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Abstract001

While the use of agentic workflows becomes002
increasingly contextual, the programmability003
of it remains general (e.g., prompted steps and004
tools). In enterprise-related applications, such005
generalty often leads to undesired downgrade006
of workflow performance due to the mismatch007
between a business intention and the specific008
programming construct a workflow uses to im-009
plement it. In this paper, we highlighted the010
idea of domain-specific programming for agen-011
tic workflows, i.e., domain-specific languages012
(DSL) as a programming interface for both hu-013
man and AI to create new agentic workflows.014
This path recovers the nature of agentic work-015
flows as a type of program therefore introduces016
a systematic way to capture both the structure017
and semantics of it. Well-defined program-018
ming optimizations then become naturally com-019
patible, e.g., check and infer "types". We in-020
stantiated the idea by a DSL SOPLang and a021
multi-agent system which automates the gener-022
ation of agentic workflows (especially in indus-023
trial applications). The preliminary evaluation024
demonstrated the potential of our proposal to025
scale in real-world domains.026

1 Introduction027

While the use of agentic workflows becomes in-028

creasingly contextual, the programmability of it re-029

mains general (e.g., prompted steps and tools) (Hu030

et al., 2025; Zhang et al., 2025; Chen et al.,031

2024). In enterprise-related applications, such032

generalty often leads to undesired downgrade of033

workflow performance due to the mismatch be-034

tween a business intention and the specific pro-035

gramming construct a workflow uses to imple-036

ment it (Su et al., 2025). For example, contract037

review in enterprise legal settings requires struc-038

tured extraction, risk analysis, compliance veri-039

fication, and multi-role coordination (Su et al.,040

2025). General-purpose workflow generation meth-041

ods often fall short in such high-stakes domains042

due to limited structural precision and insufficient 043

domain awareness (Chalkidis et al., 2020). Cer- 044

tain rules—such as “All mandatory provisions shall 045

be preserved without revision”—demand strict en- 046

forcement that prevailing methods cannot reliably 047

guarantee (Zhang et al., 2024). 048

To solve the problem, we highlight the idea of 049

domain-specific programming for agentic work- 050

flows, i.e., domain-specific languages (DSL) as a 051

programming interface for both human and AI to 052

create new agentic workflows. This path recov- 053

ers the nature of agentic workflows as a type of 054

program therefore introduces a systematic way to 055

capture both the structure and semantics of it (Su 056

et al., 2025). In this paper, we introduce SOPLang, 057

a DSL inspired by the standard operating proce- 058

dure, to orchestrate agents for industrial use. The 059

key insight behind SOPLang is to enable arbitrary 060

orchestration and domain adaptability for various 061

scenarios. 062

Since workflow generation is reframed as a pro- 063

gram synthesis task, well-defined programming 064

optimizations then become naturally compatible, 065

e.g., check and infer "types" (Hu et al., 2025). 066

We prompt LLMs to generate candidate programs 067

based on user instructions and apply simulated an- 068

nealing to search for a near-global optimum that 069

best aligns with the intended business logic. The 070

preliminary evaluation demonstrates the potential 071

of our proposal to scale in real-world domains. 072

The main contributions of this paper are sum- 073

marized as follows. 074

1. We propose SOPLang, a DSL for agentic 075

workflow generation in enterprise environ- 076

ments. 077

2. We highlight a multi-agent system instanti- 078

ated from SOPLang programs and optimized 079

via simulated annealing to search for high- 080

quality workflow implementations under com- 081

plex domain-specific instructions. 082
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3. We introduce a Domain-Related Instruction083

Following dataset, on which our method out-084

performs prior approaches, demonstrating its085

potential to scale in real-world settings.086

2 Language087

2.1 Syntax088

The core idea behind introducing the SOPLang lan-089

guage is to reframe agentic workflows as verifiable,090

composable, and optimizable programmatic repre-091

sentations, thereby enhancing the ability of LLMs092

and humans to collaboratively construct complex093

systems in enterprise contexts.094

The syntax of SOPLang is formally defined095

using Extended Backus–Naur Form. Figure 1096

presents a representative set of its syntax. A SO-097

PLang program consists of a set of nodes con-098

nected via dependencies. There are two types of099

nodes: content nodes and operation nodes. Opera-100

tion nodes are further divided into declarative and101

imperative categories. Declarative nodes specify102

logical constraints by evaluating expressions that103

determine whether certain criteria are met. Impera-104

tive nodes describe concrete actions (e.g., retriev-105

ing, extracting, summarizing) with explicit intent106

and execution semantics.107

To support domain adaptability, SOPLang108

adopts a plugin-based architecture. New instruc-109

tions can be registered externally by specifying110

their input/output schemas, operational semantics,111

and optional prompt templates. Each instruction is112

referenced via the instruction type and scoped by113

a domain tag, allowing workflows to incorporate114

specialized behaviors without modifying the core115

language specification.116

2.2 Semantics117

Interpreting a SOPLang program translates its118

node-based specification into an agentic workflow119

and executes it accordingly. We describe the pro-120

cess through symbolic evaluation with a set of eval-121

uation rules. The state of the SOPLang program122

can be represented by 4-tuple < p, δ, κ,D >. We123

denote by p the program counter points to the next124

node, δ the program store that accesses to program125

memory, κ the state of a node, and D the depen-126

dency graph encoding control and data flow be-127

tween nodes.128

Figure 2 describes the principle evaluation rules129

of the SOPLang program. The (DEPE) rule de-130

scribes the overall execution sequence. Intuitively,131

P ::= {N}{D} SOPLang program

N ::= C | O | J Node type

C ::= "node" node_id Content node

"type" ":" "content"

["data" ":" {data_id ":" literal }]
O ::=OD | OI Operation node

OD ::="node" node_id Declarative operation

"operation_type" ":" "declarative"

"input" ":" {data_id}
"output" ":" {data_id}
"condition" ":" L

OI ::="node" node_id Imperative operation

"operation_type" ":" "imperative"

"instruction_type" ":" I
"input" ":" {data_id}
"output" ":" {data_id}
"prompt" ":" { data_id | literal }
["domain" ":" domain_tag]

I ::="Retrieve" | "Extract" | "Summarize" Instruction type

| "Propose" | "Refine" | "Refactor"

D ::= node_id −→ node_id Dependency

L ::= data_id ⊕ literal Logic expression

| ¬ L
| "(" L ")"

| L ⊕ L
⊕ ::= = | ̸= | < | ≤ |> | ≥ Binary operation

| ∈ | ⊂ | ∧ | ∨ | ⇒

Figure 1: A representative set of the syntax of SOPLang

the prerequisite of executing a node is all its par- 132

ents nodes are marked as "done". The (CONT) rule 133

writes existing or generated data to the program 134

memory for subsequent constraint validation or 135

agent execution. The (DECL) rule serves as a con- 136

trol flow, enabling logic-based gating by evaluating 137

conditions. If the specified condition is satisfied, 138

the declarative node completes and its downstream 139

dependencies are allowed to proceed. The (IMPE) 140

rule resolves each imperative instruction against 141

the current domain context. It looks up the corre- 142

sponding plugin implementation and initiates the 143

associated agent behavior accordingly. This allows 144

the same instruction type to exhibit different behav- 145

ior in different domains. 146

3 Program Synthesis and Optimization 147

Figure 3 describes the overall architecture of our 148

system. We employ top-p sampling to generate 149

multiple alternative SOPLang programs and apply 150

a parallel simulated annealing algorithm to refine 151

and select high-quality solutions. 152

Reward function. To guide the process, the re- 153

ward function is constructed to follow a hierarchi- 154

cal objective optimization, where the primary ob- 155
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∀i, j ∈ {1, . . . , n}
∀Nj ∈ D−1(Ni) ∧ κ[Nj ] = done

⟨Ni, δi−1, κi−1,D⟩ −→ ⟨∅, δi, κi,D⟩
(DEPE)

lookup(C.data)⇒ v

⟨C, δ, κ,D⟩ −→ ⟨∅, δ[output := v], κ[C := done],D⟩
(CONT)

∀L ∈ OD.condition
eval(L) = true

⟨OD, δ, κ,D⟩ −→ ⟨∅, δ, κ[OD := done],D⟩

∀L ∈ OD.condition
eval(L) = false

⟨OD, δ, κ,D⟩ −→ halt

(DECL)

OI .instruction_type⇒ I
OI .domain⇒ D
OI .prompt⇒ P

initiateAgent(I,D)⇒ A
A.exec(P)⇒ v

⟨OI , δ, κ,D⟩ −→ ⟨∅, δ[output := v], κ[OI := done],D⟩
(IMPE)

Figure 2: A representative set of the symbolic evaluation
of the SOPLang program

jective ensures accuracy, and the secondary objec-156

tive promotes efficiency. We denote the accuracy157

of program x by f0, token costs, LLM calls, and158

other secondary objective by fi.159

R(x) =


−1, f0(x) < ϵ0
α(f0(x)− ϵ0)−

∑
βifi(x), ϵ0 ≤ f0(x) < ϵ1

1−
∑

βifi(x), f0(x) ≥ ϵ1

160

Simulated annealing. Algorithm 1 outlines the161

simulated annealing process. At each iteration, a162

random mutation is applied to the current program163

x, such as modifying a node, adding or removing164

a node, or altering a dependency. The mutated165

program x′ is evaluated by the reward function166

R(x′) and replaces x with a probability based on167

evaluation.168

Multi-chain strategy. We leverage multi-chain169

strategy to enhance search diversity and im-170

prove the ability to escape local optima. High-171

temperature chains promote exploration through172

more flexible acceptance of worse solutions, while173

low-temperature chains are more conservative and174

focus on local refinement. Periodic state exchanges175

between chains allow diverse candidates to be re-176

fined, improving overall search effectiveness.177

Algorithm 1 Multi-Chain Simulated Annealing

Require: Initial programs {x1, . . . , xK}, tempera-
tures {T1 < T2 < · · · < TK}, reward function
R(x), total steps N , exchange interval E

Ensure: Optimal solution x∗

1: Initialize rk ← R(xk) and x∗k ← xk for all k
2: for t = 1 to N do
3: for k = 1 to K do
4: x′ ← Mutate(xk)
5: if R(x′)−R(xk) > 0 then
6: xk ← x′

7: else
8: paccept ← exp

(
R(x′)−R(xk)

Tk

)
9: if Random(0,1) < paccept then

10: xk ← x′

11: end if
12: end if
13: if R(xk) > rk then
14: x∗k ← xk; rk ← R(xk)
15: end if
16: end for
17: if t mod E = 0 then
18: for k = 1 to K − 1 do
19: ∆←

(
1
Tk
− 1

Tk+1

)
(R(xk+1)−R(xk))

20: pswap ← min(1, exp(∆))
21: if Random(0,1) < pswap then
22: Swap xk ↔ xk+1

23: end if
24: end for
25: end if
26: end for
27: x∗ ← argmaxx∗

k
R(x∗k)

28: return x∗ =0

4 Experiment 178

4.1 Experiment Setup 179

Datasets. We introduce the Domain-Related In- 180

struction Following (DRIF) dataset for our experi- 181

ments. DRIF consists of 300 instructions derived 182

from real-world industrial demands, categorized 183

into three groups based on their level of domain 184

relevance (i.g., The hard set refers to instructions 185

with strong domain specificity, requiring special- 186

ized knowledge or structured understanding of do- 187

main semantics). 188

Metrics. For each instruction, we generate a se- 189

rial of questions for LLM to evaluate the accuracy 190

of generated content. 191
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Figure 3: Illustration of the system architecture.

Figure 4: Illustrative example of experiment on DRIF.

Baselines. We compare the workflow generated192

through our method to manual design of agentic193

systems, including Chain-of-Thought (CoT) (Wei194

et al., 2022), Self Consistency CoT (Cot SC) (Wang195

et al., 2023), MultiPersona Debate (Wang et al.,196

2024), and Role assigment (Xu et al., 2025), and au-197

tomated design of agentic workflow by ADAS (Hu198

et al., 2025) and AFLOW (Zhang et al., 2025).199

Implementation. We employ different models at200

distinct stages of the pipeline. During the execution201

stage, we use DeepSeek-R2, whereas the program202

optimization stage leverages GPT-4o-mini. To en-203

sure a fair comparison across all approaches, we204

apply the same model configuration and set the205

temperature to 1 for other approaches.206

4.2 Results and Analysis207

Our method outperforms other approaches on the208

DRIF dataset. Figure 4 depicts a workflow gener-209

ated by our method that emphasizes targeted contro-210

versy analysis on opinions derived from a specific211

propose node, rather than performing such analysis212

on unstructured or arbitrary inputs. This precise213

scoping is enabled by domain-specific workflow214

design, which assigns clear semantics to each node215

and supports cascading reasoning over structured 216

content. 217

5 Related-work 218

Agentic workflow. Early approaches to work- 219

flow construction primarily rely on manually de- 220

signed strategies. Multi-agent methods such as 221

MultiPersona Debate (Wang et al., 2024) and Role 222

Assignment (Xu et al., 2025) coordinate specialized 223

agents via fixed prompting templates. More recent 224

work has shifted toward automated agentic work- 225

flow design. ADAS (Hu et al., 2025) encodes work- 226

flows as executable programs and optimizes them 227

through historical reuse, while AFLOW (Zhang 228

et al., 2025) employs search and refinement to con- 229

struct workflows automatically. 230

6 Conclusion 231

This paper introduces SOPLang, a DSL for au- 232

tomating workflow generation in enterprise settings. 233

By supporting agent orchestration and domain- 234

adapatability, SOPLang captures industrial task 235

semantics more effectively than general-purpose 236

approaches. Preliminary results indicate the effec- 237

tiveness of our approach across diverse scenarios. 238
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Limitations239

This work assumes access to structured domain240

knowledge, as SOPLang requires manually defined241

instruction schemas and semantics to support do-242

main extensibility. This reliance may limit scala-243

bility in low-resource or rapidly evolving domains,244

where formal task definitions are unavailable or245

costly to produce. The need for manual schema246

design and domain-specific prompt templates also247

introduces overhead that may hinder deployment248

in dynamic or unfamiliar settings.249

The optimization procedure is based on parallel250

simulated annealing, a heuristic method that can251

be computationally expensive and prone to subop-252

timal convergence, especially for long or highly253

interdependent workflows. While effective in guid-254

ing program search, this approach lacks theoretical255

convergence guarantees and may require extensive256

sampling to reach satisfactory solutions in complex257

settings.258

In addition, evaluation is limited to a domain-259

specific dataset centered on industrial tasks, which260

constrains the assessment of generalizability to261

broader application areas. The instruction types262

and task structures in the dataset may not reflect263

the diversity or ambiguity present in other domains264

such as programming, math, or open-domain ques-265

tion answering. As a result, the empirical findings266

may not fully capture the performance and adapt-267

ability of the proposed approach in more heteroge-268

neous or less formalized environments.269
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