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ABSTRACT

Non-parametric encoders offer advantages in interpretability and generalizability.
However, they often perform significantly worse than deep neural networks on
many challenging recognition tasks, and it remains unclear how to effectively ap-
ply these techniques to such tasks. In this work, we introduce LagEncoder, a non-
parametric, training-free feature extraction method based on finite element basis
functions. Our encoder features a universal architecture that can be applied to vari-
ous types of raw data and recognition tasks. We found that LagEncoder effectively
overcomes the limitations of neural networks in regression problems, particularly
when fitting multi-frequency functions. The LagEncoder-based model converges
quickly and requires low training costs, as only the head is trained. Additionally,
LagEncoder provides an efficient parameter-efficient fine-tuning approach. Our
experiments on the ImageNet dataset demonstrate that pre-trained models using
LagEncoder achieve performance improvements within just one training epoch.
Furthermore, it does not require adjustments to the original training recipe, and the
model’s total parameters remain nearly unchanged. Our evaluation of the scaling
law for model performance indicates that using LagEncoder is more cost-effective
than merely increasing the model size.

1 INTRODUCTION

Neural networks have played a pivotal role in the evolution of artificial intelligence, particularly
excelling in challenge recognition tasks, where their performance has, in some cases, surpassed
human-level capabilities. Furthermore, advances in transfer learning have demonstrated that neural
network encoders exhibit notable domain adaptation properties, allowing them to generalize across
disparate tasks and data distributions. For instance, an encoder pre-trained for an image classifica-
tion task can be effectively transferred to an object detection task, even when the underlying data
distributions differ, while still maintaining robust feature extraction capabilities.

However, traditional machine learning models often demonstrate better domain adaptation. They
provided such feature extractors that require no training and are independent of specific recogni-
tion tasks (Pearson, 1901; Sparck Jones, 1972). For example, the kernel functions used in Support
Vector Machines (SVM) are unrelated to data labels, resulting in non-trainable feature extractors
that inherently provide complete domain adaptation. While traditional models typically offer higher
interpretability, they often perform significantly worse than neural networks in specific, highly chal-
lenging recognition tasks. It is worth noting that many neural network architectures are based on
mathematical methods that do not depend on labeled data. For instance, the linear layer and the
attention layer rely on inner products for feature extraction, where the vector basis in linear algebra
is fixed. Similarly, convolution layers perform feature extraction through convolution, in the Fourier
transform, the kernel function is predefined and independent of the target.

We focus on constructing an encoder that is practical for challenging recognition tasks with complete
domain adaptation. Through our extensive experiments, we found that, as Fourier transforms, neural
networks often struggle to fit multi-frequency functions effectively (see Section 3.1.1). Specifically,
when fitting functions with sharp transitions or localized features, a large number of Fourier terms
may be required, which can reduce computational efficiency and potentially lead to overfitting. Simi-
larly, neural networks often need to be much deeper, resulting in a significant increase in model size,
to fit such functions properly. In numerical simulation problems, Finite Element Method (FEM)
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Figure 1: Left - The F (x) (solid blue line) is approximated with f(x;θ) (dashed red line), which
is a linear combination of linear basis functions (ψi is represented by the solid black lines). Right -
Tent-shaped linear basis functions that have a value of 1 at the corresponding node and zero on all
other nodes. Two base functions that share an element have a basis function overlap.

can be used to fit more complex functions and is widely applied in fields such as engineering and
mathematical modeling. Because FEM’s local basis functions can easily handle multi-scale prob-
lems, allowing it to represent features at varying scales, from coarse to fine resolution (see Fig. 1,
left), making it a powerful tool for extracting multi-scale features. In this work, we employed the
Lagrange basis function from the FEM as a feature extractor, which we call LagEncoder.

Compared to other encoders, LagEncoder offers a universal architecture applicable across various
recognition domains, including regression, image and text classification, and image super-resolution
tasks, all without the need for training or fine-tuning. Additionally, LagEncoder serves as an efficient
parameter-efficient fine-tuning (PEFT) approach (see Fig. 3 (c)). Our experiments on the ImageNet
dataset demonstrate that pre-trained models using LagEncoder achieve performance improvements
within just one training epoch. Furthermore, it does not require adjustments to the original training
recipe, and the model’s total parameters remain nearly unchanged. Our evaluation of the scaling law
for model performance shows that using LagEncoder is more cost-effective than simply scaling the
model.

2 METHOD

In general, neural networks provide a mapping from input to predicted output, and the training
process involves minimizing empirical risk to determine the parameters of an empirical model that
fits the data:

argmin
θ

1

m
L(f(x(i);θ),y(i)) (1)

where L is the cost function, f(x(i);θ) is the predicted output given input x, y is the target output,
θ represents the model parameters, and m is the number of training examples. Specifically, in
most neural networks, the projection head is realized as a linear layer. The predicted output can be
expressed as a linear combination of the features and the weights:

f(x;θ) =
∑
i

θ
(head)
i · ψi(x;θ

(encoder)) (2)

where ψi(x;θ
(encoder)) is a feature and θ(head) are the parameters of the model head. The function

approximation formula in FEM has a similar format:

f(x;θ) =
∑
i

θ
(linear)
i · ψi(x) (3)

where ψi(x) is a Lagrange basis function. Fig. 1 (left) shows 10 basis functions for a one-
dimensional input space, while the right side presents two basis functions for a two-dimensional
input space. These tent-shaped linear basis functions have a value of 1 at their corresponding node
and 0 at all other nodes. The shape of the basis functions depends on the structure of the mesh. For
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Figure 2: Left - Mesh with eight nodes and seven triangles. Right - Contours of eight Lagrange basis
functions, linear variation of ψi associated with node p(i) across all triangles.

example, in Fig. 1 (left), the mesh consists of nine intervals of varying lengths along the x-axis,
whereas in Fig. 1 (right), the mesh is composed of 27 triangles in the plane. In Section 2.2, we will
provide a detailed definition of meshes in arbitrary dimensions and the specific form of the basis
functions.

As we mentioned earlier, these basis functions are highly effective at extracting multi-scale features,
and 1 (left) illustrates this principle. In regions with multiple small peaks, more nodes are allocated
to capture sharp transitions or localized features, while in smoother regions, fewer nodes are used to
reduce the overall model size. Formally, these basis functions are Lipschitz continuous and piecewise
linear, making the linear combination Eqn.(3) capable of approximating any continuous function
with arbitrary precision. Given a function F (x), we can bound the approximation error as follows:

|f(x;θ)− F (x)| ≤ max
ξ∈Ω
∥∇f(ξ)∥ · h. (4)

Here, h = maxi maxj 1dist(p(i),p(j))=1 · ∥p(i)−p(j)∥ represents the maximum length of mesh edges
(see Section 2.1) and Ω is the domain over which the approximation occurs. Comparing Eqn.(2) and
Eqn.(3), we can see that the LagEncoder is parameter-free.

2.1 MESH

In the context of FEM, elements often serve as the fundamental building blocks of the triangulation
mesh, taking the form of simplices created by connecting nodes. For instance, in 1D FEM, simplices
are intervals (see Fig. 1, left); in 2D FEM, triangles with three nodes are commonly used (see Fig.
1, right), while 3D FEM often employs tetrahedra with four nodes. This concept is visually depicted
in Fig. 2 (left), where the mesh consists of eight nodes and seven triangles. This type of mesh is
established by specifying the coordinates of discrete nodes and the vertex indices of simplices. Let
d represent the dimensions, {p(i)}n−1

i=0 denote the grid nodes, and introduce a matrix P to store the
node coordinates:

Pi,j = p
(i)
j .

Additionally, utilize a matrix T to store the indices of nodes constituting the simplices within the
triangulation. Specifically, access the j-th sorted vertex of the i-th simplex in this mesh as PTi,j ,:.
Fig. 2 (left) illustrate a matrix T takes the following form:

T =

[
6 0 3 2 7 3 4
7 6 7 3 4 4 3
5 5 1 1 5 7 2

]T

.

This matrix serves to describe all seven simplices within the mesh, such as the first simplex
△p(6)p(7)p(5) and the last simplex△p(4)p(3)p(2).

The first-order Lagrange basis studied in this article, denoted as {ψ0(x), · · · , ψn−1(x)} ⊂ P1(Rd),
are piecewise linear polynomials associated with nodes {p(0), · · · ,p(n−1)}. These functions are
defined such that ψi(p

(j)) = 1i=j. Fig. 2 (right) illustrates this: ψi(x) corresponds to node p(i),
exhibiting linear variation across all elements. Its support encompasses the union of all neighbor-
ing elements of node p(i) (refer to Appendix B for a 3-dimensional visualization). For example,
supp(ψ3) = △p(3)p(4)p(7) ∪△p(3)p(7)p(1) ∪△p(3)p(1)p(2) ∪△p(3)p(2)p(4).
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2.2 LAGENCODER

Now, we formulate the Lagrange basis from its original definition to establish the foundational
architecture of LagEncoder. It is important to highlight that the traditional Lagrange basis involves
unbalanced computing of barycentric coordinates, which may not be well-suited for parallel deep
learning platforms (see Appendix C for details on the traditional definition of the Lagrange basis).
Consequently, in this subsection, we re-derive the Lagrange basis to enhance parallel computing.

Let nt represent the number of simplices in the multiscale mesh. We introduce the Parameters
Tensor S defined as:

Sj,:,: =


p
(Tj,0)
0 · · · p

(Tj,0)
d−1 1

...
. . .

...
...

p
(Tj,d−1)
0 · · · p

(Tj,d−1)
d−1 1

p
(Tj,d)
0 · · · p

(Tj,d)
d−1 1


−1

, j = 0, · · · , nt − 1.

Additionally, we introduce the Node Membership tensor M defined as:

Mi,j,k =

{
1, if the i-th node matches the k-th vertex of the j-th simplex,
0, other cases.

By defining:

Uj,k(x) =

d−1∑
τ=0

Sj,τ,k · xτ + Sj,d,k, j = 0, · · · , nt − 1, k = 0, · · · , d.

We will demonstrate in Appendix A that the following function qualifies the definition of Lagrange
basis:

ψi(x) =

∑nt−1
j=0

∑d
k=0 1minτ Uj,τ (x)≥0 ·Mi,j,k ·Uj,k(x)

max(
∑nt−1

j=0

∑d
k=0 1minτ Uj,τ (x)≥0 ·Mi,j,k, 1)

, i = 0, · · · , n− 1. (5)

So far, we have successfully constructed :

LagEncoder :Rd → [0, 1]n,

x 7→ (ψ0(x), · · · , ψn−1(x)).

The above basis is in the format of P1(Rd), which is very useful for low-dimensional regression
tasks (see Section 3.1). Furthermore, if Eqn.(3) is a decoupled system, we can decompose the input
space into a direct sum of d one-dimensional subspaces. In this case, Eqn.(5) simplifies to the
Lagrange basis P1(R1):

ψi(x) = min

(
ReLU(x− pi−1)

pi − pi−1
,

ReLU(pi+1 − x)

pi+1 − pi

)
, i = 0, 1, · · · , n− 1. (6)

The P1(R1) basis has exceptionally low computational complexity, making it well-suited for recog-
nition tasks on large-scale datasets. In the next section, we will introduce the specific approach in
detail. We use the P1(R1) basis to implement an adaptive method for learning a decoupled residual
system. This method can enhance the performance of pre-trained models on large datasets.

2.3 PEFT-LAGENCODER

LagEncoder demonstrates strong interpretability, and our experiments show that it performs excep-
tionally well in cases of low-dimensional input data (see Section 3.1). However, as the output di-
mension of LagEncoder increases with the data dimension d, the output grows factorially according
to Eqn.(5), leading to an output size of O(d!). Consequently, when handling high-dimensional data
(such as large images), the computational cost becomes extremely high. This high computational
demand makes applying LagEncoder in resource-constrained environments particularly challenging.

To address this problem, we can apply the LagEncoder as a module to PEFT methods. Now, suppose
there exists a perfect model F (x) with 100% test accuracy and a given pre-trained model f(x;θ).
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Figure 3: Left: (a) shows a plain network example; (b) illustrates a LagEncoder followed by a
trainable linear layer; (c) demonstrates an application of LagEncoder to the PEFT method, where
the pre-trained model is frozen, and the SigmoidNorm layer, used for data normalization, can be
either trainable or frozen. The linear layer connected to LagEncoder is trainable. Right: The
colored solid lines represent the pre-trained models with different scales, and the black solid lines
represent our adaptive method. Our adaptation method significantly outperforms model scaling,
enabling additional performance gains with minimal changes to model size.

If the pre-trained model has high test accuracy, then the residual F (x)− f(x;θ) must be very flat.
For different inputs x, this residual is generally close to zero. This implies that the support set of
this residual is sparsely distributed in the input space, making the dimensionality reduction process
on the pre-trained model’s features likely reversible. This enables us to use the LagEncoder.

In Fig. 3 (c), the SigmoidNorm layer reduces the dimension and normalizes the output representation
vectors u of the pre-trained backbone:

v ← Sigmoid(PCA(u))

where v represents the reduced-dimensionality feature. Here, we can generate the PCA model using
standard unsupervised methods or adjust the weight matrix in the PCA through training. Next, we
use the P1(R1) LagEncoder to compute the residual and combine it with the pre-trained model to
estimate the prediction:

F (x) ≈ f(x;θ) +
∑
i

θ
(linear)
i · ψi(v). (7)

Since the support set of the residual F (x) − f(x;θ) is sparsely distributed, the added branch con-
verges fast during the training phase. Our experiments show that our adaptation method hardly
scales the model size and can improve the model performance within one epoch of training (see
Table 1). This approach enables us to effectively fine-tune the model and save computing resources.

2.4 MULTISCALE DOMAIN DECOMPOSITION METHOD

In our earlier discussion, we introduced the interpolation Eqn.(3) and its associated error-bound for-
mula Eqn.(4). However, this tool is not appropriate for machine learning modeling, since we face a
crucial challenge: the ”given function F (x) to be fitted” represents a ground truth that remains un-
known. Instead, in the scenario of machine learning, a typical dataset provides us with a collection of
input-target pairs. For any given simplex, select a subset {(x(k0), y(k0)), · · · , (x(km′−1), y(km′−1))}
from the training set {(x(0), y(0)), · · · , (x(m−1), y(m−1))} where m′ is the cardinality of subset, m
is the cardinality of subset, {ki}m

′−1
i=0 ⊆ {i}m−1

i=0 , and all subset elements reside within the given
simplex. Our goal now is to assess the error of f(x;θ) within this simplex.

Crucially, due to the linearity of basis functions {ψ0(x), · · · , ψn−1(x)} within each simplex, their
linear combination also remains linear within these simplices. As a result, in the given simplex,
there exists a set of coefficients β that:∑

k

θ
(linear)
k · ψk(x

(i)) = β0x
(i)
0 + · · ·+ βd−1x

(i)
d−1 + βd.
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Algorithm 1 Domain decomposition method of generating multiscale mesh.
Input: Maximum degrees of freedom N to perform. Depending on the size of the training set.
Input: Initial Simplex Indices Matrix T of shape (1, d+ 1) with T0,i = i.
Input: Initial Node Matrix P containing coordinates of d+1 points forming a simplex covering all
training raw data.
Output: The updated Node Matrix P and Simplex Indices Matrix T of the refined mesh.
• n← d+ 1
while n < N do
• Create the binary Longest Edge Matrix M where Mi,j = 1 indicates that the i-th edge is
the longest side of the j-th simplex.
• Formulate the binary Edge Membership Matrix E where Ei,j = 1 indicates that the i-th
edge is a side of the j-th simplex.
• Establish the binary Data-Simplex Membership Matrix B where Bi,j = 1 signifies that the
i-th raw data falls within the j-th simplex.
• Compute the index of the priority edge:

argmin
i

∑
j

∑
k Mi,jBk,j

max(
∑

j

∑
k Ei,jBk,j , 1)

.

The priority edge is the longest side among many simplices, and these relevant simplices cover
a substantial portion of the raw data.
• Insert a new node at the midpoint of the priority edge and update the Node Matrix P .
• Update the Simplex Indices Matrix T and utilize it to update mesh edges.
• n← n+ 1

end while

Therefore we can obtain the following error bound by solving a Ordinary Least Squares problem
m′−1∑
i=0

∣∣∣∣y(i) −∑
k

θ
(linear)
k · ψk(x

(i))

∣∣∣∣2 ≤ m′−1∑
i=0

|y(i) − (β̂0x
(i)
0 + · · ·+ β̂d−1x

(i)
d−1 + β̂d)|2, (8)

where β̂ = (XTX)−1XTy, Xi,:d = x(i), Xi,d = 1, and yi = y(i). This formula shows the error
bound reduced to 0 when m′ ≤ d + 1. By combining this conclusion with the global error-bound
formula Eqn.(4), we can summarize two critical goals for mesh generation in modeling:

1. Each simplex in the mesh should ideally contain as few original data points from the train-
ing set as possible. When each simplex covers no more than d+ 1 raw data examples, the
model perfectly fits the training set.

2. Decreasing the bound of mesh edge lengths results in a reduced bound of error.

Algorithm 1 is designed to achieve these two goals. It describes the process of generating a multi-
scale mesh and serves as the initial step in constructing the LagEncoder architecture. To enhance
readability, this brief pseudocode traverses all training raw data, simplices, and edges in each it-
eration. For acceleration, we use divide-and-conquer techniques in the program. In each iteration
of Algorithm 1, a new fine node is added to the grid, and several coarse simplices are subdivided
into finer simplices. In Appendix D illustrates the process of refining a mesh (see Fig. 7, left).
As the number of nodes (degrees of freedom) increases, each simplex (triangle) covers a reduced
amount of raw data. Additionally, the secondary objective is to split the longest side of each simplex,
progressively generating more acute triangles to minimize the value of h in Eqn.(4).

When applying LagEncoder to the PEFT method, Algorithm 1 can be replaced by the simpler V-
cycle algorithm from FEM. The V-cycle updates the mesh by estimating the empirical distribution
of examples in the training set. It allocates more nodes in high-frequency (dense) regions and fewer
nodes in low-frequency (sparse) regions. Notably, LagEncoder is plug-and-play, it automatically
updates the mesh during inference. We have integrated the V-Cycle into LagEncoder’s forward
method, so users do not need to manually update the mesh, just as they do not need to manually
update the mean and variance in the Batch Normalization (Ioffe, 2015). The underlying mathemat-
ical principles of this algorithm are relatively complex, and a visualized workflow is provided in
Appendix D for better understanding (see Fig. 7, right).
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Algorithm 2 V-Cycle.
Require: The pre-trained model f(x;θ) with frozen parameter θ.
Require: Initial parameter θ(linear) of the linear head.
Require: Top-K threshold, K1 and K2 (Suggested defaults: 0.1× batchsize and 1 respectively).
Require: Mesh updating frequency N .
• k ← 1
• Generate PDF: Construct a histogram on the interval [−1, 1] to represent the Probability Den-
sity Function (PDF) of the empirical data distribution, initially using equal-width binning. The
grid P contains n− 1 bins, with n coarse nodes.
while stopping criterion not met do
• Sample a minibatch ofm examples from the training set {x(1), · · · ,x(m)}with correspond-
ing targets y(i).
• Compute corresponding losses: li ← L(f(x;θ) +

∑
i θ

(linear)
i · ψi(v

(i)),y(i)).
• Generate PDF: Estimate a temporary PDF using the current m examples: specifically,
select the top K1 examples with the highest loss values and calculate the proportion of these
examples in each bin.
• Update PDF: Update the histogram using this temporary PDF and Exponential Moving
Average (EMA).
if k mod N ≡ 0 then
• Mesh Refinement: Mark the top K2 bins with the highest values in the histogram as
coarse elements, and add their midpoints as fine nodes. The degrees of freedom increase
to n+K2.
• Interpolation: Use linear interpolation to compute the values of the linear head param-
eters at each fine node.
•Mesh Coarsening: Solve a system of equations to transform the current histogram back
into equal-width binning, reducing the grid’s degrees of freedom back to n.
• Interpolation: Use linear interpolation to compute the values of the linear head param-
eters at each new node.

end if
k ← k + 1

end while

3 EXPERIMENTS

In the upcoming sections, we present a comprehensive series of experiments to showcase the ef-
fectiveness and universality of LagEncoder across various tasks. Our exploration begins with an
analysis of its performance in regression tasks, followed by examinations in image and text recog-
nition. Finally, we apply it to the PEFT method and assess its performance on large datasets.

3.1 REGRESSION TASKS

3.1.1 THE LIMITATIONS OF TRADITIONAL REGRESSORS AND NEURAL NETWORKS

Traditional regressors often struggle with automatically overcoming overfitting, while neural net-
works address this issue. However, neural networks tend to perform poorly when fitting multi-
frequency functions, a phenomenon referred to as the frequency principle by Xu et al. (2019). Fig. 4
clearly illustrates this conflict: on the left, Support Vector Regression (Platt et al., 1999) successfully
fits dataset B but overfits on dataset A, whereas the neural network performs well on A but underfits
on B. We found that neither MLPs, CNNs, nor Transformers could effectively fit regions with sharp
transitions in dataset B. We hypothesize that when input data moves within a localized area while
the target changes drastically, neural networks may treat this region as noise to avoid overfitting.

Our LagEncoder combines the strengths of traditional regressors and neural networks. As discussed
in Section 2, it leverages a multiscale mesh, enabling it to adaptively fit data in high-frequency
regions by using fine simplices. Fig. 4 (right) showcases the ability of the LagEncoder-based model
to handle the challenging dataset C. Additionally, Fig. 9 in Appendix E.3 further illustrates the
gradual fitting process of the LagEncoder-based model during training.
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x

y dataset A
dataset B

x

y dataset C

Figure 4: Left - illustrates the performance of traditional regressors in fitting the high-noise
dataset A = {(x, y)|X ∼ u(0, π4 ), Y ∼ N(sin 8x, | cos 8x|)} and the multi-frequency dataset
B = {(x, y)| 1X ∼ u(0.02, 0.5), y = sin 1

x}. The dashed teal curve shows that the traditional re-
gressor (e.g., Support Vector Regression) succeeds in fitting dataset B. However, when applied to
the high-noise dataset A, shown by the solid teal curve, the traditional regressor exhibits overfit-
ting, struggling to generalize automatically. Conversely, we also showcase the performance of a
neural network (e.g., Multi-Layer Perceptron) in fitting dataset A, exemplified by the dashed or-
ange curve. However, as depicted by the solid orange curve, this neural network faces challenges
in fitting multi-frequency dataset B, indicative of underfitting. Right - We present the exceptional
adaptability of a LagEncoder-based model in fitting the dataset C = {(x, y)| 1X ∼ u(0.02, 0.5), Y ∼
N(sin 1

x , 0.5x
2)}, which is both high-noise and multi-frequency.

Some comparison experiments between the LagEncoder-based model and traditional regressors
(Thiel, 1950; Cantzler, 1981; Zhang, 2004; Hilt & Seegrist, 1977; Stone, 1974; Jain et al., 2018;
Murphy, 2012; Platt et al., 1999; Friedman, 2001; Breiman, 2001) can be found in Appendix E.1.
The LagEncoder-based model consistently achieves high R2 scores across all test sets, demonstrat-
ing its robustness and effectiveness, even on datasets with high noise levels and multiple frequency
components.

3.1.2 SCALING LAW AND ERROR-BOUND FORMULA

Our LagEncoder exhibits strong interpretability, and this is quantitatively supported by experimental
results. The experiment shown in Fig. 5 demonstrates that the LagEncoder-based model adheres to
the empirical scaling law. Additionally, since the number of parameters in the model’s linear head is
proportional to the number of simplices nt in the mesh, and (nt/d!)

1/d = O(h−1), this experiment
further verifies that our model satisfies the error bound formula described by Eqn.(4).

3.2 NATURAL LANGUAGE PROCESSING

In this section, we delve into the practical application of LagEncoder for text feature extraction using
the AG News dataset (Zhang et al., 2015) for classification tasks. Our experimental findings reveal
that LagEncoder can directly extract features from raw text. However, recognizing that tokens are
unordered categorical variables, we add a non-parametric preprocessing layer to enhance perfor-
mance, converting each token into a four-dimensional vector representing its proportion across four
categories.

Throughout our experiment, we set the degree of freedom n of LagEncoder to 64. We employed the
SGD optimizer to minimize the cross-entropy loss, starting with a learning rate of 5.0 and reducing
it by a factor of 0.1 every two epochs. The batch size was set to 32. This experiment demonstrates
the neural network achieving 90.01% test accuracy after the first epoch, with 90.4% test accuracy
reached within just five epochs.

The LagEncoder-based model possesses a unique characteristic in text classification tasks: the num-
ber of its parameters remains independent of the token count. Compared to word2vec-based net-
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Figure 5: Left - the results of 32 experiments fitting a 1-dimensional function y = sin 1
x , with each

gray point representing an experiment and showing the relationship between n−1
t and Mean Square

Error (MSE). Right - 32 experiments fitting a 2-dimensional function y =
∑2

i=1 sin
xi

2π , mirroring
the left side with gray points signifying individual experiments and demonstrating the relationship
between n−1/2

t and MSE.

works, our model performs equally well in classification but boasts only 256 model parameters, a
significant reduction from the word2vec-based network with more than 6.13 million parameters.

3.3 COMPUTER VISION

As described in Section 2.3, LagEncoder can serve as a non-parametric module for the PEFT
method. The new model includes a residual branch where the SigmoidNorm layer and linear head
contain trainable parameters (see Fig. 3 (c)). In this section, we illustrate the effectiveness of PEFT-
LagEncoder through ablation studies. To ensure a fair comparison with baseline models, we adopt a
stricter experimental setup: the original training recipe of the pre-trained model cannot be modified
when training the residual branch.

This restriction is crucial to ablation studies because the training recipes for pre-trained models
often have room for optimization (Wightman et al., 2021). Changes to batch size, optimizer, weight
decay rate, or the order of applying data augmentations could potentially improve the performance
of the pre-trained model (Touvron et al., 2019; 2021). To avoid such effects, we selected pre-trained
models from TorchVision with publicly available training recipes as our baselines. The weights of
these pre-trained models closely reproduce the results from the original papers on the ImageNet-1K
dataset (Russakovsky et al., 2015), with recipes available at (TorchVision Contributors, 2024). Table
1 presents the fine-tuning results of our adaptation method.

Model d n # Params Acc@1 (%) Acc@5 (%)

MobileNet-V2 32 8 0.298 M (+8.51%) 71.920±.016(+.045) 90.302±.021(+.016)
ResNet50 32 8 0.324 M (+1.27%) 76.334±.054(+.204) 92.976±.024(+.114)

ResNeXt50 32 8 0.324 M (+1.30%) 77.796±.063(+.178) 93.653±.038(+.178)
ViT-B-16 8 32 1.032 M (+1.19%) 81.092±.012(+.020) 95.316±.004(−.002)

Table 1: Classification accuracy on the ImageNet validation set, with all methods adhering to the
raw training recipes. We report the changes in the number of model parameters and their ratio of
changes and total. For each model, we conducted multiple experiments and show the accuracy as
“mean±std(mean− baseline)”.

The trainable parameters in our adaptation method come from the SigmoidNorm and linear layer
(see Fig. 3(c)), the number of parameters can be precisely calculated as (Cin + 1) × d + d ×
n × C, where Cin is the input dimension to SigmoidNorm, d is the output dimension after PCA
dimensionality reduction, n is the number of nodes in the mesh (degrees of freedom), and C is the
total output dimension. Our experiments reveal that, generally, the larger the values of d and n for the
ImageNet dataset, the better our adaptation method performs. Since there are diminishing returns,
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we empirically limit d and n to 64. As shown in Table 1, our method is highly stable, with nearly
no variation across multiple experiments. In our approach, the number of trainable parameters is
minimal, and the model converges within just one epoch.

We also study empirical scaling laws for model performance on cross-entropy loss to demonstrate
how our adaptation method fully exploits the potential of pre-trained models. (Kaplan et al., 2020)
proposed an empirical formula where the loss scales as a power-law with model size:

L(N) =
( c

N

)α

where L(N) is the cross-entropy loss on the validation dataset, N is the number of model param-
eters, and c and α are constants related to the model type. Fig. 3 (right) shows that our adaptation
method is more effective than simply scaling the model size. Our method increases the α for Mo-
bileNet (Howard et al., 2017) from 0.265 to 0.473, for ResNet He et al. (2016) from 0.252 to 2.05,
for ResNeXt Xie et al. (2017) from 0.012 to 3.06, and for ViT (Dosovitskiy et al., 2020) from -0.064
to 1.20.

Compared to other model scaling and adaptation methods, our approach requires no adjustments
to the training recipe, has low computational demands (with very few trainable parameters), and
achieves convergence within a single epoch. On 4x A6000 GPUs, it takes about 20 minutes to
enhance the performance of a ViT-B-16 model, offering significant practical value.

4 FUTURE DIRECTIONS

It is important to recognize that LagEncoder has certain limitations. As described in Section 2.3,
the high computational cost of extracting features from high-dimensional data restricts its direct
application to large-scale datasets. Currently, we address this by incorporating LagEncoder as part
of an adaptation method, but we aim to improve the encoder in the future to be able to extract
features directly from large images. Additionally, the experiments in Section 3.3 show that while
our adaptation method significantly reduces cross-entropy on the ImageNet-1K validation set and
consistently improves validation accuracy, the magnitude of improvement of accuracy is relatively
modest, which we intend to explore further. We did not compare LagEncoder with models like
SVM or KAN, which offer strong interpretability, because their underlying principles are entirely
different. Moreover, we prioritize performance on challenging tasks where most interpretable mod-
els often lack relevant experimental results. We also did not conduct comparative studies with other
PEFT methods, as model scaling has proven more effective than PEFT methods for image recogni-
tion tasks. However, we will continue to monitor developments in the PEFT field and plan to include
comparative experiments if relevant research emerges.

5 CONCLUSION

We discussed domain adaptation in transfer learning and hypothesized that if an encoder possesses
full generalization ability and is not dependent on a specific dataset. We further hypothesized that it
is possible to develop a non-parametric encoder that requires no training. In response, we proposed a
non-parametric encoder with a universal architecture capable of accommodating diverse types of raw
data and recognition tasks. It extracts features by depicting the distribution of raw data, eliminating
the need to consider the underlying meaning of the data. This inherent characteristic enables its
generalization.

Our experiments demonstrated several key advantages of the LagEncoder-based model: 1) Strong
mathematical explainability. Our results show that the performance of these models aligns per-
fectly with the theoretical error-bound formula and scaling law, providing a clear understanding of
the representation learning process. 2) Fast training. These models contain only one linear layer for
training, typically converging within just 1 to 2 epochs, which is particularly beneficial for learning
large datasets.

In conclusion, our research introduces a novel encoder derived from established mathematical the-
ory, which eliminates the need for extensive training, fine-tuning, and heavy computational re-
sources. Our LagEncoder stands as an explainable and non-black-box encoder, holding significant
value in representation learning research.
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A PROOF OF LAGRANGE BASIS EXPRESSION

We will now demonstrate, in three concise steps, that Eqn.(5) qualifies as a Lagrange basis function.
Piecewise Linear: Since {Uj,0, · · · ,Uj,d} are piecewise linear functions, their linear combination
Li is also piecewise linear.
Kronecker Delta: From the definition of U and S, we have the following equation:

[x0 · · · xd−1 1] = [Uj,0(x) · · · Uj,d(x)]


p
(Tj,0)
0 · · · p

(Tj,0)
d−1 1

...
. . .

...
...

p
(Tj,d−1)
0 · · · p

(Tj,d−1)
d−1 1

p
(Tj,d)
0 · · · p

(Tj,d)
d−1 1

 .

Decomposing this equation, we obtain x =
∑d

k=0 Uj,k(x)p
(Tj,k) and

∑d
k=0 Uj,k(x) = 1. This

implies two important conclusions: Uj,k′(p(Tj,k′′ )) = 1k′=k′′ and minτ Uj,τ (x) ≥ 0 is true if and
only if x belongs to the j-th simplex. Therefore, we have{

1minτ Uj,τ (p(i))≥0 = Mi,j,k = Uj,k(p
(i)) = 1, if i = Tj,k

Mi,j,k = Uj,k(p
(i)) = 0, if i ̸= Tj,k

This proves that ψi(p
(j)) = 1i=j .

Globally Continuity: Lastly, since ψi is inherently linear within all simplices and exhibits continu-
ity across all grid nodes, we can conclude that ψi is globally continuous.

B VISUALIZATION OF LAGRANGIAN BASIS

In section 2, we introduced first-order Lagrange basis functions, a set of piecewise linear functions
defined on a mesh. Each basis function corresponds to a node.

Consider the grid depicted in Fig. 6 (left). Taking the node p(20) as an example, it has a total of
four neighboring nodes: p(5), p(0), p(7), and p(4). By connecting these nodes, we can determine
the support of the basis function ψ20.

In Fig. 6 (middle), we present the function graphs of ψ20 and ψ7. It can be observed that these
functions exhibit linear variations on each mesh triangle. Taking ψ20 as an example, its function
value at p20 is 1, and 0 at all other nodes. Similarly, ψ7 has a function value of 1 at p7 and 0 at other
nodes.

In Fig. 6 (right), the orange triangles represent the function graph of f(x;θ) on the do-
main △p(0)p(7)p(9), where the function values of f(x;θ) at the vertices (p(0),p(7),p(9)) are
(θ0,θ7,θ9), respectively. The green dots represent a subset of training set, where the projections
(raw data) fall on△p(0)p(7)p(9). As shown in equation (2), when the number of green points does
not exceed three, there exists a solution of (θ0,θ7,θ9) such that all green points lie on the surface
of f(x;θ), such that MSE reach a minimum value of 0.

−4 −2 0 2 4
−4

−2

0

2

4

p(20)

p(5)

p(4)

p(7)

p(0) L7

L20

Figure 6: Data visualization. Left - an example of 2-dimensional mesh. Middle - the graphs of basis
functions ψ20 and ψ7. Right - the graphs of the function f(x;θ) and a subset of training set.
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C THE TRADITIONAL EXPRESSION OF LAGRANGE BASIS

Given the complexity of FEM as a numerical method, to enhance understanding, we start with a
two-dimensional case and a triangulated mesh to illustrate the traditional expression of basis func-
tions. Let triangle △ be defined by nodes {p(i),p(j),p(k)}. The following barycentric coordinates
{λ△,i, λ△,j , λ△,k} are three first-degree polynomials of x[

λ△,i(x)
λ△,j(x)
λ△,k(x)

]
=

p(i)
0 p

(j)
0 p

(k)
0

p
(i)
1 p

(j)
1 p

(k)
1

1 1 1

−1 [
x0

x1

1

]
.

Referring to the instance depicted in Fig. 2 (left), the mesh consists of eight nodes and seven
triangles. Specifically, let {△(j) = △p(Tj,0)p(Tj,1)p(Tj,2)|j = 0, · · · , 6}. We will now verify that
the following ψ3 corresponds to the third basis function in this mesh

ψ3(x) =
1

max(
∑

i∈{2,3,6,5} 1x∈△(i) , 1)

∑
i∈{2,3,6,5}

1x∈△(i)λ△(i),3(x).

First, ψ3 possesses values of Kronecker Delta:

ψ3(x) =



1

max(0, 1)
(0 · λ△(2),3(x)+0 · λ△(3),3(x)+0 · λ△(6),3(x)+0 · λ△(5),3(x))= 0, if x = p(0),

1

max(2, 1)
(1 · 0 +1 · 0 +0 · λ△(6),3(x)+0 · λ△(5),3(x))= 0, if x = p(1),

1

max(2, 1)
(0 · λ△(2),3(x)+1 · 0 +1 · 0 +0 · λ△(5),3(x))= 0, if x = p(2),

1

max(4, 0)
(1 · 1 +1 · 1 +1 · 1 +1 · 1) = 1, if x = p(3),

1

max(2, 1)
(0 · λ△(2),3(x)+0 · λ△(3),3(x)+1 · 0 +1 · 0) = 0, if x = p(4),

1

max(0, 1)
(0 · λ△(2),3(x)+0 · λ△(3),3(x)+0 · λ△(6),3(x)+0 · λ△(5),3(x))= 0, if x = p(5),

1

max(0, 1)
(0 · λ△(2),3(x)+0 · λ△(3),3(x)+0 · λ△(6),3(x)+0 · λ△(5),3(x))= 0, if x = p(6),

1

max(2, 1)
(1 · 0 +0 · λ△(3),3(x)+0 · λ△(6),3(x)+1 · 0) = 0, if x = p(7),

Then, ψ3 is a first-degree polynomial in every triangle and supp ψ3 = inn ∪i∈{2,3,6,5} △(i):

ψ3(x) =



1

max(0, 1)
(0 · λ△(2),3(x)+0 · λ△(3),3(x)+0 · λ△(6),3(x)+0 · λ△(5),3(x))=0, if x ∈ inn T0,

1

max(0, 1)
(0 · λ△(2),3(x)+0 · λ△(3),3(x)+0 · λ△(6),3(x)+0 · λ△(5),3(x))=0, if x ∈ inn T1,

1

max(1, 1)
(1 · λ△(2),3(x)+0 · λ△(3),3(x)+0 · λ△(6),3(x)+0 · λ△(5),3(x))=λ△(2),3(x), if x ∈ inn T2,

1

max(1, 1)
(0 · λ△(2),3(x)+1 · λ△(3),3(x)+0 · λ△(6),3(x)+0 · λ△(5),3(x))=λ△(3),3(x), if x ∈ inn T3,

1

max(0, 1)
(0 · λ△(2),3(x)+0 · λ△(3),3(x)+0 · λ△(6),3(x)+0 · λ△(5),3(x))=0, if x ∈ inn T4,

1

max(1, 1)
(0 · λ△(2),3(x)+0 · λ△(3),3(x)+0 · λ△(6),3(x)+1 · λ△(5),3(x))=λ△(5),3(x), if x ∈ inn T5,

1

max(1, 1)
(0 · λ△(2),3(x)+0 · λ△(3),3(x)+1 · λ△(6),3(x)+0 · λ△(5),3(x))=λ△(6),3(x), if x ∈ inn T6,

Finally, since ψ3 is continuous in all nodes and first-degree in all triangles, it is globally continuous.

D VISUALIZATION OF MESH REFINEMENT

In this work, we utilize the triangle mesh for constructing P1(Rd) Lagrange basis. As the mesh is
refined, each simplex will contain the same number of points, so Algorithm 1 is an equal-frequency
binning method in d-dimensional space.
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(Fig. 7, left) depicts a mesh variety during the iterations of Algorithm 1. In the coarse mesh, sim-
plices containing more points will be refined, and simplies containing fewer points will be retained.
When we detect that the number of points (training input data) contained in all simplexes is not
much different, the mesh will stop being refined.

Figure 7: Left - Each triangle represents a 2-dimensional simplex, with increasing degrees of free-
dom indicating higher levels of refinement. Discrete points denote the raw data. Right - V-cycle
transforms a uniform mesh into a multiscale mesh by inspecting residuals, redistributing nodes from
flat regions to improve the mesh’s representation capacity.

E ADDITIONAL EXPERIMENTS AND APPLICATIONS

E.1 REGRESSION

As mentioned earlier, neural networks often struggle to fit multi-frequency datasets effectively.
Therefore, our primary focus is comparing the LagEncoder-based model with traditional regres-
sors. To evaluate the effectiveness and generalization of the LagEncoder-based model, we have
devised four diverse datasets, each generated from distinct probability distributions:

1. A1: Generated from the distribution {(x, y)|X ∼ U(−π, π), Y ∼ N (sinx, 15 cos
2 x)},

with 1000 training examples and 200 test examples. The LagEncoder-based model was
trained with a learning rate of 0.1.

2. B1: Generated from the distribution {(x, y)| 1X ∼ U(0.02, 1.0), Y ∼ N (sin 1
x , 0.01)}, with

1000 training examples and 200 test examples. We trained the LagEncoder-based model
with a learning rate of 0.9.

3. A2: Generated from the distribution {(x, y)|Xi ∼ U(−π, π), Yi ∼ N (sinxi,
1
10 cos

2 xi)

, Y = 1
2 (Y1 + Y2)}, with 7,500 training examples and 1,500 test examples. The

LagEncoder-based model was trained with a learning rate of 0.1.
4. B2: Generated from the distribution {(x, y)| 1

Xi
∼ U(0.05, 0.5), Yi ∼ N (sin 1

xi
, 0.01), Y

= 1
2 (Y1 + Y2)}, with 50,000 training examples and 10,000 test examples. The training

utilized a learning rate of 0.9.

Table 2 displays the coefficient of determination (R2) scores for the LagEncoder-based model and
traditional regressors (Thiel, 1950; Cantzler, 1981; Zhang, 2004; Hilt & Seegrist, 1977; Stone, 1974;
Jain et al., 2018; Murphy, 2012; Platt et al., 1999; Friedman, 2001; Breiman, 2001) across fitting
the four datasets. The LagEncoder-based model consistently achieves high R2 scores across all test
sets, demonstrating the effectiveness of the InterpolationNet on both high-noise and multi-frequency
datasets. Furthermore, the minimal gap between training and test set evaluations underscores the
robustness of the LagEncoder-based model, indicating its capability of generalization.

E.2 FITTING HIGH-NOISE DATASET

In this section, we conduct the LagEncoder-based model on fitting the dataset A = {(x, y)|X ∼
U(−4, 4), Y ∼ N (sinx, 0.2 cos2 x)}. A comprises 6000 examples, with 5000 for training and
1000 for testing. Fig. 8 shows the training progress.
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METHOD A1 B1 A2 B2

OLS Linear 0.037 0.042 0.963 0.951 0.085 0.092 0.984 0.984
Theil-Sen -44.7 -54.4 0.958 0.946 -0.41 -3.81 0.982 0.982
RANSAC -1.21 -1.43 0.963 0.951 -27.0 -27.1 0.983 0.983
Huber 0.036 0.041 0.962 0.949 0.085 0.092 0.984 0.984
Ridge 0.031 0.038 0.963 0.951 0.055 0.061 0.984 0.984
RidgeCV 0.037 0.042 0.963 0.951 0.085 0.092 0.984 0.984
SGD 0.009 0.01 0.962 0.95 0.005 0.004 0.983 0.983
KRR 0.0036 0.04 0.97 0.962 0.056 0.051 0.993 0.992
SVR 0.11 0.101 0.97 0.962 0.29 0.308 0.992 0.992
Gradient Boosting 0.964 0.962 0.98 0.96 0.989 0.988 0.992 0.99
Random Forests 1.0 0.999 0.995 0.945 1.0 0.999 0.999 0.99
Voting 0.852 0.852 0.942 0.917 0.869 0.868 0.951 0.946
Net 1.0 1.0 0.971 0.963 0.999 0.999 0.992 0.992

Table 2: A comprehensive comparison between the LagEncoder-based model and traditional re-
gressors. The left half of each paired column displays the training R2 score, while the right half
showcases the corresponding test R2 score.

(a) epoch=0, num simplices=1 (b) epoch=0, num simplices=32 (c) epoch=4, num simplices=145 (d) epoch=10, num simplices=414

Figure 8: Blue dots represent the training set, while the orange curve represents the network.

E.3 FITTING MULTI-FREQUENCY DATASET

In this section, we conduct the LagEncoder-based model on fitting the dataset A = {(x, y)| 1x ∼
U(0.02, 0.5), y = sin 1

x}. A comprises 6000 examples, with 5000 for training and 1000 for testing.
Fig. 9 illustrates the training progress. Remarkably, after just 4 epochs of training, the neural
network outputs closely approximate the target values. By the 32nd epoch’s conclusion, the neural
network outputs and target values are nearly indistinguishable.

(a) epoch=0, num simplices=1 (b) epoch=0, num simplices=16 (c) epoch=0, num simplices=32 (d) epoch=0, num simplices=64

(e) epoch=2, num simplices=268 (f) epoch=4, num simplices=654 (g) epoch=9, num simplices=1423 (h) epoch=32, num simplices=2648

Figure 9: Blue dots represent the training set, while the orange curve represents the network.
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E.4 FIT A VECTOR-VALUED FUNCTION

In this instance, we utilize the LagEncoder-based model to fit spherical harmonics. Our dataset
denoted as A = {(x,y)|x = (θ, ϕ),y = (Real(Y 2

4 (θ, ϕ)), Imag(Y 2
4 (θ, ϕ))),Θ ∼ U(0, 2π),Φ ∼

U(0, π)} , comprises 48,000 examples, with 40,000 allocated for training and an additional 8,000
for testing. Fig. 10 shows the training progress.

(a) epoch=0, num simplices=2 (b) epoch=0, num simplices=68 (c) epoch=0, num simplices=372 (d) epoch=1, num simplices=850

(e) epoch=2, num simplices=1330 (f) epoch=3, num simplices=1862 (g) epoch=16, num simplices=6620 (h) epoch=32, num simplices=12160

Figure 10: In each block, the left panel represents the real part of our model output, while the right
panel represents the imaginary part of the model output.

E.5 SOLVE PDES

In this section, we utilize the LagEncoder-based model to address the following partial differential
equations (PDEs):{

∆u+ (u− β)2 = (α cosx sin y − 1)2 + 1, (x, y) ∈ Ω;

u = β, (x, y) ∈ ∂Ω.

Here, Ω = [0, 1] × [0, 1]. We construct a dataset that takes (α, β) as input data and assigns the
corresponding numerical solution of the PDEs as the target output. This dataset comprises 12,000
examples, with α randomly selected from the distribution U(−π/2, π/2) and β randomly chosen
from the distribution U(0, 2π). We then split the dataset into two parts: 10,000 for training and
2,000 for testing. Fig. 11 illustrates how well the network predicts the exact solution.

(a) epoch=0, num simplices=2 (b) epoch=0, num simplices=139 (c) epoch=1, num simplices=628 (d) epoch=3, num simplices=962

Figure 11: Residual - The gap between the exact solution and the model output.
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