EXPESQL: AN EXPERIENCE-GUIDED DECOMPOSI-
TIONAL SEARCH FRAMEWORK FOR TEXT-TO-SQL

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models have advanced Text-to-SQL, yet enterprise deployment
remains challenging due to complex, evolving schemas, domain shift, privacy
constraints, and latency/cost budgets. We introduce ExpeSQL, a zero-shot, open-
source—compatible framework that enables self-evolving SQL generation through
experience-guided refinement. ExpeSQL decomposes questions using schema-
aware reasoning, generates verifiable sub-SQLs, and aggregates candidates via
result-based filtering and majority voting. When errors occur, a self-critique mod-
ule performs diagnostic backtracking, storing structured remedies in a persistent
memory. These experiences are replayed in future rounds to prevent repeated mis-
takes—enabling continuous improvement without parameter updates. On BIRD-
dev, ExpeSQL achieves 67.5% execution accuracy with open-source models, re-
ducing token generation by up to 87% and inference latency by 96% compared to
Alpha-SQL at similar accuracy. This superior accuracy-efficiency trade-off estab-
lishes ExpeSQL as a new paradigm for deployable, self-improving Text-to-SQL
systems in dynamic real-world environments.

1 INTRODUCTION

Large language models (LLMs) have revolutionized Text-to-SQL systems (Liu et al.| 20252} Zhang
et al. 2025)), enabling non-expert users to query databases through natural language and signifi-
cantly lowering the barrier to data access. While promising, the practical deployment of LLM-
based Text-to-SQL systems in enterprise environments remains challenging (Cohere et al.| 2025).
Real-world databases are often large, schema-complex, and subject to frequent updates and domain
shifts—conditions under which standard LLMs exhibit poor robustness, generating syntactically
valid but semantically incorrect queries due to hallucinated joins, misaligned columns, or ambiguous
user intents. Moreover, enterprise applications demand strict data privacy, low-latency responses,
and minimal operational overhead, all of which are difficult to achieve with current approaches.
To improve accuracy, existing methods typically rely on either training (TR) (e.g., supervised fine-
tuning or reinforcement learning) (Liu et al., 2025b)) or test-time scaling (TTS) (Li et al., [2025a;
Yang et al.l 2025b)).

TR methods, such as Reasoning-SQL (Pourreza et al.l 2025)), leverage domain-specific data and
advanced training objectives (e.g., GRPO) to achieve high performance—up to 72.29 execution
accuracy on the BIRD dev set (L1 et al.,2023) with a 14B open-source model. However, TR-based
systems face critical barriers to enterprise adoption: they require extensive labeled training data,
incur high retraining costs when schemas evolve, and often fail to generalize to unseen domains or
new databases. More critically, fine-tuning typically involves sending sensitive SQL and schema
information to third-party services or internal training pipelines, raising serious data leakage risks in
regulated environments.

TTS Methods. To address these limitations, TTS has recently emerged as a compelling alternative
to fine-tuning (Guan et al., 2025). For instance, CHASE-SQL (Pourreza et al., 2024)) leverages
three strategies—divide-and-conquer, query planning, and online synthetic example generation—to
produce multiple candidate SQL queries, which are then selected by a fine-tuned agent. However,
like many TTS approaches, it depends on closed-source APIs, incurring high operational costs and
raising privacy concerns in enterprise settings.

Alpha-SQL (Li et al| [2025a) stands out as
a notable exception: a purely test-time scal-
ing method built entirely on the open-source
Qwen2.5-Coder-7B model (Hui et al.| 2024),
achieving an execution accuracy of 66.8% on
the BIRD development set—surpassing many
fine-tuned baselines. In Alpha-SQL, the Text-
to-SQL task is formulated as a Monte Carlo
Tree Search (MCTS) (Browne et al., 2012)
process, with seven predefined actions. Start-

Synthesize Context

Reasoning

P [subquery1 4 [sub-sall ¢fy
— s Z | 1> finat
context

sub-sqlk

Sub-query_k

Validation /

Output

ing from the root node, each action gener-
ates a new node, forming a path to a leaf
node that corresponds to one candidate SQL
query—completing a single rollout. After 24
rollouts, the final SQL is selected via majority
voting based on the consistency of execution results.

Figure 1: Reasoning loop of ExpeSQL.

Despite its high accuracy, Alpha-SQL suffers from significant inefficiencies—namely high latency
and excessive token generation. Through careful implementation and analysis of their codebase, we
identify three key factors contributing to this inefficiency:

1. Leaf nodes sharing the same parent inherit identical reasoning traces (i.e., chains of
thought), leading to redundant SQL generation. Even across different parents, partial rea-
soning paths are frequently reused, reducing diversity and amplifying redundancy.

2. The node and SQL quality are represented solely by scalar scores. Although these scores
are backpropagated along the path after each rollout to guide future node selection, the
search process fails to leverage richer historical information—such as which segments of
prior reasoning were likely erroneous—to improve search efficiency.

3. The method requires all 24 rollouts to complete before termination, lacking a flexible early-
exit mechanism based on convergence or confidence.

Closely related, MCTS-SQL (Yuan et al., 2025) also adopts MCTS for SQL generation and incor-
porates a self-evaluation-and-refinement loop to enhance efficiency. However, its design is oversim-
plified, achieving only 53.0% execution accuracy on the same model (Qwen2.5-Coder-7B), signifi-
cantly underperforming Alpha-SQL. This gap highlights the need for a more effective and efficient
TTS framework.

Building upon these insights, we argue that ideal, production-ready Text-to-SQL systems (Cheng
et al.,[2025) should satisfy three criteria:

1. Zero-shot: Rely solely on algorithmic enhancements to strengthen the model’s intrinsic
reasoning capabilities, ensuring generalization across domains and question types.

2. Open-source compatible: Operate on open-source models in an “off-the-shelf” manner,
avoiding API calls and mitigating data privacy risks.

3. Efficient inference: Minimize both latency and token consumption while preserving high
accuracy.

To this end, we propose ExpeSQL, a novel framework that integrates divide-and-conquer, Best-of-
N sampling, and self-reflection (Renze & Guven, |2024). As illustrated in Figuregl, the workflow of
our method comprises the following stages.

* Schema Linking: This step is necessary because the values in a database may be numer-
ous, it is generally impossible to input all of them into the model due to the limitation of
the prompt length (Shkapenyuk et al., 2025).

* Divide-and-conquer: The core idea of divide-and-conquer is decomposing the questions
into several simple sub-questions and solve them one-by-one (Smith}|[1985)). This approach
has been proven to be effective in several fields, including Text-to-SQL (Pourreza et al.|
2024; Wang et al., [2023)).

* SQL Selection: Selecting the SQL query in a pool of candidates by majority voting.

* Self-critique: Evaluating the selected SQL query and decide if another iteration is neces-
sary.

* Error Diagnosis and Remediation: When the self-critique step identifies an error, this
agent analyzes the reasoning trajectory to pinpoint root causes, generates targeted remedi-
ation actions, and stores the diagnostic results in a long-term memory for future reasoning
reconstruction.

ExpeSQL introduces a closed-loop reasoning architecture that combines intra-node diversity preser-
vation, inter-node consensus voting, and self-critique validation with a persistent experience repos-
itory. This enables the system to not only generate SQL candidates but also learn from its own
reasoning traces, progressively reducing error recurrence over refinement rounds. The key contribu-
tion of our approach includes:

1. We propose ExpeSQL, a novel experience-driven, self-refining framework for Text-to-SQL
that integrates decompositional reasoning, execution feedback, and multi-round refinement
in a unified pipeline.

2. We design a self-critique agent and a diagnostic agent that leverage the divide-and-conquer
structure to enable fine-grained, modular validation and precise root-cause analysis, signif-
icantly enhancing both accuracy and interpretability in Text-to-SQL systems.

3. We introduce a dual filtering mechanism (intra-node diversity preservation and inter-node
consensus voting) and a structured experience repository E that enables the system to learn
from past reasoning traces and prevent error recurrence.

4. Experimental results demonstrate that our method achieves a strong balance between ef-
fectiveness and efficiency, delivering high accuracy with controlled computational cost.

With open source models, our approach obtained an execution accuracy of 67.5% on BIRD dev set
and achieved a good trade-off between effectiveness and efficiency.

2 METHOD: EXPESQL

2.1 OVERVIEW

We formalize a decompositional reasoning space for Text-to-SQL: given the database schema D
and a natural-language query ¢, the Schema Scoping and Feature Identification Agent first identifies
the relevant tables and columns, producing a textual schema rationale p that is incorporated into
subsequent reasoning steps.

p = Agenty,..(q,D) € P (1)
Next, the Decomposition Agent breaks ¢ into a set of independent sub-questions S = {s;}. For
each sub-question s;, the Subquery Translation Agent generates a corresponding sub-SQL query o,
which is executed by the Execution Agent to yield a result ;. These intermediate results are used
to construct a final SQL query ¥ that integrates all sub-SQL queries, completing a full divide-and-
conquer reasoning cycle.

Y= Compose({ Execute(Translate(s;)) }li\l) 7 o
S = Decompose(q)

Our framework operates sequentially over 7' refinement rounds, with each round guided by a long-
term experience repository F that stores historical reasoning traces and remediation knowledge. In
each round ¢, M independent reasoning nodes execute the complete pipeline in parallel. Crucially,
within each node, the final SQL generation process produces K candidate queries to enhance solu-
tion space coverage.

Each node then applies intra-node result-based filtering: the K candidates are grouped by their
execution results, and the two most frequent distinct outcomes are retained. From each of these two

Input (Question + Database) I» Multi-agent Framework ﬂ Output (SQL)

o Schema Scoping and & pivide-and-Conquer Final SQL Selection

@ Feature Identification
\J
/.

Query @
LLM

*
node 1 node 2 node_N sarTop2

Final SQL
= saL1l saLM
= Scoped
Database
schema qeng
L WHHIN ---cccoscooss posscoocssoas - 5 Self-Critique
: g 1.Decomposition | > ¢ Z,Suttrquery : Validation
I [Agent 1 1 Translation Agent |
N 1 o2 2
(Synthesize Context ! 2 Field Filtering

1 Selection Logic

1 1
1 % 4.Aggregationand < '(:) 3.Execution Agent |
I Synthesis Agent | :

) -
/ Query & Database schema

1
1
1
1
1
1
1
1
1
1
1
1
1
1
Info 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

B
'@‘ Scoped Info

1
1 A
! (2§ Diagnostic and Remediation

Experience_{1...t-1 !

L P - ! j—}_:—_ Long-time =X Sub-Query -
! M
i emory LLM
e R 'y Q Sub-sQL -

Error Diagnosis

N i
&3 Represents Agent !

Figure 2: Overview of ExpeSQL: A closed-loop, experience-driven Text-to-SQL system. Each
round involves M parallel nodes generating and filtering SQL candidates via decompositional rea-
soning. Inter-node majority voting yields ¥, which is validated and critiqued. If valid, ¥; is re-
turned as the final answer. Otherwise, root causes &; and remedies R; are extracted and stored in
experience repository E which guides future rounds, enabling self-refinement over 7 iterations.

result groups, the shortest SQL is selected—yielding exactly two high-quality, diverse candidates
per node.

This results in a total of 2M candidate SQLs across all nodes. The system then performs inter-
node majority voting over these 2)M candidates: the SQL whose execution result appears most
frequently is selected as the round-¢ output X;; in case of a tie, the shortest such SQL is chosen.

C; : all candidate SQLs in round ¢,
3, € arg max #{ o' €C, : Exec(c’) = Exec(o) }, (3)

tie-break: pick the shortest such o.

The Self-Critique Validation Agent evaluates X; along two axes: (i) field selection correctness and
(ii) filtering correctness. If both pass, 3, is emitted as the final output. Otherwise, the Diagnostic
and Remediation Agent receives the full reasoning chain (q p, S, {o:}, {ri}, Zt), performs back-
tracking to localize root causes & (e.g., decomposition bias in sy or translation/logic error in oy),
and issues repair suggestions ;.

Accept(X;) <= Vield(Z:) A Vaiger (1) €]

(gta Rt) = Diagnose((q, D, Sv {Ui}7 {ri}a Et>) (5)

These structured artifacts-including p, s;, o;, r;, 2, self-critique judgments, error taxonomy, and
remediation actions-are persisted into E. In subsequent rounds, F is systematically traversed to
inform decomposition strategies, validate candidate solutions, and apply previously recorded reme-
diation actions.

Let (I)t = <Q7 Dapa Sa {gi}v {Ti}a Et>7
Update experience repository: (6)
E+ EU {(I)t,gt,Rt} .

The process continues sequentially until a valid SQL is produced or the maximum round 7' is
reached. The final output ¥* is the last valid SQL generated, ensuring progressive refinement
grounded in historical experience.

2.2 AGENTS

ExpeSQL employs an agentic Text-to-SQL pipeline (Figure 3 (Li et al.l 2025b), where specialized
LLM agents handle schema scoping, decomposition, translation, execution, and validation. This
design ensures modularity, execution-level verifiability, and iterative refinement through a persistent
experience repository E that captures errors, diagnostics, and fixes for reuse in subsequent rounds.

Schema Scoping and Feature Identification
Agent. This agent initiates the reasoning
pipeline by performing a coarse-grained rele- PARS
vance analysis over the database schema. Given SR
a natural language question, it prompts the ;
large language model to identify and output iy it g
the subset of tables and their relevant columns
that are potentially involved in answering the
query. By focusing only on semantically re-
lated schema elements, this step effectively nar-

SQL Generate Thinking:

Self-Critique

rows the search space for subsequent agents, Valdation >
reducing noise from irrelevant fields and im- ey T

proving both efficiency and accuracy down- e
stream (Chen et al., 2025)).

Agents of Divide-and-Conquer. The De-
composition Agent, Subquery Translation
Agent, and Execution Agent collectively real-
ize the core reasoning loop of ExpeSQL. Given
the scoped schema, the Decomposition Agent
breaks the natural language query into a set of independent, semantically self-contained sub-
questions S = {s;}. For each s;, the Subquery Translation Agent generates a corresponding sub-
SQL o; using schema-aware prompting and domain-specific templates, ensuring syntactic correct-
ness and semantic alignment. The Execution Agent then executes each o; against the database to
obtain a concrete result r;, forming a verifiable triplet (s;, o5, 7;). This tight loop-decompose, trans-
late, execute-not only enables early validation of partial logic but also generates actionable feedback
(e.g., schema mismatches) that informs downstream aggregation and self-critique. By modulariz-
ing these steps, the pipeline ensures traceability, reduces error propagation, and supports parallel
exploration across multiple reasoning paths (Yang et al., [2025a)).

Figure 3: An example of the ExpeSQL iterative
planning, diagnosis, and repair cycle.

Aggregation and Synthesis Agent. This agent is responsible for constructing the final SQL query
by integrating the intermediate sub-SQLs {c;} and their executed results {r;} into a coherent, exe-
cutable statement. Taking as input the set of verified sub-SQL queries and their observed outcomes,
it performs semantic synthesis—aligning projections, aggregations, joins, and filters—to assemble
a globally consistent SQL query X that reflects the original intent (Cheng et al., [2025).

Crucially, within each reasoning node, the agent generates K candidate queries through controlled
perturbation of key components (e.g., join sequences, filtering conditions, aggregation scopes, and
projection lists). This Best-of- K generation enables exploration of alternative query structures while
grounding synthesis in execution-verified sub-results. The resulting candidates are executed, and the
two with the most frequent distinct outcomes are retained, selecting the shortest SQL per outcome
for downstream voting.

By centralizing the synthesis process, the agent ensures syntactic completeness and semantic coher-
ence, while enabling explicit feedback between local sub-question resolutions and global query con-
struction—effectively bridging decomposed reasoning to final answer generation (Qu et al.l 2025).

Self-Critique Validation Agent. This agent performs structured, execution-aware validation of
candidate SQL queries before finalization (Xu et al.l 2025). Given a synthesized SQL query %,
it evaluates correctness along two orthogonal axes: (i) field selection, verifying the alignment of
projected measures and dimensions with the natural language intent, including correct use of ag-
gregation functions (e.g., COUNT, SUM), proper aliasing, DISTINCT semantics, and validity of
selected columns with respect to the database schema; and (ii) filtering logic, assessing the validity
of WHERE and HAVING predicates, proper handling of NULL values, and avoidance of erroneous
join conditions misused as filters. The validation is grounded in both syntactic structure and seman-
tic execution: the agent checks whether the query executes without error and whether intermediate
or final results exhibit expected patterns. If ¥ passes both criteria, it is emitted as the final answer.
Otherwise, the query and its full reasoning chain are forwarded to the Diagnostic and Remediation
Agent for deep analysis, enabling failure-aware refinement rather than blind rejection (Zhai et al.,
2025).

Diagnostic and Remediation Agent. While some iterative refinement methods attempt to correct
logical errors (Qin et al.l [2024; [Shi et al., 2025} [Yuan et al., [2025)), they typically rely on in-place
updates guided by coarse execution feedback, leading to local adjustments without systematic di-
agnosis of root causes. This approach risks incomplete or unstable fixes—such as over-correction
(e.g., altering correct conditions) or cascading errors—due to the lack of a reconstructed reasoning
trajectory. For example, in work Cao et al.|(2024)), which leverages powerful models such as GPT-4o
and DeepSeek-R1, iterative refinement yields less than a 0.8% improvement in overall accuracy.

By integrating with the divide-and-conquer framework, the Diagnostic and Remediation
Agent adopts a self-reflective mechanism that generates fine-grained, sub-problem-level feed-
back—pinpointing errors in specific sub-SQL queries or decomposition steps—and stores these
insights in a long-term memory module to guide a complete reconstruction of the reasoning tra-
jectory in subsequent iterations, rather than performing in-place SQL edits. Upon receiving a
failed reasoning trace, this agent performs causal backtracking to localize and characterize errors
within the pipeline (Somov & Tutubalinal 2025)). It takes as input the complete structured context
(q,S,{0:},{r:},X), reconstructs the execution flow, and identifies root causes such as decomposi-
tion bias (e.g., missing or over-partitioned sub-questions sg), translation inaccuracies (e.g., incorrect
joins or filters in o},), or logical inconsistencies (e.g., type mismatches, semantic drift). Based on this
diagnosis, it generates targeted repair suggestions—such as reformulating a sub-question, adjusting
join logic, or revising aggregation scope—and persists the entire artifact tuple (s;, o5, 74, X, &,
R.) into the long-term experience repository E. This structured memory enables continual learn-
ing (Van de Ven & Tolias, 2019): in subsequent rounds, the system proactively retrieves relevant
past failures and fixes to guide decomposition, prioritize robust paths, and avoid recurrent errors,
thereby closing the loop between execution, critique, and improvement.

2.3 CONTEXT ENGINEERING AND EXPERIENCE LEARNING

To facilitate context management (Mei et al.,[2025)), we adopt a short- and long-term memory mech-
anism (Zhang et al.,|2023). At the beginning of each iteration, an action node is created to encapsu-
late the full divide-and-conquer reasoning trace. This node includes the decomposed sub-questions
S = {s;}, their corresponding sub-SQLs {o;}, and the execution results {r;}—organized as a
sequence of verifiable reasoning steps, forming the short-term memory of the current round. Addi-
tionally, the action node stores metadata from the current iteration, including the final SQL query, its
execution outcome, the self-critique result, and, if validation fails, the diagnostic output from causal
backtracking.

When self-critique fails and a new iteration is initiated, the current action node becomes a child
of the previous action node, forming a temporally ordered chain. This hierarchical linking across
iterations constitutes the system’s long-term memory, preserving historical reasoning traces and
error recovery contexts. At the start of each new cycle, this long-term memory is traversed, and
relevant segments are selectively incorporated into the context to guide subsequent reasoning. The
memory is reconstructed in a sequential format:

roundy : (si, iy Ty 2, Et, Rt) mﬂ) rounds : () % o 2 roundy

Agents that leverage long-term memory—including the Schema Scoping and Feature Identifica-
tion Agent, the Decomposition Agent, Subquery Translation Agent, and the Aggregation and
Synthesis Agent—use this accumulated experience to inform schema relevance analysis, subprob-
lem decomposition, and query synthesis, respectively.

2.4 PREPROCESSING

We adopt the schema-linking methodology of Talaei et al.| (2024); Li et al. (2025a). For each
database, we first preprocess textual column values using MinHash (Datar et al., |2004)) to produce
compact signatures, which we store locally. Given a user query, we extract salient keywords with a
LLM and apply locality-sensitive hashing to efficiently retrieve candidate values from the precom-
puted signatures. We then filter candidates using edit-distance and semantic-similarity thresholds,
where semantic similarity is computed with bert-large-uncased (Devlin et al.,|2018). The resulting
matches are incorporated into the database-schema prompt, thereby providing contextual grounding
for the LLM during SQL generation.

3 EXPERIMENTS

Datasets and Metrics. In this work, we report and compare model performance on two widely used
datasets: the BIRD (Li et al., |2023)) and Spider (Yu et al., 2018)) development sets, which contain
1,534 and 1,034 question-SQL pairs, respectively, spanning multiple databases across diverse do-
mains. Notably, BIRD presents a higher level of complexity compared to Spider, making it a more
challenging benchmark that better discriminates the effectiveness of different approaches, as demon-
strated in the Table [I] and Table [d For TTS methods, evaluation is typically conducted along two
dimensions: performance gains and computational overhead. For the former, we adopted the com-
monly used Execution Accuracy (EX) which indicates the portion of the SQL queries which has the
same execution results as the gold SQL query. We further compare our model with Alpha-SQL—the
strongest open-source, fine-tuning-free method, comparable to ours—in terms of the number of to-
kens generated per question, highlighting our efficiency improvements.

Implementation details. We use instruction-tuned variants from the Qwen-Coder series, including
Qwen2.5-Coder-14B-Instruct and Qwen2.5-Coder-32B-Instruct, as well as the more recent Qwen3-
Coder-30B-Instruct (Hui et al., 2024} Team) 2025)). For the Best-of-N framework, we generate three
reasoning nodes per iteration. During majority voting, each node produces eight candidate SQL
queries to enable robust aggregation. The maximum number of iterations is set to three, allowing
the model up to two opportunities to refine and correct its output if errors are detected in prior steps.

4 RESULTS

BIRD dataset. As shown in Table|l} fine-tuning significantly improves model performance on the
BIRD dataset. Nevertheless, ExpeSQL outperforms several existing methods—even those based on
powerful closed-source models. For instance, using the Qwen3-Coder-30B model, our approach
achieves higher accuracy than CHESS-SQL (which uses GPT-4-Turbo) and Distillery (which uses
GPT-40). When training is applied to open-source models, only XiYan-SQL with M-Schema rep-
resentation and Reasoning-SQL—trained via reinforcement learning—surpass ExpeSQL in perfor-
mance. Notably, when XiYan-SQL adopts DDL-based schema encoding (the same representation
used in our method), its performance drops below that of ExpeSQL when both are instantiated with
the Qwen2.5-Coder-32B model.

In comparison with other methods in the same category—i.e., zero-shot approaches using open-
source models—our method demonstrates clear advantages, substantially outperforming MCTS-
SQL, ROUTE, and Distillery. The relatively small number of methods in this category reflects, to
some extent, the inherent difficulty of achieving strong performance without any training.

When compared to Alpha-SQL, our method lags behind across all three model variants, though the
performance gap narrows as the base model improves. While there remains a gap in execution ac-
curacy, TTS methods are typically evaluated along two dimensions: computational cost and model

Table 1: Comparison of state-of-the-art Text-to-SQL methods on the BIRD dev set.

Method Inference Model Selection Model Zero-shot Open-Source EX (%)
CHESS-SQL (Talaei et al.|[2024) Deepseek-Coder-33B GPT-4-Turbo No No 65.0
Distillery (Maamari et al.||2024) GPT-40 — No No 67.2
CHASE-SQL (Pourreza et al.{[2024) Gemini-1.5-Pro Gemini-1.5-Flash No No 73.0
XiYan-SQL (Liu et al.|[2025b) Unreported Unreported No No 733
DAIL-SQL (Gao et al.}[2023) GPT-4 Majority Voting No 559
SuperSQL (Li et al.|[2024a) GPT-4 Majority Voting No 58.5
MAC-SQL (Wang et al.[[2023) GPT-4 Iterative Refinement No 59.4
Gen-SQL (Shi et al.|[2025} GPT-4 Iterative Refinement No 59.8
RSL-SQL (Cao et al.|{2024) GPT-40 Iterative Refinement No 67.2
DTS-SQL (Pourreza & Rafiei![2024) DeepSeek-7B — No 55.8
SFT CodeS (Li et al.||2024b) CodeS-15B — No 58.5
ROUTE (Multi-task + FT) (Qin et al.|[2024) Qwen2.5-Coder-14B Iterative Refinement No 60.9
CHESS-SQL (Talaei et al.|[2024) Deepseek-Coder-33B LLaMA3-70B No 61.5
XiYan-SQL@DDL (Liu et al.|[2025b} Qwen2.5-Coder-32B Qwen2.5-Coder-32B No 62.3
XiYan-SQL@M-Schema (Liu et al.|2025b) Qwen2.5-Coder-32B Qwen2.5-Coder-32B No 67.0
Reasoning-SQL (Pourreza et al.||2025) Qwen2.5-Coder-14B — No 72.3
MCTS-SQL (Yuan et al.}|2025) Qwen2.5-Coder-7B Iterative Refinement 53.6
ROUTE (Multi-task only) (Qin et al.}[2024) Qwen2.5-Coder-14B Iterative Refinement 56.3
Distillery (Maamari et al.||2024) Llama-3.1-405B — 59.2
Alpha-SQL* (Li et al.}2025a) Qwen2.5-Coder-14B Majority Voting 64.1
Alpha-SQL* (Li et al.;|2025a) Qwen2.5-Coder-32B Majority Voting 64.4
Alpha-SQL* (Li et al.||2025a) Qwen3-Coder-30B-A3B-Instruct Majority Voting 68.2
ExpeSQL (Ours) Qwen2.5-Coder-14B Iterative Refinement 61.4
ExpeSQL (Ours) Qwen2.5-Coder-32B Iterative Refinement 63.5
ExpeSQL (Ours) Qwen3-Coder-30B-A3B-Instruct Iterative Refinement 67.5

EX: Execution accuracy on BIRD dev set. * Here we report results obtained using our own evaluation script,
which we believe provides a more reasonable assessment; see Appendix[A.2|for detailed justification.

performance. As validated in subsequent experiments, our approach achieves significant reductions
in computational overhead and inference latency, offering a highly favorable trade-off between effi-
ciency and performance in practical deployment scenarios.

Another observation worth noting is that all methods employing Iterative Refinement, except for
RSL-SQL based on GPT-40, achieve relatively limited performance. For instance, ROUTE—even
with fine-tuning on the Qwen2.5-Coder-14B model—still underperforms compared to ExpeSQL.
This suggests that simple error detection followed by direct SQL refinement is an overly simplistic
strategy with significant limitations.

In contrast, our method does not directly modify the generated SQL. Instead, it identifies the root
cause of the error and, in the subsequent iteration, leverages prior experience to reformulate the
query understanding and generation process. This more principled approach to iterative reasoning
leads to substantially improved performance.

Spider dataset. Overall, due to the relatively simpler nature of the tasks, the performance gap
among different methods on the Spider dataset is smaller compared to that on BIRD. ExpeSQL with
the Qwen2.5-Coder-14B model outperforms DAIL-SQL and ZeroNL2SQL, both of which are based
on GPT-4. Notably, despite sharing similar components—such as multi-task learning and iterative
refinement—our method achieves significantly better performance on Qwen2.5-Coder-14B than the
non-fine-tuned ROUTE, demonstrating the effectiveness of our design choices.

CHESS-SDS dataset. The CHESS-SDS dataset is a carefully curated subset of the BIRD devel-
opment set, introduced in the work [Talaei et al.|(2024) to emphasize complex semantic parsing and
schema reasoning challenges. As shown in Table [2| our method not only achieves high execution
accuracy on this dataset, but also significantly reduces computational cost and inference latency
compared to Alpha-SQL. Specifically, our approach reduces token generation by 87% and cuts in-
ference latency by 96%. This dramatic improvement stems from the high degree of parallelism in
our algorithm—except for the self-critique and error diagnosis stages, all other steps are executed in
parallel. In contrast, Alpha-SQL only parallelizes the candidate expansion phase. As a result, our

Table 2: Comparison of Baseline LLMs on the CHESS-SDS Set

Model EX (%) Tokens/Query Time/Query (s)
Deepseek-R1 50.3 - -
GPT-40 53.7 - -
Gemini-2.0-Flash-Thinking-Exp ~ 60.8 - -
Qwen2.5-Coder-32B 49.0 282 8

+ Alpha-SQL 58.5 111778 1628

+ ExpeSQL 60.6 14510 66
Llama-3.1-8B 21.1 - -

+ ExpeSQL 45.0 - -

method achieves highly efficient inference while maintaining strong performance, outperforming all
models in the comparison except for Gemini-2.0-Flash-Thinking-Exp, where it is slightly behind.

We further evaluated our method on Llama-3.1-8B (Team, 2024)), achieving a substantial improve-
ment of approximately 24% over the baseline. This demonstrates the strong generalizability and
plug-and-play capability of our approach. Detailed experimental settings are provided in Sec-

tion[A3]

5 CONCLUSION AND LIMITATIONS

We presented ExpeSQL, a zero-shot, experience-driven Text-to-SQL framework that enables self-
evolving reasoning through structured decomposition, execution feedback, and experience-guided
refinement. By storing diagnostic knowledge from failures, ExpeSQL improves over time without
retraining, achieving strong accuracy on BIRD-dev while reducing token usage by 87% and latency
by 96% compared to Alpha-SQL.

Nonetheless, several limitations point to future work: (1) SQL diversity is constrained by fixed de-
composition paths—exploring alternative reasoning strategies could enhance solution space cover-
age; (2) intermediate candidates discarded during filtering may contain valuable partial insights, sug-
gesting opportunities for richer experience logging; (3) correctness validation assumes tight align-
ment between natural language and SQL, and errors in this alignment may lead to false rejections.
Improving robustness in this step remains critical.

Despite these challenges, ExpeSQL establishes a new paradigm for deployable, adaptive Text-to-
SQL systems—demonstrating that intelligent, iterative refinement grounded in structured experience
can bridge the gap between research and real-world database interaction.

REFERENCES

Cameron B Browne, Edward Powley, Daniel Whitehouse, Simon M Lucas, Peter I Cowling, Philipp
Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samothrakis, and Simon Colton. A survey
of monte carlo tree search methods. IEEE Transactions on Computational Intelligence and Al in
games, 4(1):1-43, 2012.

Zhenbiao Cao, Yuanlei Zheng, Zhihao Fan, Xiaojin Zhang, Wei Chen, and Xiang Bai. Rsl-sql:
Robust schema linking in text-to-sql generation. arXiv preprint arXiv:2411.00073, 2024.

Kaiwen Chen, Yueting Chen, Nick Koudas, and Xiaohui Yu. Reliable text-to-sql with adaptive
abstention. Proceedings of the ACM on Management of Data, 3(1):1-30, 2025.

Song Cheng, Qiannan Cheng, Linbo Jin, Lei Yi, and Guannan Zhang. Sqlord: A robust enter-
prise text-to-sql solution via reverse data generation and workflow decomposition. In Companion
Proceedings of the ACM on Web Conference 2025, pp. 919-923, 2025.

Team Cohere, Arash Ahmadian, Marwan Ahmed, Jay Alammar, Milad Alizadeh, Yazeed Alnumay,
Sophia Althammer, Arkady Arkhangorodsky, Viraat Aryabumi, Dennis Aumiller, et al. Command
a: An enterprise-ready large language model. arXiv preprint arXiv:2504.00698, 2025.

Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S. Mirrokni. Locality-sensitive hashing
scheme based on p-stable distributions. In Proceedings of the Twentieth Annual Symposium on
Computational Geometry, SCG ’04, pp. 253-262, New York, NY, USA, 2004. Association for
Computing Machinery. ISBN 1581138857. doi: 10.1145/997817.997857. URL https://
doi.org/10.1145/997817.997857.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep
bidirectional transformers for language understanding. CoRR, abs/1810.04805, 2018. URL
http://arxiv.org/abs/1810.04805.

Ju Fan, Zihui Gu, Songyue Zhang, Yuxin Zhang, Zui Chen, Lei Cao, Guoliang Li, Samuel Madden,
Xiaoyong Du, and Nan Tang. Combining small language models and large language models for
zero-shot nl2sql. Proceedings of the VLDB Endowment, 17(11):2750-2763, 2024.

Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun, Yichen Qian, Bolin Ding, and Jingren Zhou.
Text-to-sql empowered by large language models: A benchmark evaluation. arXiv preprint
arXiv:2308.15363, 2023.

Xinyu Guan, Li Lyna Zhang, Yifei Liu, Ning Shang, Youran Sun, Yi Zhu, Fan Yang, and Mao Yang.
rstar-math: Small llms can master math reasoning with self-evolved deep thinking. arXiv preprint
arXiv:2501.04519, 2025.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Keming Lu, et al. Qwen?2. 5-coder technical report. arXiv preprint arXiv:2409.12186,
2024.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023.

Dongjun Lee, Choongwon Park, Jaechyuk Kim, and Heesoo Park. Mcs-sql: Leveraging
multiple prompts and multiple-choice selection for text-to-sql generation. arXiv preprint
arXiv:2405.07467, 2024.

Boyan Li, Yuyu Luo, Chengliang Chai, Guoliang Li, and Nan Tang. The dawn of natural language
to sql: Are we fully ready? arXiv preprint arXiv:2406.01265, 2024a.

Boyan Li, Jiayi Zhang, Ju Fan, Yanwei Xu, Chong Chen, Nan Tang, and Yuyu Luo. Alpha-sql:
Zero-shot text-to-sql using monte carlo tree search. arXiv preprint arXiv:2502.17248, 2025a.

Haoyang Li, Jing Zhang, Hanbing Liu, Ju Fan, Xiaokang Zhang, Jun Zhu, Renjie Wei, Hongyan
Pan, Cuiping Li, and Hong Chen. Codes: Towards building open-source language models for
text-to-sql. Proceedings of the ACM on Management of Data, 2(3):1-28, 2024b.

Jiahui Li, Tongwang Wu, Yuren Mao, Yunjun Gao, Yajie Feng, and Huaizhong Liu. Sql-
factory: A multi-agent framework for high-quality and large-scale sql generation. arXiv preprint
arXiv:2504.14837, 2025b.

Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua Li, Bowen Li, Bailin Wang, Bowen Qin,
Ruiying Geng, Nan Huo, et al. Can llm already serve as a database interface? a big bench for
large-scale database grounded text-to-sqls. Advances in Neural Information Processing Systems,
36:42330-42357, 2023.

Xinyu Liu, Shuyu Shen, Boyan Li, Nan Tang, and Yuyu Luo. NI2sql-bugs: A benchmark for detect-
ing semantic errors in nl2sql translation. In Proceedings of the 31st ACM SIGKDD Conference
on Knowledge Discovery and Data Mining V. 2, pp. 5662-5673, 2025a.

Yifu Liu, Yin Zhu, Yingqi Gao, Zhiling Luo, Xiaoxia Li, Xiaorong Shi, Yuntao Hong, Jinyang Gao,

Yu Li, Bolin Ding, et al. Xiyan-sql: A novel multi-generator framework for text-to-sql. arXiv
preprint arXiv:2507.04701, 2025b.

10

https://doi.org/10.1145/997817.997857
https://doi.org/10.1145/997817.997857
http://arxiv.org/abs/1810.04805

Shuai Lyu, Haoran Luo, Ripeng Li, Zhonghong Ou, Jiangfeng Sun, Yang Qin, Xiaoran Shang,
Meina Song, and Yifan Zhu. Sql-ol: A self-reward heuristic dynamic search method for text-to-
sql. arXiv preprint arXiv:2502.11741, 2025.

Karime Maamari, Fadhil Abubaker, Daniel Jaroslawicz, and Amine Mhedhbi. The death of
schema linking? text-to-sql in the age of well-reasoned language models. arXiv preprint
arXiv:2408.07702, 2024.

Lingrui Mei, Jiayu Yao, Yuyao Ge, Yiwei Wang, Baolong Bi, Yujun Cai, Jiazhi Liu, Mingyu Li,
Zhong-Zhi Li, Duzhen Zhang, et al. A survey of context engineering for large language models.
arXiv preprint arXiv:2507.13334, 2025.

Mohammadreza Pourreza and Davood Rafiei. Din-sql: Decomposed in-context learn-
ing of text-to-sql with self-correction. In A. Oh, T. Naumann, A. Globerson,
K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural Information Pro-
cessing Systems, volume 36, pp. 36339-36348. Curran Associates, Inc., 2023. URL
https://proceedings.neurips.cc/paper_files/paper/2023/file/
72223cco6fo3calaab%edaeclb3670e6-Paper—-Conference.pdf.

Mohammadreza Pourreza and Davood Rafiei. Dts-sql: Decomposed text-to-sql with small large
language models. arXiv preprint arXiv:2402.01117, 2024.

Mohammadreza Pourreza, Hailong Li, Ruoxi Sun, Yeounoh Chung, Shayan Talaei, Gaurav Tarlok
Kakkar, Yu Gan, Amin Saberi, Fatma Ozcan, and Sercan O Arik. Chase-sql: Multi-path reasoning
and preference optimized candidate selection in text-to-sql. arXiv preprint arXiv:2410.01943,
2024.

Mohammadreza Pourreza, Shayan Talaei, Ruoxi Sun, Xingchen Wan, Hailong Li, Azalia Mirho-
seini, Amin Saberi, Sercan Arik, et al. Reasoning-sql: Reinforcement learning with sql tailored
partial rewards for reasoning-enhanced text-to-sql. arXiv preprint arXiv:2503.23157, 2025.

Yang Qin, Chao Chen, Zhihang Fu, Ze Chen, Dezhong Peng, Peng Hu, and Jieping Ye. Route:
Robust multitask tuning and collaboration for text-to-sql. arXiv preprint arXiv:2412.10138, 2024.

Ge Qu, Jinyang Li, Bowen Qin, Xiaolong Li, Nan Huo, Chenhao Ma, and Reynold Cheng.
Share: An slm-based hierarchical action correction assistant for text-to-sql. arXiv preprint
arXiv:2506.00391, 2025.

Matthew Renze and Erhan Guven. Self-reflection in 1lm agents: Effects on problem-solving perfor-
mance. arXiv preprint arXiv:2405.06682, 2024.

Lei Sheng and Shuai-Shuai Xu. Csc-sql: Corrective self-consistency in text-to-sql via reinforcement
learning. arXiv preprint arXiv:2505.13271, 2025.

Jie Shi, Bo Xu, Jiaqing Liang, Yanghua Xiao, Jia Chen, Chenhao Xie, Peng Wang, and Wei Wang.
Gen-sql: Efficient text-to-sql by bridging natural language question and database schema with
pseudo-schema. In Proceedings of the 31st International Conference on Computational Linguis-
tics, pp- 3794-3807, 2025.

Vladislav Shkapenyuk, Divesh Srivastava, Theodore Johnson, and Parisa Ghane. Automatic meta-
data extraction for text-to-sql. arXiv preprint arXiv:2505.19988, 2025.

Douglas R Smith. The design of divide and conquer algorithms. Science of Computer Programming,
5:37-58, 1985.

Oleg Somov and Elena Tutubalina. Confidence estimation for error detection in text-to-sql systems.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 39, pp. 25137-25145,
2025.

Shayan Talaei, Mohammadreza Pourreza, Yu-Chen Chang, Azalia Mirhoseini, and Amin Saberi.
Chess: Contextual harnessing for efficient sql synthesis. arXiv preprint arXiv:2405.16755, 2024.

Llama Team. The llama 3 herd of models, 2024. URL https://arxiv.org/abs/2407.
21783.

11

https://proceedings.neurips.cc/paper_files/paper/2023/file/72223cc66f63ca1aa59edaec1b3670e6-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/72223cc66f63ca1aa59edaec1b3670e6-Paper-Conference.pdf
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783

Qwen Team. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388,

Gido M Van de Ven and Andreas S Tolias. Three scenarios for continual learning. arXiv preprint
arXiv:1904.07734, 2019.

Bing Wang, Changyu Ren, Jian Yang, Xinnian Liang, Jiaqi Bai, Linzheng Chai, Zhao Yan, Qian-
Wen Zhang, Di Yin, Xing Sun, et al. Mac-sql: A multi-agent collaborative framework for text-to-
sql. arXiv preprint arXiv:2312.11242, 2023.

Xiangjin Xie, Guangwei Xu, Lingyan Zhao, and Ruijie Guo. Opensearch-sql: Enhancing text-to-sql
with dynamic few-shot and consistency alignment. Proceedings of the ACM on Management of
Data, 3(3):1-24, 2025.

Bo Xu, Shufei Li, Hongyu Jing, Ming Du, Hui Song, Hongya Wang, and Yanghua Xiao. Boosting
text-to-sql through multi-grained error identification. In Proceedings of the 31st International
Conference on Computational Linguistics, pp. 4282-4292, 2025.

Yicun Yang, Zhaoguo Wang, Yu Xia, Zhuoran Wei, Haoran Ding, Ruzica Piskac, Haibo Chen, and
Jinyang Li. Automated validating and fixing of text-to-sql translation with execution consistency.
Proceedings of the ACM on Management of Data, 3(3):1-28, 2025a.

Zerui Yang, Yuwei Wan, Siyu Yan, Yudai Matsuda, Tong Xie, Bram Hoex, and Lingi Song. Drugm-
cts: a drug repurposing framework combining multi-agent, rag and monte carlo tree search. arXiv
preprint arXiv:2507.07426, 2025b.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James Ma, Irene Li,
Qingning Yao, Shanelle Roman, et al. Spider: A large-scale human-labeled dataset for complex
and cross-domain semantic parsing and text-to-sql task. arXiv preprint arXiv:1809.08887, 2018.

Shuozhi Yuan, Liming Chen, Miaomiao Yuan, Jin Zhao, Haoran Peng, and Wenming Guo. Mcts-
sql: An effective framework for text-to-sql with monte carlo tree search. arXiv preprint
arXiv:2501.16607, 2025.

Bohan Zhai, Canwen Xu, Yuxiong He, and Zhewei Yao. Optimizing reasoning for text-to-sql with
execution feedback. In Findings of the Association for Computational Linguistics: ACL 2025, pp.
19206-19218, 2025.

Kai Zhang, Yangyang Kang, Fubang Zhao, and Xiaozhong Liu. Llm-based medical assistant per-
sonalization with short-and long-term memory coordination. arXiv preprint arXiv:2309.11696,
2023.

Qinggang Zhang, Hao Chen, Junnan Dong, Wentao Li, Feiran Huang, and Xiao Huang. Structure-
guided large language models for text-to-sql generation. 2025.

Yizhang Zhu, Runzhi Jiang, Boyan Li, Nan Tang, and Yuyu Luo. Elliesql: Cost-efficient text-to-sql
with complexity-aware routing. arXiv preprint arXiv:2503.22402, 2025.

12

https://arxiv.org/abs/2505.09388

A APPENDIX

A.1 ABLATION STUDIES

In this section, we conduct an ablation study to quantitatively evaluate the contribution of each
component in our proposed framework. Table [3| summarizes the performance improvements on the
BIRD-dev dataset using different methodologies.

The baseline model, Qwen32B-Coder-32B
equipped with preprocessed schema informa-
tion, achieves an accuracy of 53.3%. The inclu- Table 3: Progressive performance on BIRD-dev
sion of schema linking further improves perfor-

mance by 1.9 percentage points, resulting in an Method Accuracy (%)

accuracy of 55.2%. This gain highlights the im-

portance of effectively identifying and aligning Qwen32B-Coder-32B 533

relevant database elements with the natural lan- + Preproces.sed. Schema

guage question, reducing noise from irrelevant +S(fh§ma Linking 352 (+1.9)

schema components. +Divide-and-Conquer 59.1 (+3.9)
+Self-Reflection 62.2 (+3.1)

Incorporating the Divide-and-Conquer strategy +Best-of-N 63.5 (+1.3)

leads to a substantial improvement of 3.9 per-
centage points, increasing accuracy to 59.1%.
This significant gain underscores the effectiveness of decomposing complex questions into manage-
able sub-problems, enabling more accurate and modular reasoning.

Further enhancement is observed with the addition of self-reflection, which boosts the accuracy to
62.2%, a gain of 3.1 percentage points over the previous step. This indicates that allowing the model
to iteratively refine its predictions through self-assessment can lead to substantial gains in accuracy.

Finally, the integration of the Best-of-N technique yields a marginal but notable improvement, in-
creasing the accuracy to 63.5% (+1.3 percentage points). The Best-of-N approach, which selects the
best output from multiple attempts, demonstrates its utility in enhancing overall performance, albeit
at a diminishing rate compared to earlier enhancements.

Overall, these results highlight the incremental benefits of each additional component, demonstrat-
ing the importance of carefully designed strategies in achieving optimal performance on challenging
datasets such as BIRD-dev.

A.2 ON THE TREATMENT OF EMPTY QUERY RESULTS IN EVALUATION

In our attempt to reproduce the results of AlphaSQL, we observed a discrepancy between our initial
evaluation and those reported by the authors. Upon obtaining their evaluation script, we successfully
reproduced their results and found that their protocol automatically discards SQL predictions yield-
ing empty results during majority voting, falling back to the next most frequent non-empty result.
While this adjustment enables faithful reproduction of their published numbers, we argue that such
a design implicitly assumes—often incorrectly—that all valid SQL queries must return non-empty
results. In real-world applications, however, it is entirely plausible for a semantically correct query
to return an empty result (e.g., “find customers with 10+ orders last month” in a newly launched
business). We also examined several representative Text-to-SQL methods, including those based
on iterative refinement or majority voting (Xie et al.,|2025) (Pourreza & Rafiei, 2023) (Wang et al.,
2023)) (Li et al., [2024a), and found no evidence of such empty-result filtering in their public imple-
mentations or evaluation protocols. We therefore adopt a more principled evaluation protocol: we
only filter out SQL queries that fail to execute or raise parsing/execution errors, but preserve those
that return empty results upon successful execution. To ensure a fair and realistic comparison, we
report the performance of AlphaSQL on the BIRD development set using our evaluation protocol.

A.3 EFFICIENCY AND PERFORMANCE ANALYSIS
Experiment Settings. We measure the token generation cost and inference latency of both models

on the CHESS-SDS (Talaei et al.|, [2024) dataset. For the experiments involving Alpha-SQL and
ExpeSQL, we deploy Qwen32B-Coder-32B locally using vLLM (Kwon et al., [2023)) on four Nvidia

13

GeForce RTX 4090 GPUs, each with 24GB of memory. During evaluation, we process one question
at a time and record the total execution time and the total number of generated tokens per question.
The final results are reported as averages over all questions.

It is important to note that for Alpha-SQL, the reported latency does not include the time required
for majority voting. Specifically, timing stops immediately after all candidate SQL queries are gen-
erated. Therefore, the actual end-to-end inference time would be longer than reported. In contrast,
for ExpeSQL, majority voting is an integral part of the inference pipeline, and its computational cost
is included in the total latency.

Table 4: Comparison of state-of-the-art Text-to-SQL methods on the Spider dev set.

Method Inference Model Selection Model Zero-shot Open-Source EX (%)
DAIL-SQL (Gao et al.;[2023} GPT-4 Majority Voting No 83.6
ZeroNL2SQL (Fan et al.}[2024) GPT-4 - No 84.0
MAC-SQL (Wang et al.|[2023) GPT-4 Majority Voting No 86.8
SuperSQL (Li et al.|[2024a) GPT-4 Majority Voting No 87.0
SFT CodeS (Li et al.|[2024b) CodeS-15B - No 84.9
ROUTE (Multi-task + FT) (Qin et al.|[2024) Qwen2.5-Coder-14B Iterative Refinement No 87.3
ROUTE (Multi-task only) (Qin et al.|[2024) Qwen2.5-Coder-14B Iterative Refinement 80.0
Alpha-SQL* (Li et al.||2025a) Qwen2.5-Coder-7B Majority Voting 84.0
Alpha-SQL* (Li et al.|[2025a) Qwen2.5-Coder-14B Majority Voting 87.0
ExpeSQL (Ours) Qwen2.5-Coder-14B Iterative Refinement 84.3
ExpeSQL (Ours) Qwen3-Coder-30B-A3B-Instruct Iterative Refinement 86.2

EX: Execution accuracy on Spider dev set. * Results for Alpha-SQL are directly taken from the original paper
without re-evaluation. Due to differences in evaluation protocols, the actual accuracy under our setup may be
lower than reported.

A.4 RELATED WORK
A.4.1 TYPICAL PARADIGMS IN TEXT-TO-SQL

Modern Text-to-SQL systems follow a three-stage pipeline: schema linking (Shkapenyuk et al.,
2023)), candidate generation (Zhu et al., 2025)), and candidate selection (Sheng & Xul[2025). Schema
linking aligns natural language with database elements to reduce ambiguity, evolving from rule-
based matching (Lyu et al.l [2025) to fine-tuned retrievers for complex schemas (Qin et al.l [2024).
In the second stage, SQL candidates are generated via single-path decoding (Wang et al., [2023))
or multi-path reasoning (Yang et al., 2025a), often using modular decomposition (Qin et al., [2024)
or diverse prompting (Lee et al.| [2024). The final stage selects the best candidate using execution
feedback (L1 et al.,[20254a) or learned rankers (Pourreza et al., [2024).

State-of-the-art systems like XiYan-SQL (Liu et al., |2025b) combine multi-path generation with
fine-tuned components for high accuracy, but rely heavily on labeled data and are brittle under
schema changes—limiting adaptability in dynamic environments. Moreover, many depend on
closed-source LLMs (Xie et al.|[2025)), introducing latency, cost, and privacy concerns in production.

A.4.2 TTS FOR TEXT-TO-SQL

To overcome the limitations of fine-tuning, recent work has explored TTS—a paradigm that en-
hances reasoning performance at inference time without parameter updates. TTS methods typically
generate diverse SQL candidates through strategic search (Lyu et al.l |2025) (e.g., self-consistency,
chain-of-thought variation, or tree search) and select the final output based on execution feedback or
majority voting.

MAC-SQL (Wang et al.,[2023) adopts a divide-and-conquer framework to decompose complex ques-
tions into sub-questions, enabling structured reasoning over large databases. However, it relies on
closed-source models such as GPT-4 and achieves only 59.4% execution accuracy on the BIRD
dev set. In contrast, Alpha-SQL (Li et al [2025a) operates entirely with open-source LLMs under
the test-time scaling paradigm and requires no fine-tuning, achieving state-of-the-art performance
among such methods.

14

Nonetheless, both approaches illustrate a persistent challenge in Text-to-SQL: the difficulty of bal-
ancing accuracy and efficiency. MAC-SQL (Wang et al., [2023)), despite using powerful proprietary
models, fails to deliver high accuracy, suggesting that decomposition alone is insufficient for com-
plex reasoning. Alpha-SQL (Li et al.,2025a)) achieves strong accuracy but at the cost of high compu-
tational overhead due to inefficient search strategies. This trade-off reveals a critical gap—existing
methods either sacrifice performance for practicality or efficiency for accuracy—Ileaving a need for
systems that achieve both high correctness and deployable efficiency.

To bridge this gap, we propose ExpeSQL, a highly efficient and accurate Text-to-SQL framework
that achieves strong performance without sacrificing inference speed or token efficiency. By inte-
grating decomposition-based reasoning, experience-guided search, and parallel Best-of-N sampling,
our method navigates the accuracy-efficiency trade-off more effectively than prior work—enabling
robust, deployable Text-to-SQL in real-world settings.

A.5 USE OF LARGE LANGUAGE MODELS FOR WRITING ASSISTANCE

We confirm that large language models were used solely for language polishing and editorial refine-
ment during the preparation of this manuscript. All technical contributions, conceptual insights, and
algorithmic designs are the exclusive work of the authors.

Algorithm 1 Experience-Guided Divide-and-Conquer Text-to-SQL with Iterative Refinement

Require: Database schema D, Natural language query ¢, Max refinement rounds 7', Number of
parallel nodes M, Candidates per node K
Ensure: Final SQL query ¥*

1: Initialize experience repository E < () > Stores past traces & remedies
2: fort =1to T do
3: SCHEMASCOPING(q, D) — p > Relevant tables/columns
4: DECOMPOSITION(q, p, E) — S = {s;} > Sub-questions
5: for each node m = 1 to M in parallel do
6: for each sub-question s; € S do
7: SUBQUERYTRANSLATION(s;,p, D) — 05
8: EXECUTION(0;, D) — 7, > Intermediate result
9: end for
10 AGGREGATIONANDSYNTHESIS(S, {0;}, {r:},p, E) — {ng)}szl > Generate K
SQL queries
11: Intra-node filtering:
12: Group {Egk)} by execution result 7-(*)
13: Retain top-2 most frequent distinct results
14: for each of the two result groups do
15: Select shortest SQL Efﬁ}” Zﬂ
16: end for 7 ’

17: end for

18: Collect all node outputs: C; = {E%, 2,52,31 M
19: Inter-node majority voting:

20: Group C, by execution result

21: Select most frequent result; break ties by shortest SQL
22: >; < corresponding SQL query

23: Self-Critique Validation(X;, ¢, D) > Uses D and ¢
24: if VALIDATEFIELDSELECTION(X;, ¢, D) A VALIDATEFILTERINGLOGIC(X,, ¢, D) then
25: return 2% + >, > Final output
26: else

27: q)t — <Q7D7pvsv {Oi}a{ri}vzt>

28: DIAGNOSTICANDREMEDIATION(®;) — root causes &; and remedies R;

29: Update £ + E U {®, &, R}

30: end if

31: end for

32: return ©* < last valid X; (or () if none)

15

	Introduction
	Method: ExpeSQL
	Overview
	Agents
	Context Engineering And Experience Learning
	Preprocessing

	Experiments
	Results
	Conclusion and Limitations
	Appendix
	Ablation Studies
	On the Treatment of Empty Query Results in Evaluation
	Efficiency and Performance Analysis
	Related Work
	Typical Paradigms in Text-to-SQL
	TTS for Text-to-SQL

	Use of Large Language Models for Writing Assistance

