DiffDock: Diffusion Steps, Twists,
and Turns for Molecular Docking

Gabriele Corso*, Hannes Stirk*, Bowen Jing*, Regina Barzilay & Tommi Jaakkola
CSAIL, Massachusetts Institute of Technology
{gcorso, hstark, bjing}@mit.edu

Abstract

Predicting the binding structure of a small molecule ligand to a protein—a task
known as molecular docking—is critical to drug design. Recent deep learning meth-
ods that treat docking as a regression problem have decreased runtime compared to
traditional search-based methods but have yet to offer substantial improvements in
accuracy. We instead frame molecular docking as a generative modeling problem
and develop DIFFDOCK, a diffusion generative model over the non-Euclidean
manifold of ligand poses. To do so, we map this manifold to the product space
of the degrees of freedom (translational, rotational, and torsional) involved in
docking and develop an efficient diffusion process on this space. Empirically,
DIFFDOCK obtains a 38% top-1 success rate (RMSD<2A) on PDBBind, signifi-
cantly outperforming the previous state-of-the-art of traditional docking (23%) and
deep learning (20%) methods. Moreover, DIFFDOCK has fast inference times and
provides confidence estimates with high selective accuracy.

1 Introduction

The biological functions of proteins can be modulated by small molecule ligands (such as drugs)
binding to them. Thus, a crucial task in computational drug design is molecular docking—predicting
the position, orientation, and conformation of a ligand when bound to a target protein—from which
the effect of the ligand (if any) might be inferred. Recent works [1, 2] have developed deep learning
models to predict the binding pose in one shot, treating docking as a regression problem. While
these methods are much faster than traditional search-based methods, they have yet to demonstrate
significant improvements in accuracy. We argue that this may be because the regression-based
paradigm corresponds imperfectly with the objectives of molecular docking, which is reflected in
the fact that standard accuracy metrics resemble the likelihood of the data under the predictive
model rather than a regression loss. We thus frame molecular docking as a generative modeling
problem—given a ligand and target protein structure, we learn a distribution over ligand poses.

We therefore develop DIFFDOCK, a diffusion generative model (DGM) over the space of ligand
poses for molecular docking. We define a diffusion process over the degrees of freedom involved in
docking: the position of the ligand relative to the protein (locating the binding pocket), its orientation
in the pocket, and the torsion angles describing its conformation. DIFFDOCK samples poses by
running the learned (reverse) diffusion process, which iteratively transforms an uninformed, noisy
prior distribution over ligand poses into the learned model distribution (Figure 1). Intuitively, this
process can be viewed as the progressive refinement of random poses via updates of their translations,
rotations, and torsion angles.

While DGMs have been applied to other problems in molecular machine learning [3, 4, 5], existing
approaches are ill-suited for molecular docking, where the space of ligand poses is an (m + 6)-

*Equal contribution.

NeurIPS 2022 Al for Science Workshop.

I|gand‘& DIFEDOCK ranl.<ed poses &
protein confidence score

reverse diffusion over

" ~ t=T translations, rotations and torsions t=0 @
g | T e e :
R \
g 748

. "\J 5 %fw A 8 N
&

% ‘ 254

Figure 1: Overview of DIFFDOCK. Left: The model takes as input the separate ligand and protein
structures. Center: Randomly sampled initial poses are denoised via a reverse diffusion over
translational, rotational, and torsional degrees of freedom. Right:. The sampled poses are ranked by
the confidence model to produce a final prediction and confidence score.

dimensional submanifold M C R3", where n and m are, respectively, the number of atoms and
torsion angles. To develop DIFFDOCK, we recognize that the docking degrees of freedom define M
as the space of poses accessible via a set of allowed ligand pose transformations. We use this idea
to map elements in M to the product space of the groups corresponding to those transformations,
where a DGM can be developed and trained efficiently.

As applications of docking models often require only a fixed number of predictions and a confidence
score over these, we train a confidence model to provide confidence estimates for the poses sampled
from the DGM and to pick out the most likely sample. This two-step process can be viewed as an
intermediate approach between brute-force search and one-shot prediction: we retain the ability to
consider and compare multiple poses without incurring the difficulties of high-dimensional search.

Empirically, on the standard blind docking benchmark PDBBind, DIFFDOCK achieves 38% of
top-1 predictions with ligand root mean square distance (RMSD) below 24, nearly doubling the
performance of the previous state-of-the-art deep learning model (20%). DIFFDOCK significantly
outperforms even state-of-the-art search-based methods (23%), while still being 3 to 12 times faster
on GPU. Moreover, it provides an accurate confidence score of its predictions, obtaining 83%
RMSD<2A on its most confident third of the previously unseen complexes.

To summarize, the main contributions of this work are:

1. We frame the molecular docking task as a generative problem and highlight the issues with
previous deep learning approaches.

2. We formulate a novel diffusion process over ligand poses corresponding to the degrees of
freedom involved in molecular docking.

3. We achieve a new state-of-the-art 38% top-1 prediction with RMSD<2A on PDBBind blind
docking benchmark, considerably surpassing the previous best search-based (23%) and deep
learning methods (20%).

2 Background and Related Work

Molecular docking. The molecular docking task is usually divided between known-pocket and blind
docking. Known-pocket docking algorithms receive as input the position on the protein where the
molecule will bind (the binding pocket) and only have to find the correct orientation and conformation.
Blind docking instead does not assume any prior knowledge about the binding pocket; in this work,
we will focus on this general setting. Due to the relative rigidity of the protein in the majority of
the cases, docking methods typically assume the knowledge of the bound protein structure, and
we will follow this assumption [6]. Methods are normally evaluated by the percentage of hits, or
approximately correct predictions, commonly considered to be those where the ligand RMSD error is
below 2A [7, 8, 9].

% ﬁ >
* 8 ¥
X ©)¢ |
C o
-y £ !

@ Crystal @ EquiBind @ TANKBind ¢ DiffDock samples Y DiffDock top-1

Ve
¢

DS

Figure 2: “DIFFDOCK top-1" refers to the sample with the highest confidence. “DIFFDOCK samples"
to the other diffusion model samples. Left: Visual diagram of the advantage of generative models
over regression models. Given uncertainty in the correct pose (represented by the orange distribution),
regression models tend to predict the mean of the distribution, which may lie in a region of low
density. Center: when there is a global symmetry in the protein (aleatoric uncertainty), EquiBind
places the molecule in the center while DIFFDOCK is able to sample all the true poses. Right: even in
the absence of strong aleatoric uncertainty, the epistemic uncertainty causes EquiBind’s prediction to
have steric clashes and TANKBind’s to have many self-intersections.

Search-based docking methods. Traditional docking methods [10, 11, 12] consist of a parameterized
physics-based scoring function and a search algorithm. The scoring-function takes in 3D structures
and returns an estimate of the quality/likelihood of the given pose, while the search stochastically
modifies the ligand pose (position, orientation, and torsion angles) with the goal of finding the global
optimum of the scoring function. Recently, machine learning has been applied to parameterize the
scoring-function [9, 13]. These search-based methods have offered relative improvements when
docking to a known pocket but are typically very computationally expensive to run and must still
grapple with the very large search space that characterizes blind docking.

Machine learning for blind docking. Recently, EquiBind [1] has tried to tackle the blind docking
task by directly predicting pocket keypoints on both ligand and protein and aligning them. TANKBind
[2] improved over this by independently predicting a docking pose (in the form of an interatomic
distance matrix) for each possible pocket and then ranking them. Although these one-shot or few-shot
regression-based prediction methods are orders of magnitude faster, their performance has not yet
reached that of traditional search-based methods.

3 Docking as Generative Modeling

Molecular docking objective. Molecular docking plays a critical role in drug discovery because the
prediction of the 3D structure of a bound protein-ligand complex enables further computational and
human expert analyses on the strength and properties of the binding interaction. Therefore, a docked
prediction is only useful if its deviation from the true structure does not significantly affect the output
of such analyses. Concretely, a prediction is considered acceptable when the distance between the
structures (measured in terms of ligand RMSD) is below some small tolerance on the order of the
length scale of atomic interactions (a few Angstrbm). Consequently, the standard evaluation metric
used in the field has been the percentage of predictions with a ligand RMSD (to the crystal ligand
pose) below some value e.

However, the objective of maximizing the proportion of predictions with RMSD within some tolerance
€ is not differentiable and cannot be used for training with stochastic gradient descent. Instead,
maximizing the expected proportion of predictions with RMSD < € corresponds to maximizing
the likelihood of the true structure under the model’s output distribution, in the limit as € goes
to 0. This observation motivates training a generative model to minimize an upper bound on the
negative log-likelihood of the observed structures under the model’s distribution. Thus, we view
molecular docking as the problem of learning a distribution over ligand poses conditioned on the
protein structure and develop a diffusion generative model over this space (Section 4).

Confidence model. With a trained diffusion model, it is possible to sample an arbitrary number of
ligand poses from the posterior distribution according to the model. However, researchers are often

interested in seeing only one or a small number of predicted poses and an associated confidence
measure” for downstream analysis. Thus, we train a confidence model over the poses sampled by the
diffusion model and rank them based on its confidence that they are within the error tolerance. The
top-ranked ligand pose and the associated confidence are then taken as DIFFDOCK’s top-1 prediction
and confidence score.

Problem with regression-based methods. The difficulty with the development of deep learning
models for molecular docking lies in the data inherent (aleatoric) uncertainty on the pose (multiple
poses could be correct) and the complexity of the task compared with the limited model capacity and
data available (epistemic uncertainty). Therefore, given the available co-variate information (only
protein structure and ligand identity), any method will exhibit uncertainty about the correct binding
pose among many viable alternatives. Any regression-style method that is forced to select a single
configuration that minimizes the expected square error would learn to predict the (weighted) mean
of such alternatives. In contrast, a generative model with the same co-variate information would
instead aim to capture the distribution over the alternatives, populating all/most of the significant
modes even if similarly unable to distinguish the correct target. This behavior, illustrated in Figure 2,
causes the regression-based models to produce significantly more physically implausible poses than
our method. In particular, we observe frequent steric clashes (e.g., 26% of EquiBind’s predictions)
and self-intersections in EquiBind’s and TANKBind’s predictions (Figures 5 and 9). We found
no intersections in DIFFDOCK’s predictions. Visualizations and quantitative evidence of these
phenomena are in Appendix E.1.

4 Method

4.1 Overview

A ligand pose is an assignment of atomic positions in R3, so in principle, we can regard a pose x as
an element in R3", where n is the number of atoms. However, this encompasses far more degrees of
freedom than are relevant in molecular docking. In particular, bond lengths, angles, and small rings
in the ligand are essentially rigid, such that the ligand flexibility lies almost entirely in the torsion
angles at rotatable bonds. Traditional docking methods, as well as most ML ones, take as input a seed
conformation ¢ € R3" of the ligand in isolation and change only the relative position and the torsion
degrees of freedom in the final bound conformation.> The space of ligand poses consistent with ¢
is, therefore, an (m -+ 6)-dimensional submanifold M, C R*", where m is the number of rotatable
bonds, and the six additional degrees of freedom come from rototranslations relative to the fixed
protein. We follow this paradigm of taking as input a seed conformation ¢, and formulate molecular
docking as learning a probability distribution p.(x | y) over the manifold M, conditioned on a
protein structure y.

DGMs on submanifolds have been formulated by [17] in terms of projecting a diffusion in ambient
space onto the submanifold. However, the kernel p(x; | x¢) of such a diffusion is not available
in closed form and must be sampled numerically with a geodesic random walk, making training
very inefficient. We instead define a one-to-one mapping to another, “nicer” manifold where the
diffusion kernel can be sampled directly and develop a DGM in that manifold. To start, we restate the
discussion in the last paragraph as follows:

Any ligand pose consistent with a seed conformation can be reached by a combination of
(1) ligand translations, (2) ligand rotations, and (3) changes to torsion angles.

This can be viewed as an informal definition of the manifold M.. Simultaneously, it suggests that
given a continuous family of ligand pose transformations corresponding to the m + 6 degrees of
freedom, a distribution on M. can be lifted to a distribution on the product space of the corresponding
groups—which is itself a manifold. We will then show how to sample the diffusion kernel on this
product space and train a DGM over it.

2For example, the pLDDT confidence score of AlphaFold2 [14] has had a very significant impact in many
applications [15, 16].

3RDKit ETKDG is a popular method for predicting the seed conformation. Although the structures may not
be predicted perfectly, the errors lie largely in the torsion angles, which are resampled anyways.

4.2 Ligand Pose Transformations

We associate translations of ligand position with the 3D translation group T (3), rigid rotations of the
ligand with the 3D rotation group SO(3), and changes in torsion angles at each rotatable bond with a
copy of the 2D rotation group SO(2). More formally, we define operations of each of these groups
on a ligand pose ¢ € R3". The translation A : T(3) x R3" — R3" is defined straightforwardly as
Ay(r,x); = X; + r using the isomorphism T(3) =2 R? where x; € R? is the position of the ith atom.
Similarly, the rotation Ay : SO(3) x R3™ — R3" is defined by Ao (R, x); = R(x; — X) + X where
= _ 1

X = -) X, corresponding to rotations around the (unweighted) center of mass of the ligand.

Many valid definitions of a change in torsion angles are possible, as the torsion angle around any
bond (a;, b;) can be updated by rotating the a; side, the b; side, or both. However, we can specify
changes of torsion angles to be disentangled from rotations or translations. One way of doing so is
to identify a central motif in the molecule, such as a ring, and change torsion angles in a way that
keeps the motif fixed. However, this special treatment of the central motif introduces an arbitrary
asymmetry into the problem and could be difficult for a score model to reason about. Thus, we
instead define the operation of elements of SO(2)™ such that it causes a minimal perturbation (in an
RMSD sense) to the structure:*

Definition. Let By g, (x) € R3" be any valid torsion update by 0, around the kth rotatable bond
(ag,br). We define Ay, : SO(2)™ x R3™ — R3"such that

Apr(0,x) = RMSDAlign(x, (B1,g, © - - - Bm.g,,) (%))
where @ = (61, ...0,,) and

RMSDAlign(x,x’) = argmin ~ RMSD(x,x") (1)
xte{gx’|geSE(3)}

This means that we apply all the m torsion updates in any order and then perform a global RMSD
alignment with the unmodified pose. The definition is motivated by ensuring that the infinitesimal
effect of a torsion is orthogonal to any rototranslation, i.e., it induces no linear or angular momentum.
These properties can be stated more formally as follows (proof in Appendix A):

Proposition 1. Let x(t) := A, (t0,%) for some 0 and where t0 = (01, . . .t0,,). Then the linear
and angular momentum are zero: %ih:o =0and) ,(x; —X) x %Xilt:O = 0 where X = % Yo X

Now consider the product space® P = T3 x SO(3) x SO(2)™ and define A : P x R3" — R3" as
A((I‘, R, 0); X) = Alr(r7 Arot(Ra Ator(07 X))) 2

These definitions collectively provide the sought-after product space corresponding to the docking
degrees of freedom. Indeed, for a seed ligand conformation ¢, we can formally define the space of
ligand poses M. = {A(g,c) | g € P}. This corresponds precisely to the intuitive notion of the
space of ligand poses that can be reached by rigid-body motion plus torsion angle flexibility.

4.3 Diffusion on the Product Space

We now proceed to show how the product space can be used to learn a DGM over ligand poses in
M. First, we need a theoretical result (proof in Appendix A):

Proposition 2. For a given seed conformation c, the map A(-, c) : P — M is a bijection.

which means that the inverse AZ! : M. — PP given by A(g,c) — g maps ligand poses x € M. to
points on the product space P. We are now ready to develop a diffusion process on P.

[17] established that the DGM framework transfers straightforwardly to Riemannian manifolds with
the score and score model as elements of the tangent space and with the geodesic random walk as the
reverse SDE solver. Further, the score model can be trained in the standard manner with denoising
score matching [18]. Thus, to implement a diffusion model on P, it suffices to develop a method
for sampling from and computing the score of the diffusion kernel on IP. Furthermore, since P is

“Since we do not define or use the composition of elements of SO(2)™, strictly speaking, it is a product
space but not a group and can be alternatively thought of as the torus T™ with an origin element.
>Since we never compose elements of P, we do not need to define a group structure.

a product manifold, the forward diffusion proceeds independently in each manifold [19], and the
tangent space is a direct sum: T,P = T: T3 & TrSO(3) & TpSO(2)™ = R? & R® & R™ where
g = (r, R, 0). Thus, it suffices to sample from the diffusion kernel and regress against its score in
each group independently.

In all three groups, we define the forward SDE as dx = \/do?2(t)/dt dw where 0% = 02, 02,, or

rot?
o2 for T(3), SO(3), and SO(2)™ respectively and where w is the corresponding Brownian motion.
Since T(3) = IR?, the translational case is trivial and involves sampling and computing the score of
a standard Gaussian with variance o%(t). The diffusion kernel on SO(3) is given by the IG:SO(3)
distribution [20, 21], which can be sampled in the axis-angle parameterization by sampling a unit
vector @ € $0(3) uniformly® and random angle w € [0, 7] according to

p(w) = 1_ﬂf(w) where f(w) = 2(21 + 1) exp(=I(l + 1)0?%)

m
=0

sin(({ +1/2)w)

sin(w/2) 3

Further, the score of the diffusion kernel is VInpy (R’ | R) = (£ log f(w))@ € Tr SO(3), where
R’ = R(w®)R is the result of applying Euler vector w@ to R. The score computation and sampling
can be accomplished efficiently by precomputing the truncated infinite series and interpolating the
CDF of p(w), respectively. Finally, the SO(2)™ group is diffeomorphic to the torus T™, on which
the diffusion kernel is a wrapped normal distribution with variance o(t). This can be sampled
directly, and the score can be precomputed as a truncated infinite series [4].

4.4 Training and Inference

Diffusion model. Although we have defined the diffusion kernel and score matching objectives on
P, we nevertheless develop the training and inference procedures to operate on ligand poses in 3D
coordinates directly. Providing the full 3D structure, rather than abstract elements of the product
space, to the score model allows it to reason about physical interactions using SFE(3) equivariant
models, not be dependent on arbitrary definitions of torsion angles [4], and better generalize to unseen
complexes.

The training and inference procedures technically depend on the choice of seed conformation c used
to define the mapping between M, and the product space. However, providing a definite choice
of c to the score model introduces an arbitrary inference-time parameter that may affect the final
predicted distribution, which is undesirable. In other words, while ¢ defines the manifold of ligand
poses, the precise location of ¢ within that manifold should not affect the predicted distribution. Thus,
we develop approximate training and inference procedures that remove the dependence on the c;
intuitively, these assume that updates to points in the product space P can be applied to ligand poses
in M. directly, without referencing the origin conformer c. While these are only an approximation
of the theoretically correct procedures, we find that they work well in practice. In Appendix B, we
present the training and inference procedures in more detail and further discussion on this point.

Confidence model. In order to collect training data for the confidence model d(x, y), we run the
trained diffusion model to obtain a set of candidate poses for every training example and generate
labels by testing whether or not each pose has RMSD below 2A. The confidence model is then trained
with cross-entropy loss to correctly predict the binary label for each pose. During inference, the
diffusion model is run to generate N poses in parallel, which are passed to the confidence model that
ranks them based on its confidence that they have RMSD below 2A.

Architecture Although we have defined the diffusion kernel and score matching objectives on P,
we nevertheless develop the training and inference procedures to operate on ligand poses in 3D
coordinates directly to leverage SF/(3) equivariant networks. The score model and confidence model
have similar architectures except for the space of their output. The output of the score model must be
in the tangent space T, T3 @& TrSO(3) @ TpSO(2)™, which corresponds to equivariant translation
and rotation (Euler) vectors, and scores on invariant torsion angles. The confidence model outputs a
single invariant scalar. The architectural components are detailed in Appendix C.

%50(3) is the tangent space of SO(3) at the identity and is the space of Euler (or rotation) vectors, which are
equivalent to the axis-angle parameterization.

5 Experiments

Experimental setup. We evaluate our method on the complexes from PDBBind [22], a large
collection of protein-ligand structures collected from PDB [23], which was used with time-based
splits to benchmark many previous works [1, 24, 2]. We compare DIFFDOCK with state-of-the-art
search-based methods SMINA [25], QuickVina-W [8], GLIDE [11], and GNINA [9] and the recent
deep learning methods EquiBind and TANKBind presented above. Extensive details about the
experimental setup, data, baselines, and implementation are in Appendix D.3 and all code is available
at https://anonymous.4open.science/r/DiffDock. The repository also contains videos of
the reverse diffusion process (images of the same are in Figure 11).

As we are evaluating blind docking, the methods receive two inputs: the ligand with a predicted
seed conformation (e.g., from RDKit) and the crystal structure of the protein. Since search-based
methods work best when given a starting binding pocket to restrict the search space, we also test
the combination of using an ML-based method, such as P2Rank [26] (also used by TANKBind) or
EquiBind to find an initial binding pocket, followed by a search-based method to predict the exact
pose in the pocket.

Table 1: PDBBind blind docking. All methods receive a small molecule and are tasked to find its
binding location, orientation, and conformation. Shown is the percentage of predictions with RMSD
< 2A and the median RMSD. The top half contains methods that directly find the pose; the bottom
half those that use a pocket prediction method. The last two lines show our method’s performance
(with standard deviation). In parenthesis we specify the number of poses sampled from the generative
model. * indicates that the method runs exclusively on CPU, “-" means not applicable; some cells
are empty due to infrastructure constraints. For TANKBind, the runtimes for the top-1 and top-5
predictions are different. Further evaluation details are in Appendix D.3.

Top-1 RMSD (A) Top-5 RMSD (A) Average
Method %<2 Med. | %<2 Med. | Runtime (s)
QVINAW 20.9 7.7 49%
GNINA 22.9 7.7 32.9 4.5 127
SMINA 18.7 7.1 29.3 4.6 126*
GLIDE 21.8 9.3 1405*
EQUIBIND 5.5 6.2 - - 0.04
TANKBIND 20.4 4.0 24.5 34 0.7/2.5
P2RANK+SMINA 20.4 6.9 33.2 4.4 126*
P2RANK+GNINA 28.8 5.5 383 34 127
EQUIBIND+SMINA 23.2 6.5 38.6 3.4 126*
EQUIBIND+GNINA 28.8 49 39.1 3.1 127
DIFFDOCK (10) 35.0£14 3.5640.05 | 40.7+£16 2.6540.10 10
DIFFDOCK (40) 38.2+1.0 3.30+0.11 | 44.7+1.7 2.40+0.12 40

Docking accuracy. DIFFDOCK significantly outperforms all previous methods (Table 1). In particular,
DIFFDOCK obtains an impressive 38.2% top-1 success rate (i.e., percentage of predictions with
RMSD <2A7) when sampling 40 poses and 35.0% when sampling just 10. This performance vastly
surpasses that of state-of-the-art commercial software such as GLIDE (21.8%) and the previous
state-of-the-art deep learning method TANKBind (20.4%). The use of ML-based pocket prediction in
combination with search-based docking methods improves over the baseline performances, but even
the best of these (P2Rank+GNINA) reaches a success rate of only 28.8%.

Figure 3-left shows the proportion of RMSDs below an arbitrary threshold € with DIFFDOCK
exceeding previous methods for almost every possible ¢.® Figure 3-right plots how the model’s
performance changes with the number of generative samples. Unlike regression methods like
EquiBind, DIFFDOCK is able to provide multiple diverse predictions of different likely poses, as
highlighted in the top-5 performances.

"Most commonly used evaluation metric [7, 8, 9]
$With the exception of very small ¢ <1A where GLIDE performs better.

https://anonymous.4open.science/r/DiffDock

Inference runtime. DIFFDOCK holds its superior accuracy while being (on GPU) 3 to 12 times faster
than the best search-based method, GNINA (Table 1). This high speed is critical for applications
such as high throughput virtual screening for drug candidates or reverse screening for protein targets,
where one often searches over a vast number of complexes. As a diffusion model, DIFFDOCK is
inevitably slower than the one-shot deep learning method EQUIBIND, but as shown in Figure 3-right
and Appendix E.3, it can be significantly sped up without significant loss of accuracy.

0.5
A 0.7{ — DiffDock : << | a=mm
2 — GLIDE | ~N PR
= | 0.45+ ==
z 067 —GNINA ! g >
E 054 — SMINA 1 0 0.4 2
= QVinaw ! =
2 .44 — TANKBind ' ;] =
c B ——— < 0.35
= EquiBind _ - =l
= 0.3 =
- c 034 \ —Top-1 performance
.g 0.2 .g — Top-5 performance
® 014 : @ 0251 Top-10 performance
— N — .
[y ' - - = Perfect selection
T L T T 0.2 T T T
0 1 2 3 4 5 0 10 20 30 40
RMSD (A) Number of generative samples

Figure 3: Left: cumulative density histogram of the methods’ RMSD. Right: DIFFDOCK’s perfor-
mance as a function of the number of samples from the generative model. “Perfect selection" refers
to choosing the sample with the lowest RMSD.

Selective accuracy of confidence score. As the

100+
top-1 results show, DIFFDOCK’s confidence model S
is very accurate in ranking the sampled poses for a g 80
given complex and picking the best one. We also @
investigate the selective accuracy of the confidence = 60
model across different complexes by evaluating how i
DIFFDOCK’s accuracy increases if it only makes 2 *°]
predictions when the confidence is above a certain 5 20 - - Baseline performance
threshold, known as selective prediction. In Fig- § - - Perfect selection
ure 4, we plot the success rate as we decrease the =~ | |~ Confidence model
percentage of complexes for which we make predic- 0 20 40 60 80
tions, i.e., increase the confidence threshold. When Percentage of rejected complexes

only making predictions for the top one-third of
complexes in terms of model confidence, the suc-
cess rate improves from 38% to 83%. Additionally,
there is a high Spearman correlation of 0.68 be-
tween DIFFDOCK’s confidence and the negative
RMSD. Thus, the confidence score is a good indica-
tor of the quality of DIFFDOCK’s top-ranked sampled pose and provides a highly valuable confidence
measure for downstream applications.

Figure 4: Selective accuracy. Percentage
of predictions with RMSD below 2A when
only making predictions for the portion of the
dataset where DIFFDOCK is most confident.

6 Conclusion

We presented DIFFDOCK, a diffusion generative model tailored to the task of molecular docking.
This represents a paradigm shift from previous deep learning approaches, which use regression-based
frameworks, to a generative modeling approach that is better aligned with the objective of molecular
docking. To produce a fast and accurate generative model, we designed a diffusion process over the
manifold describing the main degrees of freedom of the task via ligand pose transformations spanning
the manifold.

Empirically, DIFFDOCK outperforms the state-of-the-art by very large margins on PDBBind, has fast
inference times, and provides confidence estimates with high selective accuracy. Thus, DIFFDOCK
can offer great value for many existing real-world pipelines and opens up new avenues of research on
how to best integrate downstream tasks, such as affinity prediction, into the framework and apply
similar ideas to protein-protein and protein-nucleic acid docking.

Acknowledgments

We pay tribute to Octavian-Eugen Ganea (1987-2022), dear colleague, mentor, and friend without
whom this work would have never been possible.

We thank Rachel Wu, Jeremy Wohlwend, Felix Faltings, Jason Yim, Victor Quach, Saro Passaro,
Patrick Walters, Michael Heinzinger, Mario Geiger, Michael John Arcidiacono, Noah Getz, and John
Yang for valuable feedback and insightful discussions. We thank Wei Lu for his help with running
TANKBind. This work was supported by the Machine Learning for Pharmaceutical Discovery and
Synthesis (MLPDS) consortium, the Abdul Latif Jameel Clinic for Machine Learning in Health,
the DTRA Discovery of Medical Countermeasures Against New and Emerging (DOMANE) threats
program, the DARPA Accelerated Molecular Discovery program and the Sanofi Computational
Antibody Design grant. Bowen Jing acknowledges the support from the Department of Energy
Computational Science Graduate Fellowship.

References

[1] Hannes Stirk, Octavian Ganea, Lagnajit Pattanaik, Regina Barzilay, and Tommi Jaakkola.
Equibind: Geometric deep learning for drug binding structure prediction. In International
Conference on Machine Learning, pages 20503-20521. PMLR, 2022.

[2] Wei Lu, Qifeng Wu, Jixian Zhang, Jiahua Rao, Chengtao Li, and Shuangjia Zheng. Tankbind:
Trigonometry-aware neural networks for drug-protein binding structure prediction. Advances in
neural information processing systems, 2022.

[3] Minkai Xu, Lantao Yu, Yang Song, Chence Shi, Stefano Ermon, and Jian Tang. Geodiff: A
geometric diffusion model for molecular conformation generation. In International Conference
on Learning Representations, 2021.

[4] Bowen Jing, Gabriele Corso, Jeffrey Chang, Regina Barzilay, and Tommi Jaakkola. Torsional
diffusion for molecular conformer generation. arXiv preprint arXiv:2206.01729, 2022.

[5] Emiel Hoogeboom, Victor Garcia Satorras, Clement Vignac, and Max Welling. Equivariant
diffusion for molecule generation in 3d. In International Conference on Machine Learning,
pages 8867-8887. PMLR, 2022.

[6] Nataraj S Pagadala, Khajamohiddin Syed, and Jack Tuszynski. Software for molecular docking:
areview. Biophysical reviews, 9(2):91-102, 2017.

[7] Amr Alhossary, Stephanus Daniel Handoko, Yuguang Mu, and Chee-Keong Kwoh. Fast,
accurate, and reliable molecular docking with QuickVina 2. Bioinformatics, 31(13):2214-2216,
02 2015.

[8] Nafisa M. Hassan, Amr A. Alhossary, Yuguang Mu, and Chee-Keong Kwoh. Protein-ligand
blind docking using quickvina-w with inter-process spatio-temporal integration. Scientific
Reports, 7(1):15451, Nov 2017.

[9] Andrew T McNutt, Paul Francoeur, Rishal Aggarwal, Tomohide Masuda, Rocco Meli, Matthew
Ragoza, Jocelyn Sunseri, and David Ryan Koes. Gnina 1.0: molecular docking with deep
learning. Journal of cheminformatics, 13(1):1-20, 2021.

[10] Oleg Trott and Arthur J Olson. Autodock vina: improving the speed and accuracy of docking
with a new scoring function, efficient optimization, and multithreading. Journal of computational
chemistry, 31(2):455-461, 2010.

[11] Thomas A Halgren, Robert B Murphy, Richard A Friesner, Hege S Beard, Leah L Frye,
W Thomas Pollard, and Jay L Banks. Glide: a new approach for rapid, accurate docking and
scoring. 2. enrichment factors in database screening. Journal of medicinal chemistry, 2004.

[12] René Thomsen and Mikael H Christensen. Moldock: a new technique for high-accuracy
molecular docking. Journal of medicinal chemistry, 49(11):3315-3321, 2006.

[13] Oscar Méndez-Lucio, Mazen Ahmad, Ehecatl Antonio del Rio-Chanona, and Jorg Kurt Wegner.
A geometric deep learning approach to predict binding conformations of bioactive molecules.
Nature Machine Intelligence, 3(12):1033-1039, 2021.

[14] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ron-
neberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Zl’dek, Anna Potapenko, et al.
Highly accurate protein structure prediction with alphafold. Nature, 596(7873):583-589, 2021.

[15] Marco Necci, Damiano Piovesan, and Silvio CE Tosatto. Critical assessment of protein intrinsic
disorder prediction. Nature methods, 18(5):472-481, 2021.

[16] Nathaniel Bennett, Brian Coventry, Inna Goreshnik, Buwei Huang, Aza Allen, Dionne Vafeados,
Ying Po Peng, Justas Dauparas, Minkyung Baek, Lance Stewart, et al. Improving de novo
protein binder design with deep learning. bioRxiv, 2022.

[17] Valentin De Bortoli, Emile Mathieu, Michael Hutchinson, James Thornton, Yee Whye Teh, and
Arnaud Doucet. Riemannian score-based generative modeling. arXiv preprint arXiv:2202.02763,
2022.

[18] Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data
distribution. Advances in Neural Information Processing Systems, 32, 2019.

[19] Emanuele Rodola, Zorah Lihner, Alexander M Bronstein, Michael M Bronstein, and Justin
Solomon. Functional maps representation on product manifolds. In Computer Graphics Forum,
volume 38, pages 678-689. Wiley Online Library, 2019.

[20] Dmitry I Nikolayev and Tatjana I Savyolov. Normal distribution on the rotation group so (3).
Textures and Microstructures, 29, 1970.

[21] Adam Leach, Sebastian M Schmon, Matteo T Degiacomi, and Chris G Willcocks. Denoising
diffusion probabilistic models on so (3) for rotational alignment. In /CLR 2022 Workshop on
Geometrical and Topological Representation Learning, 2022.

[22] Zhihai Liu, Minyi Su, Li Han, Jie Liu, Qifan Yang, Yan Li, and Renxiao Wang. Forging the basis
for developing protein—ligand interaction scoring functions. Accounts of Chemical Research,
50(2):302-309, 2017.

[23] H. Berman, K. Henrick, and H. Nakamura. Announcing the worldwide Protein Data Bank. Nat
Struct Biol, 10(12):980, Dec 2003.

[24] Mikhail Volkov, Joseph-André Turk, Nicolas Drizard, Nicolas Martin, Brice Hoffmann, Yann
Gaston-Mathé, and Didier Rognan. On the frustration to predict binding affinities from protein—
ligand structures with deep neural networks. Journal of Medicinal Chemistry, 65(11):7946-7958,
Jun 2022.

[25] David Ryan Koes, Matthew P Baumgartner, and Carlos J Camacho. Lessons learned in empirical
scoring with smina from the csar 2011 benchmarking exercise. Journal of chemical information
and modeling, 53(8):1893-1904, 2013.

[26] Radoslav Krivak and David Hoksza. P2rank: machine learning based tool for rapid and
accurate prediction of ligand binding sites from protein structure. Journal of cheminformatics,
10(1):1-12, 2018.

[27] Nathaniel Thomas, Tess Smidt, Steven Kearnes, Lusann Yang, Li Li, Kai Kohlhoff, and Patrick
Riley. Tensor field networks: Rotation-and translation-equivariant neural networks for 3d point
clouds. arXiv preprint, 2018.

[28] Mario Geiger, Tess Smidt, Alby M., Benjamin Kurt Miller, Wouter Boomsma, Bradley Dice,
Kostiantyn Lapchevskyi, Maurice Weiler, Michat Tyszkiewicz, Simon Batzner, Martin Uhrin,
Jes Frellsen, Nuri Jung, Sophia Sanborn, Josh Rackers, and Michael Bailey. Euclidean neural
networks: e3nn, 2020.

10

[29] Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Allan dos
Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, and Alexander Rives. Language
models of protein sequences at the scale of evolution enable accurate structure prediction. arXiv,
2022.

[30] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 2017.

[31] Kristof Schiitt, Pieter-Jan Kindermans, Huziel Enoc Sauceda Felix, Stefan Chmiela, Alexandre
Tkatchenko, and Klaus-Robert Miiller. Schnet: A continuous-filter convolutional neural network
for modeling quantum interactions. Advances in neural information processing systems, 2017.

[32] Mario Geiger and Tess Smidt. e3nn: Euclidean neural networks. arXiv preprint
arXiv:2207.09453, 2022.

[33] Rocco Meli and Philip C. Biggin. spyrmsd: symmetry-corrected rmsd calculations in python.
Journal of Cheminformatics, 12(1):49, 2020.

[34] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[35] Srinivas Ramachandran, Pradeep Kota, Feng Ding, and Nikolay V Dokholyan. Automated
minimization of steric clashes in protein structures. Proteins, 79(1):261-270, January 2011.

[36] Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Li0, and Petar Velickovi¢. Principal
neighbourhood aggregation for graph nets. Advances in Neural Information Processing Systems,
33:13260-13271, 2020.

[37] Lifan Chen, Xiaoqin Tan, Dingyan Wang, Feisheng Zhong, Xiaohong Liu, Tianbiao Yang,
Xiaomin Luo, Kaixian Chen, Hualiang Jiang, and Mingyue Zheng. Transformer cpi: improving
compound—protein interaction prediction by sequence-based deep learning with self-attention
mechanism and label reversal experiments. Bioinformatics, 36(16):4406-4414, 2020.

[38] Shuya Li, Fangping Wan, Hantao Shu, Tao Jiang, Dan Zhao, and Jianyang Zeng. Monn: a
multi-objective neural network for predicting compound-protein interactions and affinities. Cell
Systems, 10(4):308-322, 2020.

[39] Dejun Jiang, Chang-Yu Hsieh, Zhenxing Wu, Yu Kang, Jike Wang, Ercheng Wang, Ben Liao,
Chao Shen, Lei Xu, Jian Wu, et al. Interactiongraphnet: A novel and efficient deep graph
representation learning framework for accurate protein—ligand interaction predictions. Journal
of medicinal chemistry, 64(24):18209-18232, 2021.

[40] Seokhyun Moon, Wonho Zhung, Soojung Yang, Jaechang Lim, and Woo Youn Kim. Pignet: a
physics-informed deep learning model toward generalized drug—target interaction predictions.
Chemical Science, 13(13):3661-3673, 2022.

[41] Vignesh Ram Somnath, Charlotte Bunne, and Andreas Krause. Multi-scale representation
learning on proteins. Advances in Neural Information Processing Systems, 34:25244-25255,
2021.

[42] Penglei Wang, Shuangjia Zheng, Yize Jiang, Chengtao Li, Junhong Liu, Chang Wen, Atanas
Patronov, Dahong Qian, Hongming Chen, and Yuedong Yang. Structure-aware multimodal
deep learning for drug—protein interaction prediction. Journal of chemical information and
modeling, 62(5):1308-1317, 2022.

11

A Proofs

A.1 Proof of Proposition 1
Proposition 1. Let x(t) := A, (0, %) for some 0 and where t0 = (t01, .. .t0,,). Then the linear

.4z — 3% A — g — L1
and angular momentum are zero: 5 X|i—o = 0and), (x; — X) X 5 Xi|t=0 = 0 whereX = -~ > . x.

Proof. Let x(t) = R(t)(B(t0,x) — Xo) + Xo + p(t) where B(t6,-) = By 0, © - - - B 10,, and
R(t), p(t) are the rotation (around X := X(0)) and translation associated with the optimal alignment
between B(t6,x) and x. By definition of RMSD, we have

() = x(0)]} = min [[R(£) (B(t8, x(0)) — %o) + %o + p(t) — x(0)]])

which, in the limit of ¢ — 0, becomes

d 2 Cld _ 2
= = min | £ (ROE0.x0) —x0) +p(0)|)
The derivative in the LHS of Equation 5 at ¢ = 0 is
R'(t)(x — %) + B'(t0,%(0)) + p'(t) (6)

and represents the instantaneous velocity of the points x; at £ = 0. Denoting r; = x; — Xg, our
objective is to minimize), |[rj] |°. Then, if we describe R'()(x — X¢) = R'(t)r by an angular
velocity w and abbreviate B'(t0,x(0)); := b; and p’ = v, we have

ZHI';W:Z(bi+wxri+v)'(bi+w><r¢+v)

=> [IIbal +2b; - (w x13) +2b; - v + (w x 1) - (W X 13) + 2(w x 13) - v + [|v]|]

= 2 IBill? + 2w 3 (i x bi) 42 (sz) v v+ w ()

k3

)
where we have used the fact that), r; = 0 and where Z(r) = (}_,;r; -x;) I — >, v} isthe 3 x 3
inertia tensor. Then setting gradients with respect to v, w gives

S o — _T(pr)L b
v——nzi:b, and w = —Z(r) (Z:rszl) (8)

Now with r} = b; + w X r; + v we evaluate the linear momentum

iné:i(Zbi—i—wari—&—nv):O 9)

which is zero by direct substitution of v. Similarly, we evaluate the angular momentum

Zrixr;:Zrixbi—l—Zrix(wxri)—i—Zrixv
i i i i 10
=> rixbi+I(r)jw=0 4o

which is zero by direct substitution of w. Thus, the linear and angular momentum are zero at { = 0
for arbitrary x(0). U

Note that since we did not use the particular form of B(¢6,x) in the above proof, we have shown
that RMSD alignment can be used to disentangle rotations and translations from the infinitesimal
action of any arbitrary function.

12

A.2 Proof of Proposition 2

Proposition 2. For a given seed conformation c, the map A(-,c) : P — M. is a bijection.

Proof. Since we defined M. = {A(g,c) | g € P}, A(-,) is automatically surjective. We now show
that it is injective. Assume for the sake of contradiction that A(-, c) is not injective, so that there exist
elements of the product space g1, go € P with g1 # go but with A(g1,¢) = A(g2,c) = ¢’. That is,

At]'(rly Arot(Rlv Ator(017 C))) = Atr(r27 Arot(R27 Ator(027 C))) (11)

which we abbreviate as ¢() = ¢(). Since only A, changes the center of mass Y, c;/n, we have

Do cgl)/n =>,ci/n+riand), 052)/71 = ", ¢i/n+ry. However, since ¢V = ¢(?), this implies

r; = ry. Next, consider the torsion angles 7 = (7'1(1), e T,(nl)) of ¢(M) corresponding to some choice

of dihedral angles at each rotatable bond. Because Ay and A,y are rigid-body motions, only A,
changes the dihedral angles; in particular, by definition we have Ti(l) =7+ 01(1) mod 27 and
Ti(z) E e 952) mod 27 foralli = 1,...m. However, because Ti(l) = Ti(2), this means 051) = 02(2)
for all 7 and therefore 81 = 05 (as elements of SO(2)™). Now denote c* = Ay (01, ¢) = Aior(02, €)
and apply Ay (—r1,-) = Ay(—r2,-) to both sides of Equation 11. We then have

Arol(Rh C*) = Arol(R27 C*) (12)

which further leads to

c* —¢* = R{'Ry(c* — &) (13)
In general, this does not imply that Ry = Rs. However, Ry # Rs is possible only if c* is degenerate,
in the sense that all points are collinear along the shared axis of rotation of R;, Ro. However, in
practice, conformers never consist of a collinear set of points, so we can safely assume R; = Rs.
We now have (r1, R1,601) = (ra2, Ra,03), or g1 = go, contradicting our initial assumption. We thus
conclude that A(-, ¢) is injective, completing the proof. O

B Training and Inference

In this section we present the training and inference procedures of the diffusion generative model.
First, however, there are a few subtleties of the generative approach to molecular docking that are
worth mentioning. Unlike the standard generative modeling setting where the dataset consists of
many samples drawn from the data distribution, each training example (x*,y) of protein structure y
and ground-truth ligand pose x* is the only sample from the corresponding conditional distribution
px+ (- | y) defined over M. Thus, the innermost training loop iterates over distinct conditional
distributions px+ (- | y), along with a single sample from that distribution, rather than over samples
from a common data distribution pga, (x).

As discussed in Section 4, during inference, c is the ligand structure generated with a method such
as RDKit. However, during training we require M. = M~ in order to define a bijection between
c € My~ and P. If we take ¢ € M+, there will be a distribution shift between the manifolds
M, considered at training time and those considered at inference time. To circumvent this issue, at
training time we predict ¢ with RDKit and replace x* with arg min, , . RMSD(x*, x') using the
conformer matching procedure described in [4].

The above paragraph may be rephrased more intuitively as follows: during inference, the generative
model docks a ligand structure generated by RDKit, keeping its non-torsional degrees of freedom
(e.g., local structures) fixed. At training time, however, if we train the score model with the local
structures of the ground truth pose, this will not correspond to the local structures seen at inference
time. Thus, at training time, we replace the ground truth pose by generating a ligand structure with
RDK:it and aligning it to the ground truth pose while keeping the local structures fixed.

With these preliminaries, we now continue to the full procedures (Algorithms 1 and 2). The training
and inference procedures of a score-based diffusion generative model on a Riemannian manifold
consist of (1) sampling and regressing against the score of the diffusion kernel during training; and
(2) sampling a geodesic random walk with the score as a drift term during inference [17]. Because
we have developed the diffusion process on [P but continue to provide the score model with elements
in M. C R3", the full training and inference procedures involve repeatedly interconverting between
the two spaces using the bijection given by the seed conformation c.

13

Algorithm 1: Training procedure (single epoch)

Input: Training pairs {(x*,y)}, RDKit predictions {c}
foreach c,x*,y do
Let X < argminy; ¢, RMSD(x*,x1);
Compute (ro, Ry, 00) < Az (x0);
Sample ¢ ~ Uni([0, 1]);
Sample Ar, AR, A from diffusion kernels p¥ (- | 0), pi°*(- | 0), (- | 0);
Setr; < rg + Ar;
Set R; + (AR)Ry;
Set 8; <+ 0y + A mod 2;
Compute x; < A((ry, R, 0:),¢);
Predict scores o € R3, 3 + R3,y € R™ = s(xy,¢,y,1) ;
Take optimization step on loss
£ = [l = Vp{(Ar [0)[]* + |8 ~ VHM(AR | 0)

*+ 1y = vpr(ae [0)]®

Algorithm 2: Inference procedure

Input: RDKit prediction c, protein structure y (both centered at origin)
Output: Sampled ligand pose x

Sample O ~ Uni(SO(2)™), Ry ~ Uni(SO(3)), rn ~ N(0,02.(T));
Letxy = 14((1‘]\[7 Ry, BN), C);

for n < N to 1 do

Lett = n/N and Ao2 = 02(n/N) — oZ((n — 1)/N) and similarly for Ac2,
Predict scores a € R3, 3 € R3, v € R™ < s(x,,,¢,y,1);

Sample zy, Zror, Zior from N (0, Ac2), N'(0, Ac2,), N (0, Ac2,) respectively;
Setr,_1 + 1o+ AcZa + zy;

Set R,,_1 + R(A02,8 + z:t) Rp);

Set 0,1 + 0, + (Ao, v+ z) mod 2;

Compute x,,—1 + A((rp—1, Rpn—1,0n-1),C);

2.
AO-tor’

Return xq;

However, as noted in the main text, the dependence of these procedures on the exact choice of c is
potentially problematic, as it suggests that at inference time, the model distribution may be different
depending on the orientation and torsion angles of c. Simply removing the dependence of the score
model on c is not sufficient since the update steps themselves still occur on IP and require a choice of ¢
to be mapped to M. However, notice that the update steps—in both training and inference—consist
of (1) sampling the diffusion kernels at the origin; (2) applying these updates to the point on IP; and
(3) transferring the point on PP to M., via A(-, c). Might it instead be possible to apply the updates to
3D ligand poses x € M, directly?

It turns out that the notion of applying these steps to ligand poses “directly” corresponds to the
formal notion of group action. The operations Ay, Ayor, Aror that we have already defined are formally
group actions if they satisfy A(.)(g1g2,%) = A(g1, A(g2,x)). While true for Ay, Ay, this is not
generally true for Ay, if we take SO(2)™ to be the direct product group; however, the approximation
is increasingly good as the magnitude of the torsion angle updates decreases. If we then define IP to be
the direct product group of its constituent groups, A is a group action of P on M, as the operations
of Ay, Aror, Ator commute and are (under the approximation) individually group actions.

The implication of A being a group action can be seen as follows. Let § = g,g, ! be the update
which brings g, € P to g, € P via left multiplication, and let x,, x; be the corresponding ligand
poses A(ga, c), A(gp, c). Then

xp = A(gv9; " ga,r €) = A(6,%4) (14)

which means that the updates § can be applied directly to x, using the operation A. The training and
inference procedures then become Algorithm 3 and 4 below. The initial conformer c is no longer

14

used, except in the initial steps to define the manifold—to find the closest point to x* in training, and
to sample x from the prior over M, in inference.

Conceptually speaking, this procedure corresponds to “forgetting” the location of the origin element
on M., which is permissible because a change of the origin to some equivalent seed ¢’ € M,
merely translates—via right multiplication by A_!(c’)—the original and diffused data distributions
on [P, but does not cause any changes on M_ itself. The training and inference routines involve
updates—formally left multiplications—to group elements, but as left multiplication on the group
corresponds to group actions on M., the updates can act on M, directly, without referencing the
origin c.

We find that the approximation of A as a group action works quite well in practice and use Algorithms
3 and 4 for all training and experiments discussed in the paper. Of course, disentangling the torsion
updates from rotations in a way that makes Ay, exactly a group action would justify the procedure
further, and we regard this as a possible direction for future work.

Algorithm 3: Approximate training procedure (single epoch)

Input: Training pairs {(x*, y)}, RDKit predictions {c}

foreach c,x*,y do

Let xo 4 argming ¢, RMSD(x*, x");

Sample ¢ ~ Uni([0, 1]);

Sample Ar, AR, A from diffusion kernels p¥ (- | 0), pi°*(- | 0), (- | 0);
Compute x; < A((Ar, AR, A8),x¢);

Predict scores o € R3, 3 + R3, v € R™ = s(xy,y,1) ;

Take optimization step on loss

L= [la=Vpi(Ar [0)|* +|8 = VB (AR | 0)||” + ||y — VP (A6 | 0)])”

Algorithm 4: Approximate inference procedure

Input: RDKit prediction c, protein structure y (both centered at origin)
Output: Sampled ligand pose x¢

Sample Oy ~ Uni(SO(2)™), Ry ~ Uni(SO(3)), rn ~ N(0,02,.(T));
Letxy = A((rn, Ry, 0N),€);

for n < N to1do

Lett =n/N and Ac2 = 02(n/N) — 02((n — 1)/N) and similarly for Ac2,,
Predict scores o € R3, 3 € R?,y € R™ < s(x,,¥,1);

Sample Z, Zor, Zior from N (0, Ac2), N (0, Ac2,), N'(0, Ac2,) respectively;
Set Ar + ro + Acla + zy;

Set AR + R(A02,8 + 21);

Set AO < Aoy + Zior;

| Compute x,, 1 < A((Ar, AR, AB),xy);

Return xq;

2.
AO-tor 4

C Architecture Details

We use convolutional networks based on tensor products of irreducible representations (irreps)
of SO(3) [27] as architecture for both the score and confidence models. In particular, these are
implemented using the e3nn library [28]. Below, ®,, refers to the spherical tensor product of irreps
with path weights w, and & refers to normal vector addition (with possibly padded inputs). Features
have multiple channels for each irrep. Both the architectures can be decomposed into three main
parts: embedding layer, interaction layers, and output layer. We outline each of them below.

15

C.1 Embedding layer

Geometric heterogeneous graph. Structures are represented as heterogeneous geometric graphs with
nodes representing ligand (heavy) atoms, receptor residues (located in the position of the a-carbon
atom), and receptor (heavy) atoms (only for the confidence model). Because of the high number
of nodes involved, it is necessary for the graph to be sparsely connected for runtime and memory
constraints. Moreover, sparsity can act as a useful inductive bias for the model, however, it is critical
for the model to find the right pose that nodes that might have a strong interaction in the final pose to
be connected during the diffusion process. Therefore, to build the radius graph, we connect nodes
using cutoffs that are dependent on the types of nodes they are connecting:

1. Ligand atoms-ligand atoms, receptor atoms-receptor atoms, and ligand atoms-receptor atoms
interactions all use a cutoff of 5A, standard practice for atomic interactions. For the ligand
atoms-ligand atoms interactions we also preserve the covalent bonds as separate edges with
some initial embedding representing the bond type (single, double, triple and aromatic). For
receptor atoms-receptor atoms interactions, we limit at 8 the maximum number of neighbors
of each atom. Note that the ligand atoms-receptor atoms only appear in the confidence
model where the final structure is already set.

2. Receptor residues-receptor residues use a cutoff of 15 A with 24 as the maximum number
of neighbors for each residue.

3. Receptor residues-ligand atoms use a cutoff of 20 + 3 * oy, A where oy represents the
current standard deviation of the diffusion translational noise present in each dimension
(zero for the confidence model). Intuitively this guarantees that with high probability, any
of the ligands and receptors that will be interacting in the final pose the diffusion model
converges to are connected in the message passing at every step.

4. Finally, receptor residues are connected to the receptor atoms that form the corresponding
amino-acid.

Node and edge featurization. For the receptor residues, we use the residue type as a feature as well
as a language model embedding obtained from ESM?2 [29]. The ligand atoms have the following
features: atomic number; chirality; degree; formal charge; implicit valence; the number of connected
hydrogens; the number of radical electrons; hybridization type; whether or not it is in an aromatic
ring; in how many rings it is; and finally, 6 features for whether or not it is in a ring of size 3, 4, 5, 6,
7, or 8. These are concatenated with sinusoidal embeddings of the diffusion time [30] and, in the case
of edges, radial basis embeddings of edge length [31]. These scalar features of each node and edge
are then transformed with learnable two-layer MLPs (different for each node and edge type) into a
set of scalar features that are used as initial representations by the interaction layers.

Notation Let (V, £) represent the heterogeneous graph, with V = (V,, V,.) respectively ligand atoms
and receptor residues (receptor atoms V,, present in the confidence model, are for simplicity not
included here), and similarly € = (E¢, Eor, Erey Err). Let h, be the node embeddings (initially only
scalar channels) of node a, e,, the edge embeddings of (a, b), and p(r4p) radial basis embeddings of
the edge length. Let 0., 02,,, and o7, represent the variance of the diffusion kernel in each of the
three components: translational, rotational and torsional.

C.2 Interaction layers

At each layer, for every pair of nodes in the graph, we construct messages using tensor products of
the current node features with the spherical harmonic representations of the edge vector. The weights
of this tensor product are computed based on the edge embeddings and the scalar features—denoted
h9—of the outgoing and incoming nodes. The messages are then aggregated at each node and used
to update the current node features. For every node a of type t,:

1
h, < h, @ BN(«) Y(fu) ®y . h
te{l,r} N(t)| Z (b) Yab b

Na beN D
with g, = U (eg;, h0, hY)

5)

Here, ¢ indicates an arbitrary node type, N = {b] (a,b) € &} the neighbors of a of type t, Y’
are the spherical harmonics up to ¢ = 2, and BN the (equivariant) batch normalisation. The orders

16

of the output are restricted to a maximum of ¢ = 1. All learnable weights are contained in U, a
dictionary of MLPs, which uses different sets of weights for different edge types (as an ordered pair
so four types for the score model and nine for the confidence) and different rotational orders.

C.3 Output layer

The ligand atom representations after the final interaction layer are used in the output layer to
produce the required outputs. This is where the score and confidence architecture differ significantly.
On one hand, the score model’s output is in the tangent space T, T3 & TrSO(3) @ TpSO(2)™.
This corresponds to having two S E(3)-equivariant output vectors representing the translational and
rotational score predictions and m S E(3)-invariant output scalars representing the torsional score.
For each of these, we design final tensor-product convolutions inspired by classical mechanics. On the
other hand, the confidence model outputs a single SE(3)-invariant scalar representing the confidence
score. Below we detail how each of these outputs is generated.

Translational and rotational scores. The translational and rotational score intuitively represent,
respectively, the linear acceleration of the center of mass of the ligand and the angular acceleration of
the rest of the molecule around the center. Considering the ligand as a rigid object and given a set of
forces and masses at each ligand, a tensor product convolution between the atoms and the center of
mass would be capable of computing the desired quantities. Therefore, for each of the two outputs,
we perform a convolution of each of the ligand atoms with the (unweighted) center of mass c.

a€Ve (16)
with teq = ¥(pu(req), hl)

We restrict the output of v to a single odd and a single even vectors (for each of the two scores).
Since we are using coarse-grained representations of the protein, the score will neither be even nor
odd; therefore, we sum the even and odd vector representations of v. Finally, the magnitude (but not
direction) of these vectors is adjusted with an MLP taking as input the current magnitude and the
sinusoidal embeddings of the diffusion time. Finally, we (revert the normalization) by multiplying
the outputs by 1/0y, for the translational score and by the expected magnitude of a score in SO(3)
with diffusion parameter o,.,; (precomputed numerically).

Torsional score. To predict the m S E(3)-invariant scalar describing the torsional score, we use a
pseudotorque layer similar to that of [4]. This predicts a scalar score §7 for each rotatable bond from
the per-node outputs of the atomic convolution layers. For rotatable bond g = (go, g1) and b € Vy, let
rgp and 74p, be the magnitude and direction of the vector connecting the center of bond g and b. We
construct a convolutional filter T}, for each bond g from the tensor product of the spherical harmonics

with a £ = 2 representation of the bond axis 7,:°
Ty(7) = Y?(F) @ Y (7) (17)

® is the full (i.e., unweighted) tensor product as described in [32], and the second term contains the
spherical harmonics up to ¢ = 2 (as usual). This filter (which contains orders up to ¢ = 3) is then
used to convolve with the representations of every neighbor on a radius graph:

& ={(g,b) | g arotatable bond, b € V,}

egp =Y (u(re)) V(g.b) € Er

1 .
h, = A Z T.q(rgb) Sryge hy, (18)
| g| bENg

with Ygb = F(eg(n hg, hgo + h21)

Here, N, = {b | (9,b) € &} and Y(7) and T are MLPs with learnable parameters. Since unlike [4],
we use coarse-grained representations the parity also here is neither even nor odd, the irreps in the
output are restricted to arrays both even h; and odd h;’ scalars. Finally, we produce a single scalar

prediction for each bond:
0Ty = H(h; + h'g’) (19)

%Since the parity of the £ = 2 spherical harmonic is even, this representation is indifferent to the choice of
bond direction.

17

where II is a two-layer MLP with tanh nonlinearity and no biases. This is also “denormalized" by
multiplying by the expected magnitude of a score in SO(2) with diffusion parameter ;.

Confidence output. The single SE(3)-invariant scalar representing the confidence score output is
instead obtained by concatenating the even and odd final scalar representation of each ligand atom,
averaging these feature vectors among the different atoms, and finally applying a three layers MLP
(with batch normalization).

D Experimental Details

In general, all our code is available at https://anonymous.4open.science/r/DiffDock. This
includes running the baselines, runtime calculations, training and inference scripts for DIFFDOCK,
the PDB files of DIFFDOCK’s predictions for all 363 complexes of the test set, and visualization
videos of the reverse diffusion.

D.1 Experimental Setup

Data. We use the molecular complexes in PDBBind [22] that were extracted from the Protein Data
Bank (PDB) [23]. We employ the time-split of PDBBind proposed by [1] with 17k complexes from
2018 or earlier for training/validation and 363 test structures from 2019 with no ligand overlap
with the training complexes. This is motivated by the further adoption of the same split [2] and the
critical assessment of PDBBind splits by [24] who favor temporal splits over artificial splits based on
molecular scaffolds or protein sequence/structure similarity. For completeness, we also report the
results on protein sequence similarity splits in Appendix E.

Metrics. To evaluate the generated complexes, we compute the heavy-atom RMSD between the
predicted and the crystal ligand atoms when the protein structures are aligned. To account for
permutation symmetries in the ligand, we use the symmetry-corrected RMSD of sPyRMSD [33]. For
these RMSD values, we report the percentage of predictions that have an RMSD that is less than
2A. We choose 2A since much prior work considers poses with an RMSD less that 2A as “good"
or successful [7, 8, 9]. This is a chemically relevant metric, unlike the mean RMSD as detailed in
Section 3 since for further downstream analyses such as determining function changes, a prediction
is only useful below a certain RMSD error threshold. Less relevant metrics such as the mean RMSD
are provided in Appendix E.

D.2 Implementation details: hyperparameters, training, and runtime measurement

Training Details. We use Adam [34] as optimizer for the diffusion and the confidence model. The
diffusion model with which we run inference uses the exponential moving average of the weights
during training, and we update the moving average after every optimization step with a decay factor
of 0.999. The batch size is 16. We run inference with 20 denoising steps on 500 validation complexes
every 5 epochs and use the set of weights with the highest percentage of RMSDs less than 2A as the
final diffusion model. We trained our final score model on four 48GB RTX A6000 GPUs for 850
epochs (around 18 days). The confidence model is trained on a single 48GB GPU. For inference,
only a single GPU is required. Scaling up the model size seems to improve performance and future
work could explore whether this trend continues further. For the confidence model uses the validation
cross-entropy loss is used for early stopping and training only takes 75 epochs. Code to reproduce
all results including running the baselines or to perform docking calculations for new complexes is
available at https://anonymous.4open.science/r/DiffDock.

Hyperparameters. For determining the hyperparameters of DIFFDOCK’s score model, we trained
smaller models (3.97 million parameters) that fit into 48GB of GPU RAM before scaling it up to the
final model (20.24 million parameters) that was trained on four 4GB GPUs. The smaller models
were only trained for 250 or 300 epochs, and we used the fraction of predictions with an RMSD below
2A on the validation set to choose the hyperparameters. Table 2 shows the main hyperparameters
we tested and the final parameters of the large model we use to obtain our results. We only did little
tuning for the minimum and maximum noise levels of the three components of the diffusion. For the
translation, the maximum standard deviation is 19A. We also experimented with second-order features
for the Tensorfield Network but did not find them to help. The complete set of hyperparameters next
to the main ones we describe here can be found in our repository.

18

https://anonymous.4open.science/r/DiffDock
https://anonymous.4open.science/r/DiffDock

The confidence model has 4.77 million parameters and the parameters we tried are in Table 3. We
generate 28 different training poses for the confidence model (for which it predicts whether or not
they have an RMSD below 2A) with a score model that has a maximum translation standard deviation
of 34A. The score model used to generate the training samples for the confidence model is thus
different from the large score model we used during inference.

Table 2: The hyperparameter options we searched through for DIFFDOCK’s score model. This was
done with small models before scaling up to a large model. The parameters shown here that impact
model size (bottom half of the table) are those of the large model. The final parameters for the large
DIFFDOCK model are marked in bold.

PARAMETER SEARCH SPACE
USING ALL ATOMS FOR THE PROTEIN GRAPH YES, NO

USING LANGUAGE MODEL EMBEDDINGS YES, No

USING LIGAND HYDROGENS YES, No

USING EXPONENTIAL MOVING AVERAGE YES, No
MAXIMUM NUMBER OF NEIGHBORS IN PROTEIN GRAPH 10, 16, 24, 30
MAXIMUM NEIGHBOR DISTANCE IN PROTEIN GRAPH 5,10, 15, 18, 20, 30
DISTANCE EMBEDDING METHOD SINUSOIDAL, GAUSSIAN
DROPOUT 0, 0.05,0.1, 0.2
LEARNING RATES 0.01, 0.008, 0.003, 0.001, 0.0008, 0.0001
BATCH SIZE 8,16, 24

NON LINEARITIES RELU
CONVOLUTION LAYERS 6

NUMBER OF SCALAR FEATURES 48

NUMBER OF VECTOR FEATURES 10

Table 3: The hyperparameter options we searched through for DIFFDOCK’s confidence model. The
final parameters are marked in bold.

PARAMETER SEARCH SPACE
USING ALL ATOMS FOR THE PROTEIN GRAPH YES, NoO
USING LANGUAGE MODEL EMBEDDINGS YES, No
USING LIGAND HYDROGENS No

USING EXPONENTIAL MOVING AVERAGE No
MAXIMUM NUMBER OF NEIGHBORS IN PROTEIN GRAPH 10, 16, 24, 30
MAXIMUM NEIGHBOR DISTANCE IN PROTEIN GRAPH 5,10, 15, 18, 20, 30
DISTANCE EMBEDDING METHOD SINUSOIDAL
DROPOUT 0, 0.05,0.1,0.2
LEARNING RATES 0.03, 0.003, 0.0003, 0.00008
BATCH SIZE 16

NON LINEARITIES RELU
CONVOLUTION LAYERS 5

NUMBER OF SCALAR FEATURES 24
NUMBER OF VECTOR FEATURES 6

Runtime. Similar to all the baselines, the preprocessing times are not included in the reported
runtimes. For DIFFDOCK the preprocessing time is negligible compared to the rest of the inference
time where multiple reverse diffusion steps are performed. Preprocessing mainly consists of a forward
pass of ESM2 to generate the protein language model embeddings, RDKit’s conformer generation,
and the conversion of the protein into a radius graph. We measured the inference time when running
on an RTX A100 40GB GPU when generating 10 samples. The runtimes we report for generating
40 samples and ranking them are extrapolations where we multiply the runtime for 10 samples by 4.
In practice, this only gives an upper bound on the runtime with 40 samples, and the actual runtime
should be faster.

19

D.3 Baselines: implementation, used scripts, and runtime details

Our scripts to run the baselines are available at https://anonymous.4open.science/r/
DiffDock. For obtaining the runtimes of the different methods, we always used 16 CPUs ex-
cept for GLIDE as explained below. The runtimes do not include any preprocessing time for any of
the methods. For instance, the time that it takes to run P2Rank is not included for TANKBind, and
P2Rank + SMINA/GNINA since this receptor preparation only needs to be run once when docking
many ligands to the same protein. In applications where different receptors are processed (such as
reverse screening), the experienced runtimes for TANKBind and P2Rank + SMINA/GNINA will thus
be higher.

We note that for all these baselines we have used the default hyperparameters unless specified
differently below. Modifying some of these hyperparameters (for example the scoring method’s
exhaustiveness) will change the runtime and performance tradeoffs (e.g., if the searching routine is
left running for longer then better poses are likely to be found), however, we leave these analyses to
future work.

SMINA [25] improves Autodock Vina with a new scoring-function and user friendliness. The default
parameters were used with the exception of setting -num_modes 10. To define the search box, we

use the automatic box creation option around the receptor with the default buffer of 4A on all 6 sides.

GNINA [9] builds on SMINA by additionally using a learned 3D CNN for scoring. The default
parameters were used with the exception of setting -num_modes 10. To define the search box, we
use the automatic box creation option around the receptor with the default buffer of 4A on all 6 sides.

QuickVina-W [8] extends the speed-optimized QuickVina 2 [7] for blind docking. We reuse the
numbers from [1] which had used the default parameters except for increasing the exhaustiveness to
64.

GLIDE [11] is a strong heavily used commercial docking tool. These methods all use biophysics
based scoring-functions. We reuse the numbers from [1] since we do not have a license. As explained
by [1], the very high runtime of GLIDE with 1405 seconds per complex is partially explained by the
fact that GLIDE only uses a single thread when processing a complex. This fact and the parallelization
options of GLIDE are explained here https://www.schrodinger.com/kb/1165. With GLIDE,
it is possible to start data-parallel processes that compute the docking results for a different complex
in parallel. However, each process also requires a separate software license.

EquiBind [1], we reuse the numbers reported in their paper and generate the predictions that we
visualize with their code at https://github.com/HannesStark/EquiBind.

TANKBind [2], we use the code associated with the paper at https://github.com/luwei0917/
TankBind. The runtimes do not include the runtime of P2Rank or any preprocessing steps. In
Table 1 we report two runtimes (0.72/2.5 sec). The first is the runtime when making only the top-1
prediction and the second is for producing the top-5 predictions. Producing only the top-1 predictions
is faster since TANKBind produces distance predictions that need to be converted to coordinates with
a gradient descent algorithm and this step only needs to be run once for the top-1 prediction, while
it needs to be run 5 times for producing 5 outputs. To obtain our runtimes we run the forward pass
of TANKBind on GPU (0.28 seconds) with the default batch size of 5 that is used in their GitHub
repository. To compute the time the distances-to-coordinates conversion step takes, we run the
file baseline_run_tankbind_parallel.sh in our repository, which parallelizes the computation
across 16 processes which we also run on an Intel Xeon Gold 6230 CPU. This way, we obtain 0.44
seconds runtime for the conversion step of the top-1 prediction (averaged over the 363 complexes of
the testset).

P2Rank [26], is a tool that predicts multiple binding pockets and ranks them. We use it for running
TANKBind and P2Rank + SMINA/GNINA. We download the program from https://github.
com/rdk/p2rank and run it with its default parameters.

EquiBind + SMINA/GNINA [1], the bounding box in which GNINA/SMINA searches for binding
poses is constructed around the prediction of EquiBind with the -autobox_ligand option of
GNINA/SMINA. EquiBind is thus used to find the binding pocket and SMINA/GNINA to find the

exact final binding pose. We use -autobox_add 10 to add an additional 10A on all 6 sides of the
bounding box following [1].

20

https://anonymous.4open.science/r/DiffDock
https://anonymous.4open.science/r/DiffDock
https://www.schrodinger.com/kb/1165
https://github.com/HannesStark/EquiBind
https://github.com/luwei0917/TankBind
https://github.com/luwei0917/TankBind
https://github.com/rdk/p2rank
https://github.com/rdk/p2rank

P2Rank + SMINA/GNINA. The bounding box in which GNINA/SMINA searches for binding
poses is constructed around the pocket center that P2Rank predicts as the most likely binding pocket.
P2Rank is thus used to find the binding pocket and SMINA/GNINA to find the exact final binding
pose. The diameter of the search box is the diameter of a ligand conformer generated by RDKit with
an additional 10A on all 6 sides of the bounding box.

E Additional Results
E.1 Physically plausible predictions

Table 4: Steric clashes. Percentage of test complexes for which the predictions of the different
methods exhibit steric clashes. Search-based methods never produced steric clashes.

Top-1 Top-5
Method % steric clashes % steric clashes
EQUIBIND 26 -
TANKBIND 6.6 3.6
Di1rFDOCK (10) 2.8 1]
D1rFDOCK (40) 2.2 2.2

Due to the averaging phenomenon of regression-based methods such as TANKBind and EquiBind,
they make predictions at the mean of the distribution. If aleatoric uncertainty is present, such as in
case of symmetric complexes, this leads to predicting the ligand to be at an un-physical state in the
middle of the possible binding pockets as visualized in Figure 10. The Figure also illustrates how
Di1rrFDOCK does not suffer from this issue and is able to accurately sample from the modes.

In the scenario when epistemic uncertainty about the correct ligand conformation is present, this
often results in “squashed-up" predictions of the regression-based methods as visualized in Figure 5.
If there is uncertainty about the correct conformer, the square error minimizing option is to put all
atoms close to the mean.

These averaging phenomena in the presence of either aleatoric or epistemic uncertainty cause the
regression-based methods to often generate steric clashes and self intersections. To investigate this
quantitatively, we determine the fraction of test complexes for which the methods exhibit steric
clashes. We define a ligand as exhibiting a steric clash if one of its heavy atoms is within 0.4A of a
heavy receptor atom. This cutoff is used by protein quality assessment tools and in previous literature
[35]. Table 4 shows that DIFFDOCK, as a generative model, produces fewer steric clashes than
the regression-based baselines. We generally observe no unphysical predictions from DIFFDOCK
unlike the self intersections that, e.g., TANKBind produces (Figure 5) or its incorrect local structures
(Figure 6). This is also visible in the randomly chosen examples of Figure 9 and can be examined in
our repository, where we provide all predictions of DIFFDOCK for the test set.

E.2 Further Results and Metrics

In this section, we present further evaluation metrics on the results presented in Table 1. In particular,
for both top-1 (Table 5) and top-5 (Table 6) we report: 25th, 50th and 75th percentiles, the proportion
below 2A and below 5A of both ligand RMSD and centroid distance. Moreover, while [24] advocated
against artificial protein set splits and for time-based splits, for completeness, in Table 7 and Figure 7,
we report the performances of the different methods when evaluated exclusively on the portion of the
test set where the UniProt IDs of the proteins are not contained in the data that is seen by DIFFDOCK
in its training and validation.

E.3 Ablation studies

Below we report the performance of our method over different hyperparameter settings. In particular,
we highlight the different ways in which it is possible to control the tradeoff between runtime and

21

Figure 5: Ligand self-intersections. TANKBind (blue), EquiBind (cyan), DIFFDOCK (red), and
crystal structure (green). Due to the averaging phenomenon that occurs when epistemic uncertainty
is present, the regression-based deep learning models tend to produce ligands with atoms that are
close together, leading to self-intersections. DIFFDOCK, as a generative model, does not suffer from
this averaging phenomenon, and we never found a self-intersection in any of the investigated results
of DIFFDOCK.

accuracy in our method. These mainly are: (1) model size, (2) diffusion time, and (3) diffusion
samples.

Model size. The final DIFFDOCK score model has 20.24 million parameters from its 6 convolution
layers with 48 scalar and 10 vector features. In Table 8 we show the results for a smaller score model
with 5 convolutions, 24 scalar, and 6 vector features resulting in 3.97 million parameters that can be
trained on a single 48GB GPU. The confidence model used is the same for both score models. We
find that scaling up the model size helped improve performance which we did as far as possible using
four 48GB GPUs for training. Scaling the model size further is a promising avenue for future work.

Diffusion steps. Another hyperparameter determining the runtime of the method during inference
is the number of steps we take during the reverse diffusion. Since these are applied sequentially
DIFFDOCK’s runtime scales approximately linearly with the number of diffusion steps. In the rest of
the paper, we always use 20 steps, but in Figure 8 we show how the performance of the model varies
with the number of steps. We note that the model reaches nearly the full performance even with just
10 steps, suggesting that the model can be sped up 2x with a small drop in accuracy.

Diffusion samples. Given a score-based model and a number of steps for the diffusion model, it
remains to be determined how many independent samples N to query from the diffusion model and
then feed to the confidence model. As expected the more samples the confidence model receives
the more likely it is that it will find a pose that it is confident about and, therefore, the higher the
performance. The runtime of DIFFDOCK on GPU scales sublinearly until the different samples fit in

22

Figure 6: Chemically plausible local structures. TANKBind (blue), EquiBind (cyan), and DIFF-
Dock (red) structures for complex 6g2f. EquiBind (without their correction step) produces very
unrealistic local structures and TANKBInd, e.g., produces non-planar aromatic rings. DIFFDOCK’s
local structures are the realistic local structures of RDKit.

Table 5: Top-1 PDBBind docking.

Ligand RMSD Centroid Distance

. % below . % below

Percentiles | threshold 1 Percentiles | thresh. 1
Methods 25th 50th 75th SA 2A | 25th SOth 75th SA 2A
QVINA-W 2.5 7.7 237 402 209 | 09 37 229 546 410
GNINA 24 77 179 408 229 | 0.8 37 231 536 402
SMINA 3.1 7.1 179 380 187 | 1.0 26 161 598 41.6
GLIDE (c.) 26 93 281 336 218 | 08 56 269 487 36.1
EQUIBIND 3.8 62 103 391 55 1.3 2.6 74 675 40.0
TANKBIND 25 4.0 85 59.0 204 | 09 1.8 44 771 55.1

P2RANK+SMINA 2.9 69 160 430 204 | 08 26 148 60.1 44.1
P2RANK+GNINA 1.7 55 159 478 288 | 06 22 146 609 483
EQUIBIND+SMINA 24 65 112 436 232 | 0.7 2.1 73 693 492
EQUIBIND+GNINA 1.8 49 13 503 288 | 0.6 1.9 99 665 508

DIFFDOCK (10) 1.5 3.6 71 617 350 | 05 1.2 33 80.7 63.1
DIFFDOCK (40) 1.4 33 73 632 382 | 05 1.2 32 805 645

parallel in the model (depends on the protein size and the GPU memory) and approximately linearly
for larger sample sizes (however it can be easily parallelized across different GPUs). In Figure 3
we show how the success rate for the top-1, top-5, and top-10 prediction change as a function of
N. For example, for the top-1 prediction, the proportion of the prediction with RMSD below 2A
varies between 22% of a random sample of the diffusion model (/N = 1) to 38% when the confidence
model is allowed to choose between 40 samples.

Table 6: Top-5 PDBBind docking.

Ligand RMSD Centroid Distance
. % below . % below
Percentiles | threshold 1 Percentiles | thresh, 1
Methods 25th s0th 75th SA 2A | 25th S0tk 75th SA 24
GNINA 1.6 45 11.8 528 293 | 06 20 82 668 497
SMINA 1.7 4.6 9.7 531 293 | 0.6 1.85 62 729 50.8
TANKBIND 2.1 34 61 675 245 038 14 29 868 620

P2RANK+SMINA 1.5 44 141 548 332 | 0.6 1.8 123 662 534
P2RANK+GNINA 1.4 34 125 603 383 | 0.5 1.4 92 693 573
EQUIBIND+SMINA 1.3 34 81 606 386 | 05 1.3 51 749 589
EQUIBIND+GNINA 14 3.1 91 617 391 | 05 1.1 53 737 60.1

DIFFDOCK (10) 1.2 2.7 49 751 407 | 05 1.0 22 870 723
DIFFDOCK (40) 1.2 24 50 755 44.7 | 04 0.9 1.9 88.0 76.7

23

O 0.7 — DiffDock :
£ — GLIDE |
x 061 —GNINA !
5 0.5/ — SMINA i
c;> QVinaW !
= 0.4{ — TANKBind : il
§ EquiBind ! —
= 0.34 1
C I =
5 024 _I#J‘
o+
(@]
,-"-'-__',’_a"" | : :
0 1 2 3 4 5

RMSD (A)

Figure 7: PDBBind docking on unseen receptors. Shown is the cumulative density histogram of
the methods’ RMSD.

Table 7: PDBBind docking on unseen receptors. Percentage of predictions for which the RMSD to
the crystal structure is below 2A and the median RMSD. “*" indicates the method run exclusively on
CPU, “-" means not applicable; some cells are empty due to infrastructure constraints.

Top-1 RMSD Top-5 RMSD Average
Method Po<2 Med. | %<2 Med. | Runtime (s)
QVINAW 15.3 10.3 49*
GNINA 14.0 13.6 23.0 7.0 127
SMINA 14.0 8.5 21.7 6.7 126*
GLIDE 19.6 18.0 1405*
EQUIBIND 0.7 9.1 - - 0.04
TANKBIND 6.3 5.0 11.1 4.4 0.7/2.5
DirFDOCK (10) 157412 6.1+04 | 21.8+12 4.240.1 10
DIFFDOCK (40) 20.842.0 6.2+02 | 28.7+14 3.9+0.1 40

E.4 Affinity prediction

To validate the quality of the predicted poses, we also do some experiments in predicting the binding
affinity labels already present in PDBBind. In this section we report some preliminary results on this
task that show that a simple approach can already achieve results competitive with the state-of-the-art.
We leave a more thorough and sophisticated analysis on how to best use the DIFFDOCK framework
for binding affinity to future work.

Affinity prediction framework. We train the binding affinity predictor by generating a fixed
number of poses with the diffusion model and then feeding them to an affinity prediction model with

Table 8: Model size comparison. All methods receive a small molecule and are tasked to find its
binding location, orientation, and conformation. Shown is the percentage of predictions for which the
RMSD to the crystal structure is below 2A and the median RMSD.

Top-1 RMSD A Top-5 RMSD (A) Average
Method Po<2 Med. | %<2 Med. | Runtime (s)
DIFFDOCK-SMALL (10) 26.2 3.9 34.2 3.0 7
DIFFDOCK-SMALL (40) 32.0 3.9 40.8 2.7 28
DirFDOCK (10) 35.0+£14 3.56+005 | 40.7+16 2.65+0.10 10
DIFFDOCK (40) 38.2+1.0 3.30+0.11 | 44.7+1.7 2.40+0.12 40

24

0.5

oL
~N
V 0.4
()]
=
= 0.31
.C
e
S 0.2
c
© —— Top-1 performance
G 0] —— Top-5 perf
© op-5 performance
- s Top-10 performance
0 T T T T T
0 10 20 30 40 50 60

Number of reverse diffusion steps

Figure 8: Ablation study on the number of reverse diffusion steps.

architecture almost analogous to the confidence model. This affinity prediction model takes in the
poses as a single heterogeneous graph with a single receptor but multiple sets of ligand nodes, which
have edges to the same receptor but not among themselves. After the final interaction layer, the scalar
representations of nodes in each ligand are aggregated with a mean pooling and passed through a set
of dense layers (as it is done for the confidence prediction). Then, the representations of the different
ligands are aggregated using multiple permutation invariant aggregators (mean, maximum, minimum,
and standard deviation) as in [36], and transformed with another set of dense layers producing a
single output, the predicted affinity.

Dataset, baselines, and training. To train we use PDBBind with the same splits used to train
the diffusion and confidence models. This provides for each of the complexes an affinity measure
that consists of inhibiting concentration (I C50), inhibition constant (K;), or dissociation constant
(K4) and its conversion to the — log K;/ K; metric. As baselines, we use a series of state-of-the-art
sequence-based and structure-based methods: TransformerCPI [37], MONN [38], IGN [39], PIGNet
[40], HOLOPTOT [41], STAMPDPI [42] and TANKBind [2]. We take the baselines’ performances
from [2].

Table 9: Binding affinity prediction. Prediction of —log K/ K; on PDBBind. The baseline
numbers are from [2]. No hyperparameter tuning was performed for DIFFDOCK’s performance.

Methods RMSE | Pearson! Spearman{ MAE |
TRANSCPI 1.741 0.576 0.540 1.404
MONN 1.438 0.624 0.589 1.143
PIGNET 2.640 0.511 0.489 2.110
IGN 1.433 0.698 0.641 1.169
HOLOPROT 1.546 0.602 0.571 1.208
STAMPDPI 1.658 0.545 0.411 1.325
TANKBIND 1.346 0.726 0.703 1.070
DIFFDOCK 1.347 0.692 0.718 1.052

Results. The results presented in Table 9 highlight how even preliminary results with a straightforward
way of using DIFFDOCK’s predictions for affinity prediction achieve a performance that is on par with
the state-of-the-art. We hope this can motivate future work on better integrating affinity prediction in
the method and scaling to larger amounts of data.

25

E.5 Visualizations

26

Figure 9: Randomly picked examples. The predictions of TANKBind (blue), EquiBind (cyan),
GNINA (magenta), DIFFDOCK (red), and crystal structure (green). Shown are the predictions once
with the protein and without it below. The complexes were chosen with a random number generator
from the test set. TANKBind often produces self intersections (examples at the top-right; middle-
middle; middle-right; bottom-right). DIFFDOCK and GNINA sometimes almost perfectly predict
the bound structure (e.g., top-middle). The complexes in reading order are: 6p8y, 6mo8, 6pya, 6t6a,
6e30, 6hld, 6qzh, 6hhg, 6qln.

27

Figure 10: Symmetric complexes and multiple modes. EquiBind (cyan), DIFFDOCK highest
confidence sample (red), all other DIFFDOCK samples (orange), and the crystal structure (green). We
see that, since it is a generative model, DIFFDOCK is able to produce multiple correct modes and
to sample around them. Meanwhile, as a regression-based model, EquiBind is only able to predict
a structure at the mean of the modes. The complexes are unseen during training. The PDB IDs in
reading order: 6agt, 6gdy, 6¢kl, 6dz3.

28

Figure 11: Reverse Diffusion. Reverse diffusion of a randomly picked complex from the test set.
Shown are DIFFDOCK highest confidence sample (red), all other DIFFDOCK samples (orange),
and the crystal structure (green). Shown are the 20 steps of the reverse diffusion process (in
reading order) of DIFFDOCK for the complex 6oxx. Videos of the reverse diffusion are available at
https://anonymous.4open.science/r/DiffDock/visualizations/README. md.

29

https://anonymous.4open.science/r/DiffDock/visualizations/README.md

	Introduction
	Background and Related Work
	Docking as Generative Modeling
	Method
	Overview
	Ligand Pose Transformations
	Diffusion on the Product Space
	Training and Inference

	Experiments
	Conclusion
	Proofs
	Proof of Proposition 1
	Proof of Proposition 2

	Training and Inference
	Architecture Details
	Embedding layer
	Interaction layers
	Output layer

	Experimental Details
	Experimental Setup
	Implementation details: hyperparameters, training, and runtime measurement
	Baselines: implementation, used scripts, and runtime details

	Additional Results
	Physically plausible predictions
	Further Results and Metrics
	Ablation studies
	Affinity prediction
	Visualizations

