LAYERMIX LAW: SCALING LAW FOR LARGE LANGUAGE MODELS ON QUALITY-WEIGHTED MIXTURE DATA WITH REPETITION

Anonymous authorsPaper under double-blind review

000

001

002

004

006

008 009 010

011 012 013

014

015

016

017

018

019

021

023

025

026

027

028

029

031

033

034

037 038

039

040

041

042

043

044

045

046

047

048

051

052

ABSTRACT

Upweighting high-quality data in large language model (LLM) pretraining typically improves performance. However, the limited availability of high-quality data—particularly in overtrained regimes—means that stronger upweighting often increases repetition, which can degrade performance. This creates a fundamental trade-off between data quality and data repetition. In this paper, we systematically investigate how varying data quality and repetition affects models across different scales. Concretely, we partition the source corpus into buckets based on quality scores and sample from each bucket with different weights, thereby constructing training sets with diverse scales, quality distributions, and repetition levels. We then train a family of models on these datasets to measure performance across conditions. Building on these observations, we introduce a theoretical framework analogous to scaling laws, which we call **LayerMix Law**. LayerMix Law predicts model loss as a function of consumed tokens, model size, sampling weights, and repetition levels. The key intuition is to view training as the accumulation of information from data, where the amount of information is governed by data quality, while model scale and repetition determine the information gained per training step. We show that LayerMix Law accurately predicts the model performance on unseen data recipes at larger computation scale (up to 7B parameter run with 425B token, each x2 invest compute), with 0.15% average absolute error and 0.96% maximum absolute error, which enables efficient search for optimal data recipes without costly additional experiments. Moreover, LayerMix Law extrapolates reliably to different degrees of overtraining, providing a efficient tool for selecting data recipes under varying computational budgets.

1 Introduction

Training large language models (LLMs) requires access to high-quality data (Brown et al., 2020a; Chowdhery et al., 2023). However, the availability of high-quality data is severely limited (Villalobos et al., 2024), and in the data-constrained settings, upweighting higher-quality data inevitably increases repetition, which has been shown to impair performance when excessive (Muennighoff et al., 2023). This issue is further exacerbated by the widespread adoption of overtraining (Touvron et al., 2023; Yang et al., 2025)—a strategy that reduces inference costs compared to the compute-optimal regime (Hoffmann et al., 2022).

To address the shortage of high-quality data as model scale increases, a common compromise is to incorporate lower-quality data, thereby reducing the repetition of high-quality samples. Intuitively, high-quality data provides greater performance gains than low-quality data upon first exposure, but as repetition increases, the marginal benefit decays—eventually approaching that of unseen low-quality data. However, the optimal balance between quality and repetition remains unclear. A standard approach for identifying optimal mixing strategies is to run smaller-scale experiments and extrapolate performance to larger compute budgets using scaling laws (OpenAI et al., 2024; Hoffmann et al., 2022; Chowdhery et al., 2023). Yet, as shown in Figure 1, under conditions of data repetition, standard scaling laws fail to reliably predict model performance at scale (Hernandez et al., 2022; Muennighoff et al., 2023). Moreover, they do not generalize across different mixing

strategies, necessitating grid searches over data recipes—an approach that is costly even at small scales.

In this paper, we study the problem of scaling large language models in a data-aware regime, where training data consists of a heterogeneous mixture with varying quality levels, and each quality level is repeated to different extents. We introduce a theoretical framework, the LayerMix Law, which accounts for both the scaling effects of mixture weights and the impact of repetition. Our formulation views training as a process of accumulating information from the dataset, with model performance determined by the total information gained by the end of training. At each step, the information gain is modeled as the sum of contributions from different quality ranges. Within each quality range, the gain depends on two factors: an information density function, parameterized by quality (with higher quality assigned higher density), and an exponential decay term that captures the interactions between model scale, data scale, and repetition level.

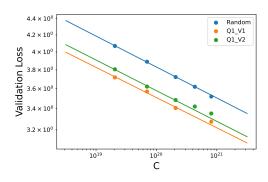
To fit the parameters of the LayerMix Law, we construct a suite of datasets that vary along three axes: scale, quality, and repetition level. Specifically, we partition the source dataset into buckets according to quality scores, and then sample from each bucket with different weights, a procedure we refer to as LayerMix sampling. Following the data-constrained setting, the source dataset is first downsampled to the target scale to ensure stable repetition effects. We then train 9 models ranging from 252M to 1.2B parameters from scratch, each under the same 3.6x over-trained ratio (Gadre et al., 2024). For each model, we construct three datasets with distinct LayerMix sampling configurations, resulting in 27 total training runs. Model performance is evaluated as the average perplexity across five downstream tasks. Finally, we fit the LayerMix Law to these results, estimating the parameters that best capture the relationship between information gain and observed performance.

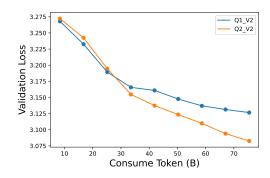
To verify the generalization ability of LayerMix Law, we conduct three extrapolate experiments. Firstly we create datasets with two other unseen LayerMix sampling parameters to test the extrapolation on unseen data recipe. Secondly, we conduct experiments with larger computation scale on both seen and unseen LayerMix sampling parameters to test the scaling ability. Thirdly, we conduct experiments with larger over-trained ratio (25x), to test the generalization ability of LayerMix Law parameters. We found that LayerMix Law is able to predict loss on unseen data recipes at different scales (up to 7B parameter run with 425B token, each x2 invest compute), with 0.15% average absolute error and 0.96% maximum absolute error. We search for the optimal data recipe on 2.5B model with LayerMix Law with no additional experiments, and the result achieves the best among 4 other random ablations. Also on over-trained ratio, directly apply LayerMix Law yields good scaling results.

2 RELATED WORK

Scaling Laws Scaling of transformer language models (Vaswani et al., 2017) and training data has been shown to provide consistent performance improvements (Chowdhery et al., 2023; Radford et al., 2019). This has led to the development of many large-scale models, including both dense architectures (Brown et al., 2020b; Rae et al., 2021; Grattafiori et al., 2024) and mixture-of-experts (MoE) variants (DeepSeek-AI et al., 2025; Yang et al., 2025; Fedus et al., 2021). Early empirical studies observed that neural networks exhibit predictable power-law scaling behavior (Hestness et al., 2017). Building on this, Hoffmann et al. (2022) investigated the compute-optimal setting, suggesting that model size and training data should be scaled in roughly equal proportions, whereas Kaplan et al. (2020) proposed a different allocation strategy emphasizing alternative trade-offs. More recent work, such as DeepSeek-AI et al. (2024), further explored how compute budget C interacts with optimization hyperparameters, including the choice of batch size and learning rate.

Recently, there has been a growing trend of over-training smaller models on large datasets (Touvron et al., 2023; Yang et al., 2025), motivated by both efficiency considerations and deployment constraints. Sardana et al. (2024) extended the Chinchilla framework by incorporating data quality and inference requirements, deriving optimal allocations between model size and dataset scale under these additional factors. Complementary to this, Gadre et al. (2024) demonstrated that scaling laws remain reliable even in the over-trained regime, where models are trained significantly beyond the compute-optimal point. These findings highlight the importance of revisiting scaling strategies in regimes constrained by data availability, quality variation, or inference efficiency demands.





- (a) Loss-C Curve of model trained with random data and Layermix packed data
- (b) The validation loss of different LayerMix experiments in training process.

Figure 1: Effects of quality selection and data repetition

For predicting downstream performance, Isik et al. (2025) demonstrated that downstream metrics also exhibit predictable scaling effects after fine-tuning, extending the scope of scaling laws beyond pre-training loss. Schaeffer et al. (2023) further established a connection between non-linear evaluation metrics and model perplexity, providing a more stable predictor of performance compared to prior approaches such as Wei et al. (2022), which observed instability in emergent metrics.

Data-Aware Scaling Traditional scaling laws typically assume that training data is both fixed and unlimited. In practice, however, high-quality data is scarce and often upsampled to improve model performance (Lin et al., 2022). Under such data-constrained settings, classical scaling laws fail to accurately predict performance at larger scales. For example, Hernandez et al. (2022) demonstrated that upsampling a small fraction (1%) of the dataset up to 100 times leads to substantial performance degradation. Similarly, Muennighoff et al. (2023) showed that repeating the entire dataset across multiple epochs causes performance to deteriorate as training progresses. More recently, Chen et al. (2025) studied how sub-scaling laws interact with data density, providing a finer-grained understanding of scaling under limited-data regimes.

Other lines of work have applied scaling laws to guide the design of optimal data recipes. For instance, Ye et al. (2025) incorporated data mixture weights into the functional form of loss prediction, while Kang et al. (2025) suggested that optimal mixing strategies themselves depend on model scale. Gu et al. (2024); Que et al. (2024) investigated scaling laws in the context of continued pre-training, using them to inform domain mixture strategies. In addition, Chang et al. (2024) analyzed how scaling interacts with data quality. In contrast to these approaches, our work aims to predict model loss on mixtures of varying quality and repetition levels, thereby providing a more general framework for data-aware scaling.

3 LIMITATIONS OF CONVENTIONAL SCALING LAWS

In this section, we reveal and substantiate a critical limitation of conventional scaling laws in the context of data repetition and quality selection. First, we introduce the LayerMix sampling function in section 3.1, to imitate real scenario where the data is a mixture of different quality and repetition degrees. Next, we compare the relationship between the model's loss L and amount of compute C in cases with and without repetition in section 3.2, and the results show that the traditional scaling law performs well on data without repetition

3.1 LAYERMIX SAMPLING FUNCTION

Source Data We obtain our training corpora from Common Crawl (Common Crawl Foundation), following similar filtering process as Penedo et al. (2023) and obtain 15T English tokens. We ran global fuzzy deduplication across all snapshots to ensure there is no repeat data in the corpora. The final dataset contains 3.7T token. The details are in Appendix A.

Training Data Sampling We first define the quality score for each document following Liu et al. (2025), where two quality classifiers (Penedo et al., 2024; Li et al., 2025) are applied and the final quality score is averaging the normalized score from each classifier. With the quality score, We then rank all documents based on quality score and empirically split the training corpora into six quality buckets based on their quality rankings, which are 0-5%, 5%-20%, 20%-40%, 40%-60%, 60%-80%, 80%-100%.

Then we define a LayerMix sampling function H(w,K,S,B), where K represents the token for training data, and we perform 1 epoch training to avoid additional repetition factors, $w = [w_0,w_1,...,w_5]$ and $\sum w_d = 1$, representing the token proportion of the data in the d-th bucket in the training data. $B = [B_0,B_1,...,B_5]$ is the range of each data bucket. Then for each document in bucket d, the expectation appearance times in the training data is $E_d = \frac{w_d K}{B_d S}$. If $E_d < 1$, the document will appear in the training data with probability E_d . The detailed algorithm is shown in Appendix B.

With different setting of w, K, S, the LayerMix sampling function generate datasets with different scales, quality and degrees of repetition. We ensure w_d is greater than w_{d+1} to guarantee higher quality buckets have a larger proportion in the training data. And w_5 is set to 0 so that we drop the bottom 20% of data ranked by quality score. Throughout work, we set K=S to reduced-complexity unless mentioned, so that we only focus on the repetition change caused by w.

3.2 TRADITIONAL SCALING LAW BETWEEN LOSS AND AMOUNT OF COMPUTE

We compare the relationship between the model's loss L and amount of compute C in cases with and without repetition in this section. We conduct experiments under a 3.6x over-trained settings following the definition in Gadre et al. (2024), where $K = \sqrt{m}K^*$ is the consume token, $N = \frac{1}{\sqrt{m}}N^*$ is the non-embedding FLOPs per token as defined in DeepSeek-AI et al. (2024), K^* , N^* is the compute-optimal point (Hoffmann et al., 2022) related with $C = N^*K^*$, and m = 3.6. Experiments are run on different compute C on three kinds of dataset.

Random The training data is randomly sampled from sufficient large source data, where $S \gg K$, meaning there is rarely no repetition in the training data.

Q1_V1 We use the layermix sampling function and w is set to mainly focus on high quality data, namely Q1, see details in Appendix B. Then we set $S \gg K$, denoting as V1, meaning there is no repetition in train data

Q1_V2 We use the layermix sampling function and set S = K, denoting as V2, where there exists repetition in the training data.

We plot the log-log plot between C and model loss in Figure 1a. Note that the loss L mentioned here, including later references, is the average loss of the model on the following five downstream tasks: HellaSwag (Zellers et al., 2019), ARC-E, ARC-C (Clark et al., 2018), MMLU (Hendrycks et al., 2021), TriviaQA (Joshi et al., 2017). Following Schaeffer et al. (2023), we transfer the accuracy on downstream tasks into perplexity for better scaling effect. The results show that for random dataset, the scaling law loss-C curve can fit all of the data points. But for Q1_V1 and Q1_V2, the performance decay as compute C scales.

The above observation indicating that traditional scaling law only holds for completely random and non-repeated data. The change of data quality distribution or repeate time undermines its predictive accuracy. So we need a modified scaling law that incorporates both data quality distribution and the degree of data repetition as core variables.

4 LAYERMIX LAW

Scaling laws for large language models traditionally rely on compute, but often fail to account for effects of data quality and repetition. In this section, we introduce the design of LayerMix Law. We treat the training process as gaining information from the dataset and propose to calculate Information Quantity as accumulation of information gain throughout the training process, which

synthesizes the impacts of data quality, repetition level, model scales and total training tokens, and then build power-law relationship with the model's final validation loss.

4.1 Information Quantity

We first show the evaluation loss in training process of two 850M models trained on two datasets packed with different LayerMix sampling weights in Figure 1b. The dataset $Q1_V2$ repeates top 5% quality data for about 16 times and $Q2_V2$ for 10 times. Initially, the Q1 and Q2 experiments achieves almost same evaluation loss. However, the loss of the more repetitive Q1 experiment decreases much more slowly in the later stages, resulting in a worse final performance compared to the Q2 experiment, indicating that repeatedly learning from the same data provides progressively smaller gains.

Based on this observation, we propose an exponential decay function to model the decreasing information gain of repeated data. Assuming the Information Quantity a document i contains is I_i , then the information a language model gets at t-th learning from the document i is:

$$I_{i,part}(t,\lambda_N) = I_i \cdot \lambda_N e^{-\lambda_N t} \tag{1}$$

where λ is a hyperparameter which is related to the non-embedding FLOPs/token N.

When a language model learning the document for total T times, the Information Quantity learned from the document is:

$$I_{i,\text{total}}(T,\lambda_N) = \int_0^T I_{i,\text{part}}(t,\lambda_N)dt = I_i \cdot (1 - e^{-\lambda_N T})$$
 (2)

Equation 2 captures the principle of diminishing returns in learning: repeated exposure to a document yields progressively smaller gains, causing the total acquired information to saturate and asymptotically approach the document's full information content I_i .

Considering in large-scale training, due to the forgetting effect: as the total train token K grows, the average Information Quantity language model acquire from a singel sample decreases. We introduce train token K to the Equation 1 to accommodate this phenomenon:

$$I_{i,part}(t, \lambda_N, K) = I_i \cdot \lambda_N e^{-\lambda_N t / \log(K)}$$
(3)

Then the Equation 2 becomes to:

$$I_{i,\text{total}}(t, \lambda_N, K) = \int_0^T I_{i,\text{part}}(t, \lambda_N, K) dt = I_i \cdot \log(K) (1 - e^{-\lambda_N T / \log(K)})$$
(4)

For all the training data, we sum them together as the final Information Quantity the language model learned from the training corpora, denoting as info:

$$info(w, K, S, f, \lambda_N) = \sum_{d} I_d \cdot \log(K) (1 - e^{-\lambda_N R_d / \log(K)})$$
$$= \sum_{d} f_d M_d \log(K) \cdot (1 - e^{-\lambda_N R_d / \log(K)})$$
(5)

where d is the quality bucket number from 0 to 5, $M_d = min(w_dK, B_dS)$ is the packed unique token from the d-th quality bucket, f_d refers to the quality density of the d-th quality bucket, and $R_d = \frac{w_dK}{M_d}$ is the average repeat times for the data from the d-th bucket. f_d is parameterized quality density function and λ_N is related with N, which are to be fitted from the data.

Equation 5 can be divided into two parts: the first term is $I_d = f_d M_d \log(K)$, it represents the total Information Quantity contained in the packed data of the d-th bucket, and the second term is

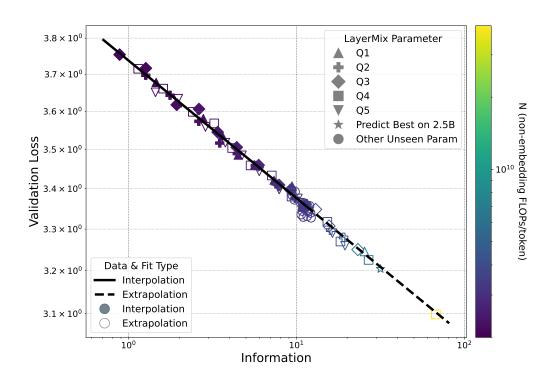


Figure 2: The Unified Information-Loss Scaling Law. Experimental results from diverse configurations (different LayerMix strategies distinguished by marker shape, model non-embedding FLOPs/token indicated by color) collapse onto a single power-law curve when plotted against our proposed Information metric. The scaling law is fitted only on the interpolation data (solid markers), yet it accurately predicts the performance of held-out extrapolation data (hollow markers).

 $1 - e^{-\lambda_N R_d/\log(K)}$, it represents the language model's learning ability on this data when repeated an average of R_d times. And the total Information Quantity learned by the language model is the product of these two terms.

We propose Information Quantity, a metric computed from LayerMix sampling weights w, train token K and two fitted functions (f_d , λ_N , to quantify the knowledge learned during training. Since it is designed to be monotonic with model performance, it enables loss prediction for various training configurations prior to any actual runs. The fitting of f_d and λ_N is described in Section 5.2.

4.2 Information-Loss Scaling Law on Repeated Data

As illustrated in Figure 1a, the evaluation loss of the model trained with repeated data is higher than that of the model trained without repeated data, and the traditional scaling law fails to predict language model's performance under this circumstance.

We use the Information Quantity proposed in Section 4.1 and plot the L-info figure. As illustrated in Figure 2, when we replace the traditional computation axis C with our novel metric: Information Quantity, the experimental points with different LayerMix sampling weights w, Model non-embedding FLOPs/token N and Train Token K now collapse perfectly onto a single, unified power-law curve, where they were previously scattered and separated.

The power-law relationship between the loss L and info can be formulated as:

$$L = \alpha \cdot info^{-\beta} \tag{6}$$

In our experiment, $\alpha = 3.7373$ and $\beta = 0.0441$. We show them in a log-log plot, so it appears as a straight line with a slope of $-\beta$ and an intercept of $\log(\alpha)$.

Like the traditional scaling law (Hoffmann et al., 2022), we can now conduct experiments on small models to compare the advantages and disadvantages of different experimental configurations, and then use our proposed information scaling law to extrapolate the performance of larger models under larger training tokens.

5 EXPERIMENTS

5.1 Training setup

We train 9 models ranging from 252M to 1.2B on 3 layermix sampling weights (Q1, Q2, and Q3), with 3.6x over-trained ratio, resulting in 27 experiment runs in total to collect data for fitting the LayerMix Law parameters. We use transformer architecture (Vaswani et al., 2017), SwiGLU (Shazeer, 2020) as the activation function and RoPE embeddings (Su et al., 2024). We use a tokenizer with 250k vocabulary. See Appendix B and Appendix D for details about LayerMix sampling weights, model structure, learnign rate and optimizer.

5.2 FITTING THE CURVE

In this section, we introduce how to fit the parameters in LayerMix Law to predict the model performance collected in Section 5.1. Since Information Quantity info indicates the knowledge learned by the model, we expect larger info to correspond to lower evaluation loss L. Considering that there may exist scale difference between info and model loss L, we choose Spearman correlation ρ_s as the fitting metric, i.e., the object is to find the optimal quality density f and λ_N such that the Spearman correlation between evaluation loss L and info is minimized for all the experiments over N, w:

$$(f^*, \lambda^*) = \underset{f, \lambda}{\operatorname{argmin}} \sum_{f, \lambda}^{N} \sum_{f}^{w} \left(\rho_s \left(L_N, info\left(w, K_N, S_N, f, \lambda_N \right) \right) \right)$$
 (7)

To prevent from over-fitting, we make some assumption based on naive intuition. For f, as it indicates the quality density, the higher-quality bucket should have larger f. As smaller d corresponds to higher-quality buckets, we define f in the following form to ensure it is a decreasing function:

$$f_d(\theta) = e^{-\theta * d} \tag{8}$$

where θ is a hyperparameter and $\theta > 0$.

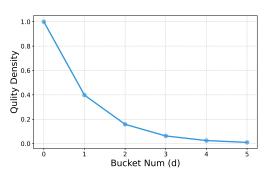
 λ_N is related to the model's learning capacity, so λ_N should increase as N increases. But we need to find the formula for λ_N related with N so that it can scale to larger N. To do this we first sample 100,000 combinations of θ and λ_N from the parameter space, then select optimal θ^* and λ_N^* based on Equation 7. The fitted quality density $f(\theta^*)$ is shown in Figure 3a with fitted $\theta^* = -0.922$.

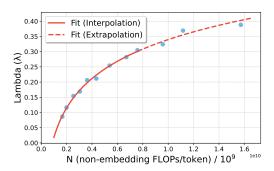
Having the λ_N^* values of different models, as is shown in Figure 3b, we try to fit the λ_N -N curve. The relationship between λ_N and N is observed to be non-linear, exhibiting rapid growth for smaller N and gradually saturating as N increases. This trend is well-approximated by a logarithmic function. Therefore, we choose the λ_N -N curve using following formula:

$$\lambda_N(a,b) = a \cdot \ln(N) + b \tag{9}$$

Using existing λ_N^* , we fit the λ_N -N curve in Figure 3b with fitted $a^*=0.140$, $b^*=0.018$. To validate this fit, we compute λ_N^* for larger N under the fixed θ^* , and examine whether these values lie on the predicted λ_N -N curve. As illustrated in Figure 3b, the results demonstrate strong extrapolation performance, supporting the correctness of our formulation.

Finally, with $f(\theta^*)$ and $\lambda_N(a^*, b^*)$, we can calculate the Information Quantity for arbitrary layermix sampling weights w, train token K, source token S and model non-embedding FLOPs/token N.





(a) The fitted quality density function f_d . The quality density is a monotonically decreasing function of the bucket index, meaning buckets with higher-quality data are assigned a higher density value.

(b) The relationship between λ and N with a fitted curve. The blue scattered points represent the observed data. The solid red line shows the fit within the data range, while the dashed line represents the extrapolation.

Figure 3: The fitted function of quality density function and relationship between λ_N and N

Table 1: Results of four distinct LayerMix experiments on 2.5B model.

Name	Q1	$\overline{Q3}$	Q4	Pred Best
Validation Loss	3.246	3.250	3.226	3.204

6 EXTRAPOLATION

The LayerMix Law achieves a strong fit on the training data after parameter optimization, and we subsequently employ it to predict loss under unseen conditions to assess its robustness. To rigorously evaluate its extrapolation capability, we design experiments along three key axes of generalization: (i) novel LayerMix sampling weights, (ii) larger computational scales, and (iii) varying degrees of over-training.

Extrapolation to other LayerMix Sampling Weights

We first test the ability to generalize to an unseen LayerMix sampling weights. We generate dataset with two more sampling weights Q4, Q5 on model scales ranging from 252M to 1.2B, which are within the range of training data. Also we random sample 25 more sampling weights and run experiments on 1.2B model only.

The result is shown in Figure 2 marked by hollow squares (for Q4) and hollow downward-pointing triangles (for Q5). As can be seen, these points align remarkably well with the scaling law curve established by the initial Q1-Q3 data, demonstrating the predictive power of our model on unseen LayerMix sampling weights.

Extrapolation to Larger Models

To test the extrapolation ability on model scale, we use the same Layermix sampling weights Q2,Q3 to train models ranging from 1.5B to 2.5B and Q1,Q3 to train model with 2.5B parameters, which are out of the range of training data. The experimental results of larger models are shown in Figure 2, we can see LayerMix Law predict the loss on larger scale accurately for all three sampling weights, proving the ability of scaling on model size.

Combination of Extrapolation

Further more, we combine the two extrapolation above and test the effectiveness on both unseen LayerMix sampling weights and unseen scales. We run experiments with Q4,Q5 on models ranging from 1.5B to 7B. As shown in Figure 2, LayerMix Law also generate well on these combined extrapolation condition. This enables us to search for best data recipe on unseen scale without additional experiments. To verify this, we conduct experiments on 2.5B model with optimal data recipe and 3 other layermix sampling weights. As shown in Table 1, our optimal recipe achieves the best validation loss. On all the unseen data points, including unseen LayerMix sampling weights

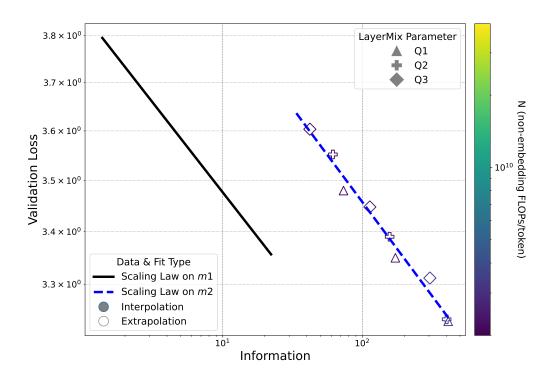


Figure 4: Cross-Regime Prediction of the Scaling Law. The blue line (m_2) is a pure prediction, generated using parameters fitted only on the m_1 data (black line). The fit for the m_2 points demonstrates our LayerMix Scaling Law's power to extrapolate across different overtrain degrees.

and model scales, LayerMix Law predict the validation loss with 0.15% average absolute error and maximum error is 0.96%. This proves that our proposed information scaling law has reliable extrapolation capability.

Extrapolation to Larger Overtrain Degree

To explore the model's reliability under varying sub-optimality, we conducted a second series of experiments at a higher overtrain degree, $m_2 = 25$. This new regime was anchored by a 1.2B model trained on 640B tokens (the m_2 -experiment), contrasting with our initial m_1 experiment anchored at 106B tokens.

For the m_2 -experiment, we calculated the Information Quantity using the same quality density $f(\theta^*)$ and $\lambda_N(a^*,b^*)$ fitted previously on the m_1 data. As shown in Figure 4, the new experimental points align with a new scaling law curve. The resulting curves for m_1 and m_2 appear nearly parallel, suggesting the overtrain degree m primarily shifts the curve's intercept. This confirms that our proposed Information Scaling Law is effective across different overtrain degrees.

7 Conclusion

In this paper, we propose a refined scaling law modeling **LayerMix Law**, which focus on predicting model performance on downstream tasks under data-constrained settings with weighted-quality mixing. The LayerMix Law provides accurate predictions of model performance on unseen data recipes at larger computational scales, achieving an average absolute error of only 0.15% and a maximum error of 0.96%. This enables efficient discovery of optimal data recipes without the need for extensive additional experiments. Furthermore, the LayerMix Law extrapolates reliably across varying degrees of over-training, offering an effective tool for selecting data recipes under different computational budgets.

8 ETHICS STATEMENT

Our research is based on the publicly available Common Crawl dataset. We do not foresee any direct negative societal impacts stemming from our methodology or the resulting models.

9 REPRODUCIBILITY STATEMENT

Our experiments are based on the open-source Common Crawl dataset. All experimental settings, model architectures, hyperparameters, and implementation details have been thoroughly described in the main body and the appendix to ensure that other researchers can independently reproduce our results based on this information.

REFERENCES

- Xiao Bi, Deli Chen, Guanting Chen, Shanhuang Chen, Damai Dai, Chengqi Deng, Honghui Ding, Kai Dong, Qiushi Du, Zhe Fu, et al. Deepseek llm: Scaling open-source language models with longtermism. *arXiv preprint arXiv:2401.02954*, 2024.
- Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, and et al. Language models are few-shot learners. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33, pp. 1877–1901, 2020a. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.
- Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, and et al. Language models are few-shot learners. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33, pp. 1877–1901. Curran Associates, Inc., 2020b. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.
- Ernie Chang, Matteo Paltenghi, Yang Li, Pin-Jie Lin, Changsheng Zhao, Patrick Huber, Zechun Liu, Rastislav Rabatin, Yangyang Shi, and Vikas Chandra. Scaling parameter-constrained language models with quality data, 2024. URL https://arxiv.org/abs/2410.03083.
- Zhengyu Chen, Siqi Wang, Teng Xiao, Yudong Wang, Shiqi Chen, Xunliang Cai, Junxian He, and Jingang Wang. Sub-scaling laws: On the role of data density and training strategies in llms, 2025. URL https://arxiv.org/abs/2507.10613.
- Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, and et al. Palm: Scaling language modeling with pathways. *Journal of Machine Learning Research*, 24 (240):1–113, 2023. URL http://jmlr.org/papers/v24/22-1144.html.
- Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge, 2018. URL https://arxiv.org/abs/1803.05457.
- Common Crawl Foundation. Common Crawl. http://commoncrawl.org.
- DeepSeek-AI,:, Xiao Bi, Deli Chen, Guanting Chen, Shanhuang Chen, Damai Dai, Chengqi Deng, Honghui Ding, Kai Dong, Qiushi Du, Zhe Fu, Huazuo Gao, Kaige Gao, Wenjun Gao, and et al. Deepseek llm: Scaling open-source language models with longtermism, 2024. URL https://arxiv.org/abs/2401.02954.
- DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, and et al. Deepseek-v3 technical report, 2025. URL https://arxiv.org/abs/2412.19437.
- William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter models with simple and efficient sparsity. *CoRR*, abs/2101.03961, 2021. URL https://arxiv.org/abs/2101.03961.

- Samir Yitzhak Gadre, Georgios Smyrnis, Vaishaal Shankar, Suchin Gururangan, Mitchell Wortsman, Rulin Shao, Jean Mercat, Alex Fang, Jeffrey Li, Sedrick Keh, et al. Language models scale reliably with over-training and on downstream tasks. *arXiv preprint arXiv:2403.08540*, 2024.
 - Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, and et al. The llama 3 herd of models, 2024. URL https://arxiv.org/abs/2407.21783.
 - Jiawei Gu, Zacc Yang, Chuanghao Ding, Rui Zhao, and Fei Tan. Cmr scaling law: Predicting critical mixture ratios for continual pre-training of language models, 2024. URL https://arxiv.org/abs/2407.17467.
 - Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob Steinhardt. Measuring massive multitask language understanding. In *ICLR*. Open-Review.net, 2021. URL http://dblp.uni-trier.de/db/conf/iclr/iclr2021.html#HendrycksBBZMSS21.
 - Danny Hernandez, Tom Brown, Tom Conerly, Nova DasSarma, Dawn Drain, Sheer El-Showk, Nelson Elhage, Zac Hatfield-Dodds, Tom Henighan, Tristan Hume, Scott Johnston, Ben Mann, Chris Olah, Catherine Olsson, Dario Amodei, Nicholas Joseph, Jared Kaplan, and Sam McCandlish. Scaling laws and interpretability of learning from repeated data, 2022. URL https://arxiv.org/abs/2205.10487.
 - Joel Hestness, Sharan Narang, Newsha Ardalani, Gregory F. Diamos, Heewoo Jun, Hassan Kianine-jad, Md. Mostofa Ali Patwary, Yang Yang, and Yanqi Zhou. Deep learning scaling is predictable, empirically. *CoRR*, abs/1712.00409, 2017. URL http://arxiv.org/abs/1712.00409.
 - Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom Hennigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy, Simon Osindero, Karen Simonyan, Erich Elsen, Oriol Vinyals, Jack W. Rae, and Laurent Sifre. Training compute-optimal large language models. In *Proceedings of the 36th International Conference on Neural Information Processing Systems*, NIPS '22, Red Hook, NY, USA, 2022. Curran Associates Inc. ISBN 9781713871088.
 - Berivan Isik, Natalia Ponomareva, Hussein Hazimeh, Dimitris Paparas, Sergei Vassilvitskii, and Sanmi Koyejo. Scaling laws for downstream task performance in machine translation, 2025. URL https://arxiv.org/abs/2402.04177.
 - Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke Zettlemoyer. TriviaQA: A large scale distantly supervised challenge dataset for reading comprehension. In Regina Barzilay and Min-Yen Kan (eds.), *Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics* (*Volume 1: Long Papers*), pp. 1601–1611, Vancouver, Canada, July 2017. Association for Computational Linguistics. doi: 10.18653/v1/P17-1147. URL https://aclanthology.org/P17-1147/.
 - Feiyang Kang, Yifan Sun, Bingbing Wen, Si Chen, Dawn Song, Rafid Mahmood, and Ruoxi Jia. Autoscale: Scale-aware data mixing for pre-training llms, 2025. URL https://arxiv.org/abs/2407.20177.
 - Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models. *CoRR*, abs/2001.08361, 2020. URL https://arxiv.org/abs/2001.08361.
 - Jeffrey Li, Alex Fang, Georgios Smyrnis, Maor Ivgi, Matt Jordan, Samir Gadre, Hritik Bansal, Etash Guha, Sedrick Keh, Kushal Arora, Saurabh Garg, and et al. Datacomp-lm: In search of the next generation of training sets for language models, 2025. URL https://arxiv.org/abs/2406.11794.
 - Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuohui Chen, Daniel Simig, and et al. Few-shot learning with multilingual generative language models. In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (eds.), *Proceedings of the 2022 Conference on Empirical Methods*

in Natural Language Processing, pp. 9019–9052, Abu Dhabi, United Arab Emirates, December 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.emnlp-main.616. URL https://aclanthology.org/2022.emnlp-main.616/.

- Fengze Liu, Weidong Zhou, Binbin Liu, Zhimiao Yu, Yifan Zhang, Haobin Lin, Yifeng Yu, Bingni Zhang, Xiaohuan Zhou, Taifeng Wang, et al. Quadmix: Quality-diversity balanced data selection for efficient llm pretraining. *arXiv* preprint arXiv:2504.16511, 2025.
- Niklas Muennighoff, Alexander M. Rush, Boaz Barak, Teven Le Scao, Aleksandra Piktus, Nouamane Tazi, Sampo Pyysalo, Thomas Wolf, and Colin Raffel. Scaling data-constrained language models. In *Proceedings of the 37th International Conference on Neural Information Processing Systems*, NIPS '23, Red Hook, NY, USA, 2023. Curran Associates Inc.
- OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red Avila, Igor Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, and et al. Gpt-4 technical report, 2024. URL https://arxiv.org/abs/2303.08774.
- Guilherme Penedo, Quentin Malartic, Daniel Hesslow, Ruxandra Cojocaru, Alessandro Cappelli, Hamza Alobeidli, Baptiste Pannier, Ebtesam Almazrouei, and Julien Launay. The refinedweb dataset for falcon llm: Outperforming curated corpora with web data, and web data only, 2023. URL https://arxiv.org/abs/2306.01116.
- Guilherme Penedo, Hynek Kydlíček, Loubna Ben allal, Anton Lozhkov, Margaret Mitchell, Colin Raffel, Leandro Von Werra, and Thomas Wolf. The fineweb datasets: Decanting the web for the finest text data at scale, 2024. URL https://arxiv.org/abs/2406.17557.
- Haoran Que, Jiaheng Liu, Ge Zhang, Chenchen Zhang, Xingwei Qu, Yinghao Ma, Feiyu Duan, Zhiqi Bai, Jiakai Wang, Yuanxing Zhang, Xu Tan, Jie Fu, Wenbo Su, Jiamang Wang, Lin Qu, and Bo Zheng. D-cpt law: Domain-specific continual pre-training scaling law for large language models, 2024. URL https://arxiv.org/abs/2406.01375.
- Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language models are unsupervised multitask learners. *OpenAI*, 2019. URL https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf. Accessed: 2024-11-15.
- Jack W. Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jordan Hoffmann, H. Francis Song, John Aslanides, Sarah Henderson, Roman Ring, Susannah Young, Eliza Rutherford, and et al. Scaling language models: Methods, analysis & insights from training gopher. *CoRR*, abs/2112.11446, 2021. URL https://arxiv.org/abs/2112.11446.
- Nikhil Sardana, Jacob Portes, Sasha Doubov, and Jonathan Frankle. Beyond chinchilla-optimal: accounting for inference in language model scaling laws. In *Proceedings of the 41st International Conference on Machine Learning*, ICML'24. JMLR.org, 2024.
- Rylan Schaeffer, Brando Miranda, and Sanmi Koyejo. Are emergent abilities of large language models a mirage?, 2023. URL https://arxiv.org/abs/2304.15004.
- Noam Shazeer. Glu variants improve transformer, 2020. URL https://arxiv.org/abs/2002.05202.
- Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: Enhanced transformer with rotary position embedding. *Neurocomputing*, 568:127063, 2024. ISSN 0925-2312. doi: https://doi.org/10.1016/j.neucom.2023.127063. URL https://www.sciencedirect.com/science/article/pii/S0925231223011864.
- Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation language models, 2023. URL https://arxiv.org/abs/2302.13971.

- Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.
- Pablo Villalobos, Anson Ho, Jaime Sevilla, Tamay Besiroglu, Lennart Heim, and Marius Hobbhahn. Position: will we run out of data? limits of llm scaling based on human-generated data. In *Proceedings of the 41st International Conference on Machine Learning*, ICML'24. JMLR.org, 2024.
- Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yogatama, Maarten Bosma, Denny Zhou, Donald Metzler, Ed H. Chi, Tatsunori Hashimoto, Oriol Vinyals, Percy Liang, Jeff Dean, and William Fedus. Emergent abilities of large language models. *Transactions on Machine Learning Research*, 2022. ISSN 2835-8856. URL https://openreview.net/forum?id=yzkSU5zdwD. Survey Certification.
- An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu, and et al. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.
- Jiasheng Ye, Peiju Liu, Tianxiang Sun, Jun Zhan, Yunhua Zhou, and Xipeng Qiu. Data mixing laws: Optimizing data mixtures by predicting language modeling performance, 2025. URL https://arxiv.org/abs/2403.16952.
- Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. HellaSwag: Can a machine really finish your sentence? In Anna Korhonen, David Traum, and Lluís Màrquez (eds.), *Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics*, pp. 4791–4800, Florence, Italy, July 2019. Association for Computational Linguistics. doi: 10. 18653/v1/P19-1472. URL https://aclanthology.org/P19-1472/.

TRAINING DATASET

702

703 704

705

706

708 709

710 711

712

755

We use the English portion of the Common Crawl Dataset (Common Crawl Foundation), utilizing 96 of the snapshots, from CC-MAIN-2013-20 to CC-MAIN-2024-18. Following Bi et al. (2024), we ran a global fuzzy deduplication across all snapshots, resulting in a total dataset with 3.7T tokens.

В LAYERMIX SAMPLING FUNCTION

We show the detail of LayerMix sampling function in Algorithm 1. And the 5 sets LayerMix sampling weights Q1 to Q5 are illustrated in Table 2.

```
713
714
715
          Algorithm 1 LayerMix Sampling Function H(w, K, S, B)
716
           1: function H(w, K, S, B)
717
          Require:
718
              w: A list of target proportions for six buckets, w = [w_0, ..., w_5], where \sum w_d = 1.
719
              K: The total number of tokens for the final training dataset.
720
              S: The total number of tokens in the entire source corpora.
721
              B: A list of six data buckets, B = [B_0, ..., B_5], partitioned by quality.
722
         Ensure:
723
              D_{train}: The final packed training dataset.
724
              M: A list of unique token counts for each layer, M = [M_0, ..., M_5].
725
              R: A list of average repetition counts for each layer, R = [R_0, ..., R_5].
726
                  Initialize an empty training dataset D_{train} \leftarrow \emptyset.
           2:
727
                  Initialize empty lists for statistics: M \leftarrow [], R \leftarrow [].
           3:
728
                  Define the source distribution proportions P_{source} \leftarrow [0.05, 0.15, 0.2, 0.2, 0.2, 0.2].
           4:
729
730
           5:
                  for d \leftarrow 0 to 5 do
                                                                                 > Iterate through each quality bucket
731
                       K_{needed} \leftarrow K \times w_dS_d \leftarrow S \times P_{source}[d]
                                                      \triangleright Calculate tokens needed from bucket B_d for the target mix
           6:
732
           7:
                                                                    \triangleright Calculate source tokens available in bucket B_d
733
                                                               ▶ Calculate the sampling ratio for the current bucket
734
                       Ratio_d \leftarrow K_{needed}/S_d
           8:
735
                                                                   \triangleright — Detailed sampling process for bucket B_d —
736
           9:
                       Initialize an empty temporary set D_{sampled\_d} \leftarrow \emptyset.
          10:
                       for all data point x in bucket B_d do
737
                                                             ▷ 1. Deterministic copy for the integer part of the ratio
738
                           for i \leftarrow 1 to |Ratio_d| do
          11:
739
          12:
                               Add x to D_{sampled\_d}
740
                           end for
          13:
741
                                                                   ▷ 2. Probabilistic sampling for the fractional part
742
          14:
                           if Ratio_d - |Ratio_d| > 0 and random() < (Ratio_d - |Ratio_d|) then
743
                                Add x to D_{sampled\_d}
          15:
744
                           end if
          16:
745
                       end for
          17:
746
                       Append all data from D_{sampled\_d} to D_{train}.
          18:
747
          19:
                       M_d \leftarrow \min(K_{needed}, S_d)

    ▷ Calculate unique tokens based on the new formula

748
          20:
                       Append M_d to M.
749
          21:
                       R_d \leftarrow K_{needed}/M_d

    ▷ Calculate average repetition count

750
                       Append R_d to R.
          22:
751
                  end for
          23:
752
753
                  return D_{train}, M, R
                                                                                         ▶ Return dataset and statistics
754
          25: end function
```

Table 2: LayerMix sampling weights Q1 to Q5.

Name	w1	w2	w3	w4	w5	w6
Q1	0.80	0.10	0.03	0.03	0.02	0.0
Q2	0.48	0.23	0.13	0.07	0.07	0.0
Q3	0.24	0.20	0.19	0.18	0.17	0.0
Q4	0.38	0.21	0.20	0.11	0.08	0.0
Q5	0.66	0.22	0.05	0.03	0.02	0.0
Pred Best of 2.5B model with m_1	0.50	0.49	0.01	0.0	0.0	0.0

Table 3: Structure of models used in LayerMix.

Model	Hidden dim. (C)	MLP dim. (D)	Layers (L)	Heads
252M	1024	2752	20	16
302M	1024	2752	24	16
392M	1280	3392	20	20
470M	1280	3392	24	20
566M	1536	4096	20	24
680M	1536	4096	24	24
850M	1792	4800	22	28
1B	1920	5120	24	30
1.2B	2048	5440	24	16
1.5B	2304	6144	24	36
1.8B	2304	6144	28	36
2.5B	2560	6848	32	40
7.7B	4096	14336	32	32

C SCALING LAW FOR OVERTRAINING

Following Gadre et al. (2024), we define a overtrain degree factor m, to quantify the deviation of a given training configuration from the Chinchilla-optimal point. For a training run with model non-embedding FLOPs/token N and D tokens, we first calculate the total compute C=ND and find the corresponding optimal model non-embedding FLOPs/token N^* and tokens D^* according to the Chinchilla scaling law. The overtrain degree m is then defined as:

$$\sqrt{m} = \frac{N^*}{N} = \frac{D}{D^*} \tag{10}$$

A value of m=1 indicates a compute-optimal training run, while m>1 signifies that the model is overtrained relative to its compute budget.

D TRAINING

The model structures used in LayerMix are illustrated in Table 3. We train all the model with 2048 as the max sequence length, we use a cosine decay schedular and the initial learning rate calculated by $lr = round(0.3118 \cdot C^{-0.1250}, 8)$, the warm up ratio is set 0.5%. We use AdamW optimizer with $\beta_1 = 0.9$, $\beta_2 = 0.95$, weight decay= 0.1.

E DEVIATION OF TRADITIONAL SCALING LAW

We show all *Loss-C* curve of different LayerMix sampling weights with V1 and V2 in Figure 5 and Figure 6, they all exhibit a clear deviation from the traditional scaling law, which is fitted from the first three data points.

Algorithm 2 Calculation of Overtrain Degree and Optimal Tokens 1: **function** CALCULATEOVERTRAINEXTRAPOLATION($model_{curr}$, D_{curr} , $models_{target}$) Require:

 $model_{curr}$: The size of the current model configuration. D_{curr} : The number of tokens used to train the current model.

 $model_{target}$: The size of the target model configuration.

810

811

812

813

814

815

816 817

818

819

820 821

822

823 824

825

826

827 828

829

830

831 832

833

834 835

836

837

838 839

840

841

842 843

844

845 846 847

848

849 850

851

852 853 854

855 856

857

858 859 860

861 862 m: The calculated overtrain degree for the current configuration.

 D_{target} : The train token of target model under same overtrain degree.

// Part 1: Calculate overtrain degree m from the current configuration

- $N_{curr} \leftarrow \text{Get_N}(model_{curr}) \triangleright \text{Get } N \text{ (non-embedding FLOPs/token) for the current model}$ 3:
- 4: $C \leftarrow N_{curr} \times D_{curr}$ ▷ Calculate the total compute budget
- $N_{opt} \leftarrow 0.06085 \times C^{0.5445}$ ▷ Calculate Chinchilla-optimal model non-embedding FLOPs/token for budget C
- $D_{opt} \leftarrow 16.4326 \times C^{0.4555}$ \triangleright Calculate Chinchilla-optimal tokens for budget C6:
- $\sqrt{m} \leftarrow N_{opt}/N_{curr}$ \triangleright Calculate the overtrain degree m7: \triangleright This is equivalent to $\sqrt{m} = D_{curr}/D_{opt}$ 8:
- 9: // Part 2: Extrapolate to target model while keeping m constant
- 10: for each $model_t$ in $[model_{curr}] + models_{target}$ do
- \triangleright Get N (non-embedding FLOPs/token) for the target model $N_t \leftarrow \text{Get_N}(model_t)$ 11:
- 12: $N'_{opt} \leftarrow N_t \times \sqrt{m}$ ⊳ Find the corresponding optimal model non-embedding FLOPs/token for the target
- $C_{new} \leftarrow (N'_{opt}/0.06085)^{1/0.5445}$ ▷ Derive the new compute budget 13:
- $D_{opt}' \leftarrow 16.4326 \times C_{new}^{0.4555} \\ D_{target} \leftarrow D_{opt}' \times \sqrt{m}$ ▶ Find optimal tokens for the new budget 14:
- 15: ▶ Calculate the required tokens for the target model
- 16:
- **return** m, D_{target} \triangleright Return the overtrain degree and the train token of target model under same m.

18: end function

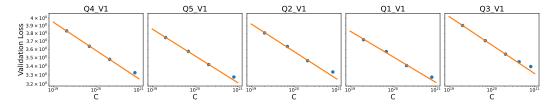


Figure 5: Loss and C Curve of different LayerMix V1 experiments

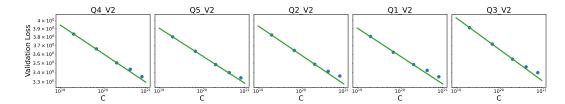


Figure 6: Loss and C Curve of different LayerMix V2 experiments

F LIMITATION

We note several limitations of our work. Our data bucketing is based on a fixed, empirical heuristic. We have not performed ablation studies to determine the optimal number or boundaries of these quality tiers. A more systematic approach to data partitioning could further improve the model's predictive accuracy. And while we observe that the overtrain degree m systematically shifts the scaling law curve, a theoretical explanation for this behavior is still needed. These areas present clear avenues for future work.

G USAGE OF LLM

During the preparation of this paper, large language models (LLMs) were utilized. The use of these tools was only for polishing the language, improving grammatical structure, and performing spell checks.