Domain-Specific Programming For Agentic Workflows

Anonymous ACL submission

Abstract

While the use of agentic workflows becomes
increasingly contextual, the programmability
of it remains general (e.g., prompted steps and
tools). In enterprise-related applications, such
generalty often leads to undesired downgrade
of workflow performance due to the mismatch
between a business intention and the specific
programming construct a workflow uses to im-
plement it. In this paper, we highlighted the
idea of domain-specific programming for agen-
tic workflows, i.e., domain-specific languages
(DSL) as a programming interface for both hu-
man and Al to create new agentic workflows.
This path recovers the nature of agentic work-
flows as a type of program therefore introduces
a systematic way to capture both the structure
and semantics of it. Well-defined program-
ming optimizations then become naturally com-
patible, e.g., check and infer "types". We in-
stantiated the idea by a DSL SOPLang and a
multi-agent system which automates the gener-
ation of agentic workflows (especially in indus-
trial applications). The preliminary evaluation
demonstrated the potential of our proposal to
scale in real-world domains.

1 Introduction

While the use of agentic workflows becomes in-
creasingly contextual, the programmability of it re-
mains general (e.g., prompted steps and tools) (Hu
et al., 2025; Zhang et al., 2025; Chen et al.,
2024). In enterprise-related applications, such
generalty often leads to undesired downgrade of
workflow performance due to the mismatch be-
tween a business intention and the specific pro-
gramming construct a workflow uses to imple-
ment it (Su et al., 2025). For example, contract
review in enterprise legal settings requires struc-
tured extraction, risk analysis, compliance veri-
fication, and multi-role coordination (Su et al.,
2025). General-purpose workflow generation meth-
ods often fall short in such high-stakes domains

due to limited structural precision and insufficient
domain awareness (Chalkidis et al., 2020). Cer-
tain rules—such as “All mandatory provisions shall
be preserved without revision”—demand strict en-
forcement that prevailing methods cannot reliably
guarantee (Zhang et al., 2024).

To solve the problem, we highlight the idea of
domain-specific programming for agentic work-
flows, i.e., domain-specific languages (DSL) as a
programming interface for both human and Al to
create new agentic workflows. This path recov-
ers the nature of agentic workflows as a type of
program therefore introduces a systematic way to
capture both the structure and semantics of it (Su
et al., 2025). In this paper, we introduce SOPLang,
a DSL inspired by the standard operating proce-
dure, to orchestrate agents for industrial use. The
key insight behind SOPLang is to enable arbitrary
orchestration and domain adaptability for various
scenarios.

Since workflow generation is reframed as a pro-
gram synthesis task, well-defined programming
optimizations then become naturally compatible,
e.g., check and infer "types" (Hu et al., 2025).
We prompt LLMs to generate candidate programs
based on user instructions and apply simulated an-
nealing to search for a near-global optimum that
best aligns with the intended business logic. The
preliminary evaluation demonstrates the potential
of our proposal to scale in real-world domains.

The main contributions of this paper are sum-
marized as follows.

1. We propose SOPLang, a DSL for agentic
workflow generation in enterprise environ-
ments.

2. We highlight a multi-agent system instanti-
ated from SOPLang programs and optimized
via simulated annealing to search for high-
quality workflow implementations under com-
plex domain-specific instructions.

3. We introduce a Domain-Related Instruction
Following dataset, on which our method out-
performs prior approaches, demonstrating its
potential to scale in real-world settings.

2 Language

2.1 Syntax

The core idea behind introducing the SOPLang lan-
guage is to reframe agentic workflows as verifiable,
composable, and optimizable programmatic repre-
sentations, thereby enhancing the ability of LLMs
and humans to collaboratively construct complex
systems in enterprise contexts.

The syntax of SOPLang is formally defined
using Extended Backus—Naur Form. Figure 1
presents a representative set of its syntax. A SO-
PLang program consists of a set of nodes con-
nected via dependencies. There are two types of
nodes: content nodes and operation nodes. Opera-
tion nodes are further divided into declarative and
imperative categories. Declarative nodes specify
logical constraints by evaluating expressions that
determine whether certain criteria are met. Impera-
tive nodes describe concrete actions (e.g., retriev-
ing, extracting, summarizing) with explicit intent
and execution semantics.

To support domain adaptability, SOPLang
adopts a plugin-based architecture. New instruc-
tions can be registered externally by specifying
their input/output schemas, operational semantics,
and optional prompt templates. Each instruction is
referenced via the instruction type and scoped by
a domain tag, allowing workflows to incorporate
specialized behaviors without modifying the core
language specification.

2.2 Semantics

Interpreting a SOPLang program translates its
node-based specification into an agentic workflow
and executes it accordingly. We describe the pro-
cess through symbolic evaluation with a set of eval-
uation rules. The state of the SOPLang program
can be represented by 4-tuple < p,§, k, D >. We
denote by p the program counter points to the next
node, § the program store that accesses to program
memory, « the state of a node, and ® the depen-
dency graph encoding control and data flow be-
tween nodes.

Figure 2 describes the principle evaluation rules
of the SOPLang program. The (DEPE) rule de-
scribes the overall execution sequence. Intuitively,

P w={NHD} SOPLang program
N s=C|O|J Node type
C ::= "node" node_id Content node
"type" ":" "content"”
["data” ":" {data_id ":" literal }]
O ==0p | Oz Operation node
Op ::="node" node_id Declarative operation
"operation_type” ":" "declarative"
"input” ":" {data_id}
"output” ":" {data_id}
"condition” ":" L
Oz ::="node" node_id Imperative operation
"operation_type" ":" "imperative"
"instruction_type" ":" T
"input” ":" {data_id}
"output” ":" {data_id}
"prompt” ":" { data_id | literal }
["domain” ":" domain_tag|
A ::="Retrieve” | "Extract” | "Summarize" Instruction type
| "Propose” | "Refine” | "Refactor”
D ::= node_id — node_id Dependency
L = data_id @ literal Logic expression
| =L
oLy
| L @ L
D n==# <L > > Binary operation

lelcl ATV I[=

Figure 1: A representative set of the syntax of SOPLang

the prerequisite of executing a node is all its par-
ents nodes are marked as "done". The (CONT) rule
writes existing or generated data to the program
memory for subsequent constraint validation or
agent execution. The (DECL) rule serves as a con-
trol flow, enabling logic-based gating by evaluating
conditions. If the specified condition is satisfied,
the declarative node completes and its downstream
dependencies are allowed to proceed. The (IMPE)
rule resolves each imperative instruction against
the current domain context. It looks up the corre-
sponding plugin implementation and initiates the
associated agent behavior accordingly. This allows
the same instruction type to exhibit different behav-
ior in different domains.

3 Program Synthesis and Optimization

Figure 3 describes the overall architecture of our
system. We employ top-p sampling to generate
multiple alternative SOPLang programs and apply
a parallel simulated annealing algorithm to refine
and select high-quality solutions.

Reward function. To guide the process, the re-
ward function is constructed to follow a hierarchi-
cal objective optimization, where the primary ob-

Vij e {l,...,n}
VN; € D HMN) A KIN;] = done
Ni,bi-1,ki—1,D) = (0, 0, ki, D)

(DEPE)
lookup(C.data) = v
(C,6, Kk, D) = (0, §[output := v], k[C := done], D)
(CONT)

VL € Op.condition
eval(L) = true

(0p,6,K,D) = (0,6, k[Op := done], D)
VL € Op.condition
eval(L) = false
(Op,d,k,D) — halt

(DECL)

Oz .instruction_type = T
Oz.domain = D
Oz.prompt = P
initiate Agent(Z,D) = A
A.exec(P) = v
(01,6, K,D) = (0, 6]output := v], k[Oz := done], D)

(IMPE)

Figure 2: A representative set of the symbolic evaluation
of the SOPLang program

jective ensures accuracy, and the secondary objec-
tive promotes efficiency. We denote the accuracy
of program z by fy, token costs, LLM calls, and
other secondary objective by f;.

-1 fo(z) <eo
a(fo(x) —eo) — X2 Bifi(x), e < folz) <ea
1= Bifi(x), fo(z) > e

R(z) =

Simulated annealing. Algorithm 1 outlines the
simulated annealing process. At each iteration, a
random mutation is applied to the current program
x, such as modifying a node, adding or removing
a node, or altering a dependency. The mutated
program z’ is evaluated by the reward function
R(z') and replaces x with a probability based on
evaluation.

Multi-chain strategy. We leverage multi-chain
strategy to enhance search diversity and im-
prove the ability to escape local optima. High-
temperature chains promote exploration through
more flexible acceptance of worse solutions, while
low-temperature chains are more conservative and
focus on local refinement. Periodic state exchanges
between chains allow diverse candidates to be re-
fined, improving overall search effectiveness.

Algorithm 1 Multi-Chain Simulated Annealing

Require: Initial programs {1, . .., zx }, tempera-
tures {7} < T < --- < Tk}, reward function
R(z), total steps IV, exchange interval E

Ensure: Optimal solution z*

1: Initialize r < R(xy) and z < x, for all &
2: fort =1to N do
33 fork=1to K do

4: x’ < Mutate(zy,)

5: if R(2') — R(xy) > 0 then
6: T — T

7: else

8: Paccept < €XP (%f?(mk)
9: if Random(0,1) < paccept then
10: Tl < x

11: end if

12: end if

13: if R(xg) > ry then

14: T} < xp; T — R(xy)

15: end if

16: end for
17: ift mod E = 0 then

18: fork=1to K — 1do

19: A+ (4 = 7) (R(@rs) = R(a))
20: Pswap < min(1, exp(A))

21: if Random(0,1) < pswap then

22: Swap z < Tii1

23: end if

24: end for

25: end if

26: end for

27: ¥ « argmax,r R(x})
28: return z* =0

4 Experiment

4.1 Experiment Setup

Datasets. We introduce the Domain-Related In-
struction Following (DRIF) dataset for our experi-
ments. DRIF consists of 300 instructions derived
from real-world industrial demands, categorized
into three groups based on their level of domain
relevance (i.g., The hard set refers to instructions
with strong domain specificity, requiring special-
ized knowledge or structured understanding of do-
main semantics).

Metrics. For each instruction, we generate a se-
rial of questions for LLM to evaluate the accuracy
of generated content.

Contract Review Instruction

Review client-submitted contract by matching it to the
correct template, detecting clause changes, and
rejecting if non-negotiable terms are altered. Flag risks.
suggest edits, extract key details, generate a feedback
draft, archive the contract, update the ledger, and set

Current Program Mutated Program

an expiration reminder. =
Q o Apply random
= Mutation
|| ¥ Top-p sample
Vs Medium p High p Runs for N iterations
Periodic state
Exchange z z <> &
at Powap "4 "4
Accept Mutation
High temperature Medium temperature Low temperature at Paceepe
Approaching Optimal Q_p l/
Program —
II Evaluate through R(x)
Figure 3: Illustration of the system architecture.
° Controversy Analysis of
Arbitrary Content
v
What's the underlying logic? Startups should prioritize large markets from the beginning
b4 What data or stories support this?
T Clarity: Clear and direct.
- Sactps siou € priofilize ‘arge MArkels Tom e : Controversy: Many argue carly focus on large markets leads to failure due to
. 2. Niche markets create false signals and delay real validation. A
Retrieve «» Propose = 3. Going big early forces bett duct discipline. «» Extract «» Propose «® lack of traction.
P s b S [e Counterpoint: Classic Lean Startup advice recommends starting small,
Generate several - [nvestor expectations should shape early market cholces. validating fast, then scaling. Examples like Airbnb and Facebook started in
Retrievecore ideas _ iate opinions hyper-focused niches.
from original material .4 on this input d This is a widely debated idea, good as a central thesis.
Controversy Analysis of
Generated Opinions ‘
Figure 4: Illustrative example of experiment on DRIF.
Baselines. We compare the workflow generated and supports cascading reasoning over structured

through our method to manual design of agentic
systems, including Chain-of-Thought (CoT) (Wei
etal., 2022), Self Consistency CoT (Cot SC) (Wang
et al., 2023), MultiPersona Debate (Wang et al.,
2024), and Role assigment (Xu et al., 2025), and au-
tomated design of agentic workflow by ADAS (Hu
et al., 2025) and AFLOW (Zhang et al., 2025).

Implementation. We employ different models at
distinct stages of the pipeline. During the execution
stage, we use DeepSeek-R2, whereas the program
optimization stage leverages GPT-40-mini. To en-
sure a fair comparison across all approaches, we
apply the same model configuration and set the
temperature to 1 for other approaches.

4.2 Results and Analysis

Our method outperforms other approaches on the
DRIF dataset. Figure 4 depicts a workflow gener-
ated by our method that emphasizes targeted contro-
versy analysis on opinions derived from a specific
propose node, rather than performing such analysis
on unstructured or arbitrary inputs. This precise
scoping is enabled by domain-specific workflow
design, which assigns clear semantics to each node

content.

5 Related-work

Agentic workflow. Early approaches to work-
flow construction primarily rely on manually de-
signed strategies. Multi-agent methods such as
MultiPersona Debate (Wang et al., 2024) and Role
Assignment (Xu et al., 2025) coordinate specialized
agents via fixed prompting templates. More recent
work has shifted toward automated agentic work-
flow design. ADAS (Hu et al., 2025) encodes work-
flows as executable programs and optimizes them
through historical reuse, while AFLOW (Zhang
et al., 2025) employs search and refinement to con-
struct workflows automatically.

6 Conclusion

This paper introduces SOPLang, a DSL for au-
tomating workflow generation in enterprise settings.
By supporting agent orchestration and domain-
adapatability, SOPLang captures industrial task
semantics more effectively than general-purpose
approaches. Preliminary results indicate the effec-
tiveness of our approach across diverse scenarios.

Limitations

This work assumes access to structured domain
knowledge, as SOPLang requires manually defined
instruction schemas and semantics to support do-
main extensibility. This reliance may limit scala-
bility in low-resource or rapidly evolving domains,
where formal task definitions are unavailable or
costly to produce. The need for manual schema
design and domain-specific prompt templates also
introduces overhead that may hinder deployment
in dynamic or unfamiliar settings.

The optimization procedure is based on parallel
simulated annealing, a heuristic method that can
be computationally expensive and prone to subop-
timal convergence, especially for long or highly
interdependent workflows. While effective in guid-
ing program search, this approach lacks theoretical
convergence guarantees and may require extensive
sampling to reach satisfactory solutions in complex
settings.

In addition, evaluation is limited to a domain-
specific dataset centered on industrial tasks, which
constrains the assessment of generalizability to
broader application areas. The instruction types
and task structures in the dataset may not reflect
the diversity or ambiguity present in other domains
such as programming, math, or open-domain ques-
tion answering. As a result, the empirical findings
may not fully capture the performance and adapt-
ability of the proposed approach in more heteroge-
neous or less formalized environments.

References

Ilias Chalkidis, Manos Fergadiotis, Prodromos Malaka-
siotis, Nikolaos Aletras, and Ion Androutsopoulos.
2020. LEGAL-BERT: The muppets straight out of
law school. In Findings of the Association for Com-
putational Linguistics: EMNLP 2020, pages 2898—
2904, Online. Association for Computational Lin-
guistics.

Minghao Chen, Yihang Li, Yanting Yang, Shiyu Yu,
Binbin Lin, and Xiaofei He. 2024. Automanual:
Constructing instruction manuals by 1lm agents via
interactive environmental learning. In Advances in
Neural Information Processing Systems, volume 37,
pages 589-631. Curran Associates, Inc.

Shengran Hu, Cong Lu, and Jeff Clune. 2025. Au-
tomated design of agentic systems. Preprint,
arXiv:2408.08435.

Jinwei Su, Yinghui Xia, Ronghua Shi, Jianhui Wang,
Jianuo Huang, Yijin Wang, Tianyu Shi, Yang Jing-
song, and Lewei He. 2025. Debflow: Automat-

ing agent creation via agent debate.
arXiv:2503.23781.

Preprint,

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le,
Ed Chi, Sharan Narang, Aakanksha Chowdhery, and
Denny Zhou. 2023. Self-consistency improves chain
of thought reasoning in language models. Preprint,
arXiv:2203.11171.

Zhenhailong Wang, Shaoguang Mao, Wenshan Wu, Tao
Ge, Furu Wei, and Heng Ji. 2024. Unleashing the
emergent cognitive synergy in large language mod-
els: A task-solving agent through multi-persona self-
collaboration. In Proceedings of the 2024 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies (Volume 1: Long Papers), pages 257-279,
Mexico City, Mexico. Association for Computational
Linguistics.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le,
and Denny Zhou. 2022. Chain-of-thought prompt-
ing elicits reasoning in large language models. In
Proceedings of the 36th International Conference on
Neural Information Processing Systems, NIPS °22,
Red Hook, NY, USA. Curran Associates Inc.

Benfeng Xu, An Yang, Junyang Lin, Quan Wang,
Chang Zhou, Yongdong Zhang, and Zhendong Mao.
2025. Expertprompting: Instructing large lan-
guage models to be distinguished experts. Preprint,
arXiv:2305.14688.

Honghua Zhang, Po-Nien Kung, Masahiro Yoshida,
Guy Van den Broeck, and Nanyun Peng. 2024.
Adaptable logical control for large language mod-
els. In Advances in Neural Information Processing
Systems, volume 37, pages 115563—115587. Curran
Associates, Inc.

Jiayi Zhang, Jinyu Xiang, Zhaoyang Yu, Fengwei Teng,
Xionghui Chen, Jiaqi Chen, Mingchen Zhuge, Xin
Cheng, Sirui Hong, Jinlin Wang, Bingnan Zheng,
Bang Liu, Yuyu Luo, and Chenglin Wu. 2025. Aflow:
Automating agentic workflow generation. Preprint,
arXiv:2410.10762.

https://doi.org/10.18653/v1/2020.findings-emnlp.261
https://doi.org/10.18653/v1/2020.findings-emnlp.261
https://doi.org/10.18653/v1/2020.findings-emnlp.261
https://proceedings.neurips.cc/paper_files/paper/2024/file/0142921fad7ef9192bd87229cdafa9d4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/0142921fad7ef9192bd87229cdafa9d4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/0142921fad7ef9192bd87229cdafa9d4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/0142921fad7ef9192bd87229cdafa9d4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/0142921fad7ef9192bd87229cdafa9d4-Paper-Conference.pdf
https://arxiv.org/abs/2408.08435
https://arxiv.org/abs/2408.08435
https://arxiv.org/abs/2408.08435
https://arxiv.org/abs/2503.23781
https://arxiv.org/abs/2503.23781
https://arxiv.org/abs/2503.23781
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2203.11171
https://doi.org/10.18653/v1/2024.naacl-long.15
https://doi.org/10.18653/v1/2024.naacl-long.15
https://doi.org/10.18653/v1/2024.naacl-long.15
https://doi.org/10.18653/v1/2024.naacl-long.15
https://doi.org/10.18653/v1/2024.naacl-long.15
https://doi.org/10.18653/v1/2024.naacl-long.15
https://doi.org/10.18653/v1/2024.naacl-long.15
https://arxiv.org/abs/2305.14688
https://arxiv.org/abs/2305.14688
https://arxiv.org/abs/2305.14688
https://proceedings.neurips.cc/paper_files/paper/2024/file/d15c16cf5619a2b1606da5fc88e3f1a9-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/d15c16cf5619a2b1606da5fc88e3f1a9-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/d15c16cf5619a2b1606da5fc88e3f1a9-Paper-Conference.pdf
https://arxiv.org/abs/2410.10762
https://arxiv.org/abs/2410.10762
https://arxiv.org/abs/2410.10762

	Introduction
	Language
	Syntax
	Semantics

	Program Synthesis and Optimization
	Experiment
	Experiment Setup
	Results and Analysis

	Related-work
	Conclusion

