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ABSTRACT

Upweighting high-quality data in large language model (LLM) pretraining typ-
ically improves performance. However, the limited availability of high-quality
data—particularly in overtrained regimes—means that stronger upweighting often
increases repetition, which can degrade performance. This creates a fundamental
trade-off between data quality and data repetition. In this paper, we systematically
investigate how varying data quality and repetition affects models across different
scales. Concretely, we partition the source corpus into buckets based on quality
scores and sample from each bucket with different weights, thereby constructing
training sets with diverse scales, quality distributions, and repetition levels. We
then train a family of models on these datasets to measure performance across
conditions. Building on these observations, we introduce a theoretical framework
analogous to scaling laws, which we call LayerMix Law. LayerMix Law pre-
dicts model loss as a function of consumed tokens, model size, sampling weights,
and repetition levels. The key intuition is to view training as the accumulation
of information from data, where the amount of information is governed by data
quality, while model scale and repetition determine the information gained per
training step. We show that LayerMix Law accurately predicts the model perfor-
mance on unseen data recipes at larger computation scale (up to 7B parameter run
with 425B token, each x2 invest compute), with 0.15% average absolute error and
0.96% maximum absolute error, which enables efficient search for optimal data
recipes without costly additional experiments. Moreover, LayerMix Law extrap-
olates reliably to different degrees of overtraining, providing a efficient tool for
selecting data recipes under varying computational budgets.

1 INTRODUCTION

Training large language models (LLMs) requires access to high-quality data (Brown et al., 2020a;
Chowdhery et al., 2023). However, the availability of high-quality data is severely limited (Villalo-
bos et al., 2024), and in the data-constrained settings, upweighting higher-quality data inevitably
increases repetition, which has been shown to impair performance when excessive (Muennighoff
et al., 2023). This issue is further exacerbated by the widespread adoption of overtraining (Touvron
et al., 2023; Yang et al., 2025)—a strategy that reduces inference costs compared to the compute-
optimal regime (Hoffmann et al., 2022).

To address the shortage of high-quality data as model scale increases, a common compromise is to
incorporate lower-quality data, thereby reducing the repetition of high-quality samples. Intuitively,
high-quality data provides greater performance gains than low-quality data upon first exposure, but
as repetition increases, the marginal benefit decays—eventually approaching that of unseen low-
quality data. However, the optimal balance between quality and repetition remains unclear. A
standard approach for identifying optimal mixing strategies is to run smaller-scale experiments and
extrapolate performance to larger compute budgets using scaling laws (OpenAI et al., 2024; Hoff-
mann et al., 2022; Chowdhery et al., 2023). Yet, as shown in Figure 1, under conditions of data
repetition, standard scaling laws fail to reliably predict model performance at scale (Hernandez
et al., 2022; Muennighoff et al., 2023). Moreover, they do not generalize across different mixing

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

strategies , necessitating grid searches over data recipes—an approach that is costly even at small
scales.

In this paper, we study the problem of scaling large language models in a data-aware regime, where
training data consists of a heterogeneous mixture with varying quality levels, and each quality level
is repeated to different extents. We introduce a theoretical framework, the LayerMix Law, which
accounts for both the scaling effects of mixture weights and the impact of repetition. Our formulation
views training as a process of accumulating information from the dataset, with model performance
determined by the total information gained by the end of training. At each step, the information gain
is modeled as the sum of contributions from different quality ranges. Within each quality range,
the gain depends on two factors: an information density function, parameterized by quality (with
higher quality assigned higher density), and an exponential decay term that captures the interactions
between model scale, data scale, and repetition level.

To fit the parameters of the LayerMix Law, we construct a suite of datasets that vary along three
axes: scale, quality, and repetition level. Specifically, we partition the source dataset into buckets
according to quality scores, and then sample from each bucket with different weights, a procedure
we refer to as LayerMix sampling. Following the data-constrained setting, the source dataset is first
downsampled to the target scale to ensure stable repetition effects. We then train 9 models ranging
from 252M to 1.2B parameters from scratch, each under the same 3.6x over-trained ratio (Gadre
et al., 2024). For each model, we construct three datasets with distinct LayerMix sampling configu-
rations, resulting in 27 total training runs. Model performance is evaluated as the average perplexity
across five downstream tasks. Finally, we fit the LayerMix Law to these results, estimating the
parameters that best capture the relationship between information gain and observed performance.

To verify the generalization ability of LayerMix Law, we conduct three extrapolate experiments.
Firstly we create datasets with two other unseen LayerMix sampling parameters to test the extrap-
olation on unseen data recipe. Secondly, we conduct experiments with larger computation scale on
both seen and unseen LayerMix sampling parameters to test the scaling ability. Thirdly, we conduct
experiments with larger over-trained ratio (25x), to test the generalization ability of LayerMix Law
parameters. We found that LayerMix Law is able to predict loss on unseen data recipes at differ-
ent scales (up to 7B parameter run with 425B token, each x2 invest compute), with 0.15% average
absolute error and 0.96% maximum absolute error. We search for the optimal data recipe on 2.5B
model with LayerMix Law with no additional experiments, and the result achieves the best among
4 other random ablations. Also on over-trained ratio, directly apply LayerMix Law yields good
scaling results.

2 RELATED WORK

Scaling Laws Scaling of transformer language models (Vaswani et al., 2017) and training data
has been shown to provide consistent performance improvements (Chowdhery et al., 2023; Radford
et al., 2019). This has led to the development of many large-scale models, including both dense
architectures (Brown et al., 2020b; Rae et al., 2021; Grattafiori et al., 2024) and mixture-of-experts
(MoE) variants (DeepSeek-AI et al., 2025; Yang et al., 2025; Fedus et al., 2021). Early empiri-
cal studies observed that neural networks exhibit predictable power-law scaling behavior (Hestness
et al., 2017). Building on this, Hoffmann et al. (2022) investigated the compute-optimal setting, sug-
gesting that model size and training data should be scaled in roughly equal proportions, whereas Ka-
plan et al. (2020) proposed a different allocation strategy emphasizing alternative trade-offs. More
recent work, such as DeepSeek-AI et al. (2024), further explored how compute budget C interacts
with optimization hyperparameters, including the choice of batch size and learning rate.

Recently, there has been a growing trend of over-training smaller models on large datasets (Tou-
vron et al., 2023; Yang et al., 2025), motivated by both efficiency considerations and deployment
constraints. Sardana et al. (2024) extended the Chinchilla framework by incorporating data quality
and inference requirements, deriving optimal allocations between model size and dataset scale under
these additional factors. Complementary to this, Gadre et al. (2024) demonstrated that scaling laws
remain reliable even in the over-trained regime, where models are trained significantly beyond the
compute-optimal point. These findings highlight the importance of revisiting scaling strategies in
regimes constrained by data availability, quality variation, or inference efficiency demands.
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(a) Loss-Cm Curve of model trained with random
data and Layermix packed data

(b) The validation loss of different LayerMix experi-
ments in training process.

Figure 1: Effects of quality selection and data repetition

For predicting downstream performance, Isik et al. (2025) demonstrated that downstream metrics
also exhibit predictable scaling effects after fine-tuning, extending the scope of scaling laws beyond
pre-training loss. Schaeffer et al. (2023) further established a connection between non-linear eval-
uation metrics and model perplexity, providing a more stable predictor of performance compared
to prior approaches such as Wei et al. (2022), which observed instability in emergent metrics. Ge
et al. (2025) employed fine-grained alignment between a model’s foundational capabilities and the
requirements of specific downstream tasks, leading to more accurate scaling law predictions for that
task. Ruan et al. (2024) leveraged performance data from existing models to predict complex behav-
iors and emergent abilities by modeling them in a shared, low-dimensional capability space. Both
approaches highlight a growing trend toward understanding scaling phenomena through the lens of
modular capabilities.

Data-Aware Scaling Traditional scaling laws typically assume that training data is both fixed and
unlimited. In practice, however, high-quality data is scarce and often upsampled to improve model
performance (Lin et al., 2022). Xue et al. (2023) found that continuing to train on repeated data is
generally preferable to stopping early. This aligns with earlier findings by Hernandez et al. (2022)
and Muennighoff et al. (2023), who also observed performance deterioration when upsampling
or repeating datasets. These insights underscore the limitations of classical scaling laws in data-
constrained settings and highlight the need for more sophisticated, data-aware approaches. More
recently, Chen et al. (2025) studied how sub-scaling laws interact with data density, providing a
finer-grained understanding of scaling under limited-data regimes.

Other lines of work have applied scaling laws to guide the design of optimal data recipes. For in-
stance, Ye et al. (2025) incorporated data mixture weights into the functional form of loss prediction,
while Kang et al. (2025) suggested that optimal mixing strategies themselves depend on model scale.
Liu et al. (2024) employed a proxy model to predict the final model’s performance under different
mixture ratios, thereby discovering high-quality data recipes without training large-scale models.
Gu et al. (2024); Que et al. (2024) investigated scaling laws in the context of continued pre-training,
using them to inform domain mixture strategies. In addition, Chang et al. (2024) analyzed how scal-
ing interacts with data quality. In contrast to these approaches, our work aims to predict model loss
on mixtures of varying quality and repetition levels, thereby providing a more general framework
for data-aware scaling.

3 LIMITATIONS OF CONVENTIONAL SCALING LAWS

In this section, we reveal and substantiate a critical limitation of conventional scaling laws in the
context of data repetition and quality selection. First, we introduce the LayerMix sampling function
in section 3.1, to imitate real scenario where the data is a mixture of different quality and repetition
degrees. Next, we compare the relationship between the model’s loss L and amount of compute C
in cases with and without repetition in section 3.2, and the results show that the traditional scaling
law performs well on data without repetition
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Table 1: Preset LayerMix sampling weights and Searched optimal sampling weights for 2.5B model.

Name w1 w2 w3 w4 w5 w6
HQ (High Quality) 0.80 0.10 0.03 0.03 0.02 0.0
MHQ (Medium-High Quality) 0.66 0.22 0.05 0.03 0.02 0.0
MQ (Medium Quality) 0.48 0.23 0.13 0.07 0.07 0.0
MLQ (Medium-Low Quality) 0.38 0.21 0.20 0.11 0.08 0.0
LQ (Low Quality) 0.24 0.20 0.19 0.18 0.17 0.0
Optimal Recipe of 2.5B model with m = 3.6 0.50 0.49 0.01 0.0 0.0 0.0

3.1 LAYERMIX SAMPLING FUNCTION

Source Data We obtain our training corpora from Common Crawl (Common Crawl Foundation),
following similar filtering process as Penedo et al. (2023) and obtain 15T English tokens. We ran
global fuzzy deduplication across all snapshots to ensure there is no repeat data in the corpora. The
final dataset contains 3.7T token. The details are in Appendix A.

Training Data Sampling We first define the quality score for each document following Liu et al.
(2025), where two quality classifiers (Penedo et al., 2024; Li et al., 2025) are applied and the final
quality score is averaging the normalized score from each classifier. With the quality score, We then
rank all documents based on quality score and empirically split the training corpora into six quality
buckets based on their quality rankings, which are 0-5%, 5%-20%, 20%-40%, 40%-60%, 60%-80%,
80%-100%.

Then we define a LayerMix sampling function H(w,K, S,B), where S represents the packing
source tokens and K represents the packed tokens for training data, and we perform 1 epoch
training to avoid additional repetition factors. w = [w0, w1, ..., w5] and

∑
wd = 1, repre-

senting the token proportion of the data in the d-th bucket in the packed training data, and
B = [B0, B1, ..., B5] is the token proportion of source token for each data bucket, in our experi-
ments, B = [5%, 15%, 20%, 20%, 20%, 20%]. The LayerMix sampling function H returns a dataset
of total token K with bucket proportions given by w sampled from a corpora of total token S. In
the returned training data, the d-th bucket have wdK tokens, which are sampled from BdS tokens
in source data, leading to Md = min(wdK,BdS) unrepeated tokens. Then the average repeat time
for data in the d-th bucket is Rd = Md

BdS . The detailed algorithm is shown in Appendix B.

With different setting of w,K, S, the LayerMix sampling function generate datasets with different
scales, quality and degrees of repetition. We ensure wd is greater than wd+1 to guarantee higher
quality buckets have a larger proportion in the training data. We select 5 settings of w, representing
different levels of quality and repetition, namely HQ (High Quality), MHQ(Medium-High Quality),
MQ (Medium Quality), MLQ (Medium-Low Quality), LQ (Low Quality). The detailed proportion
is as Table 1. w5 is set to 0 so that we drop the bottom 20% of data ranked by quality score.
Throughout work, we set K = S to reduce complexity unless mentioned, so that we only focus on
the repetition change caused by w.

3.2 TRADITIONAL SCALING LAW BETWEEN LOSS AND AMOUNT OF COMPUTE

We compare the relationship between model loss L and total compute C under regimes with and
without repetition in an overtrained setting. Specifically, under the compute-optimal scheme, Copt =
NoptKopt, where K is the consume token, N is the non-embedding FLOPs per token as defined in
DeepSeek-AI et al. (2024) and Nopt, Kopt is the Chinchilla-optimal pair. Then in the overtrained
setting, following Gadre et al. (2024), we set Km =

√
mKopt, Nm = 1√

m
Nopt, Cm = KmNm

with m = 3.6. And Gadre et al. (2024) shows that the the Loss–Compute relation preserves the
fitted exponent for models trained with the same overtraining factor m.

Random The training data is randomly sampled from sufficient large source data, where S ≫ K,
meaning there is rarely no repetition in the training data.
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HQ IST We use the layermix sampling function and w is set to mainly focus on high quality data,
namely HQ (High Quality), see details in Appendix B. Then we set S ≫ K, denoting as IST
(Infinite Source Token), meaning there is almost no repetition in train data

HQ LST We use the layermix sampling function and set S = K, denoting as LST (Limited Source
Token), where there exists repetition in the training data.

We plot the log-log plot between Cm and model loss L in Figure 1a. Note that the loss L mentioned
here, including later references, is the average loss of the model on the following five downstream
tasks: HellaSwag (Zellers et al., 2019), ARC-E, ARC-C (Clark et al., 2018), MMLU (Hendrycks
et al., 2021), TriviaQA (Joshi et al., 2017). Following Schaeffer et al. (2023), we transfer the accu-
racy on downstream tasks into perplexity for better scaling effect. The results show that for random
dataset, the scaling law loss-C curve can fit all of the data points. But for HQ IST and HQ LST, the
performance decay as compute Cm scales. More results are detailed in Appendix F

The above observation indicating that traditional scaling law only holds for completely random and
non-repeated data. The change of data quality distribution or repeate time undermines its predictive
accuracy. So we need a modified scaling law that incorporates both data quality distrubution and the
degree of data repetition as core variables.

4 LAYERMIX LAW

Scaling laws for large language models traditionally rely on compute, but often fail to account
for effects of data quality and repetition. In this section, we introduce the design of LayerMix
Law. We treat the training process as gaining information from the dataset and propose to calculate
Information Quantity as accumulation of information gain throughout the training process, which
synthesizes the impacts of data quality, repetition level, model scales and total training tokens, and
then build power-law relationship with the model’s final validation loss.

4.1 INFORMATION QUANTITY

We first show how the evaluation loss changes during training of two 850M models trained on two
datasets packed with different LayerMix sampling weights in Figure 1b. The dataset HQ LST re-
peates top 5% quality data for about 16 times and MQ LST for 10 times, MQ LST has lower quality
than HQ LST but less repetition. By default, we use the LST setting and we ignore the notation of
LST for simplicity unless mentioned. In the early training stage, HQ and MQ experiments achieves
almost same evaluation loss. However, later in the training, the loss of HQ experiment decreases
much more slowly, resulting in a worse final performance compared to the MQ experiment, indicat-
ing that more repetition expedites the decay of performance gaining.

Based on this observation, we propose an exponential decay function to model the decreasing infor-
mation gain of repeated data. Assuming the Information Quantity a document i contains is Ii, then
the information a language model gets at t-th learning from the document i is:

Ii part(t, λN ) = Ii · λNe−λN t (1)

where λ is a hyperparameter which is related to the non-embedding FLOPs/token N .

When a languge model learning the document for total T times, the Information Quantity learned
from the document is:

Ii total(T, λN ) =

∫ T

0

Ii part(t, λN )dt = Ii · (1− e−λNT ) (2)

Equation 2 captures the principle of diminishing returns in learning: repeated exposure to a doc-
ument yields progressively smaller gains, causing the total acquired information to saturate and
asymptotically approach the document’s full information content Ii.

5
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Considering in large-scale training, due to the forgetting effect: as the total train token K grows, the
average Information Quantity language model acqiure from a singel sample decreases. We introduce
train token K to the Equation 1 to accommodate this phenomenon:

Ii part(t, λN ,K) = Ii · λNe−λN t/ log(K) (3)

Then the Equation 2 becomes to:

Ii total(t, λN ,K) =

∫ T

0

Ii part(t, λN ,K)dt = Ii · log(K)(1− e−λNT/ log(K)) (4)

For all the training data, we sum them together as the final Information Quantity the language model
learned from the training corpora, denoting as info:

info(w,K, S, f, λN ) =
∑
d

Id · log(K)(1− e−λNRd/ log(K))

=
∑
d

fdMd log(K) · (1− e−λNRd/ log(K)) (5)

where d is the quality bucket number from 0 to 5. Id is the total information quantity in d-the bucket,
which can be calculated by the multiplication of number of unique tokens Md = min(wdK,BdS)
and information density fd, which is a parameterized quality density function. Rd = wdK

Md
is the

average repeat times for the data from the d-th bucket and λN is related with N , which are to be
fitted from the data.

Equation 5 can be divided into two parts: the first term is Id = fdMd log(K), it represents the
total Information Quantity contained in the packed data of the d-th bucket, and the second term is
1 − e−λNRd/ log(K), it represents the language model’s learning ability on this data when repeated
an average of Rd times. And the total Information Quantity learned by the language model is the
product of these two terms.

We propose Information Quantity, a metric computed from LayerMix sampling weights w, train
token K and two fitted functions (fd, λN , to quantify the knowledge learned during training. Since
it is designed to be monotonic with model performance, it enables loss prediction for various training
configurations prior to any actual runs. The fitting of fd and λN is described in Section 5.2.

4.2 INFORMATION-LOSS SCALING LAW ON REPEATED DATA

As illustrated in Figure 1a, the evaluation loss of the model trained with repeated data is higher
than that of the model trained without repeated data, and the traditional scaling law fails to predict
language model’s performance under this circumstance.

We use the Information Quantity proposed in Section 4.1 and plot the L-info figure. As illus-
trated in Figure 2, when we replace the traditional computation axis C with our novel metric: In-
formation Quantity, the experimental points with different LayerMix sampling weights w, Model
non-embedding FLOPs/token N and Train Token K now collapse perfectly onto a single, unified
power-law curve, where they were previously scattered and separated.

Then the relationship between the loss L and info can be measured using power-law formulation
as:

L = α · info−β (6)

In our experiment, α = 3.7373 and β = 0.0441. We show them in a log-log plot, so it appears as a
straight line with a slope of −β and an intercept of log(α).

Like the traditional scaling law (Hoffmann et al., 2022), we can now conduct experiments on small
models to compare the advantages and disadvantages of different experimental configurations, and

6
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Figure 2: The Unified Information-Loss Scaling Law. The scaling law is fitted only on the interpo-
lation data (solid markers), yet it accurately predicts the performance of held-out extrapolation data
(hollow markers).

then use our proposed information scaling law to extrapolate the performance of larger models under
larger training tokens.

5 FITTING EXPERIMENTS

5.1 TRAINING SETUP

We train 9 models ranging from 252M to 1.2B on 3 layermix sampling weights (HQ, MQ, and
LQ), with 3.6x over-trained ratio, resulting in 27 experiment runs in total to collect data for fitting
the LayerMix Law parameters. We use transformer architecture (Vaswani et al., 2017), SwiGLU
(Shazeer, 2020) as the activation function and RoPE embeddings (Su et al., 2024). We use a tok-
enizer with 250k vocabulary. See Appendix B and Appendix C for details about LayerMix sampling
weights, model structure, learnign rate and optimizer.

5.2 FITTING THE CURVE

In this section, we introduce how to fit the parameters in LayerMix Law to predict the model perfor-
mance collected in Section 5.1. Since Information Quantity info indicates the knowledge learned
by the model, we expect larger info to correspond to lower evaluation loss L. Considering that
there may exist scale difference between info and model loss L, we choose Spearman correlation
ρs as the fitting metric, i.e., the object is to find the optimal quality density f and λN such that the
Spearman correlation between evaluation loss L and info is minimized for all the experiments over
N,w :

(f∗, λ∗) = argmin
f,λ

N∑ w∑
(ρs (LN , info (w,KN , SN , f, λN ))) (7)

7
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Figure 3: The fitted function of quality density function and relationship between λN and N

To prevent from over-fitting, we make some assumption based on naive intuition. For f , as it indi-
cates the quality density, the higher-quality bucket should have larger f . As smaller d corresponds
to higher-quality buckets, we define f in the following form to ensure it is a decreasing function:

fd(θ) = e−θ∗d (8)

where θ is a hyperparameter and θ > 0.

λN is related to the model’s learning capacity, so λN should increase as N increases. But we need
to find the formula for λN related with N so that it can scale to larger N . To do this we first sample
100,000 combinations of θ and λN from the parameter space, then select optimal θ∗ and λ∗

N based
on Equation 7. The fitted quality density f(θ∗) is shown in Figure 3a with fitted θ∗ = −0.922.

Having the λ∗
N values of different models, as is shown in Figure 3b, we try to fit the λN -N curve.

The relationship between λN and N is observed to be non-linear, exhibiting rapid growth for smaller
N and gradually saturating as N increases. This trend is well-approximated by a logarithmic func-
tion. Therefore, we choose the λN -N curve using following formula:

λN (a, b) = a · ln(N) + b (9)

Using existing λ∗
N , we fit the λN -N curve in Figure 3b with fitted a∗ = 0.140, b∗ = 0.018. To

validate this fit, we compute λ∗
N for larger N under the fixed θ∗, and examine whether these values

lie on the predicted λN -N curve. As illustrated in Figure 3b, the results demonstrate strong extrap-
olation performance, supporting the correctness of our formulation. We compared with different
formats of 9 in Appendix E and the log function best fit the trend and extrapolates

Finally, with f(θ∗) and λN (a∗, b∗), we can calculate the Information Quantity for arbitrary layermix
sampling weights w, train token K, source token S and model non-embedding FLOPs/token N .

6 EXTRAPOLATION

The LayerMix Law achieves a strong fit on the training data after parameter optimization, and we
subsequently employ it to predict loss under the unseen conditions to assess its robustness. To rig-
orously evaluate its capability, we first compare it with the traditional scaling laws. Then we test
the extrapolation along three key axes: (i) novel LayerMix sampling weights, (ii) larger computa-
tional scales, and (iii) varying degrees of over-training. Finally, we use our LayerMix Law to predict
optimal data recipe under different training settings and valid the recipe by comparing with preset
recipes.
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(a) Validation loss versus compute C in the loss–C view. Curves
are fit on 252M–1.2B and extrapolated to larger models.

(b) Cross-Regime Prediction of the
Scaling Law.

Figure 4: The extrapolation results of LayerMix Law

Comparing with traditional scaling laws

Figure 4a contrasts our LayerMix law with the traditional power scaling law in the loss–C plane.
Both curves are fit using models in the 252M–1.2B range and then extrapolated to larger models.
The Info curve tracks the MLQ data more closely within the fitting regime and remains accurate
when extrapolating up to 7B models, avoiding the overly optimistic loss reductions predicted by the
traditional law at high compute. Concretely, the traditional scaling law tends to under-estimate loss
as Cm grows, whereas the Info curve preserves a data-aligned decay that better matches the realized
validation losses of larger models.

Extrapolation to other LayerMix Sampling Weights

We first test the ability to generalize to an unseen LayerMix sampling weights. We test on unseen
dataset generated with MLQ, MHQ on model scales ranging from 252M to 1.2B, which are within
the range of training data. Also we random sample 25 more sampling weights and run experiments
on 1.2B model only.

The result is shown in Figure 2 marked by hollow squares (for MLQ) and hollow downward-
pointing triangles (for MHQ). As can be seen, these points align remarkably well with the scaling
law curve established by the initial HQ, MQ, LQ data, demonstrating the predictive power of
our model on unseen LayerMix sampling weights. The traditional scaling laws requires additional
experiments on different data recipes to fit new curves, while ours can directly predict loss on unseen
recipes.

Extrapolation to Larger Models

To test the extrapolation ability on model scale, we use the same Layermix sampling weights
MQ,LQ to train models ranging from 1.5B to 2.5B and HQ, LQ to train model with 2.5B pa-
rameters, which are out of the range of training data. The experimental results of larger models are
shown in Figure 2, we can see LayerMix Law predict the loss on larger scale accurately for all three
sampling weights, proving the ability of scaling on model size.

Combination of Extrapolation

Further more, we combine the two extrapolation above and test the effectiveness on both unseen
LayerMix sampling weights and unseen scales. We run experiments with MLQ,MHQ on models
ranging from 1.5B to 7B. As shown in Figure 2, LayerMix Law also generalise well on these com-
bined extrapolation condition. On all the unseen data points, including unseen LayerMix sampling
weights and model scales, LayerMix Law predict the validation loss with 0.15% average absolute
error and maximum error is 0.96%. This proves that our proposed information scaling law has
reliable extrapolation capability.

Extrapolation to Larger Overtrain Degree

To explore the model’s reliability under varying sub-optimality, we conducted a second series of
experiments at a higher overtrain degree, m′ = 25. This new regime was anchored by a 1.2B model
trained on 640B tokens (the Cm′ experiment), contrasting with our initial Cm experiment anchored
at 106B tokens.
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Table 2: Results of four distinct LayerMix experiments on 2.5B model.

Name HQ LQ MLQ Pred Best
Validation Loss 3.246 3.250 3.226 3.204

Table 3: The best data recipe for different models and train token

Model Train Token Source Token w1 w2 w3 w4 w5 w6

7B
500B 500B 0.496 0.492 0.007 0.003 0.002 0.000
800B 500B 0.439 0.430 0.130 0.001 0.000 0.000

1000B 500B 0.395 0.387 0.214 0.003 0.001 0.000

1.8B
500B 500B 0.548 0.444 0.004 0.003 0.002 0.000
800B 500B 0.496 0.492 0.007 0.003 0.002 0.000

1000B 500B 0.491 0.487 0.017 0.005 0.000 0.000

1.2B
500B 500B 0.619 0.376 0.004 0.001 0.000 0.000
800B 500B 0.496 0.492 0.007 0.003 0.002 0.000

1000B 500B 0.496 0.492 0.007 0.003 0.002 0.000

For the Cm′ -experiment, we calculated the Information Quantity using the same quality density
f(θ∗) and λN (a∗, b∗) fitted previously on the Cm data. As shown in Figure 4b, the new experimental
points align with a new scaling law curve. The resulting curves for Cm and Cm′ appear nearly
parallel, suggesting the overtrain degree m primarily shifts the curve’s intercept. This confirms that
our proposed Information Scaling Law is effective across different overtrain degrees.

Optimizing Data Recipe with LayerMix Law

The ability of predicting loss on unseen data recipes and scales enables us to search for best data
recipe without additional experiments. Similar to Liu et al. (2024). We randomly sample 100k
LayerMix parameters from the parameter space, compute the information for each set of parameters,
and convert it to loss via Equation 6. We then select the parameter that minimizes the predicted
validation loss as the optimal LayerMix configuration for each training setting.

To verify the optimal recipe, we conduct experiments on 2.5B model with optimal data recipe and
3 other layermix sampling weights. The result optimal recipe is as in Table 1. As shown in Table 2,
our optimal recipe achieves the best validation loss.

In Table 3, we present the optimal LayerMix parameters for different model sizes and training-token
counts under a fixed source-token budget of 500B tokens. The optimal LayerMix parameters exhibit
two clear trends. First, at a fixed training-token count, smaller models favor a higher fraction of
high-quality data, whereas larger models benefit more from diversity and thus allocate a smaller
fraction to the high-quality data. Second, as the total training tokens increase, the optimal LayerMix
parameters shift from a high-quality emphasis toward greater diversity. More results are shown in
Appendix H. In short: Small models or small training budgets prioritize quality; large models or
large training budgets prioritize diversity.

7 CONCLUSION

In this paper, we propose a refined scaling law modeling LayerMix Law, which focus on predict-
ing model performance on downstream tasks under data-constrained settings with weighted-quality
mixing. The LayerMix Law provides accurate predictions of model performance on unseen data
recipes at larger computational scales, achieving an average absolute error of only 0.15% and a
maximum error of 0.96%. This enables efficient discovery of optimal data recipes without the need
for extensive additional experiments. Furthermore, the LayerMix Law extrapolates reliably across
varying degrees of over-training, offering an effective tool for selecting data recipes under different
computational budgets.
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8 ETHICS STATEMENT

Our research is based on the publicly available Common Crawl dataset. We do not foresee any direct
negative societal impacts stemming from our methodology or the resulting models.

9 REPRODUCIBILITY STATEMENT

Our experiments are based on the open-source Common Crawl dataset. All experimental settings,
model architectures, hyperparameters, and implementation details have been thoroughly described
in the main body and the appendix to ensure that other researchers can independently reproduce our
results based on this information.
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A TRAINING DATASET

We use the English portion of the Common Crawl Dataset (Common Crawl Foundation), utilizing
96 of the snapshots, from CC-MAIN-2013-20 to CC-MAIN-2024-18. Following Bi et al. (2024), we
ran a global fuzzy deduplication across all snapshots, resulting in a total dataset with 3.7T tokens.

B LAYERMIX SAMPLING FUNCTION

We show the detail of LayerMix sampling function in Algorithm 1.

Algorithm 1 LayerMix Sampling Function H(w,K, S,B)

1: function H(w,K, S,B)
Require:

w: A list of target proportions for six buckets, w = [w0, ..., w5], where
∑

wd = 1.
K: The total number of tokens for the final training dataset.
S: The total number of tokens in the entire source corpora.
B: The source distribution proportions B=[0.05, 0.15, 0.2, 0.2, 0.2, 0.2].

Ensure:
Dtrain: The final packed training dataset.
M : A list of unique token counts for each layer, M = [M0, ...,M5].
R: A list of average repetition counts for each layer, R = [R0, ..., R5].

2: Initialize an empty training dataset Dtrain ← ∅.
3: Initialize empty lists for statistics: M ← [], R← [].

4: for d← 0 to 5 do ▷ Iterate through each quality bucket
5: Kneeded ← K × wd ▷ Calculate tokens needed from bucket d for the target mix
6: Sd ← S ×B[d] ▷ Calculate source tokens available in bucket d

▷ Calculate the sampling ratio for the current bucket
7: Ratiod ← Kneeded/Sd

▷ — Detailed sampling process for bucket d —
8: Initialize an empty temporary set Dsampled d ← ∅.
9: for all data point x in bucket d do

▷ 1. Deterministic copy for the integer part of the ratio
10: for i← 1 to ⌊Ratiod⌋ do
11: Add x to Dsampled d

12: end for
▷ 2. Probabilistic sampling for the fractional part

13: if Ratiod − ⌊Ratiod⌋ > 0 and random() < (Ratiod − ⌊Ratiod⌋) then
14: Add x to Dsampled d

15: end if
16: end for
17: Append all data from Dsampled d to Dtrain.

18: Md ← min(Kneeded, Sd) ▷ Calculate unique tokens based on the new formula
19: Append Md to M .
20: Rd ← Kneeded/Md ▷ Calculate average repetition count
21: Append Rd to R.
22: end for

23: return Dtrain,M,R ▷ Return dataset and statistics
24: end function

√
m =

Nopt

N
=

D

Dopt
(10)
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A value of m = 1 indicates a compute-optimal training run, while m > 1 signifies that the model is
overtrained relative to its compute budget.

Algorithm 2 Calculation of Overtrain Degree and Optimal Tokens

1: function CALCULATEOVERTRAINEXTRAPOLATION(modelcurr, Dcurr,modelstarget)
Require:

modelcurr: The size of the current model configuration.
Dcurr: The number of tokens used to train the current model.
modeltarget: The size of the target model configuration.

Ensure:
m: The calculated overtrain degree for the current configuration.
Dtarget: The train token of target model under same overtrain degree.

2: // Part 1: Calculate overtrain degree m from the current configuration

3: Ncurr ← Get N(modelcurr) ▷ Get N (non-embedding FLOPs/token) for the current model
4: C ← Ncurr ×Dcurr ▷ Calculate the total compute budget

5: Nopt ← 0.06085× C0.5445 ▷ Calculate Chinchilla-optimal model non-embedding
FLOPs/token for budget C

6: Dopt ← 16.4326× C0.4555 ▷ Calculate Chinchilla-optimal tokens for budget C

7:
√
m← Nopt/Ncurr ▷ Calculate the overtrain degree m

8: ▷ This is equivalent to
√
m = Dcurr/Dopt

9: // Part 2: Extrapolate to target model while keeping m constant

10: for each modelt in [modelcurr] +modelstarget do
11: Nt ← Get N(modelt) ▷ Get N (non-embedding FLOPs/token) for the target model

12: N ′
opt ← Nt ×

√
m ▷ Find the corresponding optimal model non-embedding

FLOPs/token for the target
13: Cnew ← (N ′

opt/0.06085)
1/0.5445 ▷ Derive the new compute budget

14: D′
opt ← 16.4326× C0.4555

new ▷ Find optimal tokens for the new budget
15: Dtarget ← D′

opt ×
√
m ▷ Calculate the required tokens for the target model

16: end for

17: return m,Dtarget ▷ Return the overtrain degree and the train token of target model under
same m.

18: end function

C TRAINING

The model structures used in LayerMix are illustrated in Table 4. We train all the model with 2048
as the max sequence length, we use a cosine decay schedular and the initial learning rate calculated
by lr = round(0.3118 ·C−0.1250, 8), the warm up ratio is set 0.5%. We use AdamW optimizer with
β1 = 0.9, β2 = 0.95, weight decay= 0.1.

D THE RELATIONSHIP BETWEEN BENCHMARK VALIDATION LOSS AND
PERFORMANCE

Our LayerMix Law focus on predicting the evaluation loss on downstream benchmarks. However,
it also represents for the actual downstream performance. Figure 5 shows a near-linear relationship
between validation loss and downstream performance on our evaluation tasks, and Table 5 shows the
spearman corelation between validation loss and downstream performance. Lower loss consistently
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Table 4: Structure of models used in LayerMix.

Model Hidden dim. (C) MLP dim. (D) Layers (L) Heads
252M 1024 2752 20 16
302M 1024 2752 24 16
392M 1280 3392 20 20
470M 1280 3392 24 20
566M 1536 4096 20 24
680M 1536 4096 24 24
850M 1792 4800 22 28
1B 1920 5120 24 30
1.2B 2048 5440 24 16
1.5B 2304 6144 24 36
1.8B 2304 6144 28 36
2.5B 2560 6848 32 40
7.7B 4096 14336 32 32

Figure 5: Validation loss versus downstream performance across benchmarks (ARC-C, ARC-E,
HellaSwag, MMLU-Lighteval, TriviaQA) and their average.

corresponds to higher performance within the operating regime of our models. This indicates that
improvements in loss provide reliable signals for expected gains in downstream performance.

E ALTERNATIVE FITS FOR λ

In Section 5.2, we model the relationship between non-embedding FLOPs/token N and hyperpa-
rameter λ. Our primary specification adopts the logarithmic form Equation 9. Beyond this baseline,
we also evaluated alternative function families, including an exponential form:

λ(x; a, b, c) = a ·
(
1− e−bx+c

)
(11)

and a power-law form:
λ(x; a, b) = a · xb (12)

As shown in Figure 6, the logarithmic model achieves the best fit to the N − λ relationship, outper-
forming the exponential and power-law alternatives. Accordingly, we adopt function 9 as the final
parameterization.
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Table 5: Spearman correlation between validation loss and performance across benchmarks

Benchmark Spearman rs p-value
ARC-C -0.979 1.02× 10−16

ARC-E -0.982 2.72× 10−17

HellaSwag -0.942 6.13× 10−12

MMLU-LightEval -0.989 1.26× 10−19

TriviaQA -0.970 4.53× 10−15

Average (5) -0.996 3.54× 10−24

Figure 6: Comparison of functional fits for λ as a function of N (non-embedding FLOPs/token).
The logarithmic form provides the best in-domain fit and extrapolation behavior compared with the
exponential and power-law alternatives. Solid lines denote interpolation over observed N ; dashed
lines indicate extrapolation beyond the observed range.

F DEVIATION OF TRADITIONAL SCALING LAW

We show all Loss-C curve of different LayerMix sampling weights with IST and LST in Figure 7
and Figure 8, they all exhibit a clear deviation from the traditional scaling law, which is fitted from
the first three data points.

G QUALITY SCORE

We show some data samples in different Quality buckets in Figure 9. This figure indicates that high-
score samples under our merged FineWebEdu and DCLM scores are more coherent and instruc-
tional. By contrast, low-score cases predominantly consist of advertisements or low-information
content, offering little substantive value.

Table 6 reports four benchmark results for training a 1.2B model from scratch on 30B tokens using
three datasets: the top 5% and top 20% selected by the FineWebEdu classifier, and a random sample,

Figure 7: Loss and Cm Curve of different LayerMix IST experiments

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Figure 8: Loss and Cm Curve of different LayerMix LST experiments

Table 6: FineWebEdu-selected subsets vs. random data for training a 1.2B model on 30B tokens

Model Data ARC-C HellaSwag TriviaQA MMLU-LightEval avg
1.2B Random 30B 28.50% 51.56% 15.55% 30.23% 31.46%
1.2B FWE-top20% 30B 34.30% 55.26% 20.05% 32.82% 35.61%
1.2B FWE-top5% 30B 37.20% 55.14% 19.25% 34.50% 36.52%

all from Penedo et al. (2023). High-quality data selected by FineWebEdu outperforms the random
baseline, and higher-quality subsets yield better results.

H OPTIMIZING TOKEN MIX WITH LAYERMIX LAW

We present the detailed optimal LayerMix parameters (or token-mix ratios) for different models and
training budgets predicted by LayerMix Law in Table 7. This table shows that small models or small
training budgets prioritize quality, while large models or large training budgets prioritize diversity.

I GENERALIZATION TO REFINEDWEB

To evaluate the robustness and generalization capability of the LayerMix Law across different data
distributions, we conducted an additional series of verification experiments on the RefinedWeb
dataset (Penedo et al., 2023).

Experimental Setup. We followed the identical data preprocessing, LayerMix sampling, and train-
ing procedures described in Section 3.1 and Section 5.1, with the sole exception of replacing the
source corpus with RefinedWeb. Due to time and computational constraints, we limited the scope
of this study to three LayerMix sampling configurations: HQ (High Quality) and LQ (Low Quality)
were used for parameter fitting (interpolation), while MLQ (Medium-Low Quality) was held out
for extrapolation testing. For each configuration, we trained models at three specific scales: 302M,
566M, and 1.2B parameters.

Fitting and Extrapolation. We applied the fitting methodology outlined in Section 5.2. Our analy-
sis yielded two key observations:

• Consistency of Quality Density (f ): The fitted values for the quality density function fd
were numerically very close to those derived from our primary dataset. Specifically, the
fitted parameter θ is 0.93 for RefinedWeb, which is remarkably close to the value of 0.92
obtained from our primary dataset. We attribute this similarity to the fact that RefinedWeb
(Penedo et al., 2023) is also derived from Common Crawl (Common Crawl Foundation);
despite employing different filtering strategies, the shared underlying data source results in
a comparable information density distribution.

• Optimization of λN : In the main experiments, we modeled the relationship between the
parameter λN and model scale N using a logarithmic curve. However, due to the limited
number of data points in this verification set (only three distinct model scales), fitting a
robust λN −N curve was not feasible. Consequently, we skipped the curve fitting step for
λN and directly searched for the optimal λ values corresponding to the specific model sizes
(302M, 566M, and 1.2B).
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Figure 9: Case study contrasting data quality. Left (0–5% quality range): coherent, informational,
and instructional passages. Right (80–100% quality range): low-information, ad-like content with
minimal reasoning or educational value.
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Table 7: The detailed best layer token mix for different models and train token

Model Train Token Source Token w1 w2 w3 w4 w5 w6

7B

200B 500B 0.619 0.376 0.004 0.001 0.000 0.000
300B 500B 0.548 0.444 0.004 0.003 0.002 0.000
400B 500B 0.496 0.492 0.007 0.003 0.002 0.000
500B 500B 0.496 0.492 0.007 0.003 0.002 0.000
600B 500B 0.491 0.487 0.017 0.005 0.000 0.000
700B 500B 0.439 0.430 0.130 0.001 0.000 0.000
800B 500B 0.439 0.430 0.130 0.001 0.000 0.000
900B 500B 0.404 0.403 0.183 0.006 0.003 0.000

1000B 500B 0.395 0.387 0.214 0.003 0.001 0.000

1.8B

200B 500B 0.825 0.165 0.005 0.004 0.001 0.000
300B 500B 0.619 0.376 0.004 0.001 0.000 0.000
400B 500B 0.548 0.444 0.004 0.003 0.002 0.000
500B 500B 0.548 0.444 0.004 0.003 0.002 0.000
600B 500B 0.496 0.492 0.007 0.003 0.002 0.000
700B 500B 0.496 0.492 0.007 0.003 0.002 0.000
800B 500B 0.496 0.492 0.007 0.003 0.002 0.000
900B 500B 0.491 0.487 0.017 0.005 0.000 0.000

1000B 500B 0.491 0.487 0.017 0.005 0.000 0.000

1.2B

200B 500B 0.926 0.066 0.006 0.002 0.000 0.000
300B 500B 0.758 0.229 0.012 0.001 0.000 0.000
400B 500B 0.619 0.376 0.004 0.001 0.000 0.000
500B 500B 0.619 0.376 0.004 0.001 0.000 0.000
600B 500B 0.548 0.444 0.004 0.003 0.002 0.000
700B 500B 0.496 0.492 0.007 0.003 0.002 0.000
800B 500B 0.496 0.492 0.007 0.003 0.002 0.000
900B 500B 0.496 0.492 0.007 0.003 0.002 0.000

1000B 500B 0.496 0.492 0.007 0.003 0.002 0.000
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Figure 10: The fitted quality density function fd on the RefinedWeb dataset.

Figure 11: The Unified Information-Loss Scaling Law on the RefinedWeb dataset.

Results. Using the parameters fitted on the HQ and LQ configurations, we predicted the validation
loss for the unseen MLQ configuration, as illustrated in Figure 11. The LayerMix Law demonstrated
strong predictive accuracy on the RefinedWeb dataset, achieving a maximum absolute error of 0.36%
and a mean absolute percentage Error 0.24% on the extrapolated MLQ experiments. These results
further corroborate that the LayerMix Law effectively captures the fundamental trade-offs between
data quality, repetition, and compute scale, independent of the specific underlying data source.

J LIMITATION

We note several limitations of our work. Our data bucketing is based on a fixed, empirical heuristic.
We have not performed ablation studies to determine the optimal number or boundaries of these
quality tiers. A more systematic approach to data partitioning could further improve the model’s
predictive accuracy. And while we observe that the overtrain degree m systematically shifts the
scaling law curve, a theoretical explanation for this behavior is still needed. These areas present
clear avenues for future work.
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K USAGE OF LLM

During the preparation of this paper, large language models (LLMs) were utilized. The use of these
tools was only for polishing the language, improving grammatical structure, and performing spell
checks.
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