high statistical accuracy, but some resulting
models are better than others at capturing patterns in the dataset. Despite having perfect statistical
accuracy on the dataset X , fundamental questions arise about the model K: “Is it safe to deploy?
Is it trustworthy? Is it a good model?” To broadly paraphrase [5], it used to be good practice to tell
data analysts not to overfit their data, because overfit models were “bad” due to poor generalization;
however, essentially every DNN fits the training data perfectly, so it is not clear what distinguishes
“good” models from “bad.” We suggest that a model K is “good” if the geometry of K matches
the geometry of X . Consider the two example models in Figure 1. Although both models achieve
perfect statistical accuracy, only one of them appears to have learned the geometric structure of the
dataset. This suggestion is likely intuitive to many ML engineers, but the subtlety lies in the implicit
assumptions often made about the nature of the dataset and the available models. We assess this
matching in a way that is independent of the architecture that produced k, and that makes very few
assumptions about X and K, as encapsulated by Definition 1.1, which are assumed henceforth.

Definition 1.1 (Datasets and Models). Suppose that V is a geodesic space. We define a model
K ⊂ V to be the closure of an open set, K = K◦ ⊂ V , colloquially known as a “solid.” For
any finite dataset X ⊂ V , we consider the collection of all models for which X is contained in
the interior of the model, X ⊂ K◦; let M(X) := {K ⊂ V : X ⊂ K◦, K◦ = K}. With
subset inclusions as morphisms,M(X) is a small category. For any K ⊂ V with K = K◦, let
M∗(K) := {X ⊂ V : X ⊂ K◦, #X <∞}. With functions of finite sets as morphisms,M∗(K)
is a small category. Of course, X ∈M∗(K)⇔ K ∈M(X). Note that V ∈M(X).

Note that we make no assumptions whatsoever about the architecture or training method that yielded
K. With such a broad definition of X and K, we need a notion of “geometry” with very few
assumptions. We use standard topological notation [23, 17, 14].

Definition 1.2 (Void). Given a set K ⊂ V , an interpolative void in K is a bounded open set in the
complement of K, Ω ⊂ Kc, such that there exists a pair of points x, y ∈ K for which all V -geodesics
pass through Ω. If V = Rn, this means Ω intersects the convex hull of K.

1The theoretical results apply if V is any geodesic space—a metric space in which each distance is realized
by a path—but our motivation and examples use V = Rn to avoid distraction from our central theme of model
assessment.

2Topological parallax was named by analogy to the method in astronomy, where an inaccessible object
cannot be measured directly (in this case, the geometry of K), so we must infer its location by comparing
multiple observations from available vantage points (in this case, the dataset X).
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Figure 1: 1: A dataset X ⊂ R2. 2: The persistence diagram of the Rips complex of X , showing three
components (two of which die at the dim-0 dots near 2.0) and two cycles (the dim-1 dots, representing
the annulus and the overall arrangement) among the persistent features. 3: A tree model K1. 4: A
neural network model K2. The tree model has many small voids that would forbid interpolation
or perturbation in many locations. Without the luxury to visualize models K ⊂ V for dimV > 3,
Parallax can measure geometric similarity between X and K via the Rips complex R of X .
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Figure 2: Five models for the same dataset, and the scales detected by parallax. The circle have radii
20 and 30, respectively. See Section 6 for general interpretation. The missing edge causing λsup is
highlighted in red at filtration radius 7.1, and the missing edges that cause λhi are highlighted in blue.
The dashed blue edge does not affect λhi because the larger cycle determines that value.

Why focus on voids? As observed by Balestriero et al. [2], when V is high-dimensional, it is unlikely
that any points in X lie in the convex hull of any others. However, it also seems unlikely that a
“good” model K of X will be merely a convex solid. If convex models were sufficient for real-world
problems, DNNs would be unnecessary, and the field would have concluded with PCA, Gaussian
kernels, and convex polytopes. For example, many models implicitly or explicitly rely on the so-called
manifold hypothesis, which is the hope that realistic datasets X will tend to be distributed near a
union of lower-dimensional manifolds immersed in V , in which case a “good” model K would be a
slight thickening of those manifolds to allow for measurement error. If there are multiple manifolds
or there is nonzero curvature, such a model will have voids.

Any void in K indicates a region where K does not allow interpolation, which is where interesting
geometry occurs. Voids occur if and only if some geodesic in K is strictly longer than the correspond-
ing geodesic in V . Hence, for this article, we interpret “geometry of K” as the presence or absence
of voids. We do not make assumptions about the geometric features of X or about the family from
which K is chosen; rather, we ask that K respects the features of X , whatever they are. We propose
that a “good” model K is one whose voids represent the highly persistent features of X , in the sense
of Topological Data Analysis [TDA, [14, 27]]

A model K can be “bad” because it has too many or too few voids at various scales. For example,
mismatch of voids of K and features of X would indicate that K is over-sensitive to small error
or under-sensitive to large error, either of which could lead to adversarial attack. Also, numerous
small-scale voids could make K incompatible with some forms of the manifold hypotheses, by
obstructing the coverage of K by an atlas of local convex charts of moderate size.

1.2 Outline

Section 2 introduces our key object, the bi-graded [7] parallax complex, in Definition 2.2, which
measures geodesic distortion via the Rips complex. Section 3 provides a notion of dataset perturbation
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and shows that the parallax complex and its homology remain stable under those perturbations.
Section 4 defines local simplicial matching and shows how parallax detects small-scale changes in
the Rips complex of X in K versus V , giving a clearly interpretable scale of locality, λlo. Section 5
defines homological matching and shows how parallax detects large-scale voids in K, giving a scale
λhi above which homological features in X are respected by voids in K. Together, these results
provide an overall interpretation as a specification in Section 6, which largely achieves the goals laid
out in Section 1. Section 7 provides computational approaches to computing parallax, and links to
our open-source software that has many practical improvements not detailed in this paper. Section 8
illustrates the effectiveness of parallax as a specification, as demonstrated on two models using the
cyclo-octane dataset [22]. Additional proofs, details, and examples are provided in the Supplementary
Material appendices.

1.3 Related Work

To the best of our knowledge this is the first work to use TDA to express a desired geometric
relationship that holds directly between datasets and models trained on them. There has been some
work, for example the Manifold Topology Divergence of Barannikov et al. [3] or the Geometric Score
of Khrulkov and Oseledets [20], which uses various TDA-based measures to quantify the difference
between training data and new data generated by generative models. Quite a few other papers (see
Fernández et al. [15] for a very recent example) use TDA-based constructions to infer properties of
underlying data manifolds, usually under very strict sampling assumptions.

More broadly, there has been a recent explosion of work (e.g. Hensel et al. [19]) connecting TDA to
ML/DL. Several works (e.g. Adams et al. [1], Bendich et al. [6]) use TDA as a feature extraction
method, pre-processing more complicated data objects before running standard ML pipelines. Later
works (e.g. Chen et al. [10], Demir et al. [12], Solomon et al. [32], Nigmetov and Morozov [25]) use
TDA to define novel losses within ML algorithms. Note that we comment below on ways in which
our notion of homological matching can be used to define a TDA-based loss. TDA has also been used
(e.g. Naitzat et al. [24], Wheeler et al. [36]) to analyze the behavior of data as it passes through the
layers of a DNN. Some works (e.g. Guss and Salakhutdinov [16]) assess the capacity of a specific
DNN to classify datasets with specific shapes, but do not provide tools to quantify shape mismatch
between model and dataset. Finally, several works (e.g. Carriere et al. [8], Papillon et al. [28])
use TDA to define novel DNN architectures, including GNNs and other higher-order combinatorial
structures.

There is also a recent stream (e.g. Liu et al. [21], Wang et al. [35]) of work that builds validation and
verification/falsification techniques for desired properties of DNN-trained models; these mostly focus
on the mechanics of how to verify/falsify such properties, rather than attempting to define them as we
do. Perhaps the closest work in this stream to ours is Dola et al. [13], which uses a prior assumption
on the underlying data distribution to verify/falsify DNN properties.

2 The Parallax Bi-Complex

LetBα(x) denotes the closed geodesic ball of radius α around x ∈ V . For a formal edge e = (x0, x1)
between points in X , ρV (e) is the minimum radius for which BρV (e)(x0) intersects BρV (e)(x1).
Thus, 2ρV (e) is the geodesic distance between x0 and x1. The Rips complex R(X,V ) is the
simplicial complex generated by these edges, as filtered by ρV (e). A chain is a formal sum of
simplices in a complex [14]. More generally, for any K ∈M(X), the Rips complex R(X,K) and
its filtration by 0 ≤ α <∞ is defined by

(x0, . . . , xd) ∈ Rd(X,K)α if and only if Bα(xi) ∩Bα(xj) ∩K 6= ∅, ∀ 0 ≤ i < j ≤ d. (2.1)
For any chain Y ∈ R(X,K), let ρK(Y ) = min{α : Y ∈ R(X,K)α}. When X and V are
understood in context, we abbreviate R = R(X,V ) for the ambient case K = V .
Lemma 2.1. If K1,K2 ∈ M(X) with K1 ⊂ K2 ⊂ V , then there is a natural inclusion of filtered
modules, R(X,K1)α ⊂ R(X,K2)α ⊂ Rα. That is, ρV (Y ) ≤ ρK2

(Y ) ≤ ρK1
(Y ), with the

convention min ∅ =∞.

The previous lemma is simply because geodesic lengths in K1 are never shorter than geodesic lengths
in K2, and neither is shorter than geodesic lengths in V . Our approach to the question “does the
geometry of K match the geometry of X?” relies on detecting the inequality ρV (Y ) < ρK(Y ).
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Definition 2.2 (Parallax Complex). For K ∈ M(X), let P (X,K, V ) denote the subcomplex of R
defined for each real pair (α, ε) by

P (X,K, V )α,ε = {Y ∈ R : ρK(Y ) ≤ α, ρV (Y ) ≤ ρK(Y ) ≤ ρV (Y ) + ε}. (2.2)

When X,K, V are understood in context, we abbreviate P = P (X,K, V ).

The parameter ε measures the distortion of geodesic length in K versus V . The next few lemmas are
immediate consequences of the definition.

Lemma 2.3 (Parallax is Bi-Filtered). If α ≤ α′, then Pα,ε ⊂ Pα′,ε. If ε < ε′, then Pα,ε ⊂ Pα,ε′ .
Lemma 2.4. For all α, ε, we have Pα,ε ⊂ R(X,K)α ⊂ Rα.

Let ι : Pα,ε → Rα denote the inclusion of complexes, and let ι∗ : HPα,ε → HRα denote the
induced homomorphism on homology [17].

Corollary 2.5 (Homology Deaths are later in Parallax). Suppose that [Y ] is a class in HPα1,ε1 such
that the bi-transition map HPα1,ε1 → HPα2,ε2 takes [Y ] 7→ [0]. Then there exists t ≤ α2 such that
the transition map HRα1

→ HRt satisfies ι∗([Y ]) 7→ [0].

Lemma 2.6. For all ε ≥ α, we have Pα,ε = Pα,∞ = R(X,K)α ⊂ Rα.

The proofs of 2.5 and 2.6 are given in the Supplemental Material.

It is sometimes useful to create single-parameter filtrations through P , parameterized by Rips radius,
for the purpose of computing barcodes and persistence diagrams.

Definition 2.7 (Rips-like Path). A Rips-like path is a filtered module Lα = Pα,ε(α) for 0 ≤ α <∞
such that ε(α) is a non-decreasing function satisfying ε(0) = 0.

A Rips-like path has homology HL and a barcode or persistence diagram. By Lemma 2.6, one
Rips-like path is R(X,K)α = Pα,α. Another is the “inflexible” path Lα = Pα,0.

3 Perturbation

This section establishes lemmas that ensure Parallax and its consequences (notably Theorem 5.4)
are stable under certain types of perturbations, which means that the parallax is reasonable in the
presence of noise.

Definition 3.1 (Pointwise Perturbation). Given X ∈ M∗(V ), a pointwise κ-perturbation is X ′ ∈
M∗(V ) such that the sets X and X ′ admit a one-to-one correspondence f : X → X ′ satisfying
‖f(x)− x‖ ≤ κ. We write f : X

κ
≈ X ′.

Definition 3.2 (Pointwise K-perturbation). Suppose f : X
κ
≈ X ′ such that each (x, f(x)) pair is

connected by a K-geodesic of length ≤ κ. We write f : X
κ
≈K X ′.

Note that any f : X
κ
≈ X ′ is an isomorphism in the categoryM∗(V ), and any f : X

κ
≈K X ′ is an

isomorphism in the categoryM∗(K). The relation
κ
≈ is reflexive and symmetric, but not transitive;

hence, it is a way of describing proximity but does not provide an equivalence relation. Of course,
X ′

κ
≈ X implies the Hausdorff distance satisfies dH(X,X ′) ≤ κ. A pointwise κ-perturbation can

cause length distortions by 2κ, as said formally in the following lemma.

Lemma 3.3 (Data Perturbation Lemma). If f : X
κ
≈ X ′, then the Rips complexes identified via f

admit a κ-interleaving

· · · R(X ′, V )α−κ R(X,V )α R(X ′, V )α+κ R(X,V )α+2κ · · ·
f−1
] f] f−1

]

Specifically, for any edge e = (xi, xj) ∈ R(X,V )α defined by the existence of a V -geodesic of length
2α, the edge f](e) = (f(xi), f(xj)) inR(X ′, V ) has length 2α′ satisfying 2α−2κ ≤ 2α′ ≤ 2α+2κ.

Moreover, the same holds when replacing V with K, under the assumption X
κ
≈K X ′.
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Proof. Note that a geodesic of length 2α corresponds with the intersection of two balls of radius α;
hence, the factor of 2. The worst-case perturbation is to move each of xi and xj by κ in opposite
directions, away from each-other, along their geodesic.

Lemma 3.4 (Parallax Interleaving Lemma). Suppose f : X
κ
≈K X ′. Let P = P (X,K, V ) and

P ′ = P (X ′,K, V ). For any α, ε, these parallax complexes admit a (κ, 2κ)-interleaving

· · · Pα,ε P ′α+κ,ε+2κ Pα+2κ,ε+4κ · · ·
f] f−1

]

Corollary 3.5 (Parallax Interleaving Lemma, Homology Version). Suppose f : X
κ
≈K X ′. Let

HP = HP (X,K, V ) and HP ′ = HP (X ′,K, V ). For any α, ε, these homology groups admit a

(κ, 2κ)-interleaving · · · HPα,ε HP ′α+κ,ε+2κ HPα+2κ,ε+4κ · · ·f∗ (f−1)∗ f∗

The proof of Lemma 3.4 is a worst-case distance estimate given in the Supplemental Material, and
Corollary 3.5 follows functorially.

4 Sampling Density and Local Simplicial Matching

The goal “the geometry of K should match the geometry of X” requires that X has sufficient
sampling density throughout K to express a meaningful comparison. The ideal situation would
require there is a (small) scale λ for which: (1) K◦ is homeomorphic to

⋃
x∈X Bλ(x), so that these λ

balls capture the topology of K; (2) all “highly persistent” homological features of X are born before
λ; and (3)

⋃
x∈X Bλ(x) ⊂ K, so that perturbations of size λ in the dataset X are allowed, and so

that these balls can be used as local charts in K. These sampling properties may or may not be true
for any particular pair (X,K), but Definition 4.1 provides scales for comparison.

Definition 4.1 (Locally Simplicially Matched). We say that X and K ∈ M(X) are λ-locally
simplicially matched [LSM] if the subset Pt,0 ⊂ Rt is an equality for all t ≤ λ. For any K ∈M(X),
the first non-LSM scale realized by the Rips complex is

λsup,X(K) := sup{λ : X,K are λ-LSM} = min{ρV (Y ) : ρK(Y ) > ρV (Y ) ∃Y ∈ R}.

The last LSM scale realized by the Rips complex is

λlo,X(K) := max{λ < λsup,X(K) : ρV (Y ) = λ ∃Y ∈ R}.

Another LSM scale is λball,X(K) := max{λ :
⋃
x∈X Bλ(x) ⊂ K◦}.

When X and K are λ-LSM, we will identify Pt,0 with Rt so that H∗Pt,0 = H∗Rt whenever t ≤ λ.
Furthermore, locally simplicially matched implies Pt,ε = Rt for any ε > 0 and t < λsup,X(K),
following directly from the definition of Pa,ε.

Lemma 4.2. If K ∈M(X), then 0 < λball,X(K) < λsup,X(K).

However, it may be that λlo,X(K) = 0, if the shortest edge e ∈ R has ρV (e) < ρK(e).

Corollary 4.3. For any K,K ′ ∈ M(X), there is some 0 < λ such that each pair (X,K) and
(X,K ′) is λ-locally simplicially matched.

Corollary 4.4. For any X,X ′ ∈ M∗(K), there is some 0 < λ such that each pair (X,K) and
(X ′,K) is λ-locally simplicially matched.

Lemma 4.5. If K1,K2 ∈M(X) and K1 ⊂ K2, then λsup,X(K) ≤ λsup,X(K ′).

The next lemma provides a bound on λsup under small data perturbations, which is a form of stability.

Lemma 4.6. Assume Euclidean V . Suppose that K ∈ M(X) ∩M(X ′). If f : X
κ
≈K X ′ for

κ < 1
2λball,X(K) then 1

2λball,X(K)− κ ≤ λsup,X′(K).

The proof of Lemma 4.6 is a triangle-inequality argument in the Supplemental Material. The other
results are immediate observations from the definitions.
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5 Homological Matching

From Section 1, our purpose is to determine whether the geometry of K matches the geometry of X .
In Section 4, we introduced “local simplicial matching” as a way to compare small-scale geometry.
In this section, we introduce “homological matching” as way to compare large-scale geometry.
Generally this is done by asking whether highly persistent features of X in V (as measured by HR)
are also highly persistent as features of X in K (as measured by HP ). This comparison is sensible if
X and K are λ-locally simplicially matched, so that cycles can be identified between HRλ = HPλ,0.
We phrase it algebraically in Definition 5.1, but Lemma 5.3 provides the interpretation that, among
cycles born before λ, those of long persistence (δ − λ) in HR have even longer persistence (ω − λ)
in HL, meaning that K has large-scale homological features corresponding to those of X .
Definition 5.1 (Homologically Matched). For K ∈ M(X), and 0 ≤ λ < λsup,X(K) < δ ≤ ω,
we say that X and K are (λ, δ, ω)-homologically matched [HM] if the transition maps of HR
and HP satisfy kerHRλ→δ ⊂ kerHP(λ,ε1)→(ω,ε2) for some 0 ≤ ε1 ≤ ε2. Equivalently, if
kerHRλ→δ ⊂ kerHLλ→ω for some Rips-like path L.

Definition 5.1 is guided by the Void Lemma (5.2) and the Matching Lemma (5.3).
Lemma 5.2 (Void Lemma). SupposeK ∈M(X) and 0 < λlo,X(K). Let L be any Rips-like path. If
[Y ] ∈ HR(X,V ) with birth b < λlo,X(K), then the deaths c, d,e of [Y ] in HR(X,V ), HR(X,K),
HL, respectively, satisfy c ≤ d ≤ e. Moreover, c < e implies that K has a void that disrupts the
death of [Y ], and that void contains a ball of radius r satisfying (π − 2)r ≤ 2(d− c) ≤ 2(e− c).

In particular, if the class [Y ] has e =∞ for the “inflexible” path Lt = Pt,0, then K contains a void.
The proof of Lemma 5.2 appears in the Supplementary Material and uses simple distance estimates.
Lemma 5.3 (Matching Lemma). Suppose that all pairs in X have distinct lengths, and that X and
K ∈ M(X) are (λ, δ, ω)-HM. Then there is a Rips-like path L for which each dot (b, d) in the
persistence diagram of L (or bar in the barcode) with b ≤ λ < ω < d corresponds via λ-LSM to a
dot (b, c) in the persistence diagram of R with b ≤ λ < δ < c.

Note: to check whether X and K are (λ, δ, ω)-HM, it suffices to check a Rips-like path through Pλ,0
and Pω,∞. At the other extreme, we get an overly-strict bound by checking the “inflexible” Rips-like
path Lt = Pt,0.

Because of the filtration stability of HP in Corollary 3.5, (λ, δ, ω)-HM is also stable to perturbation
in X , as seen in Theorem 5.4.
Theorem 5.4 (Stability of Homological Matching). Suppose that X and K are (λ, δ, ω)-HM. If
f : X

κ
≈K X ′ such that X ′ and K are (λ − κ)-LSM, then (X ′,K) are (λ − κ, δ − κ, ω + κ)-

homologically matched.

The proof of Lemma 5.3 is functorial, and Theorem 5.4 is a diagram chase. Both are given in the
Supplemental Material.
Definition 5.5. Given X and K ∈ M(X) let λhi,X(K) denote the minimum of those δ for which
X,K are (λlo,X(K), δ,∞)-HM.

6 Interpretation and Specification

Therefore, to answer our original purpose, we can assess whether a model K ∈M(X) is a “good
geometric match” for X using the following procedure: (1) Regardless of K, examine the persistence
diagram of R(X,V ) to identify dots with early birth and long persistence, which TDA theory tells us
(e.g. the Homology Inference Theorem [11]) should indicate genuine geometric features of X; (2)
for a model K ∈ M(X), compute λlo,X(K) and λhi,X(K); and (3) check whether those dots are
born before λlo,X(K) and die after λhi,X .

If we believe that the multiscale geometric patterns among the points in X is meaningful, then this
procedure is essentially a specification for how a “good” model ought to behave.

This process can give a “bad geometric match” in various ways, for example: if step (1) does not
show a clear collection of well-separated dots, then it is unlikely that X actually has computable
geometry that can be captured with the Rips complex; if step (2) yields λlo,X(K) = 0, then K has
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voids between every pair of points in X , possibly due to under-sampling or over-fitting, and should
not be trusted for any interpolative purpose; or if step (3) shows that the quadrant to the upper-left
of (λlo,X(K), λhi,X(K)) in the birth-death plane does not capture the desired dots of X , then K is
failing to capture specific high-persistence features of X .

7 Computational Methods

In this section, we provide algorithms to estimate Pα,ε in the practical case V = Rn. These
algorithms are implemented in Python (and development continues) in our open-source software at
https://gitlab.com/geomdata/topological-parallax

The Rips complex R can be computed efficiently, using [26, 33]. But, the set K is known only
through the indicator function k, and the Rips complex R(X,K) cannot be computed directly.

Consider x, y ∈ X joined by a V -geodesic (line segment) xy of length 2ρV (e), representing a Rips
edge e ∈ R(X,V )ρV (e). We would like to estimate ρK(e), thus giving e ∈ Pα,ε for α = ρK(e) and
ε = α− ρV (e). Some simple geometric observations allow us to estimate α and ε.
Lemma 7.1. If there exists p ∈ xy such that k(p) = 0, then e 6∈ Pα,0.

This is because in Rn, xy is the only path of minimal length.
Algorithm 7.2 (Estimation of e ∈ Pα,0). For each e ∈ Rα, sample points p ∼ xy along the
corresponding line segment xy. (One method of sampling is simply to check the barycenter.) Return
True for e if and only if “k(p) = 1∀p ∼ xy”
Definition 7.3 (Transverse Disk). Let V = Rn. Given an edge e ∈ R and a radius r, let Dr(e)
denote the codimension-1 disk, oriented perpendicular to xy, and centered at e’s barycenter x+y

2 .

Any continuous path from x to y that does not intersect Dr(e), must have length exceeding
2
√

(ρV (e))2 + r2. If k(Br(e)) = {0}, then all K-paths avoid Dr(e), so all K-paths represent-
ing e must have length exceeding 2

√
(ρV (e))2 + r2, giving the following Lemma.

Lemma 7.4. If K ∩Dr(e) = ∅, then
√

(ρV (e))2 + r2 < ρK(e) and 1
2ρv(e)

r2 < ρK(e)− ρV (e).

For the second inequality, recall the 2nd order Taylor approximation ρV (e) + 1
2ρV (e)r

2 ≤√
(ρV (e))2 + r2.

Algorithm 7.5 (Bounding e ∈ Pα,ε). For each e ∈ R(X,V ), From r = 0, loop:

1. Evaluate k(p) for samples p ∼ Dr(e).

2. If k(p) = 0∀p, increment r. Else, break.

Return the lower bounds
√

(ρV (e))2 + r2 ≤ α and α− ρV (e) = ε.

These algorithms can be extended easily to sample radii along a sequence of points on the edge e,
thus providing an estimated K-path for e.

7.1 Back-Propagation

Recent work has shown that various topological properties can be expressed as loss functions that are
compatible with back-propagation methods; for example [9, 30, 32]. The method in [32] allows back-
propagation for a piecewise-smooth loss function of the form Φ(PDiag(f)), where f is the filtration
function on a simplicial complex, and PDiag(f) is the persistence diagram for the f -persistent
homology of that complex. Lemma 5.3 allows us to interpret homological matching via persistence
diagrams PDiag(f(Y )), where f(Y ) = min{t : Y ∈ Lt} for some Rips-like path L.

The following function Φ could be used to improve homological matching in this framework.
Suppose that X and K are λlo-LSM. Consider the persistence diagrams PDiag(R) and PDiag(L),
where L is some Rips-like path through P (X,K). By λlo-LSM, we know that PDiag(R) and
PDiag(L) are identical to the lower-left of (λlo, λlo). Choose a desired target value of λhi. Now,
we alter the filtration on L by the following Φ: for dots (x, y) to the lower-left of PDiag(L),
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Figure 3: (1) Valid cyclo-octane data under 3D Isomap, colored for viewability. (2) Persistence
Diagram of valid data, showing two 2-cycles and one 1-cycle. (3) Persistence Diagram from Parallax
of model K2, showing λsup in magenta and three homologically matched cycles moved to infinity.
These diagrams use diameter, not radius, via gudhi.

Figure 4: Distributions of bond lengths for conformations of cyclo-octane. Left: Bond lengths for
the original data set, distributed tightly around 1.52 Å, standard deviation of 4.09× 10−5 Å. Right:
Bond lengths for all barycenters of edges e with 2ρV (e) < 1.0, as would be allowed by the model
K2 described in Figure 3. The bond lengths vary from 1.3844 to 1.5201 Å with a mean of 1.5059 Å.
Also, bond lengths for all barycenters of edges e with 2ρV (e) > 3.0, which are all allowed by the
model K1. The bond lengths vary from 0.8537 to 1.5201 Å with a mean of 1.2876 Å. The extremely
narrow blue lines in the Right plot overlays the distribution from the original data set on the Left.

we penalize Wasserstein distance to PDiag(R). For dots (x, y) ∈ PDiag(L) with x ≤ λlo <
λhi ≤ y, we penalize by the quantity ‖x− x0‖ exp(−y), where (x0, y0) is the best-match dot from
PDiag(R). This loss function should force L to express long-lived topological features similar to
those of PDiag(L), while minimizing the error introduced at scales below λlo. As of this June 2023
publication, our code does not implement back-propagation to improve homological matching of
models, but it is planned as upcoming work.

8 Example: Cyclo-Octane

The conformation space of cyclo-octane [18] is well-known to have novel topological structure. From
physical principles, Martin et al. [22] show that real data sampled from the conformation space X
can be reduced to lie in V = R24, and furthermore X must lie near a 2-dimensional stratified space
consisting of a sphere and a Klein bottle. As in Section 1, we suggest that a machine-learning model
k : V → {0, 1} trained to recognize cyclo-octane should not be considered “good” or trustworthy
unless K = {x : k(x) = (1)} also takes this geometric form at the appropriate scale. In this section,
we demonstrate how topological parallax can support or reject the hypothesis that the geometry of a
model K matches the geometry of X .
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Figure 3 visualizes the dataset X ⊂ R24 using a 3D Isomap projection.3 Following the workflow
from Section 5, we compute the 0-, 1-, and 2-dimensional persistence diagrams of X ⊂ R24 using
gudhi [34], and we observe that there are highly persistent features—one 1-cycle and two 2-cycles.4
The insight from [22] provides the meaning of these cycles, but the precise structure of the “data
manifold” is typically not known a priori in examples. What we know in any case is that we want
any potential K to respect these cycles, because the geometry of K should match the geometry of X ,
whatever it might be.

To understand the validity of a generated conformation, we compute its bond lengths–the distances
between adjacent carbon atoms in the conformation. Bond length is an important physical property,
together with bond angle, torsion angle, and energy [18]. Given the rigid geometry assumptions
of the cyclo-octane data [22], we expect individual conformations generated by trained models to
have similar bond lengths, and therefore the distribution of bond lengths from valid conformations
should be similar to that of generated conformations. See Figure 4 to compare the bond lengths
of conformations from the dataset X versus those at barycenters for short edges and long edges in
the Rips complex R of X . Notably, interpolation across longer edges leads to invalid conformer
geometries with too short of bond lengths and thus too sharp of bond angles for realistic molecules.

Suppose someone trains a standard neural network k1 to recognize this data. For this demonstration,
we used a 3-layer fully connected network with a ReLU and a SoftMax, implemented in PyTorch.
The network was trained to near-perfect accuracy within a few minutes on a two class problem of
real data versus a nearby background. (Hyperparameters and training details are provided in the
Supplementary Material.) Thus, the model k1 represents a common starting point that any data
analyst might find encouraging. We apply Algorithm 7.2 to estimate which edges in R are accepted
by k1, and discover 2λlo,X(K1) = 3.45, which is the longest edge available. So, the Rips complex
cannot distinguish K1 from the convex hull; the model does not reflect the geometry of X . This
is particularly unfortunate in this case, because the model k1 might be used to generate many new
conformations (any interpolation between two valid conformations), the vast majority of which will
not be valid conformations. An alternative model k2 is offered, which is built from many local charts
(details in Supplementary Material). The new model has 2λlo,X(K2) = 1.0. Moreover, the most
persistent cycles in X have infinite death as measured by the Rips-like path Lt = Pt,0, so X and
K2 are homologically matched with 2λhi ≈ 1.25. Therefore, we can claim that the geometry of K
matches the geometry of X at these scales.

Limitations

The parallax complex and associated objects are well-defined only for datasets and models that satisfy
Definition 1.1. The algorithms in Section 7 assume that V = Rn with the Euclidean metric, but
could be adapted for other geodesic spaces. Computation of the Rips complex and its persistence
diagram scale favorably with the intrinsic dimension of the datasetX; however, the sampling methods
discussed in Section 7 scale with the dimension of V , which might invoke the Curse of Dimensionality.
A deeper question is whether real-life datasets X of applied interest actually have enough sample
density to exhibit a multiscale metric geometry, to which K can be compared. This question suggests
a followup study to verify whether datasets and models with demonstrated real-world efficacy actually
have computable and comparable geometries; that is, future work should use parallax to assess the
profound epistemological question of whether metric geometry is a valid metaphor for understanding
deep learning in real-life applications.
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A Supplementary Material: Formal Proofs

Proof of Corollary 2.5. The hypothesis [Y ] 7→ [0] implies that for some α0 ≤ α2 and ε0 ≤ ε2, there
exist chains Y ∈ Pα1,ε1 and Z ∈ Pα2,ε2 and W ∈ Pα0,ε0 such that ∂Z = Y −W in Pα2,ε2 . By
Lemma 2.4, these chain can be included to their respective levels in R, giving Y ∈ Rα1

, Z ∈ Rα2
,

and W ∈ Rα0
, still satisfying ∂Z = Y −W in Rα2

. Hence, applying ι∗, either ι∗([Y ]) is trivial in
HRα1

, or the transition map HRα1
→ HRα2

takes ι∗([Y ]) 7→ [0].

Proof of Lemma 2.6. If ε ≥ α, then the second condition in Definition 2.2 becomes ρK(Y ) −
ρV (Y ) ≤ α, which is a trivial condition for 0 ≤ ρV (Y ) ≤ ρK(Y ) ≤ α. Thus, the sets Pα,ε are
identical for all ε ≥ α.

Proof of Lemma 3.4. Suppose an edge e = (xi, xj) lies in Pα,ε, meaning that e is represented by a
V -geodesic of length 2ρV (e) satisfying ρV (e) ≤ α and a K-geodesic of length 2ρK(e) satisfying
ρV (e) ≤ ρK(e) ≤ min{α, ρV (e) + ε}. By Lemma 3.3, the corresponding edge e′ = f](e) =
(f(xi), f(xj)) satisfies ρV (e)−κ ≤ ρV (e′) ≤ ρV (e)+κ. Moreover, by the data perturbation lemma
onK, we know e′ is represented by aK-geodesic with length 2ρK(e′) satisfying ρK(e′) ≤ ρK(e)+κ.
Combining these overall, we have the parallax bounds

ρV (e′) ≤ ρK(e′) ≤ min{α, ρV (e) + ε}+ κ

which implies both ρK(e′) ≤ ρV (e′) + ε+ 2κ and ρK(e′) ≤ α+ κ.

Proof of Lemma 4.6. Fix λ′ = 1
2λball,X(K)− κ. We aim to show that X ′ and K are λ′-LSM. Fix

any edge e′ = (x′, y′) in R′ satisfying ρV (e′) ≤ λ′. (The set of such edges might be empty, which is
allowed by Definition 4.1.) For any such e′, there is a corresponding e = (x, y) ∈ R with f(x) = x′,
f(y) = y′, and f](e) = e′. The triangle inequality provides ‖y − x‖ ≤ ‖y − y′‖ + ‖y′ − x′‖ +
‖x′ − x‖ = 2λ′ + 2κ ≤ λball,X(K). We are assuming V is Euclidean, so all balls in V are convex.
Since x′, y, y′ are all within the ball of radius λball,X(K) around x, all their pairwise geodesics are
included in K. Hence, e′ ∈ P ′λ′,0.

Proof of Lemma 5.2. The relationship c ≤ d follows from Lemma 2.5. The relationship d ≤ e
follows from Lemma 2.3 and the observations that Pα,α = Pα,∞ = R(X,K). Suppose L is
parameterized as Lα = Pα,ε(α). Suppose that c < e, so either c < d or d < e.

If c < d, then we can conclude that the edge that killed [Y ] inHR(X,V ) is not present inHR(X,K),
so that edge intersected Kc, which is an open set. Hence, that killing edge intersects a void in the
sense of Defn 1.2. Let Br be an open ball in Kc centered on some point on the V -geodesic of length
2c. If Br = Kc, then the shortest K-geodesic replaces the diameter 2r with the half-circumference
πr. Therefore, πr − 2r ≤ 2d− 2c.

If d < e, then [Y ] 7→ [0] via HPb,b → HPd,d and via HPb,b → HPe,ε(e), but not for any
HPb,b → HPα,ε(α) with α < e. Therefore, there is a K-geodesic of length 2d and a different
K-geodesic of length 2e, either of which could kill [Y ]. The former edge is not allowed in L because
0 ≤ ε(d) < d− c. Hence, c < d, returning us to the first case.

Proof of Lemma 5.3. Let L be a Rips-like path given by Definition 5.1. Because X and K are
λ-locally simplicially matched, the filtrations levels of R and L are identical up to λ. Therefore, there
is a bijection between the persistence diagrams of R and L for all dots born by λ.

Suppose that (b, d) is a dot in the persistence diagram of L with b ≤ λ < ω < d. This dot represents
a class [Y ] born in HLb that dies in HLd. The class [Y ] ∈ HRb is born at b must die at some
value c, so [Y ] ∈ kerHRb→c. It cannot be that c ≤ δ, because that would imply [Y ] ∈ kerHLb→ω ,
contradicting ω < d. Therefore, δ < c.

Proof of Theorem 5.4. Let f∗ : HP → HP ′ denote the map induced by f and similarly, let f−1∗ :
HR′ → HR denote the map induced by f−1. Consider the following commutative diagram in which
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the unlabeled morphisms are transition maps of the respective persistence modules.

HR′δ−κ HRδ

N ′ HR′λ−κ HRλ = HPλ,ε1 HPω,ε2

HP ′λ−κ,ε1+2κ HP ′λ+κ,ε1+2κ HP ′ω+κ,ε2+2κ

f−1
∗

⊂ f−1
∗

= f∗ f∗

Note that the bi-degrees in the diagram are determined by Lemma 3.3 and Corollary 3.5. Set N ′ =
kerHR′λ−κ→δ−κ ⊂ HR′λ−κ. Commutativity of the top left square implies that f−1∗ (N ′) ⊂ HRλ
maps vertically to 0 in HRδ and hence, f−1∗ (N ′) lies in kerHRλ→δ. The homologically matched
assumption on (X,K) implies f−1∗ (N ′) ⊂ kerHP(λ,ε1)→(ω,ε2). By commutativity of the bottom
right square, f∗(f−1∗ (N ′)) maps horizontally to 0 ∈ HP ′ω+κ,ε2+2κ. Finally, the locally simplicially
matched assumption means we can instead think of N ′ as a subset of HP ′λ−κ,ε1+2κ which maps to 0

in HP ′ω+κ,ε2+2κ by commutativity. Thus,

N ′ = kerHR′λ−κ→δ−κ ⊂ kerHR′(λ−κ,ε1+2κ)→(ω+κ,ε2+2κ) ,

completing the proof.

B Supplementary Material: Code

The code supporting this article is an initial proof-of-concept. It is available publicly at

https://gitlab.com/geomdata/topological-parallax

It is designed as a simple Python package, following community best-practices for tooling and layout.
Documentation is provided there. We recommend that the reader go to the repository for issue
tracking, improvements, bug fixes, testing pipelines, etc.

Because this package relies on GUDHI The GUDHI Project [34], the filtration values are by diameter
(not radius). This is important to note, because the theory in the paper is written using radius (not
diameter) as the filtration value.

Topological parallax has the same computational complexity as the computation of Rips complexes
and their persistence diagrams—albeit with a larger constant. This is because parallax merely inserts
a model-evaluation step upon the examination of each edge. The constant therefore is tN2 for
N points and a model that takes time t to evaluate. There are very interesting dimension- and
structure-dependendent estimates for the real-life/expected timing of Rips computations, such as
Bauer et al. [4]. Distributed persistence can parallelize this process, as in Solomon et al. [31]. See
https://gitlab.com/geomdata/dispers.

• Figure 1 was produced with the Jupyter notebook notebooks/Winky Example.ipynb.
Compare and contrast the Python scripts runners/run_winky_nn.py versus
runners/run_winky_tree.py

• Figure 3 was produced with the Python script runners/run_cyclooctane_balls.py.
Compare and contrast that script with runners/run_cyclooctane_nnfar.py and
run_cyclooctane_nnhull.py. These examples may take 100-500 GB of RAM to com-
pute the persistence diagrams as currently implemented.

• Figure 4 was produced with the Python script runners/bond_lengths.py
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C Supplementary Material: Utah Jar Example

This example demonstrates a situation where a classifier appears to be 100% correct on a semanti-
cally meaningful dataset, but the resulting model is too strict for interpolation within a data class,
Topological parallax detects this phenomenon, as discussed in Section 6.

We applied parallax to an imagery dataset inspired by the “Utah teapot.” The dataset consists of
14000 images—4000 images of a rotated teapot and 10000 images of a rotated teapot with no spout
or handle (referred to as the “Utah jar”). See Figure 5a. All images were rendered with PoV-Ray.

We constructed a bespoke classifier on this dataset of images which accepts any image within a
distance of 1.0 to the set of jar images using the Euclidean metric on flattened images. Our classifier
rejects all other inputs. We applied parallax to this model and found very small values for both λlo
and λsup, with λlo ∼ λsup < 2. See Figure 5b.

Given the hard cut-off distance of 1.0 in the classifier and these λ values, we expect the model to
prohibit reasonable interpolations of images. Indeed, we found numerous interpolations rejected by
the model which seem valid to the human eye. See Figure 5c.

(a) Examples from the modified Utah Teapot dataset.

(b) The persistence diagram of the dataset
marked by parallax.

(c) Interpolative images that are visually similar to true
dataset samples but are rejected by the overly sensitive
model.

Figure 5: Using parallax to detect a dataset-model geometry mismatch. (a) The images consist of
the Utah teapot (rendered with PoV-Ray) with spouts and handles removed for simplification. (b)
We construct a simple classifier which accepts any images within a Euclidean distance of 1.0 of the
(flattened) image and rejects all others, and apply parallax to it. (c) Six interpolated images are shown,
all of which look very similar to the original dataset but are rejected by the model (corresponding to
the X marks in (b)).
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D Supplementary Material: Understanding the Bi-Complex

The parallax complex P (X,K, V ) is bi-filtered by the parameters α (the length of a geodesic) and
ε (the distortion of geodesic length between K and V ). Figure 6 provides some visualizations that
may help the reader interpret traditional barcodes of Rips-like paths, and how these bi-filtration
parameters may be estimated. These parameters are related to the size of voids in the model, as seen
in Lemma 5.2.

α

ε
HLα

barcode of L

birth death

x y

ρV
r

√
ρ2V + r2

α

ε

Figure 6: Left: Births and deaths are bi-filtered in HP , and are observed by barcodes on Rips-like
paths. Cor 3.5 means this picture is stable within ±(κ, 2κ). Center: An edge (x, y) ∈ Pα,ε can be
estimated by sampling tubular neighborhoods. Right: Algorithm 7.5 underestimates α, ε.
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E Supplementary Material: Table of Symbols

Notation Plain Meaning First Appearance Term
V A geodesic space, such as Rn p.2 Ambient Space
X A finite set in V p.2 Dataset
k A perception function on V p.2 Model (as function)
K Support set of k p.2 Model (as set)
M(X) Models compatible with dataset X p.2
M∗(K) Datasets compatible with model K p.2
K◦ Interior of set K in topological space V p.2
K Closure of set K in topological V p.2
Kc Complement of set K in V p.2
Ω Bounded open set in Kc p.2 Void
R(X,K) Rips complex of X in geodesic space K p.4
α a filtration level or radius p.4
Bα(x) Geodesic ball of radius α about x p.4
Y Chain in a Rips complex p.4
ρK(Y ) Minimal filtration radius for Y in R(X,K) p.4
ε Gap in filtration radius between V and K p.4
P Parallax bi-complex for X,K, V p.4 Parallax
HP Homology of P p.4
L A 1-parameter path through P p.4 Rips-like Path
HL Homology of L p.4
κ
≈ Pointwise perturbation of X in V p.5 Perturbation
κ
≈K Pointwise perturbation of X in K p.5 K-Perturbation
f] Induced map on a simplicial complex p.5
f∗ Push-forward map on homology p.5
λ• A meaningful filtration value. See subscript. p.6
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