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ABSTRACT

In this paper we study the knowledge graph (KG) based recommendation systems.
We first design the metric to study the relationship between different SOTA mod-
els and find that the current recommendation systems based on knowledge graph
have poor ability to retain collaborative filtering signals, and higher-order connec-
tivity would introduce noises. In addition, we explore the collaborative filtering
recommendation method using GNN and design the experiment to show that the
information learned between GNN models stacked with different layers is differ-
ent, which provides the explanation for the unstable performance of GNN stacking
different layers from a new perspective. According to the above findings, we first
design the model-agnostic Cross-Layer Fusion Mechanism without any parame-
ters to improve the performance of GNN. Experimental results on three datasets
for collaborative filtering show that Cross-Layer Fusion Mechanism is effective
for improving GNN performance. Then we design three independent signal ex-
tractors to mine the data at three different perspectives and train them separately.
Finally, we use the signal fusion mechanism to fuse different signals. Experi-
mental results on three datasets that introduce KG show that our KGSF achieves
significant improvements over current SOTA KG based recommendation methods
and the results are interpretable.

1 INTRODUCTION
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Figure 1: Two categories of improvement

The recommendation system is the im-
portant technique for information fil-
tering, which can help users find the
data they want in a large amount of
data. Collaborative filtering algorithm
is a classical recommendation method,
and its main idea is to make recom-
mendations by mining the collaborative
signals between users and items. As a
deep learning method, graph neural net-
works (GNN) have been used to effec-
tively mine users’ collaborative signals, such as NGCF (Wang et al., 2019d), LightGCN (He et al.,
2020). Recent works (Wu et al., 2021; Yu et al., 2022) use LightGCN as the backbone to introduce
contrastive learning and achieve better performance.

From LightGCN (He et al., 2020) to SimGCL (Yu et al., 2022), the performance is constantly im-
proving. For the convenience of description, we assume that there are two models, M1 and M2. The
overall performance of M1 is better than that of M2. In practical applications, for some specific users,
the recommendation effect of M1 may be inferior to that of M2. A problem that may be overlooked
is, is M1 really an improvement over M2 ? That is, what is the relationship between M1 and M2?
Figure 1 shows two possible relationships between M1 and M2. (i1 ∼ i6 are commodities, the circle
“Test” represents the range of the test set, the circle “M1” represents the range of top K commodi-
ties given by the M1 model, the cricle “M2” represents the range of the test the top K commodities
given by the M2 model). In Figure 1(a), M1 learns new things on the basis of retaining the infor-
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mation of M2, while in Figure 1(b) the improvement of M1 to M2 is to lose part of the information
of M2 and learn more new information. To objectively measure these two cases, we design a new
metric, Intersection@N, to measure the differences between two models. Based on this indi-
cator, we conduct experiments between different collaborative filtering models (Wu et al., 2021; Yu
et al., 2022), and between different stacked layers of the same collaborative filtering model (which
are described in Section 2.1 and Appendix C), and obtain two findings:(1) The relationship between
different collaborative filtering methods using GNN is shown in Figure 1(b). (2) The relationship
between models based on collaborative filtering that uses the same GNN model but stacks different
layers is shown in Figure 1(b), i.e., models that stack higher layers cannot fully “include” models
that stack lower layers.

Many studies (Wang et al., 2019d; He et al., 2020) pointed out that within a certain range, the more
GNN layers are stacked, the higher the model performance is. The performance decreases after
exceeding this range. Numerous studies (He et al., 2020; Zhao & Akoglu, 2019) attribute the poor
performance to the over-smoothing of nodes caused by multi-layer stacking, and based on this rea-
son, many methods are designed to alleviate the over-smoothing. A common feature of these works
is that they all choose a model with fixed stacked L layers as the final model. The default assump-
tion in doing so is that the model with good performance (stacked L layers) is an improvement over
the model with stacked T layers of poor performance and the improvement is understood as in Fig-
ure 1(a). However our experiments show that this assumption is invalid and instead their relationship
should be as shown in Figure 1(b) (i.e. The first finding). The first observation of this paper is
that the recommendation method based on collaborative filtering using GNN does not fully
exploit the performance of GNN.

Accompanying GNN, knowledge graphs (KG) are introduced into the recommendation systems to
improve their performances with auxiliary information. The popular KG based recommendation
methods are KGAT (Wang et al., 2019c) and KGIN (Wang et al., 2021), which connect KG and
user-item bipartite graphs through items, thus unify the two into one graph structure.

According to KGAT and KGIN, we believe that the KG based recommendation system includes
item-based collaborative signals, content signals and attribute-based collaborative signals.
These three signals are mined in KGAT and KGIN. The first two signals are mined in the User-
Item bipartite graph and the KG respectively, and the third signal is mined in the unified graph
by higher-order connectivity (Wang et al., 2019c). However, we have two observations with this
unified graph structure: (1) Poor preservation for collaborative filtering signals. We use the
Intersection@N metric to measure the KG-based recommendation method and the collabora-
tive filtering recommendation method, and find the relationship between the two methods are as
shown in Figure 1(b). Existing methods that introduce KG discard half of the information based
on collaborative filtering and learn more information introduced by KG, so the performance of the
former is higher than that of the latter. (2) Unnecessary information are introduced by higher-
order connectivity which makes the propagation path too long. Taking user u2 recommending
i4 in Figure 5 as an example, a possible path of a path is u2

like−→ a3
r2→ i4, and the semantic in-

formation of this path is that u2 likes items with a3 attribute. However, the path given by KGAT is
u2

like→ i2
r1→ a3

r2→ i4. In this path, the information of node i2 includes content signal and user-based
collaborative signal, which is not helpful for the original semantic information and will introduce
unnecessary information. In addition, longer propagation paths also introduce noise.

Based on above three observations, in this paper we propose a general knowledge graph based
separation and fusion model. It consists of three core parts to meet the three challenges mentioned
above:

Cross-Layer Fusion Mechanism. We find that there are differences in the information learned
between models that stack different layers, so we cannot directly select a model that stacks N layers.
We design a model-agnostic, general-purpose Cross-Layer Fusion Mechanism without any trainable
parameters, which fuses models stacked with different layers and can preserve the information of
different models.

Signal Extractor. We design three independent, separately trained signal extractors to extract the
three kinds of signals in the data mentioned before, which can avoid the mutual influence of each
signal. We use the existing collaborative filtering method for item-based collaborative signal ex-
traction and the Cross-Layer Fusion Mechanism is applied to further improve the performance. For
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attribute-based collaborative signals, we process the original User-Item-Attribute graph into a User-
Attribute-Item graph and apply LightGCN to extract signals from the User-Attribute graph. The
Cross-Layer Fusion Mechanism is also applied. The extraction of the content signal draws on the
idea of Transformer (Vaswani et al., 2017), which uses the user as the Query Vector and the attribute
as the Key Vector to obtain the user’s interest in each attribute to get a fine-grained explanation.

Signal Fusion Mechanism. The three signal extractors get different scores. We draw on the idea of
ensemble learning and design Signal Fusion Mechanism, which is essentially weighted summation.

We conduct extensive experiments on three real datasets. Experimental results show that our Cross-
Layer Fusion Mechanism improves collaborative filtering better than state-of-the-art methods, such
as SGL Wu et al. (2021), SimGCL Yu et al. (2022). Our designed KGSF (Knowledge Graph based
Separate and Fusion model) also outperforms state-of-the-art methods in knowledge graph-based
recommendation, such as KGAT (Wang et al., 2019c), KGIN (Wang et al., 2021), KGCL (Yuhao
et al., 2022), HAKG (Du et al., 2022). The contributions of this paper are summarized as follows:
(1) The Intersection indicator is designed to measure the relationship between different models.
Using this indicator we give a new explanation for the unstable performances of GNNs stacking
different layers, and find that the improved relationship between most models belongs to Figure 1(a).
(2) The Cross-Layer Fusion Mechanism can effectively improve the performance of GNN, which
is model-independent, general, and without any training parameters. (3) A highly interpretable and
extensible KGSF framework is proposed. (4) Experimental studies on three datasets demonstrate
the superiority and effectiveness of Cross-Layer Fusion Mechanism and KGSF.

2 PRELIMINARIES

It triggered a research boom since NGCF (Wang et al., 2019d) introduced GNN into the collabo-
rative filtering method. LightGCN (He et al., 2020) removes activation and projection in NGCF
and achieves remarkable results. Afterwards, contrastive learning was introduced and the SGL (Wu
et al., 2021) framework was proposed. Then there is the SimGCL (Yu et al., 2022) method, which
removes graph augmentations and adds perturbation on the basis of contrastive learning. The per-
formance of the above method gradually increases.

However, there are two problems to be studied. First, from NGCF and LightGCN to SGL and
SimGCL, is their relationship shown in Figure 1(a) or Figure 1(b)? Second, the increase in the
number of GNN layers will degrade the performance. Many studies attribute the reason to the
learned embedding tends to be smooth. Is the relationship between these different layer shown
in Figure 1(a) or Figure 1(b)? Here, we choose two SOTA methods SGL (Wu et al., 2021) and
SimGCL (Yu et al., 2022) for comparative experiments, and give conclusions in Appendix C and
2.1, respectively. Meanwhile, a solution is given in subsection 2.2. In addition, we suggest readers
to read concepts including “Intersection”, “UA Graph”, “IA Graph”, etc. in Appendix B.

2.1 THE RELATIONSHIP BETWEEN DIFFERENT LAYERS IN THE SIMGCL AND SGL

A large number of GNN-based (Wang et al., 2019d; He et al., 2020) collaborative filtering
methods believe that the performance will increase with the increase of the number of layers
in a small range. However, the performance will decrease when the stacking reaches a cer-
tain level. Table 2 also confirms this. Many works (He et al., 2020; Zhao & Akoglu, 2019;
Rong et al., 2019) attribute the poor performance to the fact that as the number of layer in-
creases, the node representations learned by GNN become smoother and thus lack discrimination.

Table 1: Intersection@20 between different layers.

Yelp2018 Last-FM Amazon-Book
L-1 L-2 L-3 L-1 L-2 L-3 L-1 L-2 L-3

SGL
L-1 1.0000 0.8284 0.7528 1.0000 0.7198 0.6398 1.0000 0.8101 0.7330
L-2 0.7791 1.0000 0.7838 0.7296 1.0000 0.6235 0.7027 1.0000 0.7371
L-3 0.6873 0.7601 1.0000 0.6000 0.5785 1.0000 0.6172 0.7154 1.0000

SimGCL
L-1 1.0000 0.7945 0.7758 1.0000 0.7296 0.6661 1.0000 0.8179 0.8190
L-2 0.7583 1.0000 0.8494 0.7251 1.0000 0.7459 0.7922 1.0000 0.8751
L-3 0.7381 0.8462 1.0000 0.7126 0.8040 1.0000 0.7657 0.8443 1.0000

The default premise of
this view is that a model
with better performance
is an extension of a model
with poor performance,
in which the former per-
fectly preserves the lat-
ter’s information. To ver-
ify this, we still use In-
tersection@20 metric to
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conduct experiments between different layers of the same method, and the results are shown in
Table 1. We summarize our observation and conclusions as follows: (1) We found that on the
whole, the similarity between different layers of the same method and the same dataset is between
57% and 85%. This shows that the information learned by different layers is also partly different
and the relationship between them is intertwined as shown in Figure 1(a). In other words, the layer
with better performance is not an improvement on the layer with worse performance. One possible
reason for the poor performance of the model with higher layers is that the total amount of high-level
information in the dataset is smaller than low-level information. (2) We also found that the minimum
of similarity between layers occurs between layers 1 and 3, except that the minimum of the SGL on
the Last-FM dataset occurs between layers 2 and 3. This shows that with the increase of the number
of layers, the retention ability of the upper layer to the lower layer is gradually reduced, and the new
information learned by the upper layer is greater than the reduced. Therefore, the effect of the upper
layer is better than that of the lower layer.

2.2 CROSS-LAYER FUSION MECHANISM

Table 2: Performance comparison between SGL and
SimGCL.

Yelp2018 Last-FM Amazon-Book
Recall NDCG Recall NDCG Recall NDCG

SGL

Layer-1 0.0723 0.0477 0.0782 0.0700 0.1251 0.0702
Layer-2 0.0773 0.0508 0.0834 0.0731 0.1431 0.0803
Layer-3 0.0796 0.0520 0.0839 0.0718 0.1481 0.0826
Fusion 0.0799 0.0522 0.0931 0.0810 0.1599 0.0895
Imp% 0.38% 0.38% 10.97% 10.81% 7.97% 8.35%

SimGCL

Layer-1 0.0789 0.0515 0.0690 0.0601 0.1445 0.0777
Layer-2 0.0824 0.0541 0.0701 0.0611 0.1500 0.0816
Layer-3 0.0828 0.0543 0.0699 0.0601 0.1550 0.0845
Fusion 0.0839 0.0550 0.0763 0.0669 0.1603 0.0869
Imp% 1.33% 1.29% 8.84% 9.49% 3.42% 2.72%

Heretofore, many methods (Zhao &
Akoglu, 2019; Rong et al., 2019; Liu
et al., 2020; Feng et al., 2020; Chen et al.,
2020) have been proposed to mitigate
the performance degradation caused by
increasing the number of layers. However,
this is based on the premise that the better-
performing model retains the information
of the poorer-performing model. Our ex-
periments prove that this premise is wrong.
According to the experiments in section 2.1,
we found that the information learned be-
tween different layers of the same model is
independent. Therefore, it’s naive to think
that simply retaining the information between different layers improves performance without mod-
ifying the model structure. We designed a method that is model-agnostic and can be applied to any
graph-based model that consists of user and/or item embedding. More importantly, no trainable pa-
rameters are introduced. Its structure is shown in Figure 4(a). We will describe the detailed process
in the next paragraph.

Figure 2: Components of the
fused model(SGL).

Figure 3: Components of the
fused model(SimGCL).

First, we need to separately train models with different numbers of
layers stacked(three models are trained using the green box frame
shown in the Figure 4, with one, two and three layers stacked respec-
tively). Second, each model can get an embedding for a user and
an item, and we multiply them to get the score. Three models get
three different scores. Since the range of scores obtained by different
models may be different, we apply maximum and minimum normal-
ization to limit the scores to the range of 0 to 1. Finally, we fuse the
different scores using a weighed summation and define that the value
of weight is positively related to the performance of a single model.

In order to verify the effectiveness of this method, we use the model
trained in section 2.1, and then set the weights of the three mod-
els to be 1. The experimental results are shown in Table 2, where
%Imp. denotes the relative improvement of the best performing
method(bold) over the strongest models(underlined) excluding our
method. Our method achieves the best performance. From the point
of datasets, our method has obvious improvement effect in Last-FM
and Amazon-Book. From the point of the model, SGL has obvious
improvement. This illustrate the feasibility and effectiveness of our
method.

We conduct two experiments to further explore how our method fuses
information from different layers and whether new information is
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Figure 4: Illustration of the proposed KGSF framework.

generated. The first experiment calculates the Intersection@20
between the fused model and model from different layers. The results
are shown in Table 8 in Appendix A(the Fusion column indicates that the single model on the left
column is the base, and the Fusion* column indicates that the Fusion model is the base). In
the second experiment, statistics are made on which model from different layers the fused model
information comes from. The results are shown in Figure 2 and Figure 3.

From the results, we can get the following conclusions: (1) We can find that the information shared
by three models accounts for the highest proportion after fusion, accounting for about 45% to 69%.
New information accounts for the least after fusion, accounting for about 0.5% to 3.9%. It shows that
the cross-layer fusion mechanism tends to preserve the information shared by three models and will
generate a small amount of new information. (2) In terms of the proportion of retained information,
the information shared by the three models are larger than those shared by the two models (about
4.4% to 14.2%), and the latter is larger than the unique information of a single model (about 2.2%
to 10.0%). This phenomenon is the same as ensemble learning. (3) The retention rate of the method
for a single model information is about 78% to 93%, which means that it can not retain all the
information of the three models. However, the amount of information lost is less than the sum of the
unique information retained and the new information generated, so a better effect is achieved.

3 METHODOLOGY

In this section, we introduce our proposed Knowledge Graph-based Separate and Fusion model
(KGSF) in detail. First, we decoupling the UIA which used by (Wang et al., 2019c; 2021) into
three graph including UI Graph, UA Graph and IA Graph. Different signals can be found in each
graph. Item-based collaborative filtering signal(i.e., item-user-item co-occurrence) can be found in
UI Graph, attribute-based collaborative filtering signal(i.e., attribute-user-attribute co-occurrence)
can be found in UA Graph and content signal(i.e., items with similar attributes are similar) can be
found in IA Graph. We designed three different signal extractors to mine information. Finally,
we designed a fuser to fuse different signals. It is important to note that this is not an end-to-end
framework. Different signal extractors are trained separately.

3.1 ITEM-BASED CF-SIGNAL EXTRACTOR

It is a hot filed to extract collaborative signals in UI Graph for recommendation. Lots of work (Wang
et al., 2019d; He et al., 2020; Wu et al., 2021; Yu et al., 2022; Wang et al., 2020b) has shown that
GNN can effectively extract item-based collaborative signals. Here we adopt the LightGCN (He
et al., 2020), which is a typical and effective model. Its graph convolution operation is defined as:

e
(k+1)
GUI :u

=
∑

i∈NGUI
u

1√∣∣∣N GUI
u

∣∣∣√∣∣∣N GUI
i

∣∣∣e
(k)
GUI :i

; e
(k+1)
GUI :i

=
∑

i∈NGUI
i

1√∣∣∣N GUI
i

∣∣∣√∣∣∣N GUI
u

∣∣∣e
(k)
GUI :u

(1)

, where e
(k)
GUI :i

, e
(k)
GUI :u

∈ RdGUI are embedding of item i and user u at layer k, dGUI
is embedding

dimensions, specially e
(0)
GUI :i

and e
(0)
GUI :u

are ID embedding (i.e., trainable parameters). We define
NGUI

i = {u | (u, i) ∈ GUI} to represent the set of users u who have interacted with item i and
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NGUI
u = {i | (u, i) ∈ GUI} to represent the set of items i that have interacted with user u. Each

layer will get embeddings corresponding to items and users. After K layers stacking, LightGCN
further combines the embeddings obtained at each layer to form the final representation of a user
(an item): eGUI

i = 1
K+1

∑K
k=0 e

(k)
GUI :i

, eGUI
u = 1

K+1

∑K
k=0 e

(k)
GUI :u

.

According to the conclusion in section 2.2, there are differences in the information learned by the
models that stack different layers. Therefore, we first train models that stack different layers sepa-
rately, and then use a cross-layer fusion mechanism for fusion.

3.2 ATTRIBUTE-BASED CF-SIGNAL EXTRACTOR

Figure 5: High-Order Connectivity

One of the purpose of introducing KG into recommen-
dation system is to extract attribute-based collabora-
tive filtering signals. Experiments (Wang et al., 2019c;
2021) show that such collaborative signals exist in UIA
Graph. As shown in Figure 5, a possible connec-
tion path from user u2 to item i4 can be expressed as
u2

like→ i2
r1→ a3

r2→ i4. Each node in this path contains
the information of other nodes (e.g., the information
of node i2 may contain the information of node a2, a3

and a4). But the meaning of introducing this path is to express that user u2 like items containing
attribute a3, so this path will introduce noise that is hard to estimate. In order to extract this collab-
orative signal of users more efficiently, we put the extraction of this collaborative filtering signal on
the UA Graph, as shown in Figure 5. At this point, the path can be simplified to u2

like→ a3
r2→ i4.

This removes i2 from the original path to avoid introducing unnecessary information, resulting in a
purer embedding.

Here, as shown in Figure 4(d) we also apply the LightGCN to extract the collaborative filtering
signal from the UA Graph. User and attributes are represented by e

(0)
GUA:u and e

(0)
GUA:a in layer 0,

they are ID embedding (i.e., trainable parameters). According to Formula 1, we can easily define
the graph convolution operation in UA Graph as follows:

e
(k+1)
GUA:u =

∑
a∈NGUA

u

e
(k)
GUA:a√∣∣∣N GUA

u

∣∣∣√∣∣∣N GUA
a

∣∣∣ ; e
(k+1)
GUA:a =

∑
a∈NGUA

a

e
(k)
GUA:u√∣∣∣N GUA

a

∣∣∣√∣∣∣N GUA
u

∣∣∣ , (2)

where e
(k)
GUA:a, e

(k)
GUA:u ∈ RdGUA , dGUA

is embedding dimensions. We define N GUA
a = {u|(u, a) ∈

GUA} to represent the set of users u who have interacted with attribute a and N GUA
u = {a|(u, a) ∈

GUA} to represent the set of attribute a that have interacted with user u. Each layer will get embed-
dings corresponding to attributes and users. After K layers stacking, LightGCN further combines
the embeddings to obtained at each layer to form the final representation of a user or an attribute:
eGUA
a = 1

K+1

∑K
k=0 e

(k)
GUA:a; eGUA

u = 1
K+1

∑K
k=0 e

(k)
GUA:u. Now we have the embedding of user u

and attribute a, which contain collaborative signals between users and attributes. In the task descrip-
tion, we talked about getting the user’s rating for each item, thus we also need to give the definition
of item embedding: eGUA

i =
∑

a∈NGUA
i

eGUA
a . Likewise, we first train models that stack different

layers separately, and then use a cross-layer fusion mechanism for fusion.

3.3 CONTENT SIGNAL EXTRACTOR

The second reason for the introduction of knowledge graph is to provide richer information for the
embedding of items. The content signal extractor we designed consists of two components. The first
is the knowledge graph embedding layer, as shown in Figure 4(e), which uses the knowledge graph
embedding method like RotatE (Sun et al., 2018a) to obtain the attribute embedding. The other is
the user interest mining layer, as shown in Figure 4(f), its input is the attribute embedding obtained
by the first layer, and then using the user as the query vector and the attribute as the key vector, and
finally the embedding of the user and item is obtained, denoted as eGIA

u and eGIA
i,u respectively. For a

detailed introduction to these tow layers, please refer to Appendix D.
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3.4 SIGNAL FUSION MECHANISM

In the previous three subsections, we proposed three different signal extractors. Instead of con-
catenating between the three different items embedding and users embedding, we train three dif-
ferent signal extractors separately because the three extractors are independent of each other. Here,
S′
UI , S

′
UA, S

′
IA are used to represent the scores of item-based CF-signal extractor, attribute-based

CF-signal extractor and content signal extractor, respectively, where S′
UI , S

′
UA, S

′
IA ∈ R|U|×|I|.

As shown in Figure 4(b), since the three different scores have different ranges, we use max-min
normalization to constrain their range between 0 and 1, denoted as SUI , SUA and SIA respectively.
The final score is defined as S = τ0SUI + τ1SUA + τ2SIA, where τ0, τ1, τ2 ∈ (0, 1]. The value of
τ0, τ1, τ2 depend on the performance of the three signal extractors. The stronger the performance of
the signal extractor, the greater the corresponding weight.

3.5 MODEL PREDICTION AND MODEL OPTIMIZATION

In section 3.4, we mentioned that each signal extractor is trained separately, so within each signal
extractor, user u’s rating for item i is defined as the dot product of the corresponding embeddings.
The following are the score definitions for each of the three signal extractors.

ŷGUI
u,i = e

G⊤
UI

u eGUI
i , ŷGUA

u,i = e
G⊤
UA

u eGUA
i , ŷGIA

u,i = e
G⊤
IA

u eGIA
i,u . (3)

It should be noted that the scores for item-based cf-signal extractor and attribute-based cf-signal
extractor here refer to a model, as shown in the green box in Figure 4(a).

Here, we opt the BPR (Rendle et al., 2012) loss to optimize our model. Since the three signal extrac-
tors are trained separately, we give the loss functions of the three signal extractors in Appendix E.
It should be noted that the training method in content signal extractor is to train knowledge graph
embedding layer first, and then train user interest mining layer alone after the training of knowledge
graph embedding layer is completed.

4 EXPERIMENTS

Table 3: Overall performance comparison.

Yelp2018 Last-FM Amazon-Book
Recall NDCG Recall NDCG Recall NDCG

MF 6.27% 4.13% 7.24% 6.17% 13.00% 6.78%
CKE 6.53% 4.23% 7.32% 6.30% 13.42% 6.98%

KGNN-LS 6.71% 4.22% 8.80% 6.42% 13.62% 5.60%
KGAT 7.05% 4.63% 8.73% 7.44% 14.87% 7.99%
CKAN 6.46% 4.41% 8.12% 6.60% 14.42% 6.98%
KGIN 6.98% 4.51% 9.78% 8.48% 16.87% 9.15%
KGCL 7.54% 4.92% 6.26% 5.64% 14.86% 7.84%
HAKG 7.78% 5.01% 10.08% 9.31% - -

KGSF(ours) 8.59% 5.60% 10.76% 9.22% 17.26% 9.46%

We present empirical results
to demonstrate the effective-
ness of our proposed KGSF
framework. The experiments
are designed to answer the
following research questions:
RQ1: How does KGSF perform,
comparing to the state-of-the-art
knowledge-aware recommend
models? RQ2: How do different
components of KGSF (e.g., the
attention guiding mechanism,
the cross-layer fusion mech-
anism, the independence and
completeness of three signal extractors, effectiveness of signal fusion mechanism) affect the
performance of KGSF? RQ3: Can KGSF provide meaningful insights on user intents and give an
intuitive impression of explainability? Only some experiments and results are shown here. Please
refer to Appendix F for more details.

4.1 SETUP

Datasets, Baselines and Evaluation Metrics. We use three benchmark datasets: Amazon-Book,
Last-FM and Yelp2018, which are extensively evaluated by the SOTA methods (Wang et al., 2019c;
2021; Du et al., 2022; Yuhao et al., 2022) and vary in iterms of domain, size and sparsity. Table 7
presents the overall statistics information of our experimented datasets. We adopt two widely-used
evaluation protocols Krichene & Rendle (2022) recall@K and ndcg@K, where K=20 by default. To
demonstrate the effectiveness of KGSF, we compare it with the state-of-the-art methods, covering

7



Under review as a conference paper at ICLR 2023

KG-free method (Rendle et al., 2012), embedding-based method (Zhang et al., 2016), propagation-
based methods (Wang et al., 2019a;c; 2021; 2020c) and multiview-based methods (Du et al., 2022;
Yuhao et al., 2022). See Appendix F.2 for more details.

4.2 PERFORMANCE COMPARISON(RQ1)

Table 4: Performance comparison of KGSF components.

Yelp2018 Last-FM Amazon-Book
Recall NDCG Recall NDCG Recall NDCG

UI 8.39% 5.50% 9.31% 8.10% 16.03% 8.68%
UA 3.08% 1.88% 9.13% 7.30% 7.46% 4.00%
IA 2.82% 1.72% 6.01% 4.69% 4.74% 2.27%

UI&UA 8.56% 5.59% 10.35% 8.83% 16.76% 9.05%
UI&IA 8.44% 5.52% 10.36% 8.98% 16.71% 9.05%
UA&IA 3.34% 2.04% 9.91% 8.10% 8.59% 4.66%

We report overall performance
evaluation of all methods in Table 3
and performance comparison of
KGSF components in Table 4
(UI means item-based cf-signal
extractor, UA means attribute-
based cf-signal extractor, IA
means content signal extractor).
It should be noted that dataset
Yelp2018 and Amazon-Book apply
SimGCL (Yu et al., 2022) in UI
components, dataset Last-FM ap-
plies SGL (Wu et al., 2021) in UI component. From the results, we summarize the following
observations:

Figure 6: Components of
the KGSF.

(1) KGSF consistently yields the best performance on the dataset, except
for ndcg metric on the Last-FM dataset. In particular, it achieves signif-
icant improvement even over the strongest baselines w.r.t. recall@20 by
10.41%, 6.75% and 2.31% in Yelp2018, Last-FM and Amazon-Book, re-
spectively. This demonstrates the rationality and effectiveness of KGSF.
We attribute these improvements to fusion mechanism and the decou-
pling of graphs. (2) Jointly analyzing the performance of KGSF across
the three datasets, we find that the improvement on Yelp2018 dataset
is more significant than that on other dataset. One possible reason is
that collaborative signal is more significant to the dataset than the con-
tent siganl. This confirms that KSGF has strong adaptability to differ-
ent types of signals. (3) From the perspective of a single component of

KGSF, UI component work best, and its performance on Yelp2018 dataset is much higher than the
existing SOTA methods that introduce KG. Its performance on Amazon-Book dataset higher than
the SOTA methods except KGIN. Therefore, the proportion of item-based collaborative filtering sig-
nals in these three dataset is higher than that of the other two signals. If the KG can not be modeled
correctly, the introduction of it may weaken the collaborative signal and introduce noise, such as
learning on a unified graph structure in KGAT and KGIN, and using a gating mechanism in HAKG
to fuse the decoupled embedding, etc.. (4) From the fusion of any two components of KGSF, there
is no performance degradation and the performance is better than that of a single component. The
fusion performance of UI component and UA component is better in most cases. This proves that
the introduction of UA graph is effective and it can extract information that can not be extracted by
UI graph. The effectiveness of the fusion mechanism is also illustrated.

4.3 STUDY OF KGSF(RQ2)

In these section, we present part of our results to explore KGSF. We refer readers to Appendix F for
more experiments.

Table 5: Intersection@20 between different components.

Yelp2018 Last-FM Amazon-Book
UA IA UI UA IA UI UA IA UI

UA 1.0000 0.2008 0.3178 1.0000 0.2750 0.5314 1.0000 0.2694 0.5052
IA 0.2320 1.0000 0.3358 0.5335 1.0000 0.5334 0.4389 1.0000 0.4833
UI 0.1198 0.1104 1.0000 0.4941 0.2570 1.0000 0.2366 0.1417 1.0000

Independence
of three sig-
nal extractors.
We judge the
independence
between each
signal extractor,
that is, whether
the information
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extracted by each signal extractor is different. We adopt Intersection@20 to measure independence.
Specifically, we calculate the Intersection@20 between the different signal extractors that have been
trained. The results are shown in Table 5 (the value of each row is based on the extractor, e.g., 0.2008
in the Yelp2018 indicating that UA component is used as the base, that is |UA∩IA∩T |

|UA∩T | = 0.2008).
We observe: (1) Overall, the value of Intersection@20 between any two component is less than
0.54, indicating that at least 46% of the information extracted between any tow signal extractors is
different. It proves that one of the three signal extractors are independent. (2) Comparing the
three datasets, it can be found that the three extractors have the highest independence on Yelp2018
and the lowest independence on the Last-FM. Comparing the performance of each extractors
in Table 4, we find that the performance of UA component and IA component is the worst on
Yelp2018, and the performance is the best on Last-FM. Therefore, the independence between
individual signal extractors is negatively correlated with the performance between individual
signal extractors. (3) In the same dataset, comparing each row, we can find that the independence
among the three signal extractors is “IA&UA”, “UI&IA” and “UI&UA” in order from strong to
weak. At the same time, combined with the results in Table 4, it can be found that the effect of
fusion is also in this order from low to high in most cases. This shows that the stronger the
independence, the less the effect will be improved after fusion.

Table 6: Intersection@20 between KGSF and three compo-
nents.

Yelp2018 Last-FM Amazon-Book
KGSF KGSF* KGSF KGSF* KGSF KGSF*

UI 0.9076 0.8884 0.7874 0.6827 0.8547 0.8147
UA 0.4155 0.1544 0.7773 0.6293 0.6949 0.3606
IA 0.3920 0.1264 0.6777 0.2866 0.6443 0.1757

Effectiveness of Signal Fusion
Mechanism. We will explore the
preservation effect of the signal fu-
sion mechanism and whether new
information is generated. The exper-
imental step is to select a benchmark
method and then analyze the com-
ponent proportions of the bench-
mark method to the three indepen-
dent signal extractors. The bench-
mark method selected here is KGSF. The experimental results here are shown in Table 6 and Fig-
ure 6(c). From the results, we summarize the following observation: (1) From the perspective
of retention ability, the retention ability of UI component in all datasets is the strongest (about
79% ∼ 91%), followed by UA component (about 42% ∼ 78%), and the IA component is the worst
(about 39% ∼ 68%). One possible reason is the setting of τi in the signal fusion mechanism. Within
a certain range, the higher the value, the better the retention effect for this component. (2) According
to Figure 6, we find that about 6% ∼ 9% of the new information is generated in the three datasets.
It shows that the signal fusion mechanism will generate new information.

5 RELATED WORK

Existing recommendation methods that introduce knowledge graph can be mainly classified into four
categories, namely, embedding-based methods, path-based methods, propagation-based methods
and multiview-based methods. We give a brief introduction in the Appendix G.

6 CONCLUSION AND FUTURE WORK

In this paper, we first propose the Intersection metric to measure the relationship between differ-
ent models. Experiments verify that the relationship between different collaborative filtering (CF)
methods using GNN is shown in Figure 1(b). In addition, the relationship between models using the
same CF method but stacking different layers is also the same. We then design a model-agnostic
cross-layer fusion mechanism that does not introduce any training parameters, and conduct extensive
experiments on three real datasets to demonstrate its effectiveness. Then we analyze the current chal-
lenges of introducing KG recommendation methods, and design an extensible KGSF framework to
improve the recommendation performance through independent signal extractors and fusion mech-
anisms, and demonstrate the performance of KGSF on three datasets effectiveness. Experiments
show that direct fusion between different signals will interfere with each other, and the current dif-
ficulty is how to effectively fuse different features. In the future, we will explore whether the above
problems exist in other tasks using GNN, object detection in computer vision, etc., and how to design
an efficient, end-to-end feature fusion mechanism.
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A PARTIAL FIGURES AND TABLES

Table 7: Statistics of the datasets.

Yelp2018 Last-FM Amazon-Book
#Users 45,919 23,566 70,679
#Items 45,538 48,123 24,915
#Interactions 1,185,068 3,034,796 847,733
#Entities 90,961 58,266 88,572
#Relations 42 9 39
#Triplets 1,853,704 464,567 255,746

Table 8: Intersection@20 between fusion, SGL and SimGCL.

Yelp2018 Last-FM Amazon-Book
Fusion Fusion* Fusion Fusion* Fusion Fusion*

SGL
L-1 0.8871 0.8138 0.8714 0.7341 0.9032 0.7051
L-2 0.9026 0.8800 0.8633 0.7177 0.9009 0.8097
L-3 0.8396 0.8442 0.7779 0.6992 0.8414 0.7789

SimGCL
L-1 0.8746 0.8192 0.8461 0.7578 0.9106 0.8282
L-2 0.9065 0.8897 0.9004 0.8107 0.9343 0.8660
L-3 0.8910 0.8779 0.8940 0.7487 0.9151 0.8797

B PROBLEM FORMULATION

We first introduce the data structures related to our studied problem, and then formulate our task.

Table 9: Different relations of Intersection

Intersection@N(M1) Intersection@N(M2) Relation(M1,M2)
< 1 = 1 Figure1(a)
< 1 < 1 Figure1(b)
= 1 = 1 Similar

User-Item Bipartite Graph (UI). In this paper, we focus on learning user’s preference from im-
plicit feedback including click and purchase. We define user set as U = {u} and item set
as I = {i}. The user-item bipartite graph is defined as GUI = {(u, i)|u ∈ U , i ∈ I}. If
user u has interacted with item i, the pair (u, i) will be in GUI .

Knowledge Graph(KG)/Item-Attribute Graph(IA). KG stores many real facts, which can ex-
press the relationship between entities. They are usually stored in the form of triples.
We define T as a set of triplets, E as a set of entities, and R as a set of relations. Let
GIA = {(h, r, t)|h, t ∈ E, r ∈ R} be a collection of triplets, where each (h, r, t) ∈ T
means that there is a relation r between head entity h and tial entity t. For exam-
ple, a triplet (Wolf Warriors, director, Jason Wu) indicates that the movie
Wolf Warriors is directed by Json Wu. Here we assume that all items appear in KG
as entities (i.e., I ∈ E), which is the common assumption of all existing knowledge-aware
recommendation systems. We can connect the items in user-item graph with entities in KG
to offer auxiliary semantics to interactions.

User-Attribute Bipartite Graph(UA). User-Attribute bipartite graph is actually a combination of
User-Item bipartite graph and Item-Attribute graph. Let A = {a|a ∈ E, a /∈ I} be a
collection of attributes, which is a supplement to items. Let GUA = {(u, a)|u ∈ U , a ∈
A, (u, i) ∈ GUI , (i, r, a) ∈ GIA}. If user u has been interacted with item i and a relation
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r of item i is attribute a, the pair (u, a) is in the User-Attribute bipartite graph G(UA).
For example, if user u has watch the movie Wolf Warriors, and the director of it is
Json Wu, so it is said the user u has interacted with Json Wu, which can be expressed
by (u,Jason Wu).

User-Item-Attribute(UIA). This is the same as the Collaborative Knowledge Graph definition
in KGAT (Wang et al., 2019c).

Inersection@N. This is a new metric we propose to measure the difference between two models.
Take a user u as an example, we consider two models, they will make two ordered lists of
items sorted by rating for the user u. We remove the ones that appeared in the training set
from these two ordered lists and then take out the top N constituent sets, which are recorded
as M1 and M2 respectively. We denote the test set as T . So let Intersection@N(Mi) =
|M1∩M2∩T |

|Mi∩T | , where | · | is the number of elements in the set. The meaning of it is shown in
Table 9.

Task Description. Given a user-item graph GUI , user-attribute graph GUA and item-attribute graph
GIA, our task is to predict how likely that a user would adopt an item that she or he has
never engaged with.

C THE RELATIONSHIP BETWEEN SIMGCL AND SGL IN THE SAME LAYER

Table 10: Performance comparison of SGL, SimGCL and their Fusion

Yelp2018 Last-FM Amazon-Book
SGL* SimGCL* SGL* SimGCL* SGL* SimGCL*

SGL-1 SimGCL-1 0.6786 0.6231 0.5214 0.5742 0.6767 0.5834
SGL-2 SimGCL-2 0.7243 0.6762 0.4965 0.5308 0.7045 0.6768
SGL-3 SimGCL-3 0.7219 0.6925 0.5080 0.6320 0.7376 0.7045

First, we introduce SGL (Wu et al., 2021) and SimGCL (Yu et al., 2022) briefly. SGL proposes three
graph argumentation including ND(Node-Drop), ED(Edge-Drop) and RW(Random-Walk) and then
applies the InfoNCE (Gutmann & Hyvärinen, 2010) loss function to maximize the similarity of
the same node and minimize the similarity of different nodes. SimGCL believes that the graph
argumentation of SGL is not necessary. It adopts a simpler method, which is adding noise to nodes
to obtain different representations of the same node. Finally InfoNCE is also applied.

Then, we conducted two different experiments under the same conditions (such as dataset, batch
size, etc.). It should be noted that graph argumentation method adopted by SGL in the experiment is
ED because of its best performance. The first experiment is using recall@20 and ndcg@20 metrics
to test the performance of SGL and SimGCL and the results are shown in Table 2. The second
experiment is using Intersection@20 metric to measure the similarity of the two methods in the
same layer. The results are shown in Table 10 (Take 0.6786 in the dataset yelp2018 as an example,
it is represented in the first layer and based on SGL, the similarity between them is 0.6786, that is
|SGL∩SimGCL∩T |

|SGL∩T | = 0.6786).

From the result, we find that SimGCL performs better on Yelp2018 and Amazon-Book datasets.
SGL is better on the Last-FM dataset. In addition, we observe that in Yelp2018 and Amazon-Book
datasets, the similarity between the two methods is around 70% in any layer, while the similarity
in Last-FM dataset is around 50%. This means that they learned a part of the information that
the other did not. From the observation, we can draw the following conclusions: (1) SimGCL
is not an improvement over SGL and the relationship between them is intertwined as shown in
Figure 1 (a), rather than inclusive or juxtaposed. (2) Both graph argumentation and node perturbation
are necessary. This contradicts the conclusions of the SimGCL (Yu et al., 2022).
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D CONTENT SIGNAL EXTRACTOR

Knowledge Graph Embedding Layer. In the UI Graph, the movies Wolf Warrior,
Wolf Warrior 2 and Mermaid are independent of each other as three ID embeddings. The
introduction of knowledge graph tells us that Wolf Warrior and Wolf Warrior 2 are more
similar than Wolf Warrior and Mermaid, because the former has the same director, genres and
actors, while the latter does not. A large number of methods such as TransR (Lin et al., 2015),
RotatE (Sun et al., 2018a), etc. have excellent performance in capturing this similarity.

Here we apply the RotatE, which projects entities and relations to the complex plane (i.e., h, t ∈
CdGIA , dGIA

is embedding dimension). Specifically, given a triple (h, r, t) ∈ GIA, the scoring
function d(h, r, t) will be as high as possible. If the triple (h′, r, t′) /∈ GIA, the scoring function
d(h′, r, t′) will be as low as possible. The scoring function is defined as d(h, r, t) = −∥h ◦ r − t∥,
where ◦ is multiplication in the complex field, ∥ · ∥ is L1 norm. RotatE’s training method is to
consider that the score of valid triplets is higher than broken triplets. Its loss function is defined as
follows:

LRotatE = log σ(γ + d(h, r, t))−
n∑

i=1

p (h′
i, r, t

′
i) log σ (−d (h′

i, r, t
′
i)− γ) (4)

p
(
h′
i, r, t

′
j | {(hi, ri, ti)}

)
=

expαd
(
h′
j , r, t

′
j

)∑
i expαd (h

′
i, r, t

′
i)
, (5)

where γ, α is hyper-parameter, σ(·) is sigmoid function, (h, r, t) ∈ GIA, (h, r, t) /∈ GIA. The
purpose of introducing p here is to distinguish easy negative samples from difficult negative samples,
thereby improving performance.

After training, we will get the embedding representation of the entity e′i, where e′i ∈ E . Since A ⊂ E ,
we take out the entity that satisfies e′i ∈ A in the entity set, denoted as e. Beacuse e ∈ CdGIA , e
contains two parts, real part and imaginary part, which we denote as Re(e) and Im(e) respectively.
For the convenience of representation, we denote the embedding of entity e as eGIA

a = Re(e) ⊕
Im(e), where ⊕ is vector concatenation and eGIA

a ∈ RdGIA
×2.

User Interest Mining Layer. If user u likes the item i, it must have intention. KGIN (Wang et al.,
2021) defines intent as a set of relations, which is coarse-grained. To explore more fine-grained
intent, we not only want to know which relationships users are more interested in, but also which
attributes users are more interested in. The attention mechanism is the key to realizing this idea. Our
idea about attention mechanism is based on Transformer. We take the user as the query vector and
the attribute as the key vector to obtain the user’s weight for each attribute, and finally aggregate the
attributes to obtain the embedding of items. The network architecture of user interest mining layer
is shown in Figure 4(f).

The inputs to this layer are eGIA
a and eGIA

other, where eGIA
a , eGIA

other ∈ RdGIA
×2. The reason for in-

troducing eGIA

other is that not all information can be provided in IA Graph (e.g., the IA Graph only
provides the director and actor information of a certain movie, but the user likes the movie because
of the genre of the movie, so introducing the other attribute can solve this situation).

Considering the same attribute has different relationships with the same item (e.g., the di-
rector and actor of Wolf Warrior are both Jason Wu). In order to model it, we de-
fine R′ = {id(r) | (h, r, t) ∈ GIA, h ∈ J , t ∈ A} ∪ {id(−r) | (h, r, t) ∈ GIA, h ∈ A, t ∈ GIA},
where id(r) represents generating a unique, 0-based number for relation r. We also define r(a, i) ∈
R′, which represents the relation id between item i and attribute a, where a ∈ A ∪ {other},
i ∈ J . Especially, r(other, i) = |R′|. It should be noted that if there is no special description,
symbol eGIA

a includes eGIA

other

After introducing the introduced symbols, we begin to introduce the user interest mining layer in de-
tail. According to Transformer (Vaswani et al., 2017),TransR (Lin et al., 2015),RGCN (Schlichtkrull
et al., 2018), we first give the definition of the value vector and key vector of the attribute:

Keya = W
r(a,i)
key eGIA

a , V aluea = W
r(a,i)
value e

GIA
a , (6)

where a ∈ A ∪ {other}, i ∈ J ,W
r(a,i)
key ∈ Rk×(dGIA

×2), W
r(a,i)
value ∈ Rv×(dGIA

×2),Keya ∈
Rk, V aluea ∈ Rv, k and v are the dimension of key vector and value vector of the attribute respec-
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tively. Then we define query vector and value vector of user as:

Queryu = Wquerye
GIA
u , V alueu = Wvaluee

GIA
u , (7)

where u ∈ U , eGIA
u ∈ Rdu ,Wquery ∈ Rk×du ,Wvalue ∈ Rv×du , Queryu ∈ Rk, V alueu ∈

Rv, eGIA
u is trainable parameters.

Here we define Nu,i = {a | (u, i) ∈ GUI , (i, r, a) ∈ GIA, u ∈ U , i ∈ I, a ∈ A, r ∈ R} to repre-
sent the set of attributes of item i that user u have interacted with. Then user u’s attention to each
attribute of item i is defined as

Attentionu,i = Softmax
({

Queryu
⊤Keya | a ∈ Nu,i

})
(8)

We multiply the attention by the value vector of the corresponding attribute to model the user’s
attention to the attribute. Different from the previous two extractors, the embedding of the item hear
is related to the user, that is, the embedding of the same is different in different users (e.g., given the
item i, user u1 and u2 have different degrees of attention to the attributes of the item i, that is, the
attention is different, the embedding of the item i will also be different). We define the embedding
of item i as:

eGIA
i,u =

∑
a∈Nu,i

ff (Attentionu,i(a) · V aluea) , ff(e) = W 1
ff

(
LeakyReLU

(
W 2

ffe
))

, (9)

where W 2
ff ∈ Rp×v,W 1

ff ∈ Rv×p, p is the dimension of hidden layer, LeakyReLU(·) is activation
function. Finally, we define the embedding of user u as eGIA

u = V alueu. Since we added the
other attribute, we hope that its attention and other attribute attention are mutually exclusive (i.e.,
if other’s attention are high, the other attribute is low rather than as high as other). To constrain
this relationship, we introduce the following loss terms (i.e., guiding attention mechanism):

Lattention = exp

(
− (Attentionu,i(other)− µ)

2

2σ2

)
, (10)

where µ and σ are hyper-parameters. This formula is the probability density function of normal
distribution. When other’s attention value is in the middle, its punishment will be greater. When
other’s attention value tends to both ends, the punishment will be small.

E OPTIMIZATION

This section shows the loss function of the three signal extractors. The first two of which consist of
BPR and regular terms, and the last one has one more attention constraint than the first two.

LUI =
∑

(u,i)∈GUI

(u,j)/∈GUI

− lnσ
(
ŷGUI
u,i − ŷGUI

u,j

)
+ λGUI

∥∥ΘGUI
∥∥2
2

LUA =
∑

(u,i)∈GUI

(u,j)/∈GUI

− lnσ
(
ŷGUA
u,i − ŷGUA

u,j

)
+ λGUA

∥∥ΘGUA
∥∥2
2

LIA =
∑

(u,i)∈GUI

(u,j)/∈GUI

− lnσ
(
ŷGIA
u,i − ŷGIA

u,j

)
+ λGIA

attention Lattention + λGIA
∥∥ΘGIA

∥∥2
2

(11)

where ΘGUI =
{
e
(0)
GUI :i

, e
(0)
GUI :u

| i ∈ I, u ∈ U
}
,ΘGUA =

{
e
(0)
GUA:a, e

(0)
GUA:u | a ∈ A, u ∈ U

}
and ΘGIA = {eGIA

other, e
GIA
a , eGIA

u ,W
r(a,i)
key ,W

r(a,i)
value , Queryu, V alueu,W

1
ff ,W

2
ff | a ∈ A, u ∈

U , r(a, i) ∈ R′} are the set of model parameters. λGUI , λGUA , λGIA and λGIA
attention are hyper-

parameters to control the L2 regularization term and attention loss, respectively.
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F ADDITIONAL EXPERIMENTAL SETUPS AND RESULTS

F.1 BASELINES

MF (Rendle et al., 2012) is a typical matrix factorization method and doesn’t use KG information.
It uses ID embeddings of users and items to make the prediction in implementation.

CKE (Zhang et al., 2016) is a representative embedding method. It utilizes the TransR (Lin et al.,
2015) to encode entities in the KG, which are then used as input to MF framework.

KGNN-LS (Wang et al., 2019a) is a propagation-based model, which converts KG into user-
specific graphs, and then considers user preference on KG relations and label smoothness
in the information aggregation phase, so as to generate the different representation of the
same item under different users.

KGAT (Wang et al., 2019c) is a propagation-based recommend model. It applies a unified relation-
aware attentive aggregation mechanism in UIA to generate user and item representations.

CKAN (Wang et al., 2020c) is based on KGNN-LS, which utilizes different aggregation schemes
on the user-item graph and KG respectively, to mine knowledge association and collabora-
tive signals.

KGIN (Wang et al., 2021) is a state-of-the-art propagation-based method, which models user inter-
action behaviors with latent intents, and proposes a relation-aware information aggregation
scheme to capture long-range connectivity in KG.

HAKG (Du et al., 2022) is also a state-of-the-art multiview-based method which embed users,
relations and items in hyperbolic space and use a hyperbolic aggregation scheme. It learns
from UI and IA graph to generate collaborative signals and knowledge associations, and
applies gating mechanism to fuse them.

KGCL (Yuhao et al., 2022) is a general contrastive learning framework using knowledge graph
augmentation schema. Besides, it leverages additional supervision signals to guide a cross-
view contrastive learning paradigm.

F.2 PARAMETER SETTINGS

For a fair comparison, we fix the size of ID embeddings as 64 (except that the embedding of the
UA component on the Amazon-Book dataset is 128), the optimizer as Adam (Kingma & Ba, 2014),
and the batch size as 4096 for all methods. The Xavier (Glorot & Bengio, 2010) initializer is used
to initialize the model parameters. We consider learning rate lr ∈ {10−4, 10−3, 10−2}, τ0, τ1, τ2 ∈
{0.1, 0.2, ..., 1.0}, λGUI , λGUA , λGIA ∈ {10−3, 10−4, 10−5}, µ = 0.5, σ = 0.15, λGIA

attention = 10−5,
p = 128.

The parameters for all baseline methods are carefully tuned to achieve optimal performance. Specifi-
cally, for KGAT (Wang et al., 2019c), we set the depth to three with the hidden size {64, 32, 16}, and
use the pre-trained ID embeddings of MF (Rendle et al., 2012) as initialization; for CKAN (Wang
et al., 2020c), KGNN-LS (Wang et al., 2019a), we set the size of neighborhood to 16; for
KGIN (Wang et al., 2021), we fix the number of intents to 4; Moreover, early stopping strategy
is performed for all methods, i.e., premature stopping if recall@20 on the test set does not increase
for 10 successive epochs.

F.3 ADDITIONAL STUDY OF KGSF(RQ2)

Since graph decoupling, independent training and signal fusion mechanism are the core of KGSF, we
conduct extensive experiments to explore their effectiveness. Specifically, we first analyze individual
components, including the attention guiding mechanism of the IA component and the cross-layer
fusion mechanism of the UA component. We then delve into the independence and completeness of
each signal extractor.

Impact of Attention Guiding Mechanism in IA Graph. Here we verify the effectiveness of the
attention guiding mechanism, thus we design two variants of the IA component. A variant discards
the attention guiding mechanism, denoted as “IA w/o G”, where λGIA

attention = 0. Another variant
retains the attention guiding mechanism, denoted as “IA”, where λGIA

attention = 1. The experimental
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Table 11: Impact of Attention Guiding Mechanism.

Yelp2018 Last-FM Amazon-Book
Recall NDCG Recall NDCG Recall NDCG

IA w/o G 2.69% 1.66% 5.81% 4.53% 4.70% 2.23%
IA 2.82% 1.72% 6.01% 4.69% 4.74% 2.27%

results are shown in Table 8. Degraded performance can be observed in all datasets, indicating the
necessity of the attention guiding mechanism. Specifically, if the attention guiding mechanism is
not introduced, the model will preferentially optimize the Other embedding, resulting in the Other’s
attention close to other attribute’s attention, which is not helpful for the interpretability of the model.
Introducing the attention guiding mechanism can make the model pay more attention to the infor-
mation of other attribute.

Table 12: Impact of the number layers L and Fusion.

Yelp2018 Last-FM Amazon-Book
Recall NDCG Recall NDCG Recall NDCG

UA-1 2.88% 1.77% 8.19% 6.42% 6.97% 3.65%
UA-2 2.98% 1.82% 8.47% 6.75% 6.98% 3.79%
UA-3 2.64% 1.60% 7.86% 6.21% 5.83% 3.00%
Fusion 3.08% 1.88% 9.13% 7.30% 7.46% 4.00%

Impact of model depth and Cross-Layer Fusion Mechanism in UI component. Here, we search
for L in range {1, 2, 3} and then use cross-layer fusion mechanism to fuse them. We use “UA-i”
to represent UA component of the stacked i layer and use “Fusion” to represent the model with the
cross-layer fusion mechanism. The experimental results are shown in Table 12. Our observations
are as follows:

• In the three datasets, the performance of “UA-2” is greater than that of “UA-1” and the
performance of “UA-1” is greater than that of “UA-3”. One possible reason for this is that
the UA component can simplify high-order connectivity proposed by KGAT. In KGAT, it is
necessary to stack 3 to 4 layers to achieve better results, while UA component can achieve
better results after stacking 2 layers.

• According to the conclusion in Section 2.1, the information extracted by UA component at
different layers is different. We applied the cross-layer fusion mechanism and found that
the performance was better than that of a single model. The improvement was obvious
on the Last-FM and Amazon-Book datasets. This further verifies the existence of partial
information independence in different layers and the effectiveness of the cross-layer fusion
mechanism.

Table 13: Intersection@20 between KGIN and three components.

Yelp2018 Last-FM Amazon-Book
KGIN KGIN* KGIN KGIN* KGIN KGIN*

UI 0.4002 0.5588 0.5725 0.5900 0.5501 0.6144
UA 0.3852 0.2039 0.5212 0.4953 0.5318 0.2725
IA 0.3680 0.1699 0.5558 0.2734 0.5042 0.1617

Completeness of Three Signal Extractors. We judge the completeness of each signal extractor,
that is, whether these three signal extractors can extract all information after the introduction of KG.
Our experimental setup is to select a benchmark method and then analyze the component proportions
of the benchmark method to the three independent signal extractors.

The benchmark method selected here is the SOTA method KGIN (Wang et al., 2021). The experi-
mental results are shown in Figure 6(b) and Table 13. The Inverse in the Table 11 means KGIN[9]
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Figure 7: Components of the KGIN.

is the base, and the KGIN means the column element is the base. Taking 0.5588 as example, 0.5588
in Yelp2018 dataset means |UI∩KGIN∩T |

|KGIN∩T | = 0.5588. We can observe as follows:

• According to Figure 7, we find that about 30% of the information is not extracted by the
three signal extractors. The UI component and UA component apply the cross-layer fusion
mechanism. According to the conclusion in Section 2.2, the cross-layer fusion mechanism
will lose some information. Therefore, we don’t use the cross-layer fusion mechanism, so
the original signal base extractors are changed from three (“UI”, “UA”, “IA”) to seven (“UI-
1”, “UI-2”, “UI-3”, “UA-1”, “UA-2”, “UA-3”, “IA”). The experimental results show that
about 25% of the information does not exist in the three signal extractors. This shows that
the information in the three signal extractors cannot extract all information, only convers
75% of the information. Therefore the three signal extractors are not completeness. A
possible reason is that the relationship is not preserved in the three signal extractors.

• According to Table 13, we can find that the components of KGIN (Wang et al., 2021) are
UI, UA and IA in descending order, among which UI components accounts for about 60%
of the three datasets. From the perspective of UI component, its retention rate is somewhere
between 40% to 50%. This shows that the end-to-end method of KGIN cannot completely
retain the collaborative filtering signal of user-item. The reason why the performance of
KGIN] is better than collaborative filtering is that the discarded information is smaller than
the new information learned.

F.4 EXPLAINABILITY OF KGSF (RQ3)

Benefiting from the separate modeling and fusion mechanism of KGSF, we can get more fine-
grained explanations than KGIN. We randomly selected user u335 and a related item i4079 (from
the test, unseen in the training phase), which is a book called Never Go Back. The interpretability
obtained after visualizing it is shown in Figure 8. We have the following findings:

• From Figure 8(a), we can find that the user u335 likes this book not because of the item-
based collaborative signal, but because of the attribute-based collaborative signal or content
signal.

• Figure 8(b) and Figure 8(c) are the user’s overall preference and preference for a certain
attribute of the item i4079 generated by the UA component, respectively. Figure 8(b) shows
that after the dot product between the user and all attributes, we select the 10 attributes with
largest values as the most favorite 10 attributes of users. We can find that all 10 attributes
are writers, and the writing styles of writers tends to styles like thriller, crime, mystery,
etc., which we can think of as user preferences. Figure 8(c) shows the first three attributes
obtained by normalizing the attributes of the item i4079 and the user through dot product.
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34%

24%

13%

11%

5%

Rank ID Relation Entity Style

1 49037 Author Vince Flynn  Political thriller

2 112521 Author Michael Prescott Crime writer

3 94613 Author Faye Kellerman Mystery Novel

4 49101 Author Lisa Gardner Thriller

5 47396 Author Nelson DeMille Action adventure and suspense novels

6 92866 Author Harlan Coben Mystery novels and thrillers

7 34848 Author Steve Berry Adventure novel

8 91526 Author Brian Haig Thriller

9 101951 Author Karin Slaughter Crime writer

10 77532 Author Tess Gerritsen Mystery novel

Lee Child 40%

Jack Reacher 27%

Novel 10%

Method UI-1 UI-2 UI-3 UA-1 UA-2 UA-3 IA

Rank >5000 >5000 >5000 9 >5000 119 32

type

book.book.characters

book.written_work.author

freebase.valuenotation.is_reviewed

book.book.genre

(a) overall (b) Top 10 attributes that users like most (UA perspective) (c) The three attributes that users care about the most(UA 

perspective)

(d) Top 5 relations that users care about the most(IA perspective) (e) Top 8 attributes that users care about the most(IA perspective)

Figure 8: Explanations of user intents and real cases in Amazon-Book.

It can be found that 40% of the reasons why user u335 likes item i4079 are the author Lee
Child, 27% of the reasons are the protagonist “Jack Reacher” in the book, and 10% of the
reasons are because the book is a novel.

• Figure 8(d) and Figure 8(e) are the user’s attention to the relationship of this book and the
attribute attention of this book generated by IA component, respectively. It can be seen that
the reason why user u335 likes the book is because of the type of the book, the character
in the book and the author of the book, which is similar to the conclusion in Figure 8(c).
The two separately trained models get the same result, it shows that this interpretability is
credible. Figure 8(e) gives detailed attention. For example, user prefers that the character
in the book is “Jack Reacher” in the book (attention for path Nerver Go Back characters−→
Jack Reacher is 0.24), instead of “Jack Reacher” appears in the book (attention for path
Jack Reacher

appears−→ Nerver Go Back is only 0.01). This is very intuitive.

G RELATED WORK

Embedding-based methods (Zhang et al., 2016; Cao et al., 2019a; Ai et al., 2018; Cao et al.,
2019b; Huang et al., 2018; Wang et al., 2020a; 2018b) first use knowledge graph embedding
techniques (e.g., TransR (Lin et al., 2015), RotatE (Sun et al., 2018a)) to obtain entity and
relation embeddings, and then input these embeddings into subsequent recommendation
networks. For example, CKE (Zhang et al., 2016) uses the TransR (Lin et al., 2015) to learn
the structural information of entities from the knowledge graph, and then inputs the learned
embeddings into matrix factorization (MF (Rendle et al., 2012)). KTUP (Cao et al., 2019a)
applies TransH (Wang et al., 2016) on both the user-item bipartite graph and the knowledge
graph to jointly learn user preferences and complete recommendations. Although these
methods can capture the similarity between entities brought by the KG, they ignore the
information brought by higher-order connectivity.

Path-based methods (Catherine & Cohen, 2016; Hu et al., 2018; Jin et al., 2020; Ma et al., 2019;
Wang et al., 2019e; Sun et al., 2018b) find higher-order connectivity for recommendation
by finding semantic paths in the KG and then connecting items and users. These paths can
be input to RNN network (Wang et al., 2019e; Sun et al., 2018b) or employ an attention
mechanism (Hu et al., 2018) to extract user preferences. For example, KPRN (Wang et al.,
2019e) infer the potential high-order connectivity of a user-item interaction by mining the
sequential dependence within a knowledge-aware path. But defining the correct meta-path
requires domain knowledge, which is labor-intensive and time-consuming for KG with
multiple relationships and various types of entities. At the same time, recommendation
systems applied in different fields cannot be transferred to each other, and the generalization
ability is poor.
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Propagation-based (Wang et al., 2021; 2019c; Tu et al., 2021; Wang et al., 2018a; 2019a;b; 2020c)
methods rely on the information aggregation ability of GNN and the stacking ability of lay-
ers to capture high-order connection in an end-to-end manner automatically. For example,
KGAT (Wang et al., 2019c) introduces an attention mechanism on unified UKG graph for
learning. Based on KGAT (Wang et al., 2019c), KGIN (Wang et al., 2021) transfers rela-
tional information and introduces intent nodes between users and items to achieve better
interpretability and performance. Although this unified graph structure captures collabora-
tive filtering signals, high-order connectivity and knowledge information. It is experimen-
tally proved that only part of this information can be captured. The reason why it is not
fully captured is that these information are mixed together when propagating on the graph,
which introduces an incalculable noises.

Multiview-based methods (Zou et al., 2022; Yuhao et al., 2022; Du et al., 2022) choose to
construct multiple views to learn information from different perspectives, and then learn
embeddings about items and users by designing a fusion mechanism. For example,
HAKG (Du et al., 2022) learns from user-item graph and knowledge graph to generate
collaborative signals and knowledge associations, and applies gating mechanism to fuse
them. Although this method achieves better performance than propagation-based methods,
it still cannot lean the full information of these views because different information is still
represented by one embedding.
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