
Continuous Range Queries over Multi-Attribute Trajectories

Jianqiu Xu1 Zhifeng Bao2 Hua Lu3

Nanjing University of Aeronautics and Astronautics1, China

RMIT University2, Australia

Aalborg University3, Denmark

jianqiu@nuaa.edu.cn, zhifeng.bao@rmit.edu.au, luhua@cs.aau.dk

Abstract—A multi-attribute trajectory consists of a sequence of
time-stamped locations and a set of attributes that characterize
diverse aspects of the corresponding moving object. In this
paper, we study continuous range queries over multi-attribute
trajectories. Such a query returns the objects whose attributes
contain expected values and whose locations are always within
a distance threshold to the query trajectory during the entire
overlapping time period. To efficiently answer the query, an
optimal method of partitioning the trajectories is proposed and
an index structure is developed to support the combined search
of spatio-temporal parameters and attribute values. We provide a
general solution that is able to process multi-attribute trajectories
as well as traditional trajectories without attributes. We carry
out comprehensive experiments in a prototype database system
to evaluate the efficiency and scalability of our designs. The
experimental results show that our approach outperforms five
alternative approaches by a factor of 5-50x on large datasets.

I. INTRODUCTION

The increasing prevalence of GPS-equipped mobile devices

has led to an explosion of spatio-temporal trajectories. In

the last decade, a rich body of research has been conducted

on processing spatio-temporal trajectories [3], [17], [15]. In

practice, objects/entities are naturally of multiple attributes in

addition to spatio-temporal aspects [10], [18], amenable to

diverse types of analysis. An important problem in the context

of applications that leverage multiple attributes is how to

efficiently find objects by queries formulated as a combination

of spatio-temporal and attribute constraints. The goal of this

paper is to develop novel query processing capabilities to

address spatio-temporal trajectories associated with descriptive

attributes for their corresponding moving objects, called multi-

attribute trajectories.

Consider a motivation scenario in Figure 1. There are four

vehicle trajectories, each of which contains two attributes

COLOR and BRAND with domains SILVER, RED and BMW,

VW, VOLVO, respectively. Object o3 is a special object that

carries VIP passengers or sensitive materials. For security

reasons, it is needed to detect whether the special object is

stalked. To this end, we make use of the multiple attributes

to form a semantic-richer query, e.g., Is any SILVER VW

always kept within 50 meters to o3? Such a query is called

continuous range query with attributes, CRA for short. The

returned objects must satisfy the criteria: (i) time-dependent

distance constraint and (ii) attribute consistency. The CRA

query is essential for traffic monitoring applications, but to

the best of our knowledge it has not been studied before.

It is noteworthy that spatio-temporal trajectory databases are

only suitable for finding the objects fulfilling spatio-temporal

conditions, and thus fall short for the practical needs described

above. In the example, although o1 is within 50 meters to o3
for a while, it is not a SILVER VW and should not be returned.

On the other hand, traditional range queries evaluate objects

at a given time point. In contrast, we consider the continuous

version that the objects should be always within the distance

to the target during the overlapping time. This complicates

the evaluation because objects within the query distance may

change over time. Objects o4 and o2 fulfill the condition during

[t1, t2] and [t2, t3], respectively, but there is no (SILVER, VW)

following o3 during o3’s timespan. As a result, no stalker is

detected.

t1

t2

t3

o2
(SILVER, VW)

o1
(RED, BMW)

o3
(SILVER, VOLVO)

d d

o4
(SILVER, VW)

Is any SILVER VW always ketp within 50 meters to o3?

X

T

Y

Fig. 1. Example of CDA

In the literature, several studies have investigated spatio-

temporal trajectories with supplementary data, called semantic

trajectories [4], [2], [14]. We compare them as follows: (i)

Semantic trajectories enrich spatio-temporal trajectories by

virtue of keywords or semantic labels that are related to

locations such as points of interest, whereas multi-attribute

trajectories consider location-independent characteristics. (ii)

Semantic locations are sparsely defined as only a few locations

of the trajectory may have semantics. For example, given a

semantic trajectory o′1 = 〈(loc1, t1, coffee), (loc2, t2, pizza)〉,
the meaning is clear at locations loc1 and loc2 but no se-

mantic is defined between loc1 and loc2 . Our attributes are

associated with the complete trajectory. (iii) Distinct queries

are processed. Queries in semantic trajectories incorporate the

measurement of spatial and textual relevances in order to find

the most relevant trajectories, e.g., ranked retrieval and top-k

retrieval. In contrast, we deal with the continuous evaluation

of spatio-temporal ranges and the exact match on attributes.

Efficient data management requires underlying systems to
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be complemented in terms of data representation and indexing

methods. To these ends, we model attributes and integrate them

with spatio-temporal trajectories into a unified framework.

We adapt a standard 3-D R-tree by deploying an optimal

partitioning of spatio-temporal trajectories. The goal is to

normalize trajectories to create an R-tree with a good shape.

An attribute structure is created on top of the R-tree to

maintain attribute values. We design a flexible method such

that the attribute structure can be discarded if only spatio-

temporal trajectories are processed.

The contributions of the paper are summarized as follows:

(i) We represent multi-attribute trajectories and formulate

the continuous range query over such trajectories; (ii) An

index structure built on an optimal partition of trajectories is

proposed to support the search of both spatio- temporal param-

eters and attributes; (iii) We develop efficient query algorithms

with effective pruning techniques and search heuristics. (iv)

A thorough experimental study is performed using real GPS

records and synthetic attribute values. The experimental results

demonstrate that our approach outperforms five alter- natives

by a factor of 5-50x on large datasets.

The rest of the paper is organized as follows. In Section II,

we review the related work. The problem is defined in Section

III. The index structure and query algorithms are proposed in

Sections IV and V, respectively. We perform the evaluation in

Section VI, followed by conclusions in Section VII.

II. RELATED WORK

Queries of spatio-temporal trajectories find objects from the

spatio-temporal aspect, e.g., similar trajectories [17], nearest

neighbors [13] and prediction [12]. Emerging applications

require extensive information about movement data such as

quality and semantics [22]. A semantic enriched trajectory is

typically defined as a sequence of time-stamped places, each

of which is represented by a location with a semantic label.

Extracting semantic behavior from spatio-temporal trajectories

is investigated [20] by identifying object stops or moves and

annotate relevant locations with semantics such as market or

office.

Attaching semantic labels to trajectories enables queries and

analytics considering semantic interests and location prefer-

ences. Existing work falls into three categories: (i) Ranked and

top-k retrieval. Relevant queries consider actions/activities that

users can take at particular places such as sport and dining.

A top-k exemplar trajectory query [14] consists of a set of

locations with keywords and aims to find the most relevant

trajectories in terms of the spatial and textual similarity. (ii)

Data mining and analytics. Frequent sequential patterns can

be found to reflect movement regularity by considering spatial

compactness, semantic consistency and temporal continuity

simultaneously [21]. A regional semantic trajectory pattern

mining problem is also studied [2]. (iii) Range queries on

multi-attribute trajectories return trajectories that contain query

attributes and intersect a spatio-temporal window [19].

A systematic study is performed to capture a wide range

of meanings related to locations including street names, trans-

portation modes and speed profile [7]. A time-dependent label

is defined to represent so-called symbolic trajectories, but

time-dependent locations are not included in the model.

III. PROBLEM DEFINITION

Let A be the set of multiple attributes. The ith attribute and

its domain are denoted by A[i] and dom(A[i]) (i ∈ 1,..., |A|),
respectively. We assume that each dom(A[i]) is represented by

a set of positive integers and define a data type Datt for the

set of multiple attributes. For the sake of readability, the enum

type is used for attributes COLOR and BRAND in Figure 1.

Definition 1 The multi-attribute representation

Datt = {(a1, ..., a|A|)| ai ∈ dom(A[i]), i ∈ {1, ..., |A|}}
such that (i) ∀i ∈ {1,..., |A|}: dom(A[i]) ⊂ N+; (ii) ∀ i, j ∈
{1,..., |A|}: i �= j ⇒ dom(A[i]) ∩ dom(A[j]) = ∅.

Let O be a set of multi-attribute trajectories. Each o ∈
O is denoted by o(Trip, Att) in which o.Trip and o.Att refer

to a spatio-temporal trajectory and attributes, respectively. A

spatio-temporal trajectory is represented by a data type mpoint

[8]. Table I gives the representation of example trajectories.

TABLE I
AN EXAMPLE OF MULTI-ATTRIBUTE TRAJECTORIES

Id: int Trip: mpoint Att: att

o1 location+time (RED, BMW)

o2 location+time (SILVER, VW)

o3 location+time (SILVER, VOLVO)

o4 location+time (SILVER, VW)

Let T (o) return the time period of a trajectory. We employ

the function in [5] to return the time-dependent distance

between two trajectories o1, o2 ∈ O, denoted by dist(o1, o2,

T (o1) ∩ T (o2)). The query predicate Qa defines a component

for each attribute. Let Qa[j] ∈ dom(A[j]) ∪ {⊥} refer to the

jth attribute value. We define an operator called contain(o.Att,

Qa) that returns true if ∀ Qa[j] �= ⊥: o.Att[j] = Qa[j]. The

studied query CDA is formulated below.

Definition 2 Continuous distance queries with attributes

Given a query trajectory oq , threshold d and attribute

predicate Qa, CDA returns O′ ⊆ O such that ∀ o′ ∈ O′:
(i) contain(o′.Att, Qa); (ii)∀ t ∈ T (oq) ∩ T (o′), dist(oq , o′,

t) < d.

Referring to Figure 1, the CRA query finds o4 at [t1, t2] and

o2 at [t2, t3], but no object fulfills the condition during [t1,

t3]. Table II lists the notations frequently used in the paper.

TABLE II
NOTATIONS

Notation Description

O the multi-attribute trajectory database

o a multi-attribute trajectory

|A| the number of attributes

dom(A[i]), dom(A) the domain of A[i], the overall domain

oq , d a query trajectory, the query distance

Qa the query attribute

t, T (o) a time point, the time period of a trajectory
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IV. THE INDEX STRUCTURE

We design an index structure named GR2-tree including two

components: GR-tree and Ratt. The GR-tree is an adapted 3-

D R-tree built on partitioned spatio-temporal trajectories, and

Ratt is a relation for managing attribute values.

A. GR-tree

Partitioning trajectories. We normalize spatio-temporal

trajectories to create the R-tree with a good shape. The time

dimension is partitioned into a set of equal-sized intervals

{T1,...,TK} (K > 1) and the 2-D space is partitioned into a

set of equal-sized cells. Given a multi-attribute trajectory, its

spatio-temporal trajectory is split into a set of so-called cell

trajectories, each of which represents the movement within a

cell during an interval Tk ∈ {T1 ,...,TK}.

Definition 3 Cell trajectory

Let Cell(o, t) return the cell where o is located at a time

point t ∈ T (o). A cell trajectory o[i] is a subset of o.Trip such

that (i) ∀ t1, t2 ∈ T (o[i]): Cell(o[i], t1) = Cell(o[i], t2); (ii)

∃ Tk ∈ {T1,..., TK}: T (o[i]) ⊆ Tk.

For each o ∈ O, we partition o.Trip into pieces according

to time and identify the cells intersecting each piece. We may

encounter the case that several cell trajectories are located in

one cell. This means that the object enters the cell more than

once. The GR-tree is built by bulk loading on cell trajectories

sorted by time, cell id and 3-D bounding box. In order to

preserve the spatio-temporal proximity, each leaf node only

maintains cell trajectories with the same time interval and the

same cell id. Each GR-tree node is supplemented by a bitmap

representing the cells intersecting with the 2-D bounding box

of the node.

B. The attribute structure

The relation Ratt records attribute values of multi-attribute

trajectories maintained in GR-tree nodes. The attribute values

for a leaf node are obtained by accessing the underlying data

and the values for a non-leaf node are obtained by performing

the union on values of its child nodes. Each tuple in Ratt

is of the form (nid, a tr, b) with respect to an attribute

value contained by the node, in which nid is a node id,

a tr is a transformed attribute value and b is a bitmap. The

transformed value is uniquely achieved by interleaving the

binary representation of the attribute id and the value. We

create a B-tree on Ratt by combining nid and a tr as the

key. The bitmap records the entries containing the attribute

value, enabling us to only access qualified entries instead

of performing a sequential scan. We perform the mapping

between the size of the bit array |b| and the maximum number

of entries in a GR-tree node f (i.e., the fan-out): (i) |b| ≥ f ,

each bit maps to a unique entry. If the ith ∈ [0, f ) entry

contains the value, we have b[i] = 1. Otherwise, b[i] = 0. (ii)

|b| < f , each bit maps to a range of entries and entries for

the ith bit are calculated by [i · � f
|b|�, (i+1) · � f

|b|�]. We define

b[i] = 1 if one of the entries contains the value.

Example. We report the attribute relation by referring to

Figure 2. Let N denote a GR-tree node. The bitmap 00001001

in the first row represents the 1st and 4th entries in Nr

containing RED, i.e., N1 and N4.

RattGR-tree

Nr

N1

o1 , o2

o1(RED, BMW)

o2(SILVER, VW)

o3(SILVER, VOLVO)

o4(SILVER, VW)

N2

o3 , o4

N3

o2 , o3

N4

o1 , o3
o4

nid a val b
Nr

Nr

Nr

Nr

Nr

RED

SILVER

VOLVO

VW

BMW

00001001

00001111

00000111

00001111

00001001

N1, N4

Fig. 2. Exemplify the GR2-tree

V. QUERY PROCEDURE

Employing the GR2-tree, we answer the query in three

steps, as illustrated in Figure 3. Step 1 establishes the spatio-

temporal area restricted by oq and d, which is represented by

a set of time-dependent cells. Step 2 performs a breadth-first

traversal on the GR2-tree to prune the search space by taking

into account both spatio-temporal parameters and attribute

values. Given a GR-tree node, we retrieve its cell bitmap and

determine the cells intersecting the node. The node can be

pruned if there is no overlap between the cells intersecting the

node and the query. We return a set of candidates, each of

which is a cell trajectory that (i) contains Qa and (ii) has the

distance to oq less than d. The distance is an approximate value

calculated by using minimum bounding boxes of trajectories.

A candidate is marked if its maximum distance to oq is less

than d. Step 3 iteratively checks the accurate distance between

each candidate and the query. If the candidate is marked, we

directly put it into the result set. Otherwise, the actual distance

is computed. A trajectory may be split because only the piece

of movements fulfilling the distance condition is considered.

oq , d
Grid

cells

Qa

GR2-tree candidates

split if needed

O
′

marked

not marked

Step 1 Step 2 Step 3

Fig. 3. Three steps of answering the query

VI. EXPERIMENTAL EVALUATION

We implement the proposed methods in C/C++ and perform

the evaluation in an extensible database system SECONDO

[6]. A standard PC (Intel(R) Core(TM) i7-4770CPU, 3.4GHz,

4GB memory, 2TB hard disk) running Suse Linux 13.1 (32

bits, kernel version 3.11.6) is used.

Datasets and parameters. We use real GPS records of

Beijing taxis [1], named BTAXI. We develop a tool to generate

attributes. Table III reports the dataset statistics and parameter

settings. The CPU time and I/O accesses are used as perfor-

mance metrics and the results are averaged over 20 runs.

Baseline methods: 1) 3-D R-tree; (2) RIB, we adapt the

method in [16] that that groups multi-attribute trajectories by
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TABLE III
DATASETS AND PARAMETER SETTINGS

Name #GPS Records |O| |A| dom(A) X and Y ranges

BTAXI 235,634,511 4,220,435 10 [1, 151] [21, 119958], [0, 119653]

Query settings

|Qa|: 3 d (km): 10

attribute values and employs an inverted bitmap; (3) 4-D R-

tree; (4) IOC-Tree [9]; (5) HAGI [11].

Scaling the number of trajectories. To vary the data size,

different subsets of BTAXI are selected, as summarized in

Table IV. The performance result is reported in Figure 4. When

the data size grows the costs of all methods rise proportionally,

but our method outperforms baseline methods by a factor of

5-50x on the largest dataset.

TABLE IV
DATASETS FOR SCALING |O|, |A| AND DOM(A)

Name |O| |A| dom(A)

BT1 533,635

10 [1, 151]
BT2 1,009,579
BT3 1,424,273
BT4 2,757,312
BT5 4,220,435

|A| dom(A)

1 [1, 5]

2 [1, 43]

5 [1, 74]

10 [1, 211]

15 [1, 322]

|A| dom(A)

1 [1, 5]

1 [1, 20]

1 [1, 50]

1 [1, 100]

1 [1, 200]
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Fig. 4. Scaling |O|

Scaling data attributes. To investigate the effect of attributes

on the performance, we choose the largest number of trajec-

tories and vary the attribute setting by scaling (i) the number

of attributes and (ii) the domain, as reported in Table IV. The

performance results are reported in Figure 5. Our method is

superior than other methods when the number of attributes

increases. RIB is slightly better than our solution when |A| =

1 and |A| = 2. This is because the index is built on objects

grouped by attribute values and a good locality is achieved in

terms of attributes. The behavior also occurs when |A| = 1.

However, RIB’s performance degrades significantly when |A|
becomes large. It is a non-trivial task to group multi-attribute

objects to build the index for RIB.

VII. CONCLUSIONS

We studied multi-attribute trajectories and proposed a new

query. An index structure as well as efficient query algorithms

were developed. Extensive experimental results demonstrated

that our method significantly outperforms alternative methods.
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