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Figure 1: Examples of our affordance demonstrations and learned policies. Left: We visualize two groups
of demonstrations for each object category. In each group, we visualize the given instance, generated human
grasp, and the robot grasp for demonstrations. Right: We train a policy using imitation learning with the
demonstrations, and visualize the learned policy relocating the unseen object.

ABSTRACT

Dexterous manipulation with a multi-finger hand is one of the most challenging
problems in robotics. While recent progress in imitation learning has largely im-
proved the sample efficiency compared to Reinforcement Learning, the learned
policy can hardly generalize to manipulate novel objects, given limited expert
demonstrations. In this paper, we propose to learn dexterous manipulation us-
ing large-scale demonstrations with diverse 3D objects in a category, which are
generated from a human grasp affordance model. This generalizes the policy to
novel object instances within the same category. To train the policy, we propose a
novel imitation learning objective jointly with a geometric representation learning
objective using our demonstrations. By experimenting with relocating diverse ob-
jects in simulation, we show that our approach outperforms baselines with a large
margin when manipulating novel objects. We also ablate the importance on 3D
object representation learning for manipulation.

1 INTRODUCTION

Human hands provide the primary means for our daily life interactions with the physical world. Our
hands exhibit tremendous flexibility in operating objects around us. To enable the robot the same
flexibility in assisting humans in daily life, dexterous manipulation with multi-finger robot hands
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has been one of the core problems in robotics. At the same time, it is one of the most challenging
problems in robotics given its high Degree-of-Freedom joints (e.g., 24 to 30 DoF). While recent
progress in Reinforcement Learning (RL) has shown encouraging results on complex dexterous
manipulation OpenAI et al. (2018; 2019); Zhu et al. (2019), it is still limited by the requirement of
a large number of samples in training, and the trained policy can hardly generalize to novel objects
during deployment.

To improve the sample efficiency in training, one promising direction is to perform imitation learning
from human demonstrations Gupta et al. (2016); Rajeswaran et al. (2018); Schmeckpeper et al.
(2020); Radosavovic et al. (2021). The expert demonstrations for dexterous manipulation can be
collected by a human from teleoperation in a Virtual Reality (VR) system Rajeswaran et al. (2018)
and using Mocap Handa et al. (2020). Guided by human demonstrations, it not only reduces sample
complexity in learning but also helps robot hands perform human-like and safe behaviors. However,
the current setup on data collection largely limits the number and diversity of the demonstrations.
For example, data collection with VR in Rajeswaran et al. (2018) only leads to 25 demonstrations
per task with one single object instance. With limited data, the learned policy can hardly generalize
and transfer to unseen objects in test time.

To achieve generalization, we seek helps from recent studies on hand-object interactions and affor-
dance reasoning Brahmbhatt et al. (2019); Taheri et al. (2020); Karunratanakul et al. (2020); Jiang
et al. (2021). Instead of collecting the whole demonstration trajectories from a human at small scale,
we can learn from the key interactions on how humans grasp and contact diverse 3D objects at much
larger scale from existing affordance model Jiang et al. (2021).

In this paper, we propose to leverage the human grasp affordance model for generalizing dexterous
manipulation to novel object instances in the same category. Specifically, we will first generate large-
scale demonstrations on human hands interacting with diverse objects within the same category from
affordance reasoning (left columns in Fig. 1). We then use imitation learning to train a policy by
augmenting RL with these demonstrations and test on unseen objects (right columns in Fig. 1). Our
policy takes the object point cloud and the robot hand state as inputs for decision making. We tackle
generalization by jointly learning: (i) skill generalization with a new imitation learning objective;
and (ii) geometric representation generalization with a behavior cloning objective. We illustrate
different components of our approach as follows.

Demonstration Generation. Given each 3D object instance, we can first generate a hand grasp pose
and a way to contact by leveraging the human grasp affordance model Jiang et al. (2021). Note there
can be multiple possibilities of grasps that we can sample from the affordance model. We utilize
motion planning to generate a trajectory that moves the robot hand from a start state to the target
grasp. This trajectory provides a demonstration of how the robot hand can reach and stably grasp
the object like humans do, preparing for the downstream tasks. Instead of exhaustively collecting
demonstrations for a full task, we generate large-scale partial demonstrations across multiple diverse
object instances in the same category.

Imitation Learning Objective. To learn the policy, we augment RL with our demonstrations for
imitation learning. Previous approaches weighted all demonstrations equally during learning Ra-
jeswaran et al. (2018); Radosavovic et al. (2021). Under diverse and large-scale demonstrations,
we propose a novel ranking function to encourage the policy to learn from trajectories that it is less
likely to reproduce. In addition, we estimate advantage values for state-action pairs from demon-
strations with a growing weight so that the policy can still benefit from the given demonstrations at
late training phases.

Geometric Representation Learning. The policy needs to understand the object shape given the
point cloud inputs to manipulation it accordingly. We utilize PointNet Qi et al. (2017) to encode
the input object and pre-train the representation with a behavior cloning task using our large-scale
demonstrations. Besides pre-training, as the policy interacts with the environment during imitation
learning, we can collect new data to continue fine-tuning the PointNet with behavior cloning. Our
training pipeline jointly optimizes with the imitation learning objective for skill generalization and
the behavior cloning objective for representation generalization.

We perform experiments in simulation with five different object categories. We train one policy
for each object category on the relocate task, which requires the multi-finger robot hand to relocate
an object instance from an initial position to a goal location. During the evaluation, we focus on
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the metric on generalization to relocate novel objects that are not seen in training time. We not
only observe significant improvement over RL and state-of-the-art imitation learning approaches but
also ablate the effectiveness of our novel imitation learning objective and geometric representation
learning using our demonstrations.

We highlight our main contributions as follows:

• A novel approach on generating large-scale dexterous manipulation demonstrations on di-
verse objects.

• A novel imitation learning objective and 3D geometric representation learning approach
for generalizing dexterous manipulation.

• State-of-the-art performance on dexterous manipulation on novel objects, which has been
rarely explored to our knowledge.

2 RELATED WORK

Dexterous Manipulation. Dexterous manipulation with a multi-finger hand has been one of the core
robotics problems Rus (1999); Okamura et al. (2000); Dogar & Srinivasa (2010); Andrews & Kry
(2013); Bai & Liu (2014). While recent success has been shown in using Reinforcement Learning
for solving complex dexterous manipulation tasks OpenAI et al. (2018; 2019), training with RL still
suffers from high sample complexity and it might also need unexpected and unsafe behaviors given
the high-dimensional action and state space. Recent efforts have been made on using affordance and
contact reasoning to design an auxiliary loss to guide human-like dexterous grasping Mandikal &
Grauman (2021). However, the small scale of contact examples limits the generalization ability of
the policy. In this paper, we propose a novel method to generate large-scale demonstrations from
grasp affordance, and a novel imitation learning algorithm to learn a generalizable policy.

Imitation learning. Imitation learning aims at recovering the expert policy that generates the given
demonstrations. Beyond behavior cloning Torabi et al. (2018b); Reddy et al. (2019); Kelly et al.
(2019), the definition of imitation learning also includes approaches that incorporate RL objectives,
such as Inverse Reinforcement Learning (IRL) Ng et al. (2000); Abbeel & Ng (2004); Ho & Ermon
(2016); Fu et al. (2017); Stadie et al. (2017); Aytar et al. (2018); Torabi et al. (2018a); Liu et al.
(2020). For example, Ho et al. Ho & Ermon (2016) introduce to learn expert policy by matching oc-
cupancy measure Syed et al. (2008) between the agent policy and the expert policy using adversarial
learning. Another line of imitation learning is to augment the expert demonstrations to the online
collected data for Reinforcement Learning Peters & Schaal (2008); Duan et al. (2016); Večerı́k et al.
(2017); Rajeswaran et al. (2018); Radosavovic et al. (2021). For example, Rajeswaran et al. Ra-
jeswaran et al. (2018) propose to take maximum likelihood with demonstrations as an auxiliary term
during RL training. However, they utilize perfect demonstrations collected via VR at a small scale.
On the other hand, we propose to utilize imperfect partial demonstrations at a large scale for better
generalization. In this spirit, our work is inspired by imitation learning from imperfect demonstra-
tions Hester et al. (2018); Oh et al. (2018); Tangkaratt et al. (2019); Wu et al. (2019); Cao & Sadigh
(2021), where demonstrations are not directly from an optimal policy.

3 METHOD

We propose to learn a policy using imitation learning with demonstrations generated from the human
grasp affordance model. Our policy takes the object point clouds together with the hand joint states
as inputs for decision making. We introduce our approach Imitation Learning from Affordance
Demonstration (ILAD) as a 2-stage pipeline:

(i) Affordance Demonstration Generation. We leverage a state-of-the-art affordance model
GraspCVAE Jiang et al. (2021) to generate diverse grasps on diverse objects within the same cat-
egory. With the generated grasps, we utilize motion planning to obtain trajectories to reach these
grasps. While these trajectories do not show how to perform a particular task, they can serve as
partial demonstrations for guiding our policy to achieve the right contacts in grasping.

(ii) Imitation Learning with Representation Learning. We propose a novel imitation learning
objective to learn the policy with the affordance demonstrations. As we utilize a PointNet Qi et al.
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Figure 2: Affordance demonstration generation.
We first generate the hand grasp on a given object
and then use CEM for planning to reach the target
grasp position. We also provide another example
of the demonstration.
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Figure 3: Training pipeline for the proposed be-
havior cloning and imitation learning. Every T
epoch, we finetune the PointNet θpc using the ob-
jective (Eq. 5) with respect to θpc. During imita-
tion learning, we update the MLP θp by estimating
the gradient (Eq. 6) with the given demonstrations
and the RL interaction data.

(2017) encoder to extract the 3D object shape information, we propose a 3D geometric representa-
tion learning approach jointly with imitation learning.

3.1 AFFORDANCE DEMONSTRATION GENERATION

We propose to generate demonstrations from human grasp affordance. This procedure includes two
steps as shown in Fig. 2: grasp generation and motion planning for grasp trajectory.

Grasp generation. Given diverse 3D objects, we adopt the GraspCVAE model proposed in Jiang
et al. (2021) to generate diverse human grasps for each object. Specifically, the GraspCVAE will
take the object point cloud observation as inputs, and outputs the grasp pose represented by the
MANO Romero et al. (2017) model parameterized by the shape parameter β as well as the pose
parameter α. With these parameters, we can compute the human hand joints using the forward
kinematics function jh = Jh(β, α). We will use these joint positions to guide the robot to reach the
objects plausibly.

Motion planning for grasp trajectory. Given the target grasp hand joints jh, our goal is to find an
robot hand action sequence a1, ..., aK which generates a robot hand joint sequence jr0 , ..., j

r
K so that

the last robot hand joint positions jrK reaches jh. Note the initial robot hand joints jr0 are given. The
objective for motion planning is,

mina1,...,aK
∥jrK − jh∥2 + λ∥pK − p1∥2,

where p1 and pK are object poses at time step 1 and K, and constant λ = 10. The first term of
the objective encourages the robot hand to reach the human grasp, and the second term indicates the
object should not be moving during the process. We use cross-entropy method (CEM) Rubinstein
(1999) for motion planning given this objective.

3.2 IMITATION LEARNING OBJECTIVE

We perform imitation learning using demonstrations generated from our planning algorithm. In-
stead of pure behavior cloning, our imitation learning considers a setting where a reward function
for Reinforcement Learning and demonstrations are given at the same time. In this way, we can
perform training even with imperfect demonstrations since the RL objective needs to be achieved.
Meanwhile, a large-sale and diverse demonstrations can provide effective guidance for exploration
during RL training.

Preliminaries. We consider a standard Markov Decision Process (MDP). It is represented by a tuple
⟨S,A, P,R, γ⟩, where S and A are state and action space, P (st+1|st, at) is the transition density of
state st+1 at step t + 1 given action at made under state st, R(s, a) is the reward function, and γ
is the discount factor. The goal of RL is to maximize the expected reward with a stochastic policy
π(a|s).
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We build our approach upon an imitation learning baseline algorithm called Demo Augmented Pol-
icy Gradient (DAPG) Rajeswaran et al. (2017). It combines learning from demonstration and policy
optimization. The learning objective function at epoch k can be represented as,

gaug =
∑

(s,a)∈Dπθ

∇θ lnπθ(a|s)Aπθ (s, a) +
∑

(s,a)∈DπE

∇θ lnπθ(a|s)λ0λ
k
1 max
(s,a)∈Dπθ

Aπθ (s, a),

where Aπθ is the advantage function Baird III (1993) that is used to estimate the difference of
the discounted reward sum starting from (s, a) and s according to policy πθ, DπE

are state-action
pairs from the expert demonstrations, Dππθ

are state-action pairs collected with policy πθ, and λ0

and λ1 hyper-parameters bounded by 0 and 1. In the implementation of Rajeswaran et al. (2017),
max(s,a)∈ρπθ

Aπθ (s, a) is set to 1 for stability. Therefore, the objective is reduced to

gaug =
∑

(s,a)∈Dπθ

∇θ lnπθ(a|s)Aπθ (s, a) +
∑

(s,a)∈DπE

∇θ lnπθ(a|s)λ0λ
k
1 , (1)

which suggests that the given demonstrations are considered equally during training and the impor-
tance of the demonstration term is decreasing along with training time in order to reduce objective
bias.

Learning from partial demonstrations with multiple objects. For generalizing dexterous manip-
ulation to multiple objects, where there are easier and more challenging shapes, the demonstrations
should not be taken equally during training. We propose to adaptively rank the demonstrations based
on the difficulties of objects and the learning progress of the policy. Specifically, we will first define
the objective below, and then explain the terms in this objective,

gILAD =
∑

(s,a)∈Dπθ

∇θ lnπθ(a|s)Aπθ (s, a) +
∑

(s,a)∈DπE

∇θ lnπθ(a|s)λ0λ
k
1wk(s, a)+

∑
(s,a)∈DπE

∇θ lnπθ(a|s)λ′
0(1− λk

1)A
πθ

ϕ (s, a), (2)

where wk(s, a) in the second term is computed as the negative of a normalized log likelihood to
encourage the policy to learn from trajectories that it is hard to reproduce by the current policy.
Aπθ

ϕ (s, a) in the third term is an advantage function estimated with a model parameterized by ϕ

for state-action pairs of the demonstrations. Formally, wk(s, a) can be represented as a normalized
value (scaled between 0 and 1) of the negative of the log likelihood,

wk(s, a) =
lk(τs,a)−minτ lk(τ)

maxτ lk(τ)−minτ lk(τ)
, (3)

where τs,a is a trajectory from the demonstrations that contains station-action pair (s, a), and the
negative of the log likelihood for a trajectory lk(τ) is defined as,

lk(τ) = − 1

|τ |
∑

(s,a)∈τ

log Pr(s, a|πθ). (4)

With these definitions, we will explain our key innovations on the second term and the third term in
Eq. 2.

Normalized likelihood weights in the second term in Eq. 2. In our experiments, we find that the
policy could easily learn to manipulate a certain kind of object while neglecting the others. To
encourage the policy to generalize on diverse objects, we will dynamically assign larger weights
wk(s, a) for demonstrations that have a smaller likelihood in the current epoch, which encourages
the policy to focus training on them more. Specifically, wk(s, a) is a weight at epoch k for state-
action pair (s, a) from an expert demonstration τs,a. To compute this weight, we first compute
the negative of log likelihood lk(τ) for a trajectory τ as Eq. 4. lk(τ) will be large if the current
policy does not fit the trajectory τ well, which means the training should pay more attention to this
trajectory. The weight wk(s, a) is a normalized version of the negative of log likelihood using Eq. 3,
so that it will be scaled between 0 and 1.

Advantage approximation for demonstrations in the third term in Eq. 2 is designed to further
elevate the utilization of demonstrations. While in the previous approach Rajeswaran et al. (2017)
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the advantage function for demonstrations is taken as 1 in Eq. 1, we propose to approximate the
true advantage for a more accurate estimation of the gradients. Since we do not have the rewards
provided in demonstrations to compute Aπθ (s, a) as with online data in the first term, we train
a neural network Aπθ

ϕ (s, a) parameterized by ϕ to predict the advantage function directly. This
new advantage function is trained with the online data collected by RL and applied to the partial
demonstrations.

3.3 POLICY TRAINING WITH GEOMETRIC REPRESENTATION

Our policy takes both the point cloud of the object, object 6D pose, robot hand joint states as inputs,
and predicts the actions for the robot hand. Specifically, to represent the object shape, we utilize
the PointNet Huang et al. (2021) encoder θpc for the point cloud inputs. Given the point cloud
embedding, we concatenate it with the object 6D pose parameters and hand joint states together and
forward them together to a 3-layer MLP θp network for decision making. Thus the policy network
is parameterized by θ = {θpc, θp}.

To perform training, besides optimizing towards the imitation learning objective, we design a geo-
metric representation learning objective for training the PointNet jointly. Our overall model archi-
tecture and training pipeline are visualized in Fig. 3. We will first explain the representation learning
objective, and then the joint training approach in the following.

Behavior cloning for geometric representation learning. We utilize behavior cloning to provide
an objective to train our PointNet encoder. We obtain the training data directly from the exam-
ples Dπθ

collected during the interaction with the environment in policy learning. Specifically, the
behavior cloning objective can be represented as,

Lbc =
1

|Dπθ
|

∑
(s,a)∈Dπθ

∥πθ(s)− a∥2, (5)

where we still utilize the whole network θ = {θpc, θp} including the decision making MLP θp to
compute the loss, we only optimize the PointNet parameters θpc through backpropagation. This part
of training corresponds to the upper part of Fig. 3.

Pre-training. The same objective Eq. 5 can also be used to pre-train the PointNet encoder and policy
network before policy learning. To perform pre-training, we utilize our collected demonstrations
DπE

instead of Dπθ
.

Joint learning with both objectives. We train our policy jointly with both the imitation learning
objective and the behavior cloning objective as shown in Fig. 3. Empirically, we find training the
PointNet with policy gradient in RL (Eq. 2) makes the representation unstable for decision making.
Unlike supervised learning, the variance of gradients is much larger in RL and it is very challenging
to learn an encoder with high-dimensional inputs directly Srinivas et al. (2020); Stooke et al. (2021).
On the other hand, behavior cloning provides a supervised objective Eq. 5 to stably train the PointNet
representation. Thus we propose to share the network parameters θ = {θpc, θp} for both objectives,
but use policy gradient to optimize the decision making MLP θp and behavior cloning to optimize
the PointNet encoder θpc. We can re-write the objective Eq. 2 by replacing θ with θp in red as,

gILAD =
∑

(s,a)∈Dπθ

∇θp lnπθ(a|s)Aπθ (s, a) +
∑

(s,a)∈DπE

∇θp lnπθ(a|s)λ0λ
k
1wk(s, a)+

∑
(s,a)∈DπE

∇θp lnπθ(a|s)λ′
0(1− λk

1)A
πθ

ϕ (s, a). (6)

To further stabilize the training, we propose to perform slower updates on the PointNet encoder
so that the decision-making can be based on similar representations over time. Specifically, while
we update the MLP θp for every epoch using policy gradients, we only perform an update on the
PointNet encoder θpc every T epochs using behavior cloning. We will ablate the parameters T in
our experiments. In Fig. 3, we visualize the arrows with different colors to represent different update
strategies. We summarize our learning procedure in Algorithm 1.
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Algorithm 1 ILAD Pre-Training and Joint Learning

1: Input: partial demonstrations DπE
, PointNet θpc, policy network θp

2: Pre-train θpc and θp, according to Eq. 5
3: for t = 0, 1, 2, ... do
4: Sample trajectories Dπθ

= {(si, ai)}ni=1
5: if t ≡ 0 (mod T ) then
6: Update θpc, according to Eq. 5
7: end if
8: Update θp, according to Eq. 6
9: end for

Model Bottle Remote Mug Can Camera Average
RL 0.00± 0.00 0.62± 0.24 0.01± 0.01 0.00± 0.00 0.15± 0.20 0.16± 0.13
DAPG 0.58± 0.17 0.54± 0.20 0.70± 0.23 0.58± 0.24 0.64± 0.16 0.61± 0.20
DAPG (large) 0.32± 0.44 0.81± 0.02 0.97± 0.02 0.68± 0.25 0.56± 0.07 0.67± 0.23
ILAD (T=50) 0.95± 0.03 0.91± 0.04 0.94± 0.05 0.67± 0.45 0.99 ± 0.01 0.89± 0.20
ILAD (T =10, large) 0.81± 0.16 0.94 ± 0.06 0.97± 0.01 0.93± 0.05 0.98± 0.00 0.93± 0.07
ILAD (T =20, large) 0.85± 0.05 0.93± 0.03 0.99 ± 0.01 0.96 ± 0.02 0.93± 0.02 0.93± 0.02
ILAD (T =50, large) 0.99 ± 0.01 0.93± 0.04 0.96± 0.03 0.91± 0.05 0.99 ± 0.01 0.96 ± 0.03

Table 1: The success rate of the evaluated methods on unseen objects. For better clarity, we use “large” to
represent demonstration size of 1000 trajectories during training and demonstration size of 100 trajectories for
others. T is the updating interval.

4 EXPERIMENTS

4.1 EXPERIMENT AND COMPARISON SETTINGS.

We conduct experiments on Relocate task with five categories: bottle, remote, mug, can, and camera.
In the task, an object is placed on a table with random orientation and position and the robot is
required to grasp the object and move it to a random target position. For each category, we use 40
objects for training and use around 30 unseen objects (differ by category) for testing to evaluate the
generalizability. The unseen objects did not appear during training but are within the same category
as training objects. Both training and testing objects are from ShapeNet Chang et al. (2015). There
are two settings of the demonstration size. One is 100 trajectories for each category and one is
1000 for each category. We compare our method with DAPG and RL and ablate the updating
interval T using a large number of demonstrations. We ablate other proposed components and the
demonstration quality using a small number of demonstrations.

We adopt TRPO Schulman et al. (2015) as our Reinforcement Learning baseline. We evaluate the
proposed imitation learning algorithm using DAPG as a baseline. They incorporate the demonstra-
tions with the same RL algorithm (TRPO) using the same hyper-parameters. DAPG shares the same
PointNet encoder as ours to encode the point cloud. We parameterized the value function with two
separate 2-layer MLPs.

4.2 MAIN COMPARISONS

Success rate. We compare ILAD with DAPG and RL using both small and large number of demon-
strations. The results are presented in terms of success rate on unseen objects in Tab. 1. The
performance is evaluated via 100 trials for three seeds. A trial is counted as a success when the final
position of the object (after executing the policy for 200 steps) is within 0.1 unit length to the speci-
fied target. Note that both the initial object position and target position are randomized. Tab. 1 shows
that ILAD outperforms RL and DAPG with a large margin. Relocating unseen objects is difficult for
RL baseline and it only achieves an average success rate of 16%. While ILAD achieves an average
success rate of 96% which is about 43% improvement over DAPG. At the same time, a large number
of demonstrations could achieve about 8% improvement on average for both DAPG and ILAD. This
is also a contribution of our demonstration generation method since it can automatically generate
large-scale demonstrations.
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Figure 4: Comparison of the robustness on unseen can and camera objects. Left: policy learned by DAPG;
Right: policy learned by ILAD. The environments in the same row share the same objects, initial position, and
target position. We zoom in the last frame of our results.

Model Bottle Remote Mug Can Camera Average
DAPG (random embed.) 0.18± 0.22 0.09± 0.11 0.08± 0.12 0.01± 0.01 0.60± 0.23 0.19± 0.15
DAPG 0.58± 0.17 0.54± 0.20 0.70± 0.23 0.58± 0.24 0.64± 0.16 0.61± 0.20
ILAD (random embed.; w/o JT) 0.16± 0.17 0.06± 0.05 0.01± 0.00 0.31± 0.43 0.68± 0.19 0.24± 0.22
ILAD (λ′

0 = 0; w/o JT) 0.61± 0.31 0.52± 0.05 0.72± 0.36 0.61± 0.32 0.69± 0.23 0.63± 0.28
ILAD (w/o joint learning) 0.65± 0.24 0.57± 0.26 0.76± 0.26 0.66± 0.33 0.70± 0.25 0.67± 0.27
ILAD 0.95 ± 0.03 0.91 ± 0.04 0.94 ± 0.05 0.67 ± 0.45 0.99 ± 0.01 0.89 ± 0.20

Table 2: The success rate of the ablative baselines on unseen objects. The performance is evaluated via 100
trials for three seeds. In this comparison, we set updating interval T = 50 for the joint training. For clarity, we
use “JT” for joint learning.

Visualization on generalizability. We execute the policies on unseen objects and visualize the
results in Fig. 4. For pair comparison, we fix the initial position of the object and the target position
for both policies. In Fig. 4, we show that ILAD learns to hold the objects firmly even when they
are not seen during training. Although DAPG achieves competitive performance in terms of average
return during training, it is weak to generalize to unseen objects. It is especially challenging to grasp
cylinder objects that require a specific angle and careful handling as suggested in the first row. In the
fourth row, the policy is required to relocate a camera lying flat on the table. The proposed ILAD
grasps the whole camera, which allows it to move the camera stably. On the other hand, DAPG only
holds one side of the camera and the camera ends up being thrown away.

5 CONCLUSION

In this paper, we introduce ILAD, an imitation learning method that generalizes to manipulate novel
objects. We design a demonstration generation pipeline with affordance reasoning. Further, we pro-
pose a novel imitation learning objective jointly with a geometric representation learning objective,
which allows second-order policy gradient methods to train efficiently with high-dimensional geo-
metric information. We try to bridge the gap between computer vision and robotics, which could
benefit both communities. At the same time, we focus on the test of unseen objects, which is an
under-explored field in previous studies. Our method could learn a more generalizable and robust
policy, which is valuable for real robots in the real world.
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