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ABSTRACT

Pathogen identification from genomic sequences is essential for infectious dis-
ease surveillance, antimicrobial resistance monitoring, and vaccine development.
While Large Language Models (LLMs) have demonstrated remarkable success
in genomic sequence modeling, existing approaches prioritize classification ac-
curacy over computational efficiency, resulting in high memory overhead, pro-
longed training times, and scalability limitations. To address this, we introduce
LoFTPat, a structurally constrained fine-tuning framework that integrates Low-
Rank Adaptation within the self-attention mechanisms of PathoLM, enabling low-
dimensional subspace optimization for task-specific weight modulation. By de-
coupling adaptation from full model retraining, LoFTPat significantly reduces pa-
rameter complexity while preserving model generalization, making it a scalable
and efficient alternative to full fine-tuning.
Our method achieves a 4.02% reduction in total training time, a 64.3% decrease in
peak GPU memory consumption, and a 99.24% reduction in trainable parameters,
while surpassing full fine-tuning approaches in classification performance. Specif-
ically, LoFTPat outperforms PathoLM with +0.44% higher accuracy, +0.44%
F1-score, +0.02% AUC-ROC, and +0.52% balanced accuracy. Unlike previous
models, LoFTPat efficiently adapts to both short-read and long-read sequences,
demonstrating robust generalization across bacterial and viral pathogens. By op-
timizing hierarchical feature transformations with minimal parameter overhead,
LoFTPat presents a scalable and computationally efficient framework for large-
scale pathogen classification and genomic analysis.

1 INTRODUCTION

Recent advancements in Large Language Models (LLMs) have significantly impacted various do-
mains of biology and healthcare, enabling breakthroughs in omics data analysis, protein and genome
sequence modeling Li et al. (2021); Luu & Buehler (2024); Bi et al. (2024); Liu et al. (2024); Huang
et al. (2024); Lam et al. (2024); Chau et al. (2024); Mangul et al. (2024), biomedical signal pro-
cessing Soumma et al. (2025b); Liu et al. (2023); Fan et al. (2025); Soumma et al. (2025a), and
drug discovery. By leveraging vast amounts of pretrained knowledge, LLMs can generalize across
multiple biological tasks, including protein structure prediction Jumper et al. (2021), genome an-
notation, and biomedical text mining. In genomics, LLMs have shown promise in analyzing long
and short-read sequences, accelerating research in disease prediction Shoham & Rappoport (2024);
Farahmand et al. (2024); Rafsani et al. (2025), functional genomics, and evolutionary biology Mor-
ris et al. (2024). Despite these advancements, applying LLMs to pathogen identification remains an
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evolving field, with challenges in scalability, efficiency, and generalization across diverse microbial
species.

Pathogens, including bacteria and viruses, pose significant threats to public health, agriculture, and
global ecosystems. Rapid identification of pathogenic strains is critical for disease surveillance,
vaccine development, and antibiotic resistance mitigation. The recent COVID-19 pandemic un-
derscored the necessity of early pathogen detection to control outbreaks and guide public health
interventions Organization (2023). Traditional genomic analysis pipelines, while effective, often
rely on alignment-based or heuristic methods, which can be computationally expensive and slow.
Traditional genomic analysis pipelines, while effective, often rely on alignment-based or heuris-
tic methods, which can be computationally expensive and slow. Other machine and deep learning
methods like PaPrBaG Deneke et al. (2017), BacPaCS Barash et al. (2019), DeePac Bartoszewicz
et al. (2020) and DciPatho Jiang et al. (2023) are effective but rely on manual feature extraction and
incur higher computational costs, leading to slower inference. Thus, LLM-driven approaches offer
a scalable solution to accurately classify and characterize pathogens from raw genomic sequences.

Several studies have explored LLMs for pathogen identification, with models such as Nucleotide
Transformer v2 Dalla-Torre et al. (2024) and GenaLM Fishman et al. (2025) demonstrating promis-
ing results in genomic sequence classification. PathoLM Dip et al. (2024) extended this line of re-
search, leveraging transformer-based architectures to classify bacterial and viral genomes. However,
existing approaches primarily focus on classification accuracy, often neglecting computational effi-
ciency—a crucial factor in real-world pathogen surveillance. Many models are resource-intensive,
requiring high GPU memory and extensive training time, limiting their scalability for large-scale
genomic studies.

In this work, we propose LoFTPat, a mathematically constrained, parameter-efficient fine-tuning
framework designed for scalable and high-performance pathogen identification. Unlike traditional
full fine-tuning approaches, which require updating all model parameters, LoFTPat leverages Low-
Rank Adaptation (LoRA) Hu et al. (2021) within the self-attention layers of PathoLM, introducing a
low-dimensional optimization space that significantly reduces parameter redundancy while retaining
task-specific adaptation. By restructuring the weight update process into a low-rank factorized form,
LoFTPat reduces trainable parameters by 99.24%, achieving near-equivalent expressivity to full fine-
tuning while drastically improving computational efficiency.

Beyond parameter reduction, LoFTPat optimizes GPU utilization, accelerating convergence by re-
ducing memory overhead by 64.3% and training time by 4.02%, making it highly practical for
real-world pathogen classification pipelines. Unlike previous approaches that primarily focused on
classification accuracy, our model is designed to handle both short and long-read genomic sequences,
ensuring adaptability across bacterial and viral species with diverse sequence lengths. By systemati-
cally evaluating LoFTPat across multiple sequence resolutions and pathogenic families, we establish
its generalization power, computational efficiency, and scalability, making it a transformative step
toward real-time, resource-efficient genomic surveillance and pathogen detection.

2 METHODS

2.1 DATASET

We utilized the PathoLM dataset, obtained from its authors, which consists of genomic sequences
from approximately 30 species, including both bacterial and viral pathogens. The dataset Gillespie
et al. (2011) includes the seven ESKAPEE bacterial pathogens Ruekit et al. (2022): Escherichia
coli, Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter bauman-
nii, Pseudomonas aeruginosa, and Enterobacter spp., along with viral genomes such as Influenza,
Norovirus, and Coronaviruses (SARS, MERS, OC43, NL63, 229E, HKU1). To ensure data quality
and eliminate redundancy, we applied MMseqs2 Steinegger & Söding (2017) clustering to partition
sequences based on similarity thresholds of 40%, 60%, and 80%. For our experiments, we used
the most stringent 40% threshold, ensuring minimal sequence similarity between train and test sets
to enhance model generalization. Each genomic sequence was standardized to 2,000 base pairs,
providing consistency across samples.

To prevent overfitting and ensure fair evaluation, we partitioned the dataset into training (80%) and
testing (20%) using MMseqs2, ensuring mutually exclusive clusters between the sets. This step
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preserves biological diversity while removing homologous sequences, ensuring that the model does
not memorize similar patterns from both splits. The viral dataset was curated from NCBI, selecting
species with both pathogenic and non-pathogenic strains to ensure a balanced representation. We
further included non-pathogenic viral genomes from wastewater metagenomics to address potential
biases in health surveillance data. The resulting dataset allows LoFTPat to be evaluated on highly
diverse genomic sequences, ensuring its robustness and generalization capabilities across unseen
species.

2.2 PATHOLM ARCHITECTURE

PathoLM is based on the Nucleotide Transformer v2 (NT-v2) 50M Dalla-Torre et al. (2024), an
encoder-only transformer model designed specifically for genomic data. The model embeds 6-mer
sequences into dense vectors, utilizing Rotary Positional Embeddings (RoPE) to provide positional
context up to 12,000 nucleotides. Each transformer layer applies multi-head self-attention to analyze
sequence interdependencies, while residual connections and layer normalization ensure stability and
efficient information retention. The feed-forward network employs Gated Linear Units (GLUs) with
Swish activation, optimizing the model’s computational efficiency. During pretraining, the model
was trained on nucleotide-level masked language modeling (MLM), learning to predict missing
nucleotides and thereby improving its ability to interpret genomic sequences.

For fine-tuning, we adapted PathoLM Dip et al. (2024) using the Hugging Face Transformers library,
optimizing it for pathogen classification tasks. Sequence preprocessing involved padding shorter se-
quences and truncating longer ones beyond the 12kb RoPE context limit. The model was optimized
for both binary pathogen classification and multi-class classification of ESKAPEE species, employ-
ing a dual-label and septenary classification strategy. Training utilized the Adam optimizer with a
learning rate scheduler and a warm-up phase, preventing premature convergence while stabilizing
updates. An early stopping mechanism was applied to mitigate overfitting, ensuring robust general-
ization across diverse pathogen genomes. These fine-tuning strategies effectively leveraged NT-v2’s
strong representation learning capabilities, enabling precise and efficient genomic classification.

2.3 LOFTPAT ARCHITECTURE

LoFTPat is a parameter-efficient fine-tuning (PEFT) approach that integrates LoRA (Low-Rank
Adaptation) Hu et al. (2021) into PathoLM, enabling efficient adaptation of the model for pathogen
classification while significantly reducing the number of trainable parameters. Unlike full fine-
tuning, which updates all model weights, LoFTPat modifies only a subset of parameters by intro-
ducing low-rank decomposition into key transformer layers. This approach allows task-specific
adaptation while preserving the generalization capability of the pretrained model, ensuring robust
classification across known and novel pathogens.

2.3.1 MATHEMATICAL FORMULATION

For a given input sequence x, LoFTPat first tokenizes it into overlapping 6-mers, embedding them
into a high-dimensional space:

X = Embed(x) ∈ RL×d

where L is the sequence length and d is the embedding dimension. These token embeddings are
then processed through PathoLM’s transformer layers, which use self-attention to capture sequence
dependencies.

In standard fine-tuning, the model updates all weight matrices W requiring storage and computation
of full-rank parameter changes:

W ′ = W +∆W

where ∆W represents the fine-tuned weight updates. However, LoFTPat replaces ∆W with a low-
rank adaptation, defined as:

∆W = BA

where A ∈ Rd×r and B ∈ Rr×d are low-rank matrices with rank r ≪ d. These matrices are
trainable, but much smaller than W , ensuring efficient fine-tuning.

Thus, instead of applying full-rank updates, LoFTPat modifies only a compact subset of parameters,
leading to a new weight representation:

W ′x = Wx+BAx
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This structure preserves the pretrained knowledge stored in W while allowing task-specific adapta-
tion via ∆W .

2.3.2 LOFTPAT IN SELF-ATTENTION LAYERS

Transformers rely on query (Q), key (K), and value (V ) matrices to compute self-attention:

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V

where:
Q = WqX, K = WkX, V = WvX

With LoFTPat, we apply LoRA-based weight updates to the query and key projection matrices:

W ′
q = Wq +BqAq, W ′

k = Wk +BkAk

Substituting these into the query and key definitions:

Q′ = (Wq +BqAq)X, K ′ = (Wk +BkAk)X

The modified self-attention equation incorporating LoFTPat becomes:

Attention(Q′,K ′, V ) = softmax
(
(Wq +BqAq)X((Wk +BkAk)X)T√

dk

)
V

This formulation explicitly captures how LoFTPat modifies the standard self-attention mechanism,
introducing additional adaptation terms while maintaining efficiency. By leveraging low-rank up-
dates, LoFTPat ensures task-specific learning without modifying all model weights, making it an
effective fine-tuning strategy.

2.3.3 COMPUTATIONAL BENEFITS OF LOFTPAT

The parameter savings of LoFTPat can be derived as follows: - Standard fine-tuning requires O(d2)
parameters per layer. - LoFTPat (with LoRA) reduces this to O(r · d). - The parameter reduction
ratio is:

r(d+ d)

d2
=

2r

d

Since r ≪ d, this results in an almost O(1/d) reduction, making LoFTPat significantly more effi-
cient.

LoFTPat preserves the pretrained weights, ensuring that the foundational knowledge remains intact
and reducing the risk of catastrophic forgetting during fine-tuning. By employing low-rank adapta-
tion, it selectively updates only the most task-relevant parameters, effectively minimizing overfitting
while maintaining generalization. Additionally, the smaller parameter updates introduced by LoRA
lead to smoother optimization dynamics, enhancing training stability and convergence speed. As a
result, LoFTPat achieves state-of-the-art efficiency and predictive performance, making it an optimal
fine-tuning strategy for large-scale genomic sequence classification.

2.4 EXPERIMENTAL SETUP

We used two NVIDIA TITAN RTX GPUs (24GB VRAM each) with CUDA 12.6, enabling effi-
cient fine-tuning of PathoLM with Low Rank Adaptation. The training pipeline leveraged Hugging
Face Transformers with mixed-precision (FP16) to optimize memory usage, ensuring stable training
across LoRA ranks (4, 8, 16, 32) while minimizing computational overhead.

Fine-tuning was performed on the same dataset as PathoLM, comprising genomic sequences from
30 pathogen species. We used the Adam optimizer (learning rate 5× 10−5) with 500 warmup steps,
training for 40 epochs with a batch size of 4 per GPU and weight decay of 0.01 for regularization. An
epoch-based evaluation strategy saved the best model based on minimum validation loss, ensuring
generalization. Training logs were recorded every 100 steps, allowing efficient monitoring and
optimization of LoFTPat’s performance across pathogen classification tasks.
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2.5 EVALUATION

LoFTPat was evaluated using accuracy, F1-score, AUC-ROC, and balanced accuracy, alongside effi-
ciency metrics like training time, GPU memory usage, and parameter reduction. Balanced accuracy,
which ensures fair evaluation across imbalanced classes, is defined as:

Balanced Accuracy =
1

C

C∑
c=1

TPc

TPc + FNc

where C is the number of classes, TPc (true positives) represents correctly classified instances of
class c, and FNc (false negatives) represents misclassified instances that belong to class c but were
predicted otherwise.

Efficiency gains were measured through parameter reduction percentage:

Reduction = 100×
(
1− Trainable Parameters

Total Parameters

)
and GPU memory efficiency, computed as:

Peak Memory (MB) =
maxMemory Allocated (bytes)

106

Training time was evaluated via average epoch duration:

Epoch Time =
Total Training Time
Number of Epochs

These metrics confirm that LoFTPat significantly reduces computational cost while maintaining
strong classification performance across pathogen species.

Figure 1: LoFTPat Model Architecture with LoRA Fine-Tuning. (a) Data Processing: Pathogen
genomic sequences from NCBI (viruses) and PATRIC (bacteria) are fragmented and then clustered
using MMseqs2 for train-test partitioning. (b) Model Architecture: Tokenized 6-mer sequences
are processed by the pretrained NT-v2 50M model, with LoFTPat introducing low-rank adaptation
(LoRA) for efficient fine-tuning. (c) Adapter Module: LoRA injects low-rank matrices (A, B) into
weight updates, applying a rank-r transformation (∆W ·x). The final classification (W ·x+∆W ·x)
distinguishes pathogenic from non-pathogenic sequences efficiently.

3 RESULTS AND DISCUSSIONS

3.1 EFFICIENCY GAINS WITH LORA

Parameter-efficient fine-tuning (PEFT) methods aim to balance computational efficiency and predic-
tive performance while reducing resource overhead. Table 1 presents a comparison of LoFTPat (var-
ious ranks) against PathoLM and other baseline methods, highlighting gains in training time, mem-
ory usage, and model size. The results confirm that LoFTPat (Rank = 4) provides the best trade-off,
achieving substantial efficiency improvements over full fine-tuning (PathoLM) while maintaining
high classification performance.
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Table 1: Performance Comparison of LoFTPat vs. baseline methods

Models Total Training
Time (sec)

Training Time
/ Epoch (sec)

GPU Memory
Allocated (MB)

Peak GPU
Used (MB)

Model
Size (MB)

Param
Reduction Accuracy F1-Score AUC-ROC Balanced

Acc

NT-v2 (50m) - - - - 430 - 0.5783 0.4372 0.6143 0.5150

PathoLM 21652 2165 663 21321 215 0% 0.9911 0.9911 0.9995 0.9907

PathoLM + IA3 21789 2180 236 21754 1.39 99.38% 0.9945 0.9945 0.9950 0.9947

LoFTPat (Rank = 4) 20781 2078 237 20303 1.69 99.24% 0.9955 0.9955 0.9997 0.9959
LoFTPat (Rank = 8) 20820 2082 239 20310 2.28 98.97% 0.9946 0.9946 0.9997 0.9949

LoFTPat (Rank = 16) 20862 2086 243 20862 3.46 98.44% 0.9955 0.9955 0.9981 0.9959

LoFTPat (Rank = 32) 20788 2078 250 20349 5.82 97.38% 0.9953 0.9953 0.9997 0.9957

3.1.1 TRAINING TIME REDUCTION

LoFTPat significantly reduces training time compared to PathoLM, with LoFTPat (Rank = 4) com-
pleting training in 20,781 seconds—a 4.02% reduction compared to PathoLM (21,652 sec). This ef-
ficiency is attributed to LoRA’s low-rank adaptation, which enables fine-tuning with fewer trainable
parameters while maintaining effective knowledge transfer. The observed reduction in per-epoch
training time follows a similar trend, with LoFTPat (Rank = 4) achieving the lowest per-epoch time
(2,078 sec), compared to PathoLM (2,165 sec) and PathoLM + IA3 (2,180 sec) as shown in Table 1.

While other LoFTPat configurations (Ranks 8, 16, 32) exhibit slightly longer training times, the
differences remain minimal (within 0.4% of Rank 4) and still outperform PathoLM. The results
confirm that LoRA-based fine-tuning reduces computational burden without sacrificing training ef-
fectiveness, making it a superior alternative to full fine-tuning methods.

3.1.2 GPU MEMORY SAVINGS

Memory efficiency is crucial for real-world deployment, especially in resource-limited settings.
PathoLM requires 663 MB, while LoFTPat (Rank = 4) uses only 237 MB, achieving a 64.3% reduc-
tion with higher accuracy (0.9955 vs. 0.9911), as shown in Table 1.

PathoLM + IA3 (236 MB) offers similar memory savings but lags in accuracy (0.9945 vs. 0.9955),
highlighting LoRA’s superior adaptation. The consistent memory usage across LoFTPat ranks con-
firms LoRA’s efficiency, ensuring scalability across different hardware constraints.

3.1.3 MODEL SIZE COMPRESSION

Storage efficiency is another critical factor when deploying fine-tuned models. PathoLM results in a
saved model size of 215 MB, while LoFTPat (Rank = 4) achieves an extreme compression, reducing
the model size to just 1.69 MB—a 99.24% reduction shown in Table 1. This drastic compression
enables LoFTPat-based models to be stored, transferred, and deployed with minimal hardware con-
straints, making it particularly advantageous for edge computing and low-resource applications.

While PathoLM + IA3 achieves a slightly better compression rate (1.39 MB, 99.38% reduction),
it does so at the cost of slightly lower predictive performance. The trend across different LoFTPat
ranks shows that higher ranks (e.g., Rank = 32) increase model size (5.82 MB) but do not improve
accuracy, reaffirming that Rank = 4 strikes the best balance between compression and effectiveness.

3.2 ACCURACY AND ROBUSTNESS OF LOFTPAT

Despite using 99.24% fewer parameters, LoFTPat (Rank = 4) outperforms PathoLM across all pre-
dictive metrics (Table 1). Compared to PathoLM (accuracy = 0.9911, F1-score = 0.9911, AUC-ROC
= 0.9995, balanced accuracy = 0.9907), LoFTPat achieves +0.44% accuracy, +0.44% F1-score,
+0.02% AUC-ROC, and +0.52% balanced accuracy. While small, these improvements indicate bet-
ter generalization and robustness, particularly in class-imbalanced settings.

LoRA’s low-rank adaptation matrices allow task-specific fine-tuning without disrupting pre-trained
knowledge, preventing overfitting while enhancing decision boundary separation (higher AUC-
ROC). IA3, despite achieving similar memory efficiency, lags in accuracy, confirming that LoRA
captures task-specific variations more effectively. Additionally, LoFTPat avoids unnecessary param-
eter drift seen in full fine-tuning, leading to better generalization.

Overall, LoFTPat (Rank = 4) surpasses both PathoLM and IA3, proving that parameter-efficient
fine-tuning can achieve superior predictive performance while maintaining efficiency.
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3.3 TRADE-OFF BETWEEN EFFICIENCY VS PREDICTION PERFORMANCE

Achieving an optimal balance between computational efficiency and predictive performance is cru-
cial in fine-tuning large language models. Figure 2a presents the relationship between accuracy
and training time per epoch, while Figure 2b illustrates accuracy versus GPU memory allocation
across different parameter-efficient fine-tuning (PEFT) methods. These comparisons highlight the
effectiveness of LoFTPat (Rank = 4) in achieving high predictive performance while maintaining
competitive efficiency.

Figure 2: Efficiency-Performance Trade-off in LoFTPat. (a) Accuracy vs. Training Time: LoFTPat
(Rank 4) achieves the highest accuracy with reduced training time. (b) Accuracy vs. GPU Memory:
LoFTPat significantly lowers memory usage ( 64.3%) while maintaining strong performance.

From Figure 2a, LoFTPat (Rank = 4) achieves the highest accuracy (0.9955) with one of the lowest
training times per epoch ( 2078 sec), outperforming PathoLM, which requires 2165 sec but achieves
lower accuracy (0.9911), making it less efficient. PathoLM + IA3 shows moderate training time
( 2180 sec) and slightly better accuracy (0.9945) than PathoLM but still falls short of LoFTPat (Rank
= 4), confirming LoRA’s superior adaptation over IA3. Figure 2b highlights LoFTPat’s efficiency
with just 237 MB GPU memory, a 64% reduction compared to PathoLM (663 MB, 0.9911 accuracy).
While PathoLM + IA3 achieves similar memory savings ( 236 MB), its accuracy (0.9945) remains
lower, indicating LoRA’s advantage in expressive adaptation without additional overhead.

Although both IA3 and LoRA optimize efficiency, IA3 reweights activations without modifying
weights, limiting expressiveness, whereas LoRA learns a low-rank adaptation, enabling better task-
specific tuning. LoFTPat (Rank = 4) thus outperforms IA3 in accuracy while drastically reducing
GPU usage, establishing itself as the optimal fine-tuning approach for computationally efficient
pathogen classification.

3.4 ABLATION STUDY ON LORA PARAMETERS

To assess the impact of the LoRA scaling factor (α) on model efficiency and performance, we
conducted an ablation study with α = 8, 16, 32, 64, keeping all other hyperparameters fixed. As
shown in Table 2, the total training time and per-epoch time remain stable, with a slight increase at
α = 64, while GPU memory usage stays constant at 237 MB, indicating LoRA primarily affects
weight adaptation rather than memory consumption.

Table 2: Ablation Study on LoRA α Parameter (Rank = 4)

α
Total Training

Time (sec)
Training Time
/ Epoch (sec)

GPU Memory
Allocated (MB)

Peak GPU
Memory (MB)

Param
Reduction Accuracy F1-Score AUC-ROC Balanced

Accuracy

8 20807 2080 237 20303 99.24% 0.9950 0.9950 0.9997 0.9953

16 20781 2078 237 20303 99.24% 0.9955 0.9955 0.9997 0.9959
32 20812 2079 237 20303 99.24% 0.9953 0.9953 0.9997 0.9958

64 20828 2082 237 20303 99.24% 0.9952 0.9952 0.9997 0.9957
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For classification performance, α = 16 achieves the highest Accuracy (0.9955), F1-Score (0.9955),
and Balanced Accuracy (0.9959), suggesting it strikes an optimal balance between adaptation
strength and regularization. Lower values like α = 8 show slight underfitting, while higher val-
ues (α = 32, 64) yield diminishing returns, with minor degradations in Balanced Accuracy. These
findings emphasize that α = 16 provides the best trade-off between performance and computational
efficiency, making it a robust choice for resource-constrained fine-tuning.

3.5 PERFORMANCE ON VARIED LENGTHS OF SEQUENCE

Table 3: Effectiveness in Varied Sequence Lengths
Seq Length
(base pair) Model Total Training

Time (sec)
Training Time
/ Epoch (sec)

GPU Memory
(MB)

Saved Model
Size (MB)

Param
Reduction F1-Score Balanced

Acc

Short (150)
PathoLM 132456 13245 669 21325 0% 0.9734 0.9810
LoFTPat 128749 12874 237 20303 99.24% 0.9864 0.9867
∆% LoFTPat -2.8% -2.8% -64.6% -4.8% +99.24% +1.34% +0.58%

Medium (2k)
PathoLM 21652 2165 663 21321 0% 0.9911 0.9907
LoFTPat 20781 2078 237 20303 99.24% 0.9955 0.9959
∆% LoFTPat -4.0% -4.0% -64.2% -4.8% +99.24% +0.44% +0.52%

Long (50k)
PathoLM 5786 579 671 21329 0% 0.9932 0.9912
LoFTPat 5539 553 245 20312 99.24% 0.9932 0.9935
∆% LoFTPat -4.3% -4.5% -63.5% -4.7% +99.24% +0.00% +0.23%

Fine-tuning across different sequence lengths is essential for real-world applications. Table 3
shows that LoFTPat (Rank = 4) consistently improves efficiency and accuracy across short (150bp),
medium (2kbp), and long (50kbp) sequences, outperforming PathoLM in both computation and
prediction.

LoFTPat reduces training time by 2.8%–4.5% and GPU memory usage by 63%, with the largest
efficiency gains for long sequences (4.3% total training time, 4.5% per-epoch speedup). It also en-
hances F1-score (+1.34%) and Balanced Accuracy (+0.58%) for short sequences while maintaining
stable performance for long reads. These gains stem from LoRA’s efficient fine-tuning, which cap-
tures both short- and long-range dependencies while minimizing parameter drift. The significant
memory savings reinforce LoFTPat’s scalability as a robust solution for diverse genomic sequences.

4 DISCUSSIONS

LoFTPat (Rank = 4) effectively balances efficiency and predictive performance, outperforming full
fine-tuning methods like PathoLM while significantly reducing training time (4.02%), GPU mem-
ory usage (64%), and model size (99.24%). Compared to PathoLM + IA3, which achieves similar
memory efficiency, LoFTPat maintains superior accuracy, F1-score, and balanced accuracy, demon-
strating LoRA’s advantage over activation reweighting methods like IA3.

Beyond efficiency, LoFTPat generalizes across sequence lengths, reducing training time consistently
for short (150bp), medium (2kbp), and long (50kbp) sequences, with the largest efficiency gains for
longer inputs. It reduces per-epoch training time by 4.5% for 50kbp sequences, maintaining accuracy
parity with PathoLM while achieving higher balanced accuracy (+0.58% for short, +0.23% for long
sequences). These improvements highlight LoRA’s structured weight adaptation, which controls
parameter updates while preserving pre-trained knowledge, avoiding the computational overhead of
full fine-tuning. LoFTPat emerges as a scalable, resource-efficient alternative that maintains strong
classification performance across diverse genomic inputs.

5 FUTURE WORKS

As future work, we aim to expand the training dataset beyond 30 species to include fungi and other
microbial taxa, enhancing adaptability across diverse pathogens while maintaining efficiency. A
broader microbial taxonomy will improve generalization across pathogenic families. We will also
evaluate robustness on unseen species to assess adaptability to novel sequences. Additionally, inte-
grating sequence-level interpretability will refine prediction insights, ensuring practical application
in real-world pathogen detection and classification.
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