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ABSTRACT

Despite the significant advancements in Text-to-SQL (Text2SQL) facilitated by
large language models (LLMs), the latest state-of-the-art techniques are still
trapped in the in-context learning of closed-source LLMs (e.g., GPT-4), which
limits their applicability in open scenarios. To address this challenge, we propose
a novel RObust mUltitask Tuning and collaboration mEthod (ROUTE) to improve
the comprehensive capabilities of open-source LLMs for Text2SQL, thereby pro-
viding a more practical solution. Our approach begins with multi-task supervised
fine-tuning (SFT) using various synthetic training data related to SQL genera-
tion. Unlike existing SFT-based Text2SQL methods, we introduced several ad-
ditional SFT tasks, including schema linking, noise correction, and continuation
writing. Engaging in a variety of SQL generation tasks enhances the model’s
understanding of SQL syntax and improves its ability to generate high-quality
SQL queries. Additionally, inspired by the collaborative modes of LLM agents,
we introduce a Multitask Collaboration Prompting (MCP) strategy. This strat-
egy leverages collaboration across several SQL-related tasks to reduce halluci-
nations during SQL generation, thereby maximizing the potential of enhancing
Text2SQL performance through explicit multitask capabilities. Extensive exper-
iments and in-depth analyses have been performed on eight open-source LLMs
and five widely-used benchmarks. The results demonstrate that our proposal out-
performs the latest Text2SQL methods and yields leading performance.

1 INTRODUCTION

Text2SQL has emerged as a popular and practical technology for question answering based on large-
scale databases, serving as a crucial link between natural language and database systems (Zhang
et al., 2024). Recently, Large Language Models (LLMs) have proven to be an effective solu-
tion in Text2SQL (Pourreza & Rafiei, 2024a). Unlike pioneer works (Katsogiannis-Meimarakis
& Koutrika, 2021; Xiao et al., 2016; Bogin et al., 2019; Li et al., 2023a;b; Gu et al., 2023), LLM-
based methods (Pourreza & Rafiei, 2024a; Gao et al., 2024; Wang et al., 2023) primarily develop
effective prompt engineering techniques, e.g., in-context learning, to motivate LLMs to understand
the database schema and generate accurate SQL query. However, accurately aligning entities in
natural language questions and databases for SQL generation remains challenging, especially when
dealing with complex database schema or semantically complex questions (Li et al., 2024c).

To address these challenging scenarios, recent efforts (Lee et al., 2024; Talaei et al., 2024; Li et al.,
2024d) have developed various pipelines that enhance the entire SQL generation process and reduce
potential error risks. These improvements include techniques such as Schema Linking (Pourreza &
Rafiei, 2024a), Self-correction (Wang et al., 2023), Chain-of-Thought (CoT) (Tai et al., 2023), Reli-
ability Voting (Li et al., 2024d), etc. Although these methods have achieved promising results, they
often rely on closed-source models (e.g., GPT-4/4o (Achiam et al., 2023)), which can raise potential
privacy risks and incur significant overheads when deploying LLMs in practical scenarios. More-
over, while these techniques perform well on GPT-4 and other large-sized LLMs, their effectiveness
diminishes when applied to smaller open-source LLMs (refer to Table 1). This is due to the limited
capacity of smaller LLMs to understand complex instructions, resulting in lower generalizability.

An alternative involves transforming a general LLM into a specialized LLM by injecting Text2SQL-
related knowledge through pre-training or SFT (Li et al., 2024b; Yang et al., 2024b; Gu et al., 2023;
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Roziere et al., 2023). However, most training-based methods only incorporate the SQL genera-
tion task in the SFT stage, resulting in a degraded performance in other tasks that are important
for Text2SQL capability, such as schema linking. Additionally, training LLMs on a single SQL
generation task poses a substantial risk of diminishing performance in understanding instructions,
potentially reducing the model’s effectiveness in other important SQL-related tasks beyond SQL
generation (Appendix A.6). To avoid this dilemma, DTS-SQL separates the schema linking task
from Text2SQL and trains specialized LLMs for each to simplify the process (Pourreza & Rafiei,
2024b). However, this approach requires deploying two separate LLMs during the inference stage,
which introduces additional overhead and is impractical in real-world applications.

Considering the limitations of existing prompting or training methods, we propose a robust multitask
tuning and collaborative prompting framework (ROUTE) for Text2SQL generation. The motivation
is intuitive: (1) Multitask training not only enhances the model’s SQL generation capabilities but
also preserves other abilities such as schema linking. (2) Training LLM in various SQL-related tasks,
such as schema linking and noise correction, is expected to enhance the model’s understanding of
SQL syntax. (3) By employing multitask collaborative prompting, the complex Text2SQL task can
be decomposed into several simpler sub-tasks, thereby enhancing the accuracy of Text2SQL.

To achieve this goal, in the training stage, we explore a Multitask Supervised Fine-Tuning paradigm
(MSFT), which endows the LLM with the capabilities in Text2SQL (TS), Schema Linking (SL),
Noise Correction (NC) and Continuation Writing (CW). In the inference stage, we develop a Mul-
titask Collaboration Prompting (MCP) approach to selectively and incrementally generate the SQL
queries, potentially reducing the risk of hallucination in complex SQL generation.

Our contributions can be summarized as follows:

• We introduce a multitask SFT training framework, which equips the LLM with a variety of
SQL-related specialized capabilities.

• We propose a multitask collaborative prompting strategy that enables the decomposition of the
Text2SQL task into several simpler sub-tasks, leveraging specialized capabilities of LLMs.

• We conduct a thorough evaluation of recent open-source LLMs and perform extensive exper-
iments to demonstrate the effectiveness of multitask SFT and to showcase the generalization
capabilities of collaborative prompting.

2 RELATED WORK

Text-to-SQL (Li et al., 2023b; Gao et al., 2024; Pourreza & Rafiei, 2024a) aims to understand user
intent and convert natural language questions into SQL queries. Existing Text2SQL methods can be
roughly categorized into Pre-LLM and LLM-based methods. Pre-LLM approaches mainly exploit
the rule modeling (Katsogiannis-Meimarakis & Koutrika, 2021), specialized neural networks (Xiao
et al., 2016; Bogin et al., 2019) and pre-trained models (Fu et al., 2023; Li et al., 2023a;b; Gu et al.,
2023) to parse and improve SQL generation. The latter benefits from the unique emergent abilities
of LLMs to develop Text2SQL solutions, including prompt engineering (Rajkumar et al., 2022;
Gao et al., 2024; Pourreza et al., 2024; Maamari et al., 2024) and LLM fine-tuning/pre-training (Li
et al., 2024b; Pourreza & Rafiei, 2024b; Yang et al., 2024b). In this paper, we mainly focus on the
LLM-based methods.

Prompt Engineering. To unleash the potential of LLMs in the Text2SQL task, a straightforward
attempt is to design effective prompting techniques (Liu et al., 2023; Pourreza & Rafiei, 2024a; Gao
et al., 2024; Wang et al., 2023; Lee et al., 2024) to guide LLMs. Recent approaches mainly focus
on leveraging closed-source models (e.g., ChatGPT and GPT-4) to design innovative instructions
or pipelines through the techniques of chain-of-thought (Zhang et al.), LLMs’ agents (Wang et al.,
2023), question/task decomposition (Pourreza & Rafiei, 2024a), self-debugging (Wang et al., 2023;
Chen et al., 2023), schema linking (Li et al., 2024b), few-shot example selection (Gao et al., 2024),
etc. For example, DIN-SQL (Pourreza & Rafiei, 2024a) adopts multiple steps to reduce the com-
plexity of the task for an accurate SQL query. MAC-SQL (Wang et al., 2023) decomposes the
original question into several sub-questions and refiner agent to check and correct the final SQL
generation. However, these approaches come with huge inference overhead, and may no longer
be feasible for small-sized LLMs. In contrast, our method can effectively alleviate these problems
through multi-task training and collaborative prompting.
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Figure 1: Overall framework of our ROUTE. Our approach consists of two core stages, i.e., Multi-
task Supervised Fine-tuning (MSFT) and Multitask Collaboration Prompting (MCP). Different from
existing methods that only focus on unitask learning in a single LLM, our MSFT aims to empower
LLMs to handle multiple SQL-specific tasks by utilizing synthetic data for supervised fine-tuning.
MCP mainly leverages the capabilities of individual tasks for a given database and question to col-
laboratively generate accurate SQL queries. It enhances the final SQL query incrementally through
a three-step process that leverages the multitasking capabilities of LLMs. Note that TS is the abbre-
viation of Text2SQL, and the task definitions of SL, NC, and CW can be found in Section 3.1.

Fine-tuning LLMs. Although prompting with closed-source models such as GPT-4 has achieved
promising performance, the cost of inference and concerns about data privacy make it particularly
urgent to develop specialized LLMs for Text2SQL (Li et al., 2024b; Pourreza & Rafiei, 2024b; Yang
et al., 2024b). To break such limitations, CODES (Li et al., 2024b) exploits SQL-related corpus for
incremental pre-training with StarCoder (Li et al.) and designs some plug-and-play utils to enhance
Text2SQL performance on several benchmarks. DTS-SQL (Pourreza & Rafiei, 2024b) performs
supervised fine-tuning (SFT) with a specialized model for schema linking to reduce complexity
and improve performance. Recently, SENSE (Yang et al., 2024b) enhanced the preference of LLMs
for correct SQL answers by synthesizing strong data and performing Direct Preference Optimization
(DPO) (Rafailov et al., 2024) on weak data from weak LLMs. In this paper, we propose to aggregate
multiple tasks to enhance the comprehensive SQL-related capabilities and then employ multitask
collaboration to minimize potential risks in schema linking errors or SQL clause errors.

3 METHODOLOGY

In this section, we will delve into our proposed method, Robust Multitask Tuning (ROUTE), de-
signed to enhance SQL generation capabilities. As shown in Figure 1, ROUTE consists of two
core stages, i.e., Multitask Supervised Fine-Tuning (MSFT) and Multitask Collaboration Prompting
(MCP) for SQL Generation. In the following, we first show the notations and definitions used in this
work in Section 3.1, then introduce the details of our ROUTE in Sections 3.2 and 3.3 for Text2SQL.

3.1 NOTIONS AND PROBLEM FORMULATION

Given an instructional Text2SQL dataset D = {(di, qi, si)}Ni=1, where di is a SQL database, qi is a
natural language question that may be accompanied by a question hint, and si is a ground-truth SQL
query, the purpose of Text2SQL is to exploit an LLM(M) to generate a SQL query s∗i based on a
prompt constructed by di and qi, and the execution results of predicted SQL query are consistent
with those of the ground-truth SQL query si. In this paper, in addition to the standard Text2SQL
task, our approach incorporates three additional SQL-related tasks in the SFT and SQL generation
stages, including schema linking, noise correction, and continuation writing, as shown in Figure 2.
All these tasks are defined as follows:

(1) Text-to-SQL (Text2SQL, TS) aims to generate a SQL query (s∗i ) based on a prompt constructed
by the database (di) and question (qi), and the execution results of s∗i are consistent with those
of its ground-truth SQL query (si). The function of prompt formatting based on the database
and question is represented as σt(di, qi).

(2) Schema Linking (SL) aims to identify relevant tables and columns in the database (di) for
the given question (qi), thus avoiding verbose information in the prompt to reduce complexity,
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Tables: 
CREATE TABLE movies(⋯);
CREATE TABLE users(⋯); 
CREATE TABLE ratings(⋯); 

Rows: 
‘movies’: [row11, row12, ⋯]
‘users’: [row21, row22, ⋯]
‘ratings’: [row31, row32, ⋯]

Database (𝑑)

Question: 
What is the average number of 
Mubi users who love movies 
directed by Stanley Kubrick?

Question Hint: 
average = AVG (movie_popul-
arity); number of Mubi users 
who loves the movie refers to 
movie_popularity;

Question (𝑞)

Simplified  ( ሚ𝑑)

𝜎𝑠 𝑑, 𝑞
movies: 
movie_popularity
director_name

Schema Linking

Noise Correction

Old: Ƹ𝑠 → New: ҧ𝑠
SELECT AVG(movie_popularity) FROM 

SELECT AVG(movie_popularity) FROM movies 

WHERE director_name = 'Stanley Kubrick’;

𝜎𝑡 𝑑, 𝑞

Text-to-SQL

SQL (𝑠*)

𝜎𝑛 𝑑, 𝑞, 𝑠∗

True No operation

False SQL ( ǁ𝑠)

𝜎𝑐 𝑑, 𝑞, Ƹ𝑠

Continu. Writing

LLMs

Figure 2: Illustration of all SQL-related tasks involved in our ROUTE. These tasks are based on a
given database and user question. We form the prompt for each task by extracting a schema (table)
description, a few rows of examples from the database, and the given question (possibly with a hint).

which has been proven to improve Text2SQL performance by recent studies (Pourreza & Rafiei,
2024b;a). The function of prompt formatting is represented as σs(di, qi).

(3) Noise Correction (NC) is required to determine whether the execution results of the predicted
SQL query (s∗i ) can correctly answer the question (qi) based on the database di. If not, LLM
(M) will be asked to provide a revised SQL query (s̃i). The function of prompt formatting is
represented as σn(di, qi, s

∗
i ).

(4) Continuation Writing (CW) is another strategy to refine SQL. Given an incomplete SQL query
(ŝi), LLM (M) is required to continue writing it into a complete and valid SQL query (s̄i)
whose execution results can correctly answer the question (qi). Likewise, the function of
prompt formatting can be represented as σc(di, qi, ŝi).

From the task definitions provided, it is evident that the tasks of TS and NC have the potential
to directly enhance the quality of the SQL queries, as they are directly related to SQL genera-
tions. Empirical evidence from previous works (Pourreza & Rafiei, 2024a; Lee et al., 2024) has
also demonstrated that SL can significantly reduce prompt complexity by simplifying database in-
formation, thereby improving performance. In addition, we define a new task named Continuation
Writing (CW), which indirectly contributes to the final SQL generation. The motivation of Continu-
ation Writing (CW) stems from the fact that LLMs possess inherent continuation capabilities, which
make it easier than requiring the model to generate complete SQL queries. To unleash the potential
of these tasks, in this paper, we first enhance the specialized capabilities of LLMs by aggregating
multiple tasks for supervised fine-tuning. Then, we exploit the collaboration of multiple tasks to
reduce potential risks in schema linking errors or SQL clause errors during SQL generation, thus
further improving performance. Note that the prompt templates shown in Figure 2 for all the above
tasks can be found in Appendix A.11.

3.2 MULTITASK SUPERVISED FINE-TUNING

Existing SFT-based methods (Li et al., 2024b; Yang et al., 2024b) mainly focus on the task of
Text2SQL to improve final performance. However, previous prompting-based methods have shown
that SQL-related tasks can also effectively improve performance. Unfortunately, due to the lack
of specialized pre-training or instruction fine-tuning for these related tasks, it is difficult for open-
source LLMs to complete these tasks with high accuracy. In this section, we present the details of
our Multitask Supervised Fine-tuning (MSFT) on the dataset D that combines training sets from two
wide-used cross-domain datasets, i.e., SPIDER (Yu et al., 2018) and BIRD (Li et al., 2024c).

Noisy correspondence filtering. Recent empirical evidence (Wretblad et al., 2024; Wretblad &
Gordh Riseby, 2024) indicates that even carefully annotated Text2SQL datasets exhibit semantic
inconsistencies between the given question and the ground-truth SQL query, as shown in Figure 3,
which we call noisy correspondences. It is widely recognized that noise remains a primary factor
contributing to hallucinations in existing LLMs. To mitigate this, we fine-tuned the selected LLM
(Llama3-8B) to serve as a noise discriminator, specifically designed to detect potential noise in
the corpus. To construct corresponding SFT data, we construct a positive discriminant example
⟨σn(di, qi, si), Apos⟩ and a negative discriminant example ⟨σn(di, qi, s

′
i), Aneg(si)⟩ for each Text-

SQL pair, where si is the ground-truth SQL query and Apos/Aneg means the affirmative/negative
answer, i.e., Apos: ‘The execution results of the SQL query can correctly answer the question.’;
Aneg(si): ‘The execution results of the SQL query cannot correctly answer the question. The correct
SQL query should be: {si}’.
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Example 1:
Q1: What is the number of inhabitants and income of geographic 
identifier 239?
A1: SELECT INHABITANTS_K FROM Demog WHERE GEOID = 239; 
R1: SELECT INHABITANTS_K, INCOME_K FROM Demog WHERE 
GEOID = 239;

Example 2:
Q2: List the geographic id of places where the income is above 
average.
A2: SELECT AVG(INCOME_K) FROM Demog;
R2: SELECT GEOID FROM Demog WHERE INCOME_K > ( SELECT      
AVG(INCOME_K) FROM Demog );

Figure 3: The examples of noisy pairs in the BIRD
training set. R1 and R2 are the corrected SQL
queries. More noisy examples can be found in Ap-
pendix A.12.

To obtain negative SQL examples for the
construction of Aneg, we employ open-source
LLMs Qwen2-7B and Llama3-8B to generate
all SQL responses for the questions in D in a
zero-shot manner and then compare the execu-
tion results of each predicted SQL query with
those of the ground-truth SQL query. If they do
not match, we view the predicted SQL query
as a negative example (s′i). The goal is consis-
tent with the defined task of NC shown in Sec-
tion 3.1. In addition, to enrich the diversity of
SFT data, we artificially and randomly intro-
duce five types of errors in ground-truth SQL
queries, including schema linking errors, nest-
ing errors, GROUP BY errors, JOIN errors, and
symbol errors. See Appendix A.7 for more details. Then, we fine-tune a Llama3-8B model through
a standard SFT process, and finally, we perform inference on D to identify and filter noise, achieving
self-purification of the training data set. For convenience, we represent the purified data as D̃.

Synthesizing data for MSFT. Our MSFT consists of one major task (Text2SQL) and three minor
tasks defined in Section 3.1, namely SL, NC, and CW, to empower LLMs with specialized capabili-
ties. To this end, we need to synthesize or construct SFT datasets from D̃ for each specific task.

(1) For the SFT data of Text2SQL task, we utilize the defined function σt to construct the Prompt
and the ground-truth SQL query serves the Response. The SFT data constructed for Text2SQL is
denoted as Dt = {σt(di, qi), si}Nt

i=1, where Nt is the corresponding data size.

(2) For the SFT data of schema linking task, we utilize the ground-truth SQL query to exact the
tables and columns of the corresponding database as the Response, which is denoted as f(si, di)
and f is the parsing function. If there is a COUNT(*) statement, we only retain the primary keys of
the corresponding table. We represent the dataset as Ds = {σt(di, qi), f(si, di)}Ns

i=1.

(3) For the SFT data of noise correction task, the synthesis and construction of the data are con-
sistent with that of the dedicated discriminator mentioned above, including some positive exam-
ples and some corresponding negative examples. For convenience, we unify the expression as
Dn = {σn(di, qi, si), Apos}Np

i=1
∪ {σn(di, qi, s

′
i), Aneg(si)}Nn

i=1
, where Np and Nn are the numbers

of positive and negative examples, respectively.

(4) For the SFT data of continuation writing task, we construct the Prompt by truncating the
ground-truth SQL query from a random position, and the corresponding ground-truth SQL query
is used as the Response. Likewise, the SFT data constructed for CW is denoted as Dc =
{σt(di, qi, ŝi), si}Nc

i=1, where Nc is the corresponding data size and ŝi is the truncated SQL query.

Currently, our multitask supervised fine-tuning (MSFT) dataset is defined as DM = Dt∪Ds∪Dn∪
Dc. We will then proceed to perform SFT to enable LLMs to handle these tasks explicitly.

Fine-tuning LLMs through MSFT. Given above MSFT data DM , wherein the input prompt and
target response generated are represented x and y for convenience, the supervised fine-tuning for
specialized LLMs can be formulated as maximizing the log-likelihood objective:

E(x,y)∼DM

[
T∑

t=1

log pM(yt|y1:t−1,x)

]
, (1)

where T is the sequence length of y. After completing the MSFT stage, we can obtain a specialized
LLM that is capable of handling various SQL-related tasks, which allows us to perform multitask
collaboration to improve final SQL generation.

3.3 MULTITASK COLLABORATION PROMPTING

To fully utilize these specialized capabilities of LLMs, we develop a Multitask Collaboration
Prompting (MCP) method to reduce potential risks in schema linking errors or SQL clause errors in
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SQL generation as shown in Figure 1-(b). Our MCP consists of three core steps corresponding to
the defined task in Section 3.1.

First, to streamline the redundant information in the prompt, we propose an enhanced schema link-
ing strategy, which leverages the schema linking capability of LLMs to identify tables and columns
relevant to solving the user question, complemented by the pseudo-SQL query (Li et al., 2024d)
to simplify the database. Given a database di and a user question qi, the pseudo-SQL refers to
the intermediate SQL query generated in advance using the complete schema information, i.e.,
M(σt(di, qi), di). The final simplified database d̃i can be represented as:

d̃i = M(σs(di, qi)) ⊎ f(M(σt(di, qi), di), (2)

where f is the parsing function to extract the tables and columns from SQL queries through fuzzy
matching and ⊎ denotes the operation defined for merging tables and columns. Such a merger oper-
ation helps to decrease the likelihood of missing potentially related entities (tables or columns) and
maximize the information relevant to the question, thereby reducing the potential risks in schema
linking errors. After obtaining the tables and columns by schema linking, we conduct SQL gener-
ation by s∗i = M(σt(d̃i, qi)) to obtain an intermediate SQL query. Then, to explicitly identify the
incorrect SQL queries, we utilize LLMs to check them by combing σn(di, qi, s

∗) with the exception
information ei raised by a SQL executor (SQLer(di, s

∗)), i.e., M(σn(di, qi, s
∗, ei)). Note that ei

is empty if the SQL query is executed successfully. If the LLM shows that s∗i cannot answer qi
accurately, we take the corrected SQL s̃i and check s̃i using the SQL executor (SQLer(di, s̃i)). If it
executes successfully, replace s∗ with s̃i.

Finally, we present a novel strategy stemming from our observations of LLMs on SQL queries after
continuation writing. We discovered that continuation writing of a given SQL piece by LLMs can
enhance the quality of the generated SQL. In view of this finding, we employ LLMs to continue
writing truncated SQL queries to refine and improve complex SQL queries. To achieve this, we
categorize the difficulty of the generated SQL query as follows: Simple: involving only one table,
Medium: involving two tables, and Challenging: involving more than two tables. For ease of pre-
sentation, we define a difficulty evaluation function h(si, di) ∈ {1, 2, 3}, where 1 ∼ 3 correspond
to three hardness levels. For all Challenging SQL queries, we conduct continuation writing on the
incomplete SQL queries started with ‘SELECT’ for further refinement. To enhance the clarity of our
MCP, we offer a detailed explanation of the process in Appendix A.9.

4 EXPERIMENTS

4.1 EXPERIMENT SETTINGS

Benchmarks. To evaluate our method, we conduct extensive experiments on five benchmarks to
verify the effectiveness of our method. These benchmark includes two widely-used cross-domain
benchmarks, i.e., SPIDER (Yu et al., 2018) and BIRD (Li et al., 2024c), and three robust benchmarks
derived from SPIDER, i.e., SPIDER-SYN (Gan et al., 2021a), SPIDER-DK (Gan et al., 2021b), and
SPIDER-Realistic (Deng et al., 2020). SPIDER consists of 7,000 Text-SQL pairs in the training set,
1,034 pairs in the development set, and 2,147 pairs in the test set, which covers nearly 200 databases
and 138 domains. BIRD is a recently proposed benchmark including 9,428, 1,534, and 1,789 pairs
in training, development, and test sets, respectively. Compared with SPIDER, BIRD contains more
complex databases, more difficult questions, and external knowledge, making it more challenging.
For the derived variants, SPIDER-SYN replaces some keywords in the questions in the SPIDER
dev set with synonyms. SPIDER-DK introduces some domain knowledge reasoning challenges,
while SPIDER-Realistic removes explicit mentions of column names in the SPIDER development
set. These variants all simulate real-world scenarios for a more comprehensive evaluation.

Evaluation Metrics. In our experiments, following previous works (Li et al., 2024b; Yang et al.,
2024b), we use the execution accuracy (EX) and test-suite accuracy (TS) to evaluate the performance
of Text2SQL on SPIDER and its variant benchmarks. More specifically, except for being unable to
report TS on the SPIDER-DK and SPIDER test set, we report EX and TS on all others. For BIRD,
following its official settings, we report EX and an indicator called Valid Efficiency Score(VES) that
considers execution efficiency to evaluate performance. Note that for all metrics, higher is better.
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Table 1: Performance comparison on SPIDER and BIRD benchmarks. The results of re-evaluation
using the open-source code repository are marked with ‘†’. In groups of open-source LLMs, the best
results are highlighted in bold and the second-best results are in underlined.

Methods SPIDER BIRD

Dev-EX Dev-TS Test-EX Dev-EX Dev-VES

Prompting with GPT-4
GPT-4 (Achiam et al., 2023) 72.9 64.9 - 46.4 49.8
DIN-SQL + GPT-4 (Pourreza & Rafiei, 2024a) 82.8 74.2 85.3 50.7 58.8
DAIL-SQL + GPT-4 (Gao et al., 2024) 83.5 76.2 86.6 54.8 56.1
MAC-SQL + GPT-4 (Wang et al., 2023) 86.8 - 82.8 59.4 66.2
MCS-SQL + GPT-4 (Lee et al., 2024) 89.5 - 89.6 63.4 64.8

Prompting with Open-Source LLMs
Mistral-7b (Jiang et al., 2023) 56.8 47.3 60.1 22.5 27.8
Llama3-8B (Touvron et al., 2023) 69.3 58.4 69.1 32.1 31.6
Qwen2.5-7B (Yang et al., 2024a) 72.5 64.0 75.9 41.1 42.0
Qwen2.5-14B (Yang et al., 2024a) 76.9 66.3 78.4 48.4 49.2
DIN-SQL + Llama3-8B 48.7 39.3 47.4 20.4 24.6
DIN-SQL + Qwen2.5-7B 72.1 61.2 71.1 30.1 32.4
MAC-SQL + Llama3-8B 64.3 52.8 65.2 40.7 40.8
MAC-SQL + Qwen2.5-7B 71.7 61.9 72.9 46.7 49.8
Ours: MCP + Llama3-8B 75.0 63.4 72.0 42.7 44.8
Ours: MCP + Qwen2.5-7B 78.3 67.2 78.7 49.7 52.8
Ours: MCP + Qwen2.5-14B 80.0 67.3 80.6 56.3 59.0

Fine-Tuning with Open-Source LLMs
Llama3-8B + SFT (Touvron et al., 2023) 82.4 76.2 83.1 53.1 59.0
Qwen2.5-7B + SFT (Yang et al., 2024a) 80.9 75.6 51.4 53.1
DTS-SQL-7B (Pourreza & Rafiei, 2024b) 82.7† 78.4† 82.8† 55.8 60.3
CODES-7B + SFT (Li et al., 2024b) 85.4 80.3 - 57.2 58.8
CODES-15B + SFT (Li et al., 2024b) 84.9 79.4 - 58.5 56.7
SENSE-7B (Yang et al., 2024b) 83.2 81.7 83.5 51.8 -
SENSE-13B (Yang et al., 2024b) 84.1 83.5 86.6 55.5 -
Ours: ROUTE + Llama3-8B 86.0 80.3 83.9 57.3 60.1
Ours: ROUTE + Qwen2.5-7B 83.6 77.5 83.7 55.9 57.4
Ours: ROUTE + Qwen2.5-14B 87.3 80.9 87.1 60.8 65.2

Implementation Details. We choose the popular LLMs Llama3-8B-Instruct (Touvron et al., 2023)
and Qwen2.5-7B/14B-Instruct (Team, 2024) as our investigated models. We use the Llama-Factory
framework (Zheng et al., 2024) to conduct SFT and MSFT for reproducibility. We conduct exper-
iments on 8×A100 GPUs with a batch size of 64. LLMs are fine-tuned for two epochs using the
AdamW optimizer with the learning rate of 1e-5 that decayed to 0 at the end of training by a cosine
scheduler. During inference, the temperature is set to 0.01 to ensure reproducibility.

Compared Baselines. Our baselines can be categorized into three groups, i.e., the prompting meth-
ods with GPT-4, the prompting methods with open-source LLMs, and fine-tuning-based methods
with open-source LLMs. The first group includes DIN-SQL (Pourreza & Rafiei, 2024a), MAC-
SQL (Wang et al., 2023), DAIL-SQL (Gao et al., 2024), MCS-SQL (Lee et al., 2024), and the
corresponding closed-source LLM GPT-4 (Achiam et al., 2023). For the baselines with open-source
LLMs, we choose some popular LLMs and report the zero-shot performance. Besides, we also ap-
ply the prompting method, i.e., DIN-SQL, and MAC-SQL, to Llama3 (Touvron et al., 2023) and
Qwen2.5 (Team, 2024) to explore the robustness. For the last group, it is represented by special-
ized LLMs, including DTS-SQL (Pourreza & Rafiei, 2024a), CODES (Li et al., 2024b), SENSE (Yang
et al., 2024b), and the base LLMs fine-tuned on the SPIDER and BIRD training sets. To be fair, we
re-evaluate the performance of some of the baselines using the open-source code repositories.

4.2 COMPARISON RESULTS

Results on SPIDER and BIRD. In Table 1, we report the performance of our method and baselines
on the SPIDER development set, test set, and BIRD development set. Due to time limitations, we
are unable to provide the results of our ROUTE and MCP on the BIRD test set. From the results, we
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can see that the prompting-based baselines achieve promising performance with the help of GPT-4,
however, their effectiveness is obviously limited in the small-sized open-source LLMs. In contrast,
our MCP effectively improves the performance of these small-sized LLMs, e.g., MCP brings more
than 5% absolute performance improvement to Qwen2.5-7B on the SPIDER development set. For
the fine-tuning group, our ROUTE has achieved the best results in most metrics among the fine-
tuning-based methods. Especially on the BIRD dataset, our method (14B) surpasses some existing
prompting-based methods (e.g., DIN-SQL, DAIL-SQL, and MAC-SQL) with an EX score of 60.8,
greatly narrowing the gap with existing methods using GPT-4.

Table 2: Performance on SPIDER-variant bench-
marks. The best results are highlighted in bold.

Methods SYN Realistic DK Avg.EX TS EX TS EX

Llama3-8B 60.3 47.1 68.5 50.8 58.3 57.0
+ SFT 75.3 68.7 76.8 69.7 72.0 72.5
+ SFT + MCP 76.1 69.4 78.0 70.7 73.5 73.5
+ MSFT 72.1 65.1 77.0 68.1 72.3 70.9
+ ROUTE 77.4 70.2 80.9 72.6 74.6 75.1

Results on SPIDER-variants. Table 5 shows
the performance on the benchmarks derived
from SPIDER. Except for SPIDER-SYN, our
MSFT can slightly improve performance on
other variant benchmarks. Despite this, our
ROUTE can perform better by inspiring the
multi-task capabilities of LLMs with the help
of MCP, thus improving performance. In addi-
tion, MCP can still have performance gains for
the SFT model, demonstrating the necessity of
conducting multitask collaboration.

4.3 ABLATION AND ANALYTIC STUDIES

In this section, we first conduct a comprehensive ablation study on all benchmarks to explore the
impact of each key component, verifying the effectiveness of our method. Furthermore, we conduct
in-depth analyses to explore the transferability and upper-bound performance of our approach. If
not stated, all results are performed on Llama3-8B-Instruct and evaluated on the SPIDER and BIRD
development sets using the EX score.

Table 3: The ablation results (EX) on SPIDER and
BIRD development sets.

No. SFT MSFT MCP NF SPIDER BIRD

#1 ✓ ✓ ✓ ✓ 86.0 57.3
#2 ✓ ✓ ✓ 83.6 53.6
#3 ✓ ✓ ✓ 84.5 57.4
#4 ✓ ✓ 83.3 53.1
#5 ✓ 82.4 53.1

#6 ✓ ✓ ✓ 83.5 56.1
#7 ✓ ✓ 83.1 52.9
#8 ✓ ✓ 83.8 56.0
#9 ✓ 75.0 42.7

#10 69.3 32.1

Table 4: The ablation results (EX) on multi-
task collaboration prompting.

No. SL NC CW SPIDER BIRD

#1 ✓ ✓ ✓ 86.0 57.3
#2 ✓ 85.8 56.0
#3 ✓ 83.9 54.7
#4 ✓ 83.8 54.0
#5 83.6 53.6

#6 ✓ ✓ ✓ 75.0 42.7
#7 ✓ 73.3 36.8
#8 ✓ 72.1 38.1
#9 ✓ 71.3 36.4

#10 69.3 32.1

Study on ROUTE. Table 3 reports the results of ablation experiments of our ROUTE, where ‘✓’
means that the item is adopted and ‘NF’ means noisy correspondence filtering introduced in Sec-
tion 3.2. From the results, we have the following observations. First, our MCP can effectively
improve the performance of LLMs before and after MSFT, i.e., #10: 69.3/32.1 to #9: 75.0/42.7
and #2: 83.6/53.6 to #1: 86.0/57.3, which demonstrates its effectiveness. Second, applying noisy
correspondence filtering significantly improves the performance on SPIDER, i.e., 84.5 vs. 86.0, but
slightly degrades the performance on BIRD, which indicates that the hard/noisy samples in BIRD
hinder the LLM from learning the correct patterns for easy samples. This also suggests that reducing
the noise degree and balancing the hard and easy examples in the SFT data is still important for the
LLM to learn the correct SQL-related knowledge. However, in general, the full version of ROUTE
achieved the best performance, verifying the importance and effectiveness of each design.

Study on MCP. In our ROUTE, MCP can stimulate and give full play to the advantages of mul-
titasking collaboration for accurate SQL generation. To this end, we conduct detailed ablation
experiments on MCP to explore the impact of each task. The experimental results are presented
in Table 4, where #1∼#5 are for the LLM after MSFT and #6∼#10 are for the base LLM. We can
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see that although SL plays a dominant role in performance improvement, it still cannot achieve
optimal performance without the full MCP, which shows the complementarity of multiple tasks.

Study on Enhanced Schema Linking. As mentioned above, SL plays a leading role in the perfor-
mance improvement of MCP, which is attributed to the fact that our SL adopts a fusion enhancement
strategy, i.e., the combination of the predicted schema linking of LLMs (SLσs ) and the extracted en-
tities from a pseudo-SQL query (SLσt ). The experimental results are shown in Table 5, where the
first four rows are the results of Llama3-8B after MSFT, and the last four rows are the results of the
base model. From the results, SLσt

is better than SLσs
, as proven by Li et al. (2024d). However,

SLσt
can easily discard some seemingly irrelevant but important database entities, thereby gener-

ating incorrect SQL queries for degraded performance (e.g., 69.3 to 64.5 on SPIDER development
set). Therefore, combining SLσs

and SLσt
can effectively alleviate the issue and achieve a better

and more promising performance. In addition, to further understand the performance of our schema
linking module, we provide more results and discussions in Appendix A.4.

Table 5: The ablation results (EX)
on enhanced schema linking.

SLσs SLσt SPIDER BIRD

✓ ✓ 85.8 56.0
✓ 84.1 52.7

✓ 85.0 54.5
83.3 53.1

✓ ✓ 73.3 36.8
✓ 64.5 30.4

✓ 73.1 35.4
69.3 32.1

Study on Transferability. To explore the transferability of our
ROUTE across different LLMs and different model sizes, we
selected several open-source LLMs for experiments, i.e., Gen-
eral LLMs: Llama3-8B/70B (Touvron et al., 2023), Qwen2-
7B (Yang et al., 2024a), Qwen2.5-7B/72B (Team, 2024); Code
Specialized LLMs: CodeLlama-7B (Roziere et al., 2023),
Deepseek-Coder-7B (Guo et al., 2024), and Qwen2.5-Coder-
7B (Team, 2024). Due to training costs, we only considered
MSFT on the models with a size of around 7B. To explore the
transferability of our method on LLMs with different model
sizes, we only apply MCP to them for Text2SQL. From Fig-
ure 4, one can see that performing SFT on a single task only
using Text2SQL data will cause the model to lose the ability of
other tasks, resulting in poor MCP performance, while MSFT
will retain these capabilities for multitask collaboration, thereby generating more accurate SQL
queries. Even for Qwen2.5-Coder which is specially considered for SPIDER and BIRD, our scheme
still brings performance improvement. From Table 6, we can see that our MCP is not only appli-
cable to small-sized LLMs but can also improve the Text2SQL performance of LLMs with sizes
of around 70B, which shows its promising transferability on different model sizes. Especially for
the challenging dataset BIRD, the absolute improvement empowered by our MCP exceeds 6.5% on
average. This shows that our method has good transferability and generalization.

78.0
79.4

81.2
82.8

79.4 79.7

81.8 82.081.3 81.1 81.7

84.2

82.3
83.2 83.7 84.3

76.0

79.0

82.0

85.0

Qwen2-7B CodeLlama-7B Deepseek-Coder-7B Qwen2.5-Coder-7B

EX

 SFT  MSFT  SFT + Our MCP  Our ROUTE

45.9 45.6

51.2 51.2
47.9

46.3

52.1 50.750.9 50.1

55.5 54.654.1
52.2

57.0 57.8

42.0

48.0

54.0

60.0

Qwen2-7B CodeLlama-7B Deepseek-Coder-7B Qwen2.5-Coder-7B

EX

Figure 4: The transferability results on different open-source LLMs on SPIDER (the first row) and
BIRD (the second row). See Appendix A.2 for detailed results.

Study on Upper-bound Performance. In this section, we explore the upper bound performance of
our MCP and ROUTE to understand the potential of multitask collaboration. As shown in Table 7,
we define two upper bounds: the first is to use a ground truth simplified database to obtain an ideal
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schema linking, denoted as U1. The second is to use half of the ground truth SQL query as a hint
to refine the wrong or challenging SQL by continuation writing, denoted as U2. From the results,
ideal schema linking can effectively achieve accurate SQL generation, which shows that schema
linking is still an effective means to solve Text2SQL at this stage and in the future. Besides, U2 can
also significantly improve performance, which shows that continuation writing has the potential to
become another high-precision solution for Text2SQL. By combining them, our MCP and ROUTE
show amazing performance on LLMs only with around 7B size.

Table 6: The performance (EX) of various-sized
open-source LLMs.

Models ≈7B ≈70B
SPIDER BIRD SPIDER BIRD

Llama3 69.3 32.1 77.9 46.9
Llama3 + MCP 75.0 42.7 79.0 51.8

Qwen2.5 72.5 41.1 81.7 53.3
Qwen2.5 + MCP 78.3 49.7 82.3 57.1

Table 7: The upper-bound performance (EX).

Methods MCP ROUTE
SPIDER BIRD SPIDER BIRD

Llama3-8B 75.0 42.7 86.0 57.3
+ U1 79.6 49.8 87.4 69.6
+ U2 76.8 47.5 87.3 61.2
+ U1 + U2 80.2 53.3 88.8 64.2

Qwen2.5-7B 78.3 49.7 83.6 55.9
+ U1 82.2 58.9 87.3 61.5
+ U2 78.7 54.7 85.2 60.8
+ U1 + U2 83.0 60.4 88.2 64.9

5 LIMITATIONS AND BROADER IMPACTS

Although our exploration has achieved promising performance, we have to acknowledge the follow-
ing limitations. First, our solution may bring additional reasoning costs. Although some existing
LLM efficient inference frameworks can alleviate this (e.g., VLLM (Kwon et al., 2023)), we still
encourage the exploration of more efficient multitask collaboration modes. Second, from the study
on the upper bound performance, there is still a large gap between our method and the upper bound
performance, which encourages further study on synthesis data and SFT paradigms of SQL-related
tasks to understand and mitigate the biases and risks potentially brought by multitask collaboration.

6 CONCLUSION

In this paper, we study and propose a robust multitask tuning and collaboration method named
ROUTE to stimulate the potential of open-source LLM in Text2SQL, narrowing the gap with ex-
isting solutions based on closed-source LLMs, such as GPT-4. Our method minimizes the risk of
hallucination in SQL generation by explicitly learning multiple SQL-related tasks and conducting
multitask collaboration. We apply our approach to recent LLMs to demonstrate its effectiveness and
superiority on multiple benchmarks. The results show that our method has satisfactory transferabil-
ity and achieves promising execution accuracy on Text2SQL. In the future, we plan to explore more
SQL-relevant tasks, larger LLMs, and more efficient multitask collaboration frameworks for robust
Text2SQL.

7 ETHICS AND REPRODUCIBILITY STATEMENT

This paper aims to explore the possibility of improving Text2SQL performance by multitask collab-
oration based on large language models. For this purpose, we use some open-source LLMs as our
investigated models to propose solutions, which may pose potential commercial risks. We pledge
that we will only conduct academic research on these LLMs to verify the effectiveness of our pro-
posed solution and will not use them for other purposes. In addition, to ensure the reproducibility
of our research, we have made several efforts to ensure that our solution is convincing. First, we
provide details in Section 3.2 to clarify the data construction pipeline used for MSFT. In addition,
the used prompt templates are provided in Appendix A.11 to ensure reproducibility. During the
training stage, we utilized a unified fine-tuning framework, i.e., Llama-Factory, and detailed the set-
tings of core parameters in Section 4.1. During the inference stage, we recommend setting a very
low temperature of 0.01 to ensure the reproducibility of LLMs. Finally, we commit to releasing
code and synthetic data after peer review for reproducibility, thus further advancing the Text2SQL
community.
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A APPENDIX

A.1 PERFORMANCE COMPARISON WITH DIFFERENT HARDNESS

To explore a more fine-grained performance comparison, we follow previous works (Pourreza &
Rafiei, 2024a; Gao et al., 2024) and report the EX scores on development sets of SPIDER and BIRD.
From the results shown in Tables 8 and 9, the conclusion of our ROUTE’s overall performance is
consistent with that of its fine-grained performance, which verifies the superiority of our method.

Table 8: The performance (EX) comparison with different hardness on the SPIDER development
set. The best results in the fine-tuning group are highlighted in bold.

Methods Easy Medium Hard Extra All

Prompting-based methods
C3-SQL + ChatGPT (Dong et al., 2023) 92.7 85.2 77.6 62.0 82.0
DIN-SQL + GPT-4 (Pourreza & Rafiei, 2024a) 92.3 87.4 76.4 62.7 82.8
DAIL-SQL + GPT-4 (Gao et al., 2024) 91.5 89.2 77.0 60.2 83.1
DAIL-SQL + GPT-4 + Self-consistency 91.5 90.1 75.3 62.7 83.6
SuperSQL + GPT-4 (Li et al., 2024a) 94.4 91.3 83.3 68.7 87.0
MCS-SQL + GPT-4 (Lee et al., 2024) 94.0 93.5 88.5 72.9 89.5

Fine-tuning-based methods
Graphix-3B + PICARD (Li et al., 2023b) 92.3 86.3 73.6 57.2 80.9
RESDSQL-3B (Li et al., 2023a) 94.8 97.7 73.0 56.0 81.8
DTS-SQL (Pourreza & Rafiei, 2024b) 92.7 90.1 74.1 56.6 82.7
RESDSQL-3B + NatSQL (Li et al., 2023a) 94.4 87.9 77.0 66.3 84.1
CODES-7B + SFT (Li et al., 2024b) 94.8 91.0 75.3 66.9 85.4
CODES-15B + SFT (Li et al., 2024b) 95.6 90.4 78.2 61.4 84.9
Ours: ROUTE + Llama3-8B 96.0 93.0 75.3 63.3 86.0
Ours: ROUTE + Qwen2.5-7B 92.7 89.7 77.0 60.2 83.6
Ours: ROUTE + Qwen2.5-14B 94.0 93.0 81.6 68.1 87.3

Table 9: The performance (EX) comparison with different hardness on the BIRD development set.
The best results in the fine-tuning group are highlighted in bold.

Methods Simple Moderate Challenging All

Prompting-based methods
C3-SQL + ChatGPT (Dong et al., 2023) 58.9 38.5 31.9 50.2
DAIL-SQL + GPT-4 (Gao et al., 2024) 62.5 43.2 37.5 54.3
DAIL-SQL + GPT-4 + Self-consistency 63.0 45.6 43.1 55.9
SuperSQL + GPT-4 (Li et al., 2024a) 66.9 46.5 43.8 58.5
MAC-SQL + GPT-4 (Wang et al., 2023) 65.7 52.7 40.3 59.4
MCS-SQL + GPT-4 (Lee et al., 2024) 70.4 53.1 51.4 63.4

Fine-tuning-based methods
RESDSQL-3B (Li et al., 2023a) 53.5 33.3 16.7 43.9
CODES-7B + SFT (Li et al., 2024b) 64.6 46.9 40.3 57.0
CODES-15B + SFT (Li et al., 2024b) 65.8 48.8 42.4 58.5
Ours: ROUTE + Llama3-8B 64.3 49.3 36.8 57.3
Ours: ROUTE + Qwen2.5-7B 63.8 45.4 39.6 55.9
Ours: ROUTE + Qwen2.5-14B 67.7 53.1 42.4 60.9

A.2 THE RESULTS STUDIED ON TRANSFERABILITY

In this appendix, we provide detailed results of a transferability study in Table 10. Furthermore,
we compare our methods with those using the same base LLMs, i.e., SQL-Llama7B (Wang et al.,
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2023), DTS-SQL (Pourreza & Rafiei, 2024b) and SENSE (Yang et al., 2024b). The results show that
our method has good scalability on various LLMs, whether the base or code-specific ones. This is
sufficient to verify the superiority and generalization of our ROUTE.

Table 10: The performance (EX) of different open-source LLMs on SPIDER and BIRD development
sets. ♡ and ♢ are used to mark the methods using the same base LLMs.

Method SPIDER BIRD

♡ MAC-SQL + SQL-Llama7B (Wang et al., 2023) 76.3 43.9
♡ SENSE-7B (Yang et al., 2024b) 83.2 51.8
♢ DTS-SQL (Pourreza & Rafiei, 2024b) 82.7 55.8

Qwen2-7B + SFT 78.0 45.9
Qwen2-7B + SFT + MCP 81.3 50.9
Qwen2-7B + MSFT 79.4 47.9
Qwen2-7B + ROUTE 82.3 54.1

CodeLlama-7B + SFT 79.4 45.6
CodeLlama-7B + SFT + MCP 81.1 50.1
CodeLlama-7B + MSFT 79.7 46.4
♡ CodeLlama-7B + ROUTE 83.2 52.2

Deepseek-Coder-7B + SFT 81.2 51.2
Deepseek-Coder-7B + SFT + MCP 81.7 55.5
Deepseek-Coder-7B + MSFT 81.8 52.1
♢ Deepseek-Coder-7B + ROUTE 83.7 57.0

Qwen2.5-Coder-7B + SFT 82.8 51.2
Qwen2.5-Coder-7B + SFT + MCP 84.2 54.6
Qwen2.5-Coder-7B+ MSFT 82.0 50.7
Qwen2.5-Coder-7B + ROUTE 84.3 57.8

A.3 MORE COMPARISONS WITH RECENT WORKS

In this appendix, we provide more comparisons with recent works in Appendix A.3, including
CHASE-SQL (Pourreza et al., 2024), Distillery (Maamari et al., 2024), and CHESS (Talaei et al.,
2024). From the results, on SPIDER, our ROUTE + Qwen2.5-14B achieves similar performance as
CHESS based on Gimini or GPt-4/4o. This suggests that our ROUTE is an exceptional choice in
both conventional and privatized Text2SQL scenarios. On SPIDER, our ROUTE fall behind CHESS
+ proprietary by 5 point and CHASS-SQL + Gemini 1.5 by 12 point. We think this is because the
database in BIRD is much more complex and contains a large number of tables and columns in a
single database leading to a very long context in input. It is widely acknowledged that small-sized
LLMs (14B) are relatively limited in reasoning capabilities and handling long texts.

Methods SPIDER-Dev-EX BIRD-Dev-EX BIRD-Dev-VES

CHASE-SQL + Gemini 1.5 87.6 73.1 73.0
Distillery + GPT-4o - 67.2 72.9
CHESS + proprietary (GPT-4) 87.2 65.0 65.4
ROUTE + Qwen2.5-14B 87.3 60.8 65.2

Table 11: The comparisons with recent methods on SPIDER and BIRD.

A.4 PERFORMANCE ON SCHEMA LINKING

In this appendix, like (Pourreza & Rafiei, 2024b), we report the performance (Recall and Preci-
sion) of our schema linking module. The results shown in Table 12 demonstartes several important
observations:
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• After MSFT, the schema linking capability is significantly improved, especially in the ability
to select related columns.

• A higher Recall score generally leads to improved EX performance due to minor information
loss.

• While simplifying the database schema is necessary, ensuring its completeness is more crucial
for achieving enhanced performance.

SPIDER BIRD
SLσs

SLσt
EX T-R T-P C-R C-P EX T-R T-P C-R C-P

✓ ✓ 85.8 98.21 97.44 98.54 93.04 56.0 96.27 90.28 94.82 90.06
✓ 84.1 97.69 98.21 95.07 93.80 52.7 95.23 90.10 88.21 91.86

✓ 85.0 98.10 98.72 97.13 97.31 54.5 93.97 94.44 94.79 93.97
83.3 100.00 38.47 100.00 18.12 53.1 100.00 32.12 100.00 12.48

✓ ✓ 73.3 98.97 90.58 98.30 73.83 36.8 96.18 83.29 94.42 71.98
✓ 64.5 95.51 92.95 75.65 87.70 30.4 90.10 85.31 83.50 73.68

✓ 73.1 97.18 94.62 95.29 91.24 35.4 89.84 91.49 84.63 88.87
69.3 100.00 38.47 100.00 18.12 32.1 100.00 32.12 100.00 12.48

Table 12: The performance of schema linking. T-R/P means the Recall/Precision scores on table
linking and C-R/P means the Recall/Precision scores on column linking. The best Recall scores are
in bold. The first four rows are the results of the LLM after MSFT, and the last four rows are the
results of the original LLM.

A.5 THE RESULTS ON DR.SPIDER

In this appendix, we evaluate on Dr. Spider (Chang et al., 2023) to have a clearer and more compre-
hensive understanding of the advantages of our ROUTE. Dr. Spider includes 17 perturbation variants
that can comprehensively measure the effectiveness and robustness. The specific experimental re-
sults are shown in Tables 13 and 14, including the study on MSFT and on each component. In the
table, Avg.DB means the average results on DB perturbation test sets, Avg.NLQ means the average
results on NLQ perturbation test sets, Avg.SQL means the average results on SQL perturbation test
sets, and Avg.all means the average results on all test sets. From the results, the conclusions are
consistent with those on SPIDER and BIRD and each component brought performance improve-
ment, which shows that each task has an indispensable contribution to the performance. This further
verifies the advantages and robustness of ROUTE.

Avg.DB Avg.NLQ Avg.SQL Avg.all
Methods Pre∼Post Pre∼Post Pre∼Post Pre∼Post

Llama3 70.1∼54.3 70.6∼56.8 69.1∼65.5 69.9∼58.8
Llama3 + MCP 75.6∼59.1 77.0∼61.7 74.8∼72.6 75.8∼64.4
Llama3 + SFT 83.4∼66.0 83.0∼72.8 79.9∼77.6 82.1∼72.2
Llama3 + SFT + MCP 85.4∼68.0 85.3∼75.1 84.3∼81.7 85.0∼74.9
Llama3 + MSFT 83.8∼66.3 82.9∼72.5 80.0∼77.5 82.2∼72.1
Llama3 + ROUTE 86.7∼69.6 85.4∼75.8 84.5∼81.9 85.5∼75.8

Table 13: The performance on Dr.Spider benchmark. The best results are highlighted in bold.

A.6 THE IMPACT OF SINGLE TASK SFT

In this appendix, we conduct additional experiments to explore the impact of single-task SFT and
MSFT on each task. For Text-to-SQL (TS), we report zero-shot EX results on the SPIDER and BIRD
development sets. For Schema Linking (SL), we report the Recall/Precession scores of predicted
related tables and columns. For Noise Correction (NC), we reports the EX scores of SQL queries
refined with Noise Correction on the output SQLs of Llama3-8B. For Continuation Writing (CW),
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Avg.DB Avg.NLQ Avg.SQL Avg.all
No. SL NC CW Pre-Post Pre-Post Pre-Post Pre-Post

#1 ✓ ✓ ✓ 86.7∼69.6 85.4∼75.8 84.5∼81.9 85.5∼75.8
#2 ✓ 86.3∼67.9 84.6∼75.4 84.4∼82.1 85.1∼75.1
#3 ✓ 84.4∼67.7 83.7∼73.7 80.3∼78.7 82.8∼73.3
#4 ✓ 84.0∼66.6 83.0∼73.0 80.1∼78.0 82.4∼72.6
#5 83.8∼66.6 82.9∼72.5 80.0∼77.5 82.2∼72.1

Table 14: The ablation results (EX) on Dr.Spider.

we reports the EX scores of all SQL queries obtained by continuation writing on half of ground-truth
SQL queries. The specific experimental results are shown in following table, where ‘–’ means that
LLMs cannot obtain the output in the expected format due to overfitting. From the results, we can
see that although single-task SFT can improve the ability to process the corresponding task, it can
easily cause overfitting on instructions and lead to the degradation of the ability to process other
tasks (e.g., No.#2,#3,#4,#5), which is not conducive to multi-task collaboration. On the contrary,
our MSFT (No.#1) can boost the ability of each task while reducing the risk of overfitting, thus
improving the feasibility of multi-tasking collaboration.

TS SPIDER-SL BIRD-SL NC CW
No. Settings EX EX Table-R/P Column-R/P Table-R/P Column-R/P EX EX EX EX

#1 MSFT 83.6 53.6 97.69/98.21 95.07/93.8 95.23/90.1 88.21/91.86 83.4 53.4 91.1 73.9
#2 SFT with TS 83.1 52.9 – – – – – – 85.6 69.2
#3 SFT with SL – – 98.44/94.36 91.75/87.45 95.40/86.27 86.00/81.75 – – – –
#4 SFT with NC 0.1 8.7 – – – – 78.9 49.3 48.6 38.6
#5 SFT with CW 68.1 39.0 – – – – – – 89.8 70.1
#6 Llama3 w/o SFT 69.3 32.1 95.51/92.95 75.65/87.70 90.10/85.31 83.50/73.68 72.1 38.1 80.3 57.6

Table 15: The SFT impact of all tasks on each other. The results of MSFT are in bold.

A.7 DETAILS OF NOISY CORRESPONDENCE FILTERING

In this appendix, we mainly clarify some details in noisy correspondence filtering. To obtain more
diversity negative examples, we artificially introduce some errors to the ground-truth SQL queries.
Based on some recent work exploring, we focus on five types of errors, schema linking errors,
nesting errors, GROUP BY errors, JOIN errors, and symbol errors. More specifically,

• Schema linking error refers to the wrong table and column names in the SQL query. We ran-
domly introduce such errors by making typos and synonym substitutions for table or column
names.

• Nesting errors refer to the need to use nested or set operations but not using them (e.g., UNION,
UNION ALL, INTERSECT and EXCEPT). We destroy the SQL queries by randomly removing
the sub-SQLs before or after these keywords.

• JOIN errors commonly occur in that the SQL queries using JOIN operation focus on the wrong
table or column names. We introduce such errors by randomly replacing the table or column
names.

• GROUP BY errors commonly occur in that the SQL queries using GROUP BY operation focus
on the wrong column names. We introduce such errors by randomly replacing the column
names after GROUP BY.

• Symbol errors are some minor errors such as incorrect keywords, missing commas, missing
parentheses, and confusing function names (such as COUNT, MAX, MIN, etc.).

To obtain artificially constructed negative examples, we select a certain type of error according to a
certain probability and introduce it into the ground-truth SQL queries. If the SQL query does not
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meet the type of error introduced, such as no GROUP BY operation, we will randomly select other
types of errors to continue to construct negative examples.

A.8 INNOVATION AND DIFFERENCE DISCUSSION

In this appendix, we provide more discussion to further elaborate on the innovations of our ROUTE
and highlight how it differs from existing methods. The valuable insights and significant contribu-
tions of our work can be summarized as follows:

• ROUTE is among the pioneering frameworks under the context of LLMs that explores multi-
task tuning and collaborative prompting to improve Text2SQL performance.

• We have exhaustively introduced and defined three important tasks in SQL generation, demon-
starting that multi-task tuning and collaborative prompting in Schema Linking, Noise Correc-
tion and Continuation Writing significantly improve SQL generation accuracy. The additionally
introduced SQL-related tasks are well integrated during both the training and inference phases.

• We have achieved state-of-the-art performance in 7B/14B-sized LLMs on both the widely-
recognized SPIDER and BIRD benchmarks, with verified generalization and transferability
across various cross-domains benchmarks and LLMs.

We highlight the key similarities and differences between our ROUTE and other related works as
follows:

1. Multi-task Supervised Fine-tuning (MSFT): The method most comparable to our ROUTE
approach is MAC-SQL (Wang et al., 2023), which introduces multiple task agents and
demonstrates the effectiveness of fine-tuning through the use of multi-agent instructions on
CodeLlama-7B (Roziere et al., 2023).
(a) First, the defined tasks in MSFT for ROUTE differ from those in MAC-SQL. We have

introduced a new continuation writing (CW) task to further refine the challenging SQL
queries. As demonstrated in Table 15, CW holds significant potential for SQL generation.
On SPIDER development set, exploring CW task is able to achieve an impressive EX
score of 91.1.

(b) Second, in MAC-SQL, generating instruction data for SFT involves decomposing com-
plex questions into multiple sub-questions and constructing corresponding answers. In
contrast, our approach, beyond noise correction, allows for the synthesis of SFT data for
various tasks using programming functions. This makes our method more practical for
large-scale multi-task data synthesis for MSFT.

(c) Third, in terms of performance, our ROUTE is significantly outperforms MAC-SQL based
on the open-source LLM of CodeLlama-7B. The detailed results are presented in Table 10.

2. SQL-Data Synthesis: Our ROUTE involves the synthesis of SQL-related instruction-following
data, which shares similarities with the recent work SENSE (Yang et al., 2024b).
(a) First, compared to SENSE, the data synthesis pipeline of ROUTE encompasses not only

Text2SQL but also multiply other SQL-related tasks. Our approach focuses on utilizing
existing data to synthesize multi-task SFT data, thereby enhancing the capabilities of open-
source LLMs to handle various SQL-related tasks. In contrast, SENSE mainly focused on
SQL generation task, leveraging strong LLMs to increase the diversity of SQL generation
training set and synthesize preference data.

(b) Besides, our ROUTE achieves comparable performance to SENSE on the SPIDER devel-
opment set and better performance on the BIRD development set, as shown in Table 10.

3. Multi-tasking Collaboration: To exploit the potential of multi-task capabilities, we propose a
multi-task collaborative prompting strategy (MCP) to improve the final SQL generation. The
most similar works are DIN-SQL (Pourreza & Rafiei, 2024a) and MAC-SQL (Wang et al.,
2023), which both aim to reduce the complexity of the Text2SQL and improve the final perfor-
mance via self-correction.
(a) First, compared to them, our MCP efficiently integrates multiple tasks using concise

prompts across all tasks, which makes it more effective in small-sized LLMs that strug-
gle with comprehending complex instructions. As shown in the results of Table 1, the
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effectiveness of MAC-SQL and DIN-SQL is constrained by the limited capacity of small-
sized LLMs to comprehend complex instructions, while our MCP can achieve better and
impressive performance.

(b) Besides, while all three methods employ a self-correction strategy to enhance the quality
of generated SQL queries, our MCP introduces a novel continuation writing task specif-
ically designed to refine challenging SQL queries and improve the performance signifi-
cantly.

Considering the comprehensive nature of our work, which encompasses data synthesis, supervised
fine-tuning, and multi-task collaborative prompting, it is inevitable that there are some similarities
with existing work. Nevertheless, our method has offered numerous insights into the Text2SQL
and achieved promising results, which we believe are significant contributions to the Text2SQL
community.

A.9 ALGORITHM OF MCP

In this appendix, to make our MCP clearer, we describe the pipeline in detail in Algorithm 1.

Algorithm 1 The algorithm of MCP

Input: The database d, user question q, and LLM M;
// Conduct schema linking.

1: Obtain simplified database d̃ via Equation (2);
// SQL generation.

2: Generate intermediate SQL query s∗ via M(σt(d̃, q));
// Conduct noise correction.

3: Check the SQL query s∗ via M(σn(d, q, s
∗, e)).

4: Obtain the the correct SQL s̃ if M shows that s∗ is inaccurate.
5: if M shows s∗ is inaccurate and SQLer(d, s̃) is True then
6: s∗ = s̃.
7: end if

// Refine wrong or challenging SQL queries by continuation writing.
8: if SQLer(d, s∗) is False or h(s∗, d) > 2 then
9: Construct the truncated SQL query ŝ based on s∗;

10: Continue writing: s̄ = M(σc(d, q, ŝ));
11: if SQLer(d, s̄) is True then
12: s∗ = s̄;
13: end if
14: end if
Output: The final SQL query s∗.

A.10 STATISTICS OF MSFT DATA

Our MSFT data includes the main SFT data for Text2SQL and the SFT data for three other tasks.
The former consists of the SPIDER and BIRD training sets after noisy correspondence filtering (898
pairs removed), with a total of 15,530 pairs. The SFT data for other tasks are randomly selected
from the filtered dataset and 10,000 data pairs are constructed. That is to say, our MSFT data has a
total of 45,530 data pairs. Our MSFT data will be published after review to ensure anonymity.

A.11 PROMPT TEMPLATES

In this appendix, we provide the prompts of all tasks used in our pipeline as shown in Figures 5
to 8. Among these prompts, only the BIRD dataset provides question hints. Meanwhile, other infor-
mation, such as few-shot examples and execution exceptions, only provides for non-SFT models to
guide the output. The prompt used for noisy correspondence filtering is presented in Figure 9, which
is similar to the NC’s instructions (Figure 7) but does not include the terms of execution exception
to avoid LLMs focusing only on the wrong pattern instead of the discriminative pattern.
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Given the following database schema and question, your task is to write a valid SQL 
query whose execution results can accurately answer the question.

/* Database schema */
CREATE TABLE customers (CustomerID NUMBER, Segment TEXT, Currency TEXT, 
PRIMARY KEY(CustomerID, Segment, Currency)); CREATE TABLE transactions_1k 
(CustomerID NUMBER, Amount NUMBER, Price NUMBER, PRIMARY KEY(CustomerID, 
Amount, Price));

/* Sample rows of each table */
customers: [(3, 'SME', 'EUR'), (5, 'LAM', 'EUR'), (6, 'SME', 'EUR')]
transactions_1k: [(31543, 28, 672.64), (46707, 18, 430.72), (46707, 1, 121.99)]

/* Question */
Who is the top spending customer and how much is the average price per single item 
purchased by this customer? What currency was being used?

/* Question hint */
verage price per single item = price / amount 

Answer the question by a SQL query only with no explanation:

Figure 5: The prompt of Text-to-SQL.

Given the following database schema and question, your task is to extract the tables and 
columns relevant to solving the question.

/* Examples */
...few-shot examples omitted... 

/* Database schema */
CREATE TABLE customers (CustomerID NUMBER, Segment TEXT, Currency TEXT, 
PRIMARY KEY(CustomerID, Segment, Currency)); CREATE TABLE transactions_1k 
(CustomerID NUMBER, Amount NUMBER, Price NUMBER, PRIMARY KEY(CustomerID, 
Amount, Price));

/* Sample rows of each table */
customers: [(3, 'SME', 'EUR'), (5, 'LAM', 'EUR'), (6, 'SME', 'EUR')]
transactions_1k: [(31543, 28, 672.64), (46707, 18, 430.72), (46707, 1, 121.99)]

/* Question */
Who is the top spending customer and how much is the average price per single item 
purchased by this customer? What currency was being used?

/* Question hint */
verage price per single item = price / amount 

Output:

Figure 6: The prompt template of schema linking.
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Your task is to determine whether the execution results of a SQL query can answer the 
given question according to the following database schema. If the execution results 
cannot correctly answer the question, please give me the correct SQL query. 

/* Examples */
...few-shot examples omitted... 

/* Database schema */
CREATE TABLE customers (CustomerID NUMBER, Segment TEXT, Currency TEXT, 
PRIMARY KEY(CustomerID, Segment, Currency)); CREATE TABLE transactions_1k 
(CustomerID NUMBER, Amount NUMBER, Price NUMBER, PRIMARY KEY(CustomerID, 
Amount, Price));

/* Sample rows of each table */
customers: [(3, 'SME', 'EUR'), (5, 'LAM', 'EUR'), (6, 'SME', 'EUR')]
transactions_1k: [(31543, 28, 672.64), (46707, 18, 430.72), (46707, 1, 121.99)]

/* Question */
Who is the top spending customer and how much is the average price per single item 
purchased by this customer? What currency was being used?

/* Question hint */
verage price per single item = price / amount 

/* SQL query */
SELECT T2.CustomerID, SUM(T2.Price / T2.Amount), T1.Currency FROM customers AS T1 
INNER JOIN transactions_1k AS T2 ON T1.CustomerID = T2.CustomerID WHERE 
T2.CustomerID = (SELECT CustomerID FROM yearmonth ORDER BY Consumption DESC 
LIMIT 1) GROUP BY T2.CustomerID, T1.Currency

/* Execution exception */
...information omitted... 

Output:

Figure 7: The prompt template of noise correction.
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Given the following database schema and question, your task is to write an incomplete 
SQL query into a complete SQL query whose execution results can correctly answer the 
question.

/* Examples */
...few-shot examples omitted... 

/* Database schema */
CREATE TABLE customers (CustomerID NUMBER, Segment TEXT, Currency TEXT, 
PRIMARY KEY(CustomerID, Segment, Currency)); CREATE TABLE transactions_1k 
(CustomerID NUMBER, Amount NUMBER, Price NUMBER, PRIMARY KEY(CustomerID, 
Amount, Price));

/* Sample rows of each table */
customers: [(3, 'SME', 'EUR'), (5, 'LAM', 'EUR'), (6, 'SME', 'EUR')]
transactions_1k: [(31543, 28, 672.64), (46707, 18, 430.72), (46707, 1, 121.99)]

/* Question */
Who is the top spending customer and how much is the average price per single item 
purchased by this customer? What currency was being used?

/* Question hint */
verage price per single item = price / amount 

/* The incomplete SQL query */
```sql
SELECT T2.CustomerID, SUM(T2.Price / T2.Amount), T1.Currency FROM customers AS T1 
INNER JOIN transactions_1k AS T2 ON 
``` 

Output:

Figure 8: The prompt template of continuation writing.

Your task is to determine whether the execution results of a SQL query can answer the 
given question according to the following database schema. If the execution results 
cannot correctly answer the question, please give me the correct SQL query. 

/* Database schema */
CREATE TABLE customers (CustomerID NUMBER, Segment TEXT, Currency TEXT, 
PRIMARY KEY(CustomerID, Segment, Currency)); CREATE TABLE transactions_1k 
(CustomerID NUMBER, Amount NUMBER, Price NUMBER, PRIMARY KEY(CustomerID, 
Amount, Price));

/* Sample rows of each table */
customers: [(3, 'SME', 'EUR'), (5, 'LAM', 'EUR'), (6, 'SME', 'EUR')]
transactions_1k: [(31543, 28, 672.64), (46707, 18, 430.72), (46707, 1, 121.99)]

/* Question */
Who is the top spending customer and how much is the average price per single item 
purchased by this customer? What currency was being used?

/* Question hint */
verage price per single item = price / amount 

/* SQL query */
SELECT T2.CustomerID, SUM(T2.Price / T2.Amount), T1.Currency FROM customers AS T1 
INNER JOIN transactions_1k AS T2 ON T1.CustomerID = T2.CustomerID WHERE 
T2.CustomerID = (SELECT CustomerID FROM yearmonth ORDER BY Consumption DESC 
LIMIT 1) GROUP BY T2.CustomerID, T1.Currency

Output:

Figure 9: The prompt of STF data for noisy correspondence filtering.
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A.12 QUALITATIVE EXAMPLES OF NOISY PAIRS

In Listings 1 and 2, we provide more identified noisy pairs in SPIDER and BIRD training sets. To
show the error visually, we mainly provide noisy examples with obvious semantic inconsistencies.

Q1: /*How many followers does each user have?*/
A1: SELECT count(*) FROM follows;
R1: SELECT count(*), T1.name FROM user_profiles AS T1 JOIN follows AS T2

ON T1.uid = T2.f1 GROUP BY T1.uid;

Q2: /*Find the number of followers for each user.*/
A2: SELECT count(*) FROM follows GROUP BY f1
R2: SELECT count(*), f1 FROM follows GROUP BY f1;

Q3: /*What is the party that has the largest number of representatives?*/
A3: SELECT Party FROM representative GROUP BY Party ORDER BY COUNT(*)

DESC LIMIT 1;
R3: SELECT Party, COUNT(*) FROM representative GROUP BY Party ORDER BY

COUNT(*) DESC LIMIT 1;

Q4: /*Find the number of kids staying in the rooms reserved by a person
called ROY SWEAZ.*/

A4: SELECT kids FROM Reservations WHERE FirstName = "ROY" AND LastName =
"SWEAZY";

R4: SELECT sum(T2.Kids) FROM Rooms AS T1 JOIN Reservations AS T2 ON T1.
RoomId = T2.Room WHERE T2.FirstName = "ROY" AND T2.LastName = "SWEAZ"
;

Q5: /*Which manufacturer has the most number of shops? List its name and
year of opening.*/

A5: SELECT open_year, name FROM manufacturer ORDER BY num_of_shops DESC
LIMIT 1;

R5: SELECT name, open_year FROM manufacturer ORDER BY num_of_shops DESC
LIMIT 1;

Listing 1: Identified noisy pairs in SPIDER training set.

Q1: /*What is the number of inhabitants and income of geographic
identifier 239?*/

A1: SELECT INHABITANTS_K FROM Demog WHERE GEOID = 239;
R1: SELECT INHABITANTS_K, INCOME_K FROM Demog WHERE GEOID = 239;

Q2: /*List the geographic id of places where the income is above average.
*/

A2: SELECT AVG(INCOME_K) FROM Demog;
R2: SELECT GEOID FROM Demog WHERE INCOME_K > (SELECT AVG(INCOME_K) FROM

Demog);

Q3: /*Average length of the rivers flowing into the Donau River.*/
A3: SELECT * FROM river WHERE Name = ’Donau’
R3: SELECT avg(Length) FROM river WHERE Name = ’Donau’;

Q4: /*What are the corresponding classes for the "very large bike"
attribute? */

A4: SELECT ATT_CLASS_ID FROM ATT_CLASSES WHERE ATT_CLASS = ’very large’;
R4: SELECT ATT_CLASS_ID FROM ATT_CLASSES WHERE ATT_CLASS = ’very large

bike’;

Q5: /*Which Shakespeare story with character ID 324 has description of ’
this friend of Caesar’?*/

A5: SELECT T1.Title FROM works AS T1 INNER JOIN chapters AS T2 ON T1.id =
T2.work_id INNER JOIN paragraphs AS T3 ON T2.id = T3.chapter_id

INNER JOIN characters AS T4 ON T3.character_id = T4.id WHERE T2.id =
’324’ AND T2.Description = ’friend to Caesar’;
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R5: SELECT T1.Title FROM works AS T1 INNER JOIN chapters AS T2 ON T1.id =
T2.work_id INNER JOIN paragraphs AS T3 ON T2.id = T3.chapter_id

INNER JOIN characters AS T4 ON T3.character_id = T4.id WHERE T3.
character_id = 324 AND T4.Description = ’this friend of Caesar’;

Listing 2: Identified noisy pairs in BIRD training set.
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