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Abstract
SARSA, a classical on-policy control algorithm
for reinforcement learning, is known to chatter
when combined with linear function approxima-
tion: SARSA does not diverge but oscillates in a
bounded region. However, little is known about
how fast SARSA converges to that region and
how large the region is. In this paper, we make
progress towards this open problem by showing
the convergence rate of projected SARSA to a
bounded region. Importantly, the region is much
smaller than the region that we project into, pro-
vided that the magnitude of the reward is not too
large. Existing works regarding the convergence
of linear SARSA to a fixed point all require the
Lipschitz constant of SARSA’s policy improve-
ment operator to be sufficiently small; our anal-
ysis instead applies to arbitrary Lipschitz con-
stants and thus characterizes the behavior of linear
SARSA for a new regime.

1. Introduction
SARSA is a classical on-policy control algorithm for rein-
forcement learning (RL, Sutton & Barto (2018)) dating back
to Rummery & Niranjan (1994). The key idea of SARSA
is to update the estimate for action values with data gener-
ated by following an exploratory and greedy policy (e.g., an
ϵ-greedy policy) derived from the estimate itself. In this pa-
per, we refer to the operator used for deriving such a policy
from the action value estimate as the policy improvement
operator.

The study of SARSA begins in the tabular setting, where
the action value estimates are stored in the form of a look-
up table. For example, Singh et al. (2000) confirm the
asymptotic convergence of SARSA to the optimal policy
provided that the policies from the policy improvement
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operator satisfy the “greedy in the limit with infinite ex-
ploration” condition. Tabular methods, however, are not
preferred when the state space is large and generalization is
required across states. One possible solution is linear func-
tion approximation, which approximates the action values
via the inner product of state-action features and a learnable
weight vector. The behavior of SARSA with linear function
approximation (linear SARSA) is, however, less understood.

Gordon (1996) and Bertsekas & Tsitsiklis (1996) empiri-
cally observe that linear SARSA can chatter: the weight
vector does not go to infinity (i.e., it does not diverge) but
oscillates in a bounded region. Importantly, this chatter-
ing behavior remains even if a decaying learning rate is
used. Gordon (2001) further proves that trajectory-based
linear SARSA with an ϵ-greedy policy improvement opera-
tor converges to a bounded region asymptotically. Unlike
standard linear SARSA, where the policy improvement oper-
ator is invoked every step to generate a new policy for action
selection in the next step, trajectory-based linear SARSA
generates a policy at the beginning of each episode and
the policy remains fixed during the episode. Intuitively,
within an episode, trajectory-based linear SARSA is just
linear Temporal Difference (TD, Sutton (1988)) learning
for evaluating action values. It, therefore, converges to an
approximation of the action value function of the policy
generated at the beginning of the episode (Tsitsiklis & Roy,
1996). Since the number of all possible ϵ-greedy policies
is finite in a finite Markov Decision Process with a fixed
ϵ, trajectory-based linear SARSA oscillates among the (ap-
proximate) action value functions of those ϵ-greedy policies,
which form a bounded region. Later, Perkins & Precup
(2002) prove the asymptotic convergence of fitted linear
SARSA (a.k.a. model-free approximate policy iteration) to
a fixed point. Similar to trajectory-based SARSA, fitted
SARSA alternates between thorough TD learning for policy
evaluation under a fixed policy and the application of the
policy improvement operator. In other words, it involves bi-
level optimization. Then assuming the Lipschitz constant of
the policy improvement operator is sufficiently small such
that the composition of the policy improvement operator
and some other function becomes contractive, convergence
of fitted SARSA is obtained thanks to Banach’s fixed point
theorem. Despite this progress, the asymptotic behavior of
standard linear SARSA, which invokes the policy improve-
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Gordon Perkins & Precup Melo et al. Zou et al. Ours
convergence to a region to a point to a point to a point to a region

per-step
policy

improvement
✗ ✗ ✓ ✓ ✓

any
Lipschitz
constant

✓ ✓∗ ✗ ✗ ✓

convergence
rate ✗ ✗ ✗ ✓ ✓

Table 1. Comparison with existing works. ✓∗ indicates that the corresponding property is not explicitly documented in the original work.
“Per-step policy improvement” means that the policy improvement operator is applied every time step.

ment operator every time step, still remains unclear, as does
a potential convergence rate. Understanding the behavior of
linear SARSA is one of the four open theoretical questions
in RL raised by Sutton (1999).

Several efforts have been made to analyze linear SARSA.
Melo et al. (2008) prove the asymptotic convergence of
linear SARSA. Zou et al. (2019) further provide a conver-
gence rate of a projected linear SARSA, which uses an ad-
ditional projection operator in the canonical linear SARSA
update. Unlike Gordon (2001), the convergence in Melo
et al. (2008); Zou et al. (2019) is to a fixed point instead of
a bounded region. Although convergence to a fixed point
is preferred, Melo et al. (2008); Zou et al. (2019) require
that SARSA’s policy improvement operator is Lipschitz con-
tinuous and the Lipschitz constant is sufficiently small. It
remains an open problem how linear SARSA behaves when
the Lipschitz constant is large.

This problem is of interest because to our knowledge, most
meaningful empirical results using SARSA for control con-
sider an ϵ-greedy policy or a softmax policy. The former
behaves similarly to a Lipschitz continuous policy improve-
ment operator with a very large Lipschitz constant. The
latter is usually tuned such that its Lipschitz constant is
reasonably large. We refer the reader to Section 2 for more
discussion about those two classes of policy improvement
operators and now name a few notable empirical results. In
the tabular setting, Sutton & Barto (2018) use an ϵ-greedy
policy with ϵ = 0.1 in the Windy GridWorld. With linear
function approximation, Rummery & Niranjan (1994) use
a softmax policy in a robot control problem with the tem-
perature decaying from 0.05 to 0.01 such that the softmax
policy has a reasonably large Lipschitz constant. Liang et al.
(2015) use an ϵ-greedy policy with ϵ = 0.01 to play all
Atari games (Bellemare et al., 2013). In deep RL, Mnih
et al. (2016) use ϵ-greedy policies with decaying ϵ in their
asynchronous methods for playing Atari games. Besides the
aforementioned interest from the empirical side, this prob-
lem has also been recognized as an important theoretical
open problem in Perkins & Precup (2002); Zou et al. (2019).

In this paper, we make contributions to this open problem. In

particular, we study the projected linear SARSA (Zou et al.,
2019) and show that it converges to a bounded region regard-
less of the magnitude of the Lipschitz constant of the policy
improvement operator. Importantly, the bounded region is
much smaller than the region we project into provided that
the magnitude of rewards is not too large. The differences
between our work and existing works are summarized in
Table 1.

2. Background
In this paper, all vectors are column. We use ⟨x, y⟩ .

= x⊤y
to denote the standard inner product in Euclidean spaces.
For a positive definite matrix D, we use ∥x∥D

.
=
√
x⊤Dx

to denote the vector norm induced by D. We overload
∥·∥D to also denote the induced matrix norm. We write ∥·∥
as shorthand for ∥·∥I , where I is the identity matrix, i.e.,
∥·∥ denotes the standard ℓ2 norm. When it does not cause
confusion, we use vectors and functions interchangeably.
For example, if f is a function S → R, we also use f to
denote the vector in R|S| whose s-indexed element is f(s).

We consider an infinite horizon Markov Decision Process
(MDP, Puterman (2014)) with a finite state space S , a finite
action space A, a transition kernel p : S × S ×A → [0, 1],
a reward function r : S ×A → [−rmax, rmax], a discount
factor γ, and an initial distribution p0 : S → [0, 1]. At time
step t = 0, an initial state S0 is sampled from p0(·). At time
step t, an agent at a state St takes an action At ∼ π(·|St)
according to a policy π : A × S → [0, 1]. The agent
then receives a reward Rt+1

.
= r(St, At) and proceeds to a

successor state St+1 ∼ p(·|St, At). The return at time step
t is defined as Gt

.
=
∑∞

i=0 γ
iRt+i+1, which allows us to

define the action value function as

qπ(s, a)
.
= E [Gt|St = s,At = a, π, p] .

The action value function qπ is closely related to the Bell-
man operator Tπ, which is defined as Tπq .

= r + γPπq,
where Pπ ∈ R|S×A|×|S×A| is the state-action pair transi-
tion matrix, i.e., Pπ ((s, a), (s

′, a′))
.
= p(a′|s, a)π(a′|s′).

In particular, qπ is the only vector q ∈ R|S×A| satisfying
q = Tπq. The goal of control is to find an optimal policy π∗
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such that ∀π, s, a, qπ∗(s, a) ≥ qπ(s, a). All optimal poli-
cies share the same action value function, which is referred
to as q∗. One classical approach for finding q∗ is SARSA,
which updates an estimate q ∈ R|S×A| iteratively as

At+1 ∼ πq(·|St+1), (1)
δt ← Rt+1 + γq(St+1, At+1)− q(St, At)

q(St, At)← q(St, At) + αtδt,

where {αt} is a sequence of learning rates and πq denotes
that the policy π is parameterized by the action value esti-
mate q. A commonly used πq is an ϵ-greedy policy, i.e.,

πq(a|s) =
{

ϵ
|A| , a ̸= argmaxb∈A q(s, b)

1− ϵ+ ϵ
|A| , otherwise

, (2)

where ϵ ∈ [0, 1] is a hyperparameter. Another common
example is an ϵ-softmax policy, i.e.,

πq(a|s) = ϵ
|A| + (1− ϵ) exp(q(s,a)/ι)∑

b exp(q(s,b)/ι) , (3)

where ι ∈ (0,∞) is the temperature of the softmax func-
tion. This πq is exactly the policy improvement operator
discussed in Section 1: it maps an action value estimate q
to a new policy; it is “improvement” in that it usually has
greedification over the action value estimate to some extent.
The ϵ-softmax policy πq in (3) is Lipschitz continuous in
q with the Lipschitz constant being 1−ϵ

ι . When the tem-
perature ι approaches 0, the ϵ-softmax policy approaches
the ϵ-greedy policy. Therefore, despite the ϵ-greedy pol-
icy is not even continuous, it is the limit of a sequence of
Lipschitz continuous policies with the Lipschitz constants
approaching infinity. We, therefore, argue that an ϵ-greedy
policy would empiricially behave similarly to a Lipschitz
continuous policy with a very large Lipschitz constant.

So far we have considered only time-homogeneous policies.
One can also consider time-inhomogeneous policies, e.g.,
a policy πq,t(a|s) that depends on both the action value
estimate q and the time step t. Singh et al. (2000) show that
if the time-inhomogeneous policies πq,t satisfy the “greedy
in the limit with infinite exploration” (GLIE) condition then
the iterates generated by (1) converge to q∗ almost surely.

It is, however, not always practical to use a look-up table for
storing our action value estimates, especially when the state
space is large or generalization is required across states. One
natural solution is linear function approximation, where the
action value estimate q(s, a) is parameterized as x(s, a)⊤w.
Here x : S ×A → RK is the feature function which maps
a state-action pair to a K-dimensional vector and w ∈ RK

is the learnable weight vector. We use X ∈ R|S×A|×K

to denote the feature matrix, whose (s, a)-indexed row is
x(s, a)⊤. We use as shorthand

πw
.
= πXw, xt

.
= x(St, At), xmax

.
= maxs,a ∥x(s, a)∥.

Algorithm 1 SARSA with linear function approximation
Initialize w0 such that ∥w0∥ ≤ CΓ

S0 ∼ p0(·), A0 ∼ πw0
(·|S0)

t← 0
while true do

Execute At, get Rt+1, St+1

Sample At+1 ∼ πwt(·|St+1)
δt ← Rt+1 + γx⊤

t+1wt − x⊤
t wt

wt+1 ← Γ (wt + αtδtxt)
t← t+ 1

end while

SARSA (Algorithm 1) is a commonly used algorithm for
learning w. In Algorithm 1, Γ : RK → RK is a projection
operator onto a ball of radius CΓ, i.e.,

Γ(w)
.
=

{
w, ∥w∥ ≤ CΓ,

CΓ
w

∥w∥ , ∥w∥ > CΓ
. (4)

For now we consider the setting where CΓ = ∞, i.e., Γ
is an identity mapping. If the iterates {wt} generated by
SARSA converged to some vector w∗, the expected update
at w∗ would have to diminish, i.e.,

ESt,At∼dπw∗

[(
Rt+1 + γx⊤

t+1w∗ − x⊤
t w∗

)
xt

]
= 0,(5)

where for a policy π, we use dπ ∈ R|S×A| to denote the
stationary state action pair distribution of the chain in S×A
induced by π (assuming it exists). We can equivalently
write (5) in a matrix form as

X⊤Dπw∗
(r + γPπw∗

Xw∗ −Xw∗) = 0, (6)

where for a policy π, we use Dπ ∈ R|S×A|×|S×A| to denote
a diagonal matrix whose diagonal entry is dπ . By defining

Aπ
.
= X⊤Dπ(γPπ − I)X, bπ

.
= X⊤Dπr, (7)

(6) becomes Aπw∗
w∗ + bπw∗

= 0. It is known (see, e.g.,
Tsitsiklis & Roy (1996)) that Aπ is negative definite un-
der mild conditions. We define a projection operator ΠDπ

mapping a vector in R|S×A| to the column space of X as

ΠDπ
q

.
= argminq̂∈col(X) ∥q̂ − q∥2Dπ

,

where col(X) denotes the column space of X . It can be
computed that ΠDπ

= X
(
X⊤DπX

)−1
X⊤Dπ and it is

known (see, e.g., De Farias & Van Roy (2000)) that (6) holds
if and only if ΠDπw∗

Tπw∗
Xw∗ = Xw∗. In other words,

Xw∗ is a fixed point of the operator H(q) .
= ΠDπq

Tπq
q.

The operator H is referred to as the approximate policy
iteration operator and SARSA is an incremental, stochastic
method to find a fixed point of approximate policy iteration.
Unfortunately, when πq(a|s) is not continuous in q (e.g., πq

3



On the Convergence of SARSA with Linear Function Approximation

is an ϵ-greedy policy, c.f. (2)),H does not necessarily have a
fixed point (De Farias & Van Roy, 2000). Conversely, when
πq(a|s) is continuous in q, De Farias & Van Roy (2000)
show thatH has at least one fixed point.

Perkins & Precup (2002) assume πq is Lipschitz contin-
uous in q and study a form of fitted SARSA, which is a
model-free variant of approximate policy iteration. At the
k-th iteration, Perkins & Precup (2002) first invoke TD for
learning the action value function of πk, which converges
to wk = A−1

πk
bπk

after infinitely many steps. Then the pol-
icy for the (k + 1)-th iteration is obtained via invoking the
policy improvement operator, i.e., πk+1

.
= πwk

. Perkins &
Precup (2002) show that∥∥∥πA−1

π̂ bπ̂
− πA−1

π′ bπ′

∥∥∥ ≤ O (Lπ) ∥π̂ − π′∥, (8)

where the policies π̂ and π′ should be interpreted as vectors
in R|S×A| whose (s, a)-indexed element is π(a|s) when
computing ∥π̂ − π′∥ and Lπ denotes the Lipschitz constant
of the policy improvement operator πw, i.e., ∀s, a,

|πw1
(a|s)− πw2

(a|s)| ≤ Lπ∥w1 − w2∥.

Consequently, if Lπ is sufficiently small, the function x→
πA−1

x bx
, which maps πk to πk+1, becomes a contraction.

Banach’s fixed point theorem then confirms the convergence
of fitted SARSA. From the definition of Aπ and bπ in (7), it
is easy to see that (8) can also be expressed as∥∥∥πA−1

π̂ bπ̂
− πA−1

π′ bπ′

∥∥∥ ≤ O (Lπ∥r∥) ∥π̂ − π′∥

because r is a multiplier in the definition of bπ. Hence, for
any Lπ , if the magnitude of the reward ∥r∥ is small enough,
the function x→ πA−1

x bx
is contractive and fitted SARSA

remains convergent. Nevertheless, Perkins & Precup (2002)
share the same spirit as Gordon (2001) by holding the policy
fixed for sufficiently (possibly infinitely) many steps to wait
for the policy evaluation to complete.

When it comes to standard linear SARSA that updates the
policy every time step, Melo et al. (2008) consider, for a
fixed point w∗,

Cw∗
.
= supw

∥∥Aπw
−Aπw∗

∥∥+ supw ̸=w∗

∥bπw−bπw∗∥
∥w−w∗∥ .

They show that Cw∗ = O (Lπ) and if Lπ is small enough
such that

Aπw∗
+ Cw∗I (9)

is negative definite, SARSA converge to w∗. The con-
vergence of SARSA in Perkins & Precup (2002); Melo
et al. (2008) does not require the projection operator (i.e.,
CΓ =∞) but is only asymptotic, Zou et al. (2019) further

provide a convergence rate of SARSA using some CΓ <∞,
assuming Lπ is small enough such that

Aπw∗
+O (Lπ (rmax + 2xmaxCΓ)) I (10)

is negative definite. It is easy to see that if Lπ is not small
enough, neither (9) nor (10) can be guaranteed to be neg-
ative definite no matter how small ∥r∥ is. This is because
the supw

∥∥Aπw
−Aπw∗

∥∥ term in Cw∗ and the 2xmaxCΓ

term in (10) are independent of r. In other words, unlike
Perkins & Precup (2002), where the requirement for a suf-
ficiently small Lπ is not necessary when the magnitude of
the reward is enough, a sufficiently small Lπ is an essential
requirement for the analysis of Melo et al. (2008); Zou et al.
(2019). We, however, note that requring a finite CΓ and a
sufficiently small Lπ can be restrictive. To see this, consider
the ϵ-softmax policy in (3). On the one hand, for this param-
eterization, we have Lπ = 1−ϵ

ι . For Lπ to be sufficiently
small, we have to ensure the temperature ι to be sufficiently
large. On the other hand, a finte CΓ ensures that the action
value estimate q(s, a) inside exp(·) is bounded. Combining
the two facts together, it is easy to see that the ϵ-softmax
policy cannot be much different from a uniformly random
policy. Or more formally speaking, the probability of any
action is at most

ϵ

|A| +
1− ϵ

1 + (|A| − 1) exp
(
− 2xmaxCΓ

ι

) .
When ι is too large, the above probability approaches 1

|A| ,
making it hard to ensure sufficient exploitation. The behav-
ior of SARSA with a large Lπ, however, remains an open
problem.

3. Stochastic Approximation with Rapidly
Changing Markov Chains

To prepare us for the analysis of SARSA, we show, in
this section, a convergence rate (to a bounded region) of a
generic stochastic approximation algorithm. More precisely,
we consider the following iterative updates:

wt+1
.
= Γ (wt + αt (Fθt(wt, Yt)− wt)) . (11)

Here
{
wt ∈ RK

}
are the iterates generated by the stochastic

approximation algorithm, {Yt} is a sequence of random vari-
ables evolving in a finite space Y ,

{
θt ∈ RL

}
is a sequence

of random variables controlling the transition of {Yt}, Fθ

is a function from RK × Y to RK parameterized by θ, and
Γ is the projection operator defined in (4). Importantly, we
consider the setting where

∀t, θt ≡ wt.

In other words, there is only a single iterate in our setting.
To ease presentation, we use {wt} and {θt} to denote the
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same quantity. This emphasizes their different roles as the
iterates of interest and as the controller of the transition
kernel.

Our analysis is a natural extension of Chen et al. (2021) and
Zhang et al. (2022) but has significant differences to theirs.
Chen et al. (2021) consider a time-homogeneous Markov
chain (i.e., ∀t, θt ≡ θ0). Consequently, their results are
naturally applicable to policy evaluation problems. Zhang
et al. (2022) consider a time-inhomogeneous Markov chain,
where the iterates {wt} are different from the sequence
{θt}. More importantly, Zhang et al. (2022) assume that
{θt} changes sufficiently slowly, i.e., there exists another
sequence {βt} such that

∥θt+1 − θt∥ = O (βt) , lim
t→∞

βt

αt
= 0.

This is the classical two-timescale setting (see, e.g., Borkar
(2009)) and their analysis naturally applies to actor-critic
algorithms (Konda & Tsitsiklis, 1999) with {wt} and {θt}
interpreted as critic and actor respectively. We instead con-
sider the setting where ∀t, θt = wt. In other words, the
time-inhomogeneous Markov chain we consider changes
rapidly, which is the main challenge of our analysis. As a
consequence, we introduce the projection operator Γ, not re-
quired in Chen et al. (2021); Zhang et al. (2022). The price
is that we only show convergence to a bounded region while
Chen et al. (2021); Zhang et al. (2022) show convergence
to points. Convergence to a bounded region is, however,
sufficient for our purpose of understanding the behavior of
SARSA since it matches what practitioners have observed.
Furthermore, we believe our analysis might be applicable
to other RL algorithms and might also have independent
interest beyond RL. We now state our assumptions.

Assumption 3.1. (Time-inhomogeneous Markov chain)
There exists a family of parameterized transition matrices
ΛP

.
=
{
Pθ ∈ R|Y|×|Y||θ ∈ RL

}
such that

Pr(Yt+1 = y) = Pθt+1(Yt, y).

Assumption 3.2. (Uniform ergodicity) Let Λ̄P be the clo-
sure of ΛP . For any P ∈ Λ̄P , the chain induced by P is
ergodic. We use dθ to denote the invariant distribution of
the chain induced by Pθ.

Those two assumptions are identical to those of Zhang et al.
(2022). Assumption 3.1 states that the random process {Yt}
is a time-inhomogeneous Markov chain. Assumption 3.2
states the ergodicity of the Markov chains. Assumption 3.2
is also used in the analysis of RL algorithms in both on-
policy (Marbach & Tsitsiklis, 2001) and off-policy (Zhang
et al., 2022; 2021) settings. We later show how SARSA(λ)
can trivially fulfill Assumption 3.2. The uniform ergodicity
in Assumption 3.2 immediately implies uniform mixing.

Lemma 3.3. (Lemma 1 of Zhang et al. (2022)) Let Assump-
tion 3.2 hold. Then, there exist constants CM > 0 and
τ ∈ (0, 1), independent of θ, such that for any n > 0,

supy,θ
∑

y′ |Pn
θ (y, y

′)− dθ(y
′)| ≤ CMτn.

As noted in Zhang et al. (2022), the uniform mixing property
in Lemma 3.3 is usually a direct technical assumption in
previous works (e.g., Zou et al. (2019); Wu et al. (2020)).

Assumption 3.4. (Uniform pseudo-contraction) Let

F̄θ(w)
.
=
∑
y∈Y

dθ(y)Fθ(w, y),

fα
θ (w)

.
= w + α

(
F̄θ(w)− w

)
.

Then,

(i) For any θ, F̄θ has a unique fixed point, i.e., there exists
a unique w∗

θ such that

F̄θ(w
∗
θ) = w∗

θ .

(ii) There exists a constant ᾱ > 0 such that for all α ∈
(0, ᾱ), fα

θ is a uniform pseudo-contraction, i.e., there
exists a constant κα ∈ (0, 1) (depending on α), such
that for all θ, w,

∥fα
θ (w)− w∗

θ∥ ≤ κα∥w − w∗
θ∥.

Assumption 3.4 is another difference from Chen et al.
(2021); Zhang et al. (2022). Namely, Chen et al. (2021);
Zhang et al. (2022) require F̄θ to be a contraction while
we only require fα

θ to be a pseudo-contraction. It is easy
to see that the contraction of F̄θ immediately implies the
pseudo-contraction of fα

θ but not in the opposite direction.
In other words, our assumption is weaker.

Assumption 3.5. (Continuity and boundedness) There exist
constants LF , L

′
F , L

′′
F , UF , U

′
F , U

′′
F , Lw, Uw, LP such that

for any w,w′, y, y′, θ, θ′,

(i). ∥Fθ(w, y)− Fθ(w
′, y)∥ ≤ LF ∥w − w′∥

(ii). ∥Fθ(w, y)− Fθ′(w, y)∥ ≤ L′
F ∥θ − θ′∥(∥w∥+ U ′

F )

(iii). ∥Fθ(0, y)∥ ≤ UF

(iv).
∥∥F̄θ(w)− F̄θ′(w)

∥∥ ≤ L′′
F ∥θ − θ′∥(∥w∥+ U ′′

F )

(v). ∥w∗
θ − w∗

θ′∥ ≤ Lw∥θ − θ′∥
(vi). supθ ∥w∗

θ∥ ≤ Uw

(vii). |Pθ(y, y
′)− Pθ′(y, y′)| ≤ LP ∥θ − θ′∥

Assumption 3.5 states some regularity conditions for the
functions we consider and is identical to that of Zhang et al.
(2022).
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Assumption 3.6. (Projection)

(i). ∥w0∥ ≤ CΓ, Uw ≤ CΓ.

(ii). For any θ, w, y, we have

Pθ = PΓ(θ), Fθ(w, y) = FΓ(θ)(w, y),

w∗
θ = w∗

Γ(θ).

Assumption 3.6 requires that some of the functions we con-
sider are invariant to the projection operator. We will later
show that SARSA(λ) trivially satisfies this assumption.
Assumption 3.7. The learning rates {αt} have the form

αt
.
= cα

(t0+t)ϵα ,

where cα > 0, ϵα ∈ (0, 1], t0 > 0 are constants to be tuned.

Assumption 3.7 is just one of many possible forms of learn-
ing rates; we use this particular one to ease presentation.
Importantly, the learning rates {αt} here do not verify the
Robbins-Monro’s condition (Robbins & Monro, 1951) when
ϵα ≤ 0.5, neither do the learning rates in Wu et al. (2020);
Chen et al. (2021).

We now present our analysis. Given the sequences {θt} (i.e.,
{wt}) and {Yt} in (11), we define an auxiliary sequence
{ut} as

u0
.
=w0,

ut+1
.
=Γ(ut) + αt(Fθt(Γ(ut), Yt)− Γ(ut)). (12)

Lemma 3.8. Let Assumption 3.6 hold. Then for any t,
wt = Γ(ut).

Proof. It follows immediately from induction.

Intuitively, {ut} is simply the pre-projection version of
{wt}. We are interested in {ut} because it has the following
nice property.
Theorem 3.9. Let Assumptions 3.1 - 3.7 hold. If t0 is
sufficiently large, then the iterates {ut} generated by (12)
satisfy

E
[∥∥∥ut+1 − w∗

θt+1

∥∥∥2]
≤
(
1− 2

(
1− καt

−O
(
α2
t log

2 αt

)))
E
[∥∥Γ(ut)− w∗

θt

∥∥2]
+ 2LwLθαtE

[∥∥Γ(ut)− w∗
θt

∥∥]+O (α2
t log

2 αt

)
,

where Lθ
.
= UF + (LF + 1)CΓ.

See Section A.1 for the proof of Theorem 3.9, where the
constants hidden by O (·) and how large t0 is are also ex-
plicitly documented. Theorem 3.9 gives a recursive form of
some error terms. We, however, cannot go further unless we
have the domain knowledge of κα.

Corollary 3.10. Let Assumptions 3.1 - 3.7 hold. Assume
κα =

√
1− ηα for some positive constant η > 0. If t0 is

sufficiently large, then the iterates {wt} generated by (11)
satisfy

E
[∥∥wt − w∗

wt

∥∥2] = 72L2
wL

2
θ

η2

+



O
(
t−

ηcα
3 log2 t

)
, ϵα = 1, ηcα ∈ (0, 3)

O
(

log3 t
t

)
, ϵα = 1, ηcα = 3

O
(

log2 t
t

)
, ϵα = 1, ηcα ∈ (3,∞)

O
(

log2 t
tϵα

)
, ϵα ∈ (0, 1)

.

See Section A.2 for the proof of Corollary 3.10, as well as
the constants hidden by O (·) and how large t0 is. Due to
the projection operator, we have the bound

E
[∥∥wt − w∗

wt

∥∥2] ≤ 4C2
Γ.

So Corollary 3.10 is informative only if

72L2
wL2

θ

η2 ≤ 4C2
Γ.

This is where we need more domain knowledge and the
analysis in the next section provides an example.

4. SARSA with Linear Function
Approximation

We first analyze SARSA and expected SARSA with the
following assumptions.

Assumption 4.1. (Lipschitz continuity) There exists Lπ >
0 such that ∀w,w′, a, s,

∥πw(a|s)− πw′(a|s)∥ ≤ Lπ∥w − w′∥.

Assumption 4.2. (Uniform ergodicity) Let Λ̄π be the clo-
sure of

{
πw | w ∈ R|S×A|}. For any π ∈ Λ̄π, the chain

induced by π is ergodic and π(a|s) > 0.

Assumption 4.3. (Linear independence) The feature matrix
X has full column rank.

Assumption 4.1 is also used in Perkins & Precup (2002);
Melo et al. (2008); Zou et al. (2019). As noted by Zhang
et al. (2022), Assumption 4.2 is easy to fulfill especially
when the chain induced by a uniformly random policy is
ergodic, which we believe is a fairly weak assumption. An
example policy satisfying those two assumptions is the ϵ-
softmax policy in (3) with any ϵ ∈ (0, 1], provided that
the chain induced by a uniformly random policy is ergodic.
Assumption 4.3 is standard in the literature regarding RL
with linear function approximation (see, e.g., Tsitsiklis &
Roy (1996)).
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As discussed in (7), if SARSA, as well as expected SARSA,
converged to some vector w∗, that vector would verify

w∗ = A−1
πw∗

bπw∗
.

This inspires us to define the error function

e(w)

.
=
∥∥∥w − (X⊤DπΓ(w)

(
γPπΓ(w)

− I
)
X
)−1

X⊤DπΓ(w)
r
∥∥∥2

to study the behavior of SARSA. Here we have included the
projection operator Γ in the definition of e(w) because we
use a finite CΓ in Algorithm 1.

Theorem 4.4. Let Assumptions 3.7 and 4.1 - 4.3 hold. As-
sume ∥X∥ = 1 and rmax is not so large such that

Lw
.
= O (Lπrmax) < 1.

Assume CΓ is large enough such that

Uw
.
= O (rmax) ≤ CΓ.

Let t0 be sufficiently large. Then the iterates {wt} generated
by Algorithm 1 satisfy

E [∥wt − w∗∥] =
6
√
2Lw (1 + 4CΓ)

η(1− Lw)

+


O
(
t−

ηcα
6 log t

)
, ϵα = 1, ηcα ∈ (0, 3)

O
(
t−

1
2 log

3
2 t
)
, ϵα = 1, ηcα = 3

O
(
t−

1
2 log t

)
, ϵα = 1, ηcα ∈ (3,∞)

O
(
t−

ϵα
2 log t

)
, ϵα ∈ (0, 1)

,

where η is a positive constant and w∗ is the unique vector
such that e(w∗) = 0.

We prove Theorem 4.4 mainly by invoking Corollary 3.10.
See Section B.1 for more details. The exact expressions of
Lw, Uw, η are detailed in (23), (24), (22) in the proof, all of
which are independent of CΓ.

Significance of Theorem 4.4. Theorem 4.4 ensures that
the iterates {wt} converge, in expectation, to a ball of size

R∗
.
= 6

√
2Lw(1+4CΓ)
η(1−Lw) ,

centered at w∗. Due to the use of projection, one can also
trivially claim that the iterates always stay in a ball of size
2CΓ, centered at w∗. Thus Theorem 4.4 is informative only
if

R∗
2CΓ

= 24
√
2Lw

η(1−Lw) × 1+4CΓ

4CΓ
< 1.

The term 1+4CΓ

4CΓ
monotonically decreases when the size of

the ball for projection increases and eventually converges

to 1. So this ratio is essentially determined by the first term
24

√
2Lw

η(1−Lw) , which can be arbitrarily small as long as Lw is
small. In other words, suppose Lw is small enough, no mat-
ter how large the ball used for projection is (practitioners
usually use a very large ball for projection), the iterates gen-
erated by linear SARSA asymptotically only visit a small
portion of the ball. The exact portion is determined by the
relative magnitude of Lw and other properties of the prob-
lem and can be arbitrarily small when Lw is small enough.
Here we want to compare with Q-learning (Watkins, 1989)
with linear function approximation. As demonstrated in
Baird’s counterexample (Baird, 1995), the Q-learning it-
erates can diverge to infinity. This essentially means that
if we apply a ball for projection in linear Q-learning, the
iterates can asymptotically visit every part of the ball. By
contrast, Theorem 4.4 proves that the iterates generated by
linear SARSA visit asymptotically only a possibly small
portion of the ball, on some problems. In those problems,
Theorem 4.4, to our best knowledge, is the first to charac-
terize the fundamentally different behaviors between linear
SARSA and linear Q-learning. We regard this as the most
important contribution of this work. This difference demon-
strates the challenge in off-policy learning compared with
on-policy learning.

Limitation of Theorem 4.4. That being said, there are a
few things that Theorem 4.4 does not offer.

First, Theorem 4.4 is solely about the magnitude of the iter-
ates and is not about the performance of the corresponding
policy. In other words, this work does not fully address the
question raised by Sutton (1999). Addressing that question
requires to understand (a) how linear SARSA iterates be-
have asymptotically and (b) why such behavior generates
good performance. This work contributes to the former but
does not contribute to the latter.

Second, the ball of size R∗ specified in Theorem 4.4 is small
only when compared with the the ball for projection on some
problems. If we compare R∗ with some other quantities
of the problem, it is indeed very large. On some problems
where Lw is not small enough, the ball is also quite large.
In other words, even for (a), we only address it in some
problems with a very coarse bound. On problems where Lw

does not meet our condition, Theorem 4.4 simply does not
apply. Theorem 4.4 is not meant to be a general result that
applies to all problems. We, however, argue that this is still,
to our knowledge, the best result regarding the question in
Sutton (1999).

Third, even if we step back to the tabular setting, Theo-
rem 4.4 is still convergence to only a ball instead of a fixed
point. This indicates the fundamental limit of the techniques
employed therein. This might seem disappointing at first
glance but less so when taking a holistic view of the history

7



On the Convergence of SARSA with Linear Function Approximation

of SARSA. The best result regarding tabular SARSA for
control, to our knowledge, is Singh et al. (2000), which
proves that if the ϵ decays properly in the ϵ-greedy policy,
tabular SARSA converges to an optimal policy. That being
said, to implement the decay, it is required to maintain a
counter of the state-action visitations and the policy itself
is non-Markovian in that it is a function of the current time
step. When it comes to the canonical Markovian policies
that depend only on current states, we still know nothing
about the behavior of tabular SARSA for control.

5. Related Work
Comparison with Zou et al. (2019). The most similar
result to our work is Zou et al. (2019). Assuming Lπ is small
enough, Zou et al. (2019) give a finite sample analysis of
the convergence of {wt} to w∗. Theorem 4.4 requires Lw to
be sufficiently small. This holds when either Lπ or rmax is
sufficiently small. In the case where Lπ is sufficiently small,
our result is indeed weaker than Zou et al. (2019) because
Zou et al. (2019) show convergence to a point while we
show convergence to only a region. Thus the only scenario
that our result is preferred over Zou et al. (2019) is when
Lπ is large but rmax is small. In this scenario, our result
still apply but Zou et al. (2019) do not apply. The reason is
that in Theorem 4.4, our condition is related to the product
Lπrmax. So the role of Lπ and rmax is interchangeable and
a small Lπ is only a sufficient condition for the product to
be small. However, Zou et al. (2019) essentially consider
a condition in the form of Lπrmax + LπCΓ (see (10) or
Assumption 2 in Zou et al. (2019)). For this summation to
be sufficiently small, a small Lπ is a necessary condition.
This means although our convergence is weaker than Zou
et al. (2019), our result applies to much more problems than
Zou et al. (2019). In particular, in the case where Lπ is large
but rmax is small, our result applies but Zou et al. (2019) do
not. More importantly, due to the existence of LπCΓ, Lπ

in Zou et al. (2019) is at most the order of O
(

1
CΓ

)
. Since

practitioners usually use a very large, possibly infinite, ball
for projection, the Lπ in Zou et al. (2019) has to be really
small. By contrast, our Lw = O (Lπrmax) does not have
any dependence on CΓ. In other words, if CΓ is really
large, our result applies to much more Lπ than Zou et al.
(2019). We regard the broader settings as an improvement,
and thus a contribution, over Zou et al. (2019). To our best
knowledge, we do not know how to make Zou et al. (2019)
work in such broader settings.

A concurrent work (Gopalan & Thoppe, 2022) prove that
the iterates in their linear SARSA is bounded almost surely.
In particular, they do not have projection but their result is
only asymptotic without finite sample analysis. The most
significant restriction is that they require i.i.d. samples, i.e.,
at each time step, the state St is assumed to be sampled from

the stationary distribution dπwt
of the current policy πwt

.
Since the policy wt changes rapidly every time step, we
argue that such i.i.d. samples are hard to obtain in practice.

Our results regarding the finite sample analysis of the gen-
eral stochastic approximation algorithm in Section 3 rely on
the pseudo contraction property and follow from Chen et al.
(2021); Zhang et al. (2022). Another family of convergent
results regarding stochastic approximation algorithms is
usually based on the analysis of the corresponding ordinary
differential equations (see, e.g., Benveniste et al. (1990);
Kushner & Yin (2003); Borkar (2009)). See Chen et al.
(2021) and references therein for more details.

SARSA is an extension of TD for control. The convergence
of linear TD, which aims at estimating the value of a fixed
policy, is an active research area, see, e.g., Tsitsiklis & Roy
(1996); Dalal et al. (2018); Lakshminarayanan & Szepesvári
(2018); Bhandari et al. (2018); Srikant & Ying (2019). An-
alyzing SARSA is more challenging than TD because the
policy SARSA considers changes every step.

SARSA is an incremental and stochastic way to implement
approximate policy iteration. Other variants of approximate
policy iteration include Lagoudakis & Parr (2003); Antos
et al. (2008); Farahmand et al. (2010); Lazaric et al. (2012;
2016).

6. Experiments

Figure 1. A diagnostic MDP from Gordon (1996). The state s0
is the initial state with two actions aU and aL available, both of
which yield a 0 reward. At s1, only one action a1 is available,
which yields a reward -2. At s2, the action a2 yields a reward -1.
Both a1 and a2 leads to the terminal state ST .

We use a diagnostic MDP from Gordon (1996) (Figure 1)
to illustrate the chattering of linear SARSA. Gordon (1996)
tested the ϵ-greedy policy (2), which is not continuous. We
further test the ϵ-softmax policy (3), whose Lipschitz con-
stant is inversely proportional to the temperature ι. When ι
approaches 0, the ϵ-softmax policy approaches the ϵ-greedy
policy. We run Algorithm 1 in this MDP with CΓ = ∞,
i.e., there is no projection. Following Gordon (1996), we
set ϵ = 0.1, γ = 1.0, and αt = 0.01∀t. As discussed in
Gordon (1996), using a smaller discount factor or a decay-
ing learning rate only slows down the chattering but the
chattering always occurs. Following Gordon (1996), we use
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−1.5

−1.0

−0.5

0.0

q(s0, aU)

ι = 0.01

ι = 0.1

ι = 1.0

Figure 2. The action value of aU during training under different
temperatures.

0 5× 104

Steps

−1.5

−1.0

−0.5

0.0

q(s0,aU)
αr

αr = 0.1

αr = 0.5

αr = 1.0

αr = 2.0

αr = 4.0

Figure 3. The αr-normalized action value of aU during training
with a fixed temperature ι = 0.01. The reward of the MDP in
Figure 1 is scaled via αr , e.g., the reward for the action a1 is now
−2αr .

the following feature function:

x(s0, aU ) = [1, 0, 0]⊤, x(s0, aL) = [0, 1, 0]⊤,

x(s1, a1) = x(s2, a2) = [0, 0, 1]⊤.

In other words, it is essentially state aggregation.

As shown in Figure 2, when the temperature is small (i.e.,
ι = 0.01), linear SARSA chatters. We further fix ι to be 0.01
and test reward with different magnitudes. To this end, we
multiply the reward with a multiplier αr. We stress that this
is just a simple way to get MDPs with rewards of different
magnitudes. It does not mean that one should artificially
scale the reward down when Theorem 4.4 does not apply. As
shown in Figure 3, the chattering behavior disappears with
αr = 0.1. This suggests that our results might be improved
such that when the magnitude of the rewards is small enough
we can also achieve convergence to a fixed point, instead of
a bounded region. We, however, leave this for future work.
When we set αr = 4.0, the iterates still only chatter but do
not diverge. This suggests that our requirement for rmax

might be only sufficient and not necessary. We, however,
leave the development of a necessary condition for future
work. All the curves in Figures 2 and 3 are from a single run.
Due to the randomness in the policy and the initialization
of the weight, we find the peaks and valleys can sometimes
average each other out when we average over multiple runs.

7. Conclusion
The behavior of linear SARSA is a long-standing open
problem in the RL community. Despite the progress made
in this work, there are still many open problems regarding
the behavior of linear SARSA. To name a few: how does
linear SARSA behave if the policy improvement operator
is merely continuous but not Lipschitz continuous? How
does linear SARSA behave if both the Lipschitz constant
and the magnitude of the rewards are not small? Can we
get a convergence rate without using any projection? We
hope this work can draw more attention to the convergence
of linear SARSA, arguably one of the most fundamental RL
algorithms.
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A. Proofs of Section 3
A.1. Proof of Theorem 3.9

Theorem 3.9. Let Assumptions 3.1 - 3.7 hold. If t0 is sufficiently large, then the iterates {ut} generated by (12) satisfy

E
[∥∥∥ut+1 − w∗

θt+1

∥∥∥2]
≤
(
1− 2

(
1− καt

−O
(
α2
t log

2 αt

)))
E
[∥∥Γ(ut)− w∗

θt

∥∥2]
+ 2LwLθαtE

[∥∥Γ(ut)− w∗
θt

∥∥]+O (α2
t log

2 αt

)
,

where Lθ
.
= UF + (LF + 1)CΓ.

Proof. We consider a Lyapunov function

M(x)
.
=

1

2
∥x∥2.

It is well-known that for any x, x′,

M(x′) ≤M(x) + ⟨∇M(x), x′ − x⟩+ 1

2
∥x− x′∥2.

Using x′ = ut+1 − w∗
θt+1

and x = Γ(ut)− w∗
θt

in the above inequality and recalling the update (12)

ut+1 =Γ(ut) + αt(Fθt(Γ(ut), Yt)− Γ(ut))

=fαt

θt
(Γ(ut)) + αt

(
Fθt(Γ(ut), Yt)− F̄θt(Γ(ut))

)
yield

1

2

∥∥∥ut+1 − w∗
θt+1

∥∥∥2 (13)

≤1

2

∥∥Γ(ut)− w∗
θt

∥∥2 + 〈Γ(ut)− w∗
θt , ut+1 − Γ(ut) + w∗

θt − w∗
θt+1

〉
+

1

2

∥∥∥ut+1 − Γ(ut) + w∗
θt − w∗

θt+1

∥∥∥2
=
1

2

∥∥Γ(ut)− w∗
θt

∥∥2
+
〈
Γ(ut)− w∗

θt , w
∗
θt − w∗

θt+1

〉
︸ ︷︷ ︸

T1

+
〈
Γ(ut)− w∗

θt , f
αt

θt
(Γ(ut))− Γ(ut)

〉︸ ︷︷ ︸
T2

+ αt

〈
Γ(ut)− w∗

θt , Fθt(Γ(ut), Yt)− F̄θt(Γ(ut))
〉︸ ︷︷ ︸

T3

+ α2
t ∥Fθt(Γ(ut), Yt)− Γ(ut)∥2︸ ︷︷ ︸

T5

+
∥∥∥w∗

θt − w∗
θt+1

∥∥∥2︸ ︷︷ ︸
T6

.

Here we do not have T4 because the counterpart in Zhang et al. (2022) is now 0. To further decompose T3, we define a
function τα of α as

τα
.
= min {n ≥ 0 | CMτn ≤ α},

12
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where the constants CM and τ are given in Lemma 3.3. In particular, ταt
denotes the number of steps the chain needs to

mix to an accuracy of αt. It is easy to see

τα = O (− logα) , lim
α→0

ατα = 0. (14)

We now decompose T3 as

T3 =
〈
Γ(ut)− w∗

θt , Fθt(Γ(ut), Yt)− F̄θt(Γ(ut))
〉

=
〈
Γ(ut)− w∗

θt −
(
Γ(ut−ταt

)− w∗
θt−ταt

)
, Fθt(Γ(ut), Yt)− F̄θt(Γ(ut))

〉
︸ ︷︷ ︸

T31

+
〈
Γ(ut−ταt

)− w∗
θt−ταt

, Fθt(Γ(ut), Yt)− Fθt(Γ(ut−ταt
), Yt) + F̄θt(Γ(ut−ταt

))− F̄θt(Γ(ut))
〉

︸ ︷︷ ︸
T32

+
〈
Γ(ut−ταt

)− w∗
θt−ταt

, Fθt(Γ(ut−ταt
), Yt)− F̄θt(Γ(ut−ταt

))
〉

︸ ︷︷ ︸
T33

.

We further decompose T33 as

T33 =
〈
Γ(ut−ταt

)− w∗
θt−ταt

, Fθt(Γ(ut−ταt
), Yt)− F̄θt(Γ(ut−ταt

))
〉

=
〈
Γ(ut−ταt

)− w∗
θt−ταt

, Fθt−ταt
(Γ(ut−ταt

), Ỹt)− F̄θt−ταt
(Γ(ut−ταt

))
〉

︸ ︷︷ ︸
T331

+

〈
Γ(ut−ταt

)− w∗
θt−ταt

, Fθt−ταt
(Γ(ut−ταt

), Yt)− Fθt−ταt
(Γ(ut−ταt

), Ỹt)
〉

︸ ︷︷ ︸
T332

+

〈
Γ(ut−ταt

)− w∗
θt−ταt

, Fθt(Γ(ut−ταt
), Yt)− Fθt−ταt

(Γ(ut−ταt
), Yt)

〉
︸ ︷︷ ︸

T333

+

〈
Γ(ut−ταt

)− w∗
θt−ταt

, F̄θt−ταt
(Γ(ut−ταt

))− F̄θt(Γ(ut−ταt
))
〉

︸ ︷︷ ︸
T334

.

Here
{
Ỹt

}
is an auxiliary chain inspired from Zou et al. (2019). Before time t− ταt

− 1,
{
Ỹt

}
is exactly the same as {Yt}.

After time t− ταt
− 1, Ỹt evolves according to the fixed kernel Pθt−ταt

while Yt evolves according the changing kernel
Pθt−ταt

, Pθk−ταt+1
, . . . .{
Ỹt

}
: · · · → Yt−ταt−1 →︸︷︷︸

Pθt−ταt

Yt−ταt
→︸︷︷︸

Pθt−ταt

Ỹt−ταt+1 →︸︷︷︸
Pθt−ταt

Ỹt−ταt+2 → . . .

{Yt} : · · · → Yt−ταt−1 →︸︷︷︸
Pθt−ταt

Yt−ταt
→︸︷︷︸

Pθt−ταt+1

Yt−ταt+1 →︸︷︷︸
Pθt−ταt+2

Yt−ταt+2 → . . . .

We are now ready to present bounds for each of the above terms. To begin, we define some shorthand:

A
.
= 2LF + 1, B

.
= UF , C

.
= AUw +B +A+A(1 + U ′

F + U ′′
F ), αi:j

.
=

j∑
t=i

αt. (15)

According to (14), we can select a sufficiently large t0 such that

αt−ταt ,t−1 ≤
1

4A

holds for all t. This condition is crucial for Lemma C.2, which plays an important role in the following bounds.

13
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Lemma A.1. (Bound of T1)

T1 ≤ LwLθαt

∥∥Γ(ut)− w∗
θt

∥∥.
The proof of Lemma A.1 is provided in Section D.1.

Lemma A.2. (Bound of T2)

T2 ≤ −(1− καt
)
∥∥Γ(ut)− w∗

θt

∥∥2.
The proof of Lemma A.2 is provided in Section D.2.

Lemma A.3. (Bound of T31)

T31 ≤ 8(LwLθ + 1)αt−ταt ,t−1

(
A2
∥∥Γ(ut)− w∗

θt

∥∥2 + C2
)
.

The proof of Lemma A.3 is provided in Section D.3.

Lemma A.4. (Bound of T32)

T32 ≤ 16αt−ταt ,t−1(1 + LwLθαt−ταt ,t−1)
(
A2
∥∥Γ(ut)− w∗

θt

∥∥2 + C2
)
.

The proof of Lemma A.4 is provided in Section D.4.

Lemma A.5. (Bound of T331)

E [T331] ≤
8αt(1 + LwLθαt−ταt ,t−1)

A

(
A2E

[∥∥Γ(ut)− w∗
θt

∥∥2]+ C2
)
.

The proof of Lemma A.5 is provided in Section D.5.

Lemma A.6. (Bound of T332)

E [T332] ≤
8|Y|LPLθ

∑t−1
j=t−ταt

αt−ταt ,j
(1 + LwLθαt−ταt ,t−1)

A

(
A2E

[∥∥Γ(ut)− w∗
θt

∥∥2]+ C2
)
.

The proof of Lemma A.6 is provided in Section D.6.

Lemma A.7. (Bound of T333)

T333 ≤
4L′

FLθαt−ταt ,t−1(1 + LwLθαt−ταt ,t−1)

A2

(
A2
∥∥Γ(ut)− w∗

θt

∥∥2 + C2
)
.

The proof of Lemma A.7 is provided in Section D.7.

Lemma A.8. (Bound of T334)

T334 ≤
4L′′

FLθαt−ταt ,t−1(1 + LwLθαt−ταt ,t−1)

A2

(
A2
∥∥Γ(ut)− w∗

θt

∥∥2 + C2
)
.

The proof of Lemma A.8 is provided in Section D.8.

Lemma A.9. (Bound of T5)

T5 ≤ 2
(
A2
∥∥Γ(ut)− w∗

θt

∥∥2 + C2
)
.

The proof of Lemma A.9 is provided in Section D.9.

14
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Lemma A.10. (Bound of T6)

T6 =
∥∥∥w∗

θt − w∗
θt+1

∥∥∥2 ≤ L2
wL

2
θα

2
t .

Lemma A.10 follows immediately from Lemma C.5.

We now assemble the bounds in Lemmas A.1 - A.10 back into (13). Define

Lα,t
.
=

 t∑
j=t−ταt

αt−ταt ,j

 (1 + LwLθ max
{
1, αt−ταt ,t

}
),

C0
.
=max

{
A2, C2

}
max

{
16, L2

wL
2
θ, 8|Y|LPLθ, 4L

′
FLθ, 4L

′′
FLθ

}
,

Using A > 1 and Lemmas A.3 - A.10, it is easy to see

E [T3] ≤C0Lα,t

(
E
[∥∥Γ(ut)− w∗

θt

∥∥2]+ 1
)
,

αtE [T3] ≤C0αtLα,t

(
E
[∥∥Γ(ut)− w∗

θt

∥∥2]+ 1
)
,

E [T5] ≤C0

(
E
[∥∥Γ(ut)− w∗

θt

∥∥2]+ 1
)
,

α2
tE [T5] ≤C0α

2
t

(
E
[∥∥Γ(ut)− w∗

θt

∥∥2]+ 1
)
,

E [T6] ≤C0α
2
t .

Then we have

1

2
E
[∥∥∥ut+1 − w∗

θt+1

∥∥∥2]
≤1

2
E
[∥∥Γ(ut)− w∗

θt

∥∥2]+ LwLθαtE
[∥∥Γ(ut)− w∗

θt

∥∥]− (1− καt)E
[∥∥Γ(ut)− w∗

θt

∥∥2]
+ C0αtLα,t

(
E
[∥∥Γ(ut)− w∗

θt

∥∥2]+ 1
)
+ C0α

2
t

(
E
[∥∥Γ(ut)− w∗

θt

∥∥2]+ 1
)

+ C0α
2
t ,

implying

E
[∥∥∥ut+1 − w∗

θt+1

∥∥∥2] ≤ (1− 2
(
1− καt

− C0αtLα,t − C0α
2
t

))
E
[∥∥Γ(ut)− w∗

θt

∥∥2]
+ 2LwLθαtE

[∥∥Γ(ut)− w∗
θt

∥∥]+ 2C0αtLα,t + 4C0α
2
t .

Observing that

Lα,t = O
(
αt log

2 αt

)
then completes the proof.

A.2. Proof of Corollary 3.10

Corollary A.11. Let Assumptions 3.1 - 3.7 hold. Assume κα =
√
1− ηα for some positive constant η > 0. If t0 is

sufficiently large, then the iterates {wt} generated by (11) satisfy

E
[∥∥wt − w∗

wt

∥∥2] = 72L2
wL

2
θ

η2

+



O
(
t−

ηcα
3 log2 t

)
, ϵα = 1, ηcα ∈ (0, 3)

O
(

log3 t
t

)
, ϵα = 1, ηcα = 3

O
(

log2 t
t

)
, ϵα = 1, ηcα ∈ (3,∞)

O
(

log2 t
tϵα

)
, ϵα ∈ (0, 1)

.

15
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Proof. According to Theorem 3.9, we have

E
[∥∥∥ut+1 − w∗

θt+1

∥∥∥2] ≤ (1− 2
(
1− καt − C0αtLα,t − C0α

2
t

))
E
[∥∥Γ(ut)− w∗

θt

∥∥2]
+ 2LwLθαtE

[∥∥Γ(ut)− w∗
θt

∥∥]+ 2C0αtLα,t + 4C0α
2
t .

Since Lα,t = O
(
αt log

2 αt

)
, we conclude that there exists a constant C1 > 0 such that

E
[∥∥∥ut+1 − w∗

θt+1

∥∥∥2] ≤(1− 2
(
1−

√
1− ηαt − C1α

2
t log

2 αt

))
E
[∥∥Γ(ut)− w∗

θt

∥∥2]
+ 2LwLθαtE

[∥∥Γ(ut)− w∗
θt

∥∥]+ C1α
2
t log

2 αt.

When t0 is sufficiently large, we have ∀t,

1− 2
(
1−

√
1− ηαt − C1α

2
t log

2 αt

)
> 0.

Using ∥∥Γ(ut)− w∗
θt

∥∥ =
∥∥Γ(ut)− Γ(w∗

θt)
∥∥ ≤ ∥∥ut − w∗

θt

∥∥
then yields

E
[∥∥∥ut+1 − w∗

θt+1

∥∥∥2]
≤
(
1− 2

(
1−

√
1− ηαt − C1α

2
t log

2 αt

))
E
[∥∥ut − w∗

θt

∥∥2]
+ 2LwLθαtE

[∥∥ut − w∗
θt

∥∥]+ C1α
2
t log

2 αt

≤
(
1− 2

(
1−

√
1− ηαt − C1α

2
t log

2 αt

))
E
[∥∥ut − w∗

θt

∥∥2]
+ 2LwLθαt

√
E
[∥∥ut − w∗

θt

∥∥2]+ C1α
2
t log

2 αt (Jensen’s inequality) .

Since

lim
α→0

1−√1− ηα
η
2α

= 1,

we conclude that when t0 is sufficiently large, ∀t,

1−
√
1− ηαt − C1α

2
t log

2 αt ≥
η

3
αt − C1α

2
t log

2 α2
t ≥

η

4
αt.

With

zt
.
=

√
E
[∥∥ut − w∗

θt

∥∥2],
we then get

z2t+1 ≤
(
1− η

2
αt

)
z2t + 2LwLθαtzt + C1α

2
t log

2 αt.

If (
1− η

2
αt

)
z2t + 2LwLθαtzt ≤ (1− η

3
αt)z

2
t ,

⇐⇒ 12LwLθ

η
≤ zt, (16)
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we have

z2t+1 ≤ (1− η

3
αt)z

2
t + C1α

2
t log

2 αt.

If

12LwLθ

η
≥ zt, (17)

we have

z2t+1 ≤
(
1− η

2
αt

)
z2t + 2LwLθαtzt + C1α

2
t log

2 αt

≤
(
1− η

2
αt

)
z2t +

24L2
wL

2
θ

η
αt + C1α

2
t log

2 αt.

Since for any time t, one of (16) and (17) must hold, we always have

z2t+1 ≤
(
1− η

3
αt

)
z2t +

24L2
wL

2
θ

η
αt + C1α

2
t log

2 αt. (18)

Telescoping the above inequality from t0 to t yields

z2t ≤
t−1∏
i=t0

(
1− η

3
αi

)
︸ ︷︷ ︸

E1

z2t0 +
24L2

wL
2
θ

η

t−1∑
i=t0

t−1∏
j=i+1

(
1− η

3
αj

)
αi︸ ︷︷ ︸

E2

+ C1

t−1∑
i=t0

t−1∏
j=i+1

(
1− η

3
αj

)
α2
i log

2 αi︸ ︷︷ ︸
E3

,

where we adopt the convention that
∏j

x=i (·) = 1 if i > j. For E1, using 1 + x ≤ expx yields

E1 ≤ exp

(
−η

3

t−1∑
i=t0

αi

)
≤ exp

(
−η

3

∫ t

x=t0

cα
(t0 + x)ϵα

dx

)
(19)

=


(

2t0
t0+t

) ηcα
3

, ϵα = 1

exp
(

ηcα
3(1−ϵα)

(
(2t0)

1−ϵα − (t0 + t)1−ϵα
))

, ϵα ∈ (0, 1)
.

For E2, define

Bt
.
=

t∑
i=0

t∏
j=i+1

(
1− η

3
αj

)
αi.

Then we have

Bt = αt + (1− η

3
αt)Bt−1.

When t0 is sufficiently large such that

1− η

3
αt > 0,

it is easy to see

Bt−1 ≤
3

η
=⇒ Bt ≤

3

η
.

17
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As B0 = α0, we have B0 < 3
η for sufficiently large t0. We, therefore, conclude by induction that ∀t,

Bt ≤
3

η
.

Consequently,

E2 ≤ Bt−1 ≤
3

η
. (20)

For E3, we have

E3 ≤ log2 αt

t−1∑
i=t0

t−1∏
j=i+1

(
1− η

3
αj

)
α2
i︸ ︷︷ ︸

E4

. (21)

If ϵα = 1, we have

E4 ≤
t−1∑
i=t0

exp

(
−η

3

∫ t

x=i+1

cα
(t0 + x)ϵα

dx

)
c2α

(t0 + i)2ϵα

=

t−1∑
i=t0

(
t0 + i+ 1

t+ t0

) ηcα
3 c2α

(t0 + i)2

=

t−1∑
i=t0

(
t0 + i+ 1

t+ t0

) ηcα
3 c2α

(t0 + i+ 1)2

(
t0 + i+ 1

t0 + i

)2

≤ 4c2α
(t+ t0)

ηcα
3

t−1∑
i=t0

1

(t0 + i+ 1)2−
ηcα
3

=


O
(
t−

ηcα
3

)
, ηcα ∈ (0, 3)

O
(

log t
t

)
, ηcα = 3

O
(
1
t

)
, ηcα ∈ (3,∞)

.

If ϵα ∈ (0, 1), when t0 is sufficiently large, we can use induction (see, e.g., Section A.3.7 of Chen et al. (2021)) to show that

E4 = O
(

1

tϵα

)
.

Putting the bounds in (19) , (20), and (21) back into (18) yields

z2t =
72L2

wL
2
θ

η2
+



O
(
t−

ηcα
3 log2 t

)
, ϵα = 1, ηcα ∈ (0, 3)

O
(

log3 t
t

)
, ϵα = 1, ηcα = 3

O
(

log2 t
t

)
, ϵα = 1, ηcα ∈ (3,∞)

O
(

log2 t
tϵα

)
, ϵα ∈ (0, 1)

.

Here we have used the fact that E3 always dominates E1 for any ϵα, cα. Using

E
[∥∥wt − w∗

wt

∥∥2] = E
[∥∥Γ(ut)− Γ(w∗

wt
)
∥∥2] ≤ E

[∥∥ut − w∗
wt

∥∥2] = z2t

then completes the proof.
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B. Proofs of Section 4
B.1. Proof of Theorem 4.4

Theorem 4.4. Let Assumptions 3.7 and 4.1 - 4.3 hold. Assume ∥X∥ = 1 and rmax is not so large such that

Lw
.
= O (Lπrmax) < 1.

Assume CΓ is large enough such that

Uw
.
= O (rmax) ≤ CΓ.

Let t0 be sufficiently large. Then the iterates {wt} generated by Algorithm 1 satisfy

E [∥wt − w∗∥] =
6
√
2Lw (1 + 4CΓ)

η(1− Lw)

+


O
(
t−

ηcα
6 log t

)
, ϵα = 1, ηcα ∈ (0, 3)

O
(
t−

1
2 log

3
2 t
)
, ϵα = 1, ηcα = 3

O
(
t−

1
2 log t

)
, ϵα = 1, ηcα ∈ (3,∞)

O
(
t−

ϵα
2 log t

)
, ϵα ∈ (0, 1)

,

where η is a positive constant and w∗ is the unique vector such that e(w∗) = 0.

Proof. To start with, define

Y .
= {(s, a, s′, a′) | s ∈ S, a ∈ A, s′ ∈ S, p(s′|s, a) > 0},

Yt
.
= (St, At, St+1, At+1),

y
.
= (s, a, s′, a′),

π̃θ(a|s) .
= πΓ(θ)(a|s),

Pθ((s1, a1, s
′
1, a

′
1), (s2, a2, s

′
2, a

′
2))

.
=

{
0 (s′1, a

′
1) ̸= (s2, a2)

p(s′2|s2, a2)π̃θ(a
′
2|s′2) (s′1, a

′
1) = (s2, a2)

,

Fθ(w, y)
.
=
(
r(s, a) + γx(s′, a′)⊤w − x(s, a)⊤w

)
x(s, a) + w.

Here our Fθ(w, y) is actually independent of θ.

The update of {wt} in Algorithm 1 with λ = 0 can then be expressed as

wt+1 = Γ (wt + αt (Fθt(wt, Yt)− wt)) .

According to the action selection rule for At+1 specified in Algorithm 1, we have

Pr(Yt+1 = y) = Pθt+1(Yt, y),

Assumption 3.1 is then fulfilled.

Assumption 3.2 is immediately implied by Assumption 4.2. In particular, for any θ, the invariant distribution of the chain
induced by Pθ is dπ̃θ

(s)π̃θ(a|s)p(s′|s, a)π̃θ(a
′|s′).

For Assumption 3.4, it is easy to see

F̄θ(w) =X⊤Dπ̃θ
(γPπ̃θ

− I)Xw +X⊤Dπ̃θ
r + w,

fα
θ (w) =w + α

(
X⊤Dπ̃θ

(γPπ̃θ
− I)Xw +X⊤Dπ̃θ

r
)
.

Define

w∗
θ

.
= −

(
X⊤Dπ̃θ

(γPπ̃θ
− I)X

)−1
X⊤Dπ̃θ

r.
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It is then easy to see that w∗
θ is the unique fixed point of F̄θ(w). The uniform pseudo-contraction is verified by Lemma C.6.

In particular, we have

κα
.
=
√
1− ηα,

η
.
=(1− γ) inf

θ
λmin

(
X⊤Dπθ

X
)
> 0, (22)

where λmin(·) denotes the minimum eigenvalue of a symmetric positive definite matrix.

We now verify Assumption 3.5. To verify Assumption 3.5 (i), we have

∥Fθ(w, y)− Fθ(w
′, y)∥

≤
∥∥γx(s, a)x(s′, a′)⊤ − x(s, a)x(s, a)⊤ + I

∥∥∥w − w′∥
≤
(
(1 + γ)x2

max + 1
)︸ ︷︷ ︸

LF

∥w − w′∥.

Assumption 3.5 (ii) immediately holds since our Fθ(w, y) is independent of θ.

To verify Assumption 3.5 (iii), we have

∥Fθ(0, y)∥ = ∥r(s, a)x(s, a)∥ ≤ rmaxxmax︸ ︷︷ ︸
UF

.

To verify Assumption 3.5 (iv), we have∥∥F̄θ(w)− F̄θ′(w)
∥∥
∞

=
∥∥X⊤ (Dπ̃θ

(γPπ̃θ
− I)−Dπ̃θ′ (γPπ̃θ′ − I)

)
Xw +X⊤ (Dπ̃θ

−Dπ̃θ′

)
r
∥∥
∞

≤∥X∥2∞
∥∥Dπ̃θ

(γPπ̃θ
− I)−Dπ̃θ′ (γPπ̃θ′ − I)

∥∥
∞∥w∥∞ + ∥X∥∞

∥∥Dπ̃θ
−Dπ̃θ′

∥∥
∞∥r∥∞.

Lemma C.3 asserts that Dπθ
is Lipschitz continuous in θ. We then conclude, by Lemma C.1, that there exist positive

constants LDP > 0, LD > 0 such that∥∥Dπθ
(γPπθ

− I)−Dπθ′ (γPπθ′ − I)
∥∥
∞ ≤LDPLπ∥θ − θ∥∞,∥∥Dπθ

−Dπθ′

∥∥
∞ ≤LDLπ∥θ − θ′∥∞.

Importantly, LDP and LD do not depend on CΓ. It is then easy to see that∥∥F̄θ(w)− F̄θ′(w)
∥∥
∞ ≤

(
∥X∥2∞LDPLπ∥w∥∞ + ∥X∥∞∥r∥∞LDLπ

)
∥Γ(θ)− Γ(θ′)∥∞

≤
(
∥X∥2∞LDPLπ∥w∥+ ∥X∥∞∥r∥∞LDLπ

)
∥Γ(θ)− Γ(θ′)∥

≤
(
∥X∥2∞LDPLπ∥w∥+ ∥X∥∞∥r∥∞LDLπ

)
∥θ − θ′∥.

It follow immediately that∥∥F̄θ(w)− F̄θ′(w)
∥∥ ≤√K (∥X∥2∞LDPLπ∥w∥+ ∥X∥∞∥r∥∞LDLπ

)
∥θ − θ′∥.

To verify Assumption 3.5 (v), we first use Lemma C.4 to get∥∥∥(X⊤Dπ̃θ
(γPπ̃θ

− I)X
)−1 −

(
X⊤Dπ̃θ′ (γPπ̃θ′ − I)X

)−1
∥∥∥
∞

≤
∥∥∥(X⊤Dπ̃θ

(γPπ̃θ
− I)X

)−1
∥∥∥
∞

∥∥∥(X⊤Dπ̃θ′ (γPπ̃θ′ − I)X
)−1
∥∥∥
∞

×
∥∥X⊤Dπ̃θ

(γPπ̃θ
− I)X −X⊤Dπ̃θ′ (γPπ̃θ′ − I)X

∥∥
∞.
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Thanks to Assumption 4.2, for any θ, (
X⊤Dπθ

(γPπθ
− I)X

)−1

is well-defined. Since Λ̄π is a compact set, we conclude, by the extreme value theorem, that there exists a constant Uinv > 0,
independent of CΓ, such that

sup
θ

∥∥∥(X⊤Dπθ
(γPπθ

− I)X
)−1
∥∥∥
∞

< Uinv.

Recalling that π̃θ(a|s) = πΓ(θ)(a|s) then yields

sup
θ

∥∥∥(X⊤Dπ̃θ
(γPπ̃θ

− I)X
)−1
∥∥∥
∞

< Uinv.

It then follows immediately that∥∥∥(X⊤Dπ̃θ
(γPπ̃θ

− I)X
)−1 −

(
X⊤Dπ̃θ′ (γPπ̃θ′ − I)X

)−1
∥∥∥
∞
≤ U2

inv∥X∥2∞LDPLπ∥θ − θ′∥∞.

It is also easy to see that ∥∥X⊤Dπ̃θ
r
∥∥
∞ ≤ ∥X∥∞∥r∥∞,∥∥X⊤Dπ̃θ

r −X⊤Dπ̃θ′ r
∥∥
∞ ≤ ∥X∥∞LDLπ∥r∥∞.

Using Lemma C.1 again yields

∥w∗
θ − w∗

θ′∥∞ ≤
(
U2
inv∥X∥2∞LDP ∥X∥∞ + Uinv∥X∥∞LD

)
Lπ∥r∥∞∥θ − θ′∥∞.

It follows immediately that

∥w∗
θ − w∗

θ′∥ ≤
√
K
(
U2
inv∥X∥2∞LDP ∥X∥∞ + Uinv∥X∥∞LD

)
Lπ∥r∥∞︸ ︷︷ ︸

Lw

∥θ − θ′∥. (23)

To verify Assumption 3.5 (vi), we have

sup
θ
∥w∗

θ∥∞ ≤ Uinv∥X∥∞∥r∥∞.

It follows immediately that

sup
θ
∥w∗

θ∥ ≤
√
KUinv∥X∥∞∥r∥∞︸ ︷︷ ︸

Uw

. (24)

Assumption 3.5 (vii) follows immediately from Assumption 4.1.

We now verify Assumption 3.6. Assumption 3.6 (i) is fulfilled by our selection of CΓ. It is easy to see

π̃θ(a|s) = π̃Γ(θ)(a|s),

Assumption 3.6 (ii) then follows immediately.

With Assumptions 3.1 - 3.6 satisfied, we conclude by Corollary 3.10 that the iterates {wt} generated by Algorithm 1 with
λ = 0 satisfy

E
[∥∥wt − w∗

wt

∥∥2] = 72L2
wL

2
θ

η2
+



O
(
t−

ηcα
3 log2 t

)
, ϵα = 1, ηcα ∈ (0, 3)

O
(

log3 t
t

)
, ϵα = 1, ηcα = 3

O
(

log2 t
t

)
, ϵα = 1, ηcα ∈ (3,∞)

O
(

log2 t
tϵα

)
, ϵα ∈ (0, 1)

.
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where

Lθ
.
=UF + (LF + 1)CΓ =

(
rmaxxmax +

(
(1 + γ)x2

max + 2
)
CΓ

)
≤1 + 4CΓ.

Consequently,

E
[∥∥wt − w∗

wt

∥∥] ≤√E
[∥∥wt − w∗

wt

∥∥2]

=
6
√
2LwLθ

η
+


O
(
t−

ηcα
6 log t

)
, ϵα = 1, ηcα ∈ (0, 3)

O
(
t−

1
2 log

3
2 t
)
, ϵα = 1, ηcα = 3

O
(
t−

1
2 log t

)
, ϵα = 1, ηcα ∈ (3,∞)

O
(
t−

ϵα
2 log t

)
, ϵα ∈ (0, 1)

.

If

∥r∥∞ <
1

√
K
(
U2
inv∥X∥

2
∞LDP ∥X∥∞ + Uinv∥X∥∞LD

) ,
we get

Lw < 1.

Since

E [∥wt − w∗∥]
=E

[∥∥wt − w∗
w∗

∥∥]
≤E

[∥∥wt − w∗
wt

∥∥]+ E
[∥∥w∗

wt
− w∗

w∗

∥∥]
≤E

[∥∥wt − w∗
wt

∥∥]+ LwE [∥wt − w∗∥] ,

we conclude that

E [∥wt − w∗∥] ≤
1

1− Lw
E
[∥∥wt − w∗

wt

∥∥]

=
6
√
2Lw (1 + 4CΓ)

η(1− Lw)
+


O
(
t−

ηcα
6 log t

)
, ϵα = 1, ηcα ∈ (0, 3)

O
(
t−

1
2 log

3
2 t
)
, ϵα = 1, ηcα = 3

O
(
t−

1
2 log t

)
, ϵα = 1, ηcα ∈ (3,∞)

O
(
t−

ϵα
2 log t

)
, ϵα ∈ (0, 1)

,

which completes the proof.

C. Technical Lemmas
Lemma C.1. Let f1(x), f2(x) be two Lipschitz continuous functions with Lipschitz constants L1, L2. Assume ∥f1(x)∥ ≤
U1, ∥f2(x)∥ ≤ U2, then L1U2 + L2U1 is a Lipschitz constant of f(x) .

= f1(x)f2(x).

Proof.

∥f1(x)f2(x)− f1(y)f2(y)∥
≤∥f1(x)∥∥f2(x)− f2(y)∥+ ∥f2(y)∥∥f1(x)− f1(y)∥
≤(U1L2 + U2L1)∥x− y∥.
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Lemma C.2. Given positive integers t1 < t2 satisfying

αt1,t2−1 ≤
1

4A
,

we have, for any t ∈ [t1, t2],

∥Γ(ut)− Γ(ut1)∥ ≤ 2αt1,t2−1(A∥Γ(ut1)∥+B), (25)
∥Γ(ut)− Γ(ut1)∥ ≤ 4αt1,t2−1(A∥Γ(ut2)∥+B), (26)

∥Γ(ut)− Γ(ut1)∥ ≤ min {∥Γ(ut1)∥, ∥Γ(ut2)∥}+
B

A
. (27)

Proof. Notice that

∥Γ(ut+1)∥ − ∥Γ(ut)∥
≤∥Γ(ut+1)− Γ(ut)∥
=∥Γ(ut+1)− Γ(Γ(ut))∥
≤∥ut+1 − Γ(ut)∥
=αt∥Fθt(Γ(ut), Yt)− Γ(ut)∥
≤αt (∥Fθt(Γ(ut), Yt)∥+ ∥Γ(ut)∥)
≤αt(UF + (LF + 1)∥Γ(ut)∥ (Lemma D.10)
≤αt(A∥Γ(ut)∥+B) (Using (15)) (28)

The rest of the proof follows from the proof of Lemma A.2 of Chen et al. (2021) up to changes of notations. We include it
for completeness. Rearranging terms of the above inequality yields

∥Γ(ut+1)∥+
B

A
≤ (1 + αtA)

(
∥Γ(ut)∥+

B

A

)
,

implying that for any t ∈ (t1, t2],

∥Γ(ut)∥+
B

A
≤

t−1∏
j=t1

(1 +Aαj)

(
∥Γ(ut1)∥+

B

A

)
.

Notice that for any x ∈ [0, 1
2 ], 1 + x ≤ exp(x) ≤ 1 + 2x always hold. Hence

αt1,t2−1 ≤
1

4A

implies

t−1∏
j=t1

(1 +Aαj) ≤ exp(Aαt1,t−1) ≤ 1 + 2Aαt1,t−1.

Consequently, for any t ∈ (t1, t2], we have

∥Γ(ut)∥+
B

A
≤ (1 + 2Aαt1,t−1)

(
∥Γ(ut1)∥+

B

A

)
=⇒ ∥Γ(ut)∥ ≤ (1 + 2Aαt1,t−1) ∥Γ(ut1)∥+ 2Bαt1,t−1,

which together with (28) yields that for any t ∈ (t1, t2 − 1]

∥Γ(ut+1)− Γ(ut)∥ ≤ αt (A∥Γ(ut)∥+B)

≤ αt (A (1 + 2Aαt1,t−1) ∥Γ(ut1)∥+ 2ABαt1,t−1 +B)

≤ 2αt(A∥Γ(ut1)∥+B) (Using αt1,t−1 ≤
1

4A
) .
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Consequently, for any t ∈ (t1, t2], we have

∥Γ(ut)− Γ(ut1)∥ ≤
t−1∑
j=t1

∥Γ(wj+1)− Γ(wj)∥ ≤
t−1∑
j=t1

2αj(A∥Γ(ut1)∥+B)

= 2αt1,t−1(A∥Γ(ut1)∥+B) ≤ 2αt1,t2−1(A∥Γ(ut1)∥+B),

which completes the proof of (25). For (26), we have from the above inequality

∥Γ(ut2)− Γ(ut1)∥ ≤2αt1,t2−1(A∥Γ(ut1)∥+B)

≤2αt1,t2−1(A∥Γ(ut1)− Γ(ut2)∥+A∥Γ(ut2)∥+B)

≤1

2
∥Γ(ut1)− Γ(ut2)∥+ 2αt1,t2−1(A∥Γ(ut2)∥+B),

implying

∥Γ(ut2)− Γ(ut1)∥ ≤ 4αt1,t2−1(A∥Γ(ut2)∥+B).

Consequently, for any t ∈ [t1, t2],

∥Γ(ut)− Γ(ut1)∥ ≤2αt1,t2−1(A∥Γ(ut1)∥+B)

≤2αt1,t2−1(A∥Γ(ut1)− Γ(ut2)∥+A∥Γ(ut2)∥+B)

≤2αt1,t2−1 (A4αt1,t2−1(A∥Γ(ut2)∥+B) +A∥Γ(ut2)∥+B)

≤4αt1,t2−1(A∥Γ(ut2)∥+B) (Using αt1,t2−1 ≤
1

4A
) ,

which completes the proof of (26). (25) implies

∥Γ(ut)− Γ(ut1)∥ ≤ ∥Γ(ut1)∥+
B

A
,

(26) implies

∥Γ(ut)− Γ(ut1)∥ ≤ ∥Γ(ut2)∥+
B

A
,

then (27) follows immediately, which completes the proof.

Lemma C.3. Let Assumptions 4.1 and 4.2 hold. Then there exists a constant L′
π such that ∀θ, θ′, a, s,∣∣dπθ

(s, a)− dπθ′ (s, a)
∣∣ ≤ L′

π∥θ − θ′∥∞.

Proof. See, e.g., Lemma 9 of Zhang et al. (2021).

Lemma C.4. For any ∥·∥, we have ∥∥X−1 − Y −1
∥∥ ≤ ∥∥X−1

∥∥∥X − Y ∥
∥∥Y −1

∥∥.
Proof. ∥∥X−1 − Y −1

∥∥ =
∥∥X−1Y Y −1 −X−1XY −1

∥∥ ≤ ∥∥X−1
∥∥∥X − Y ∥

∥∥Y −1
∥∥.

Lemma C.5. Recall that

Lθ = UF + (LF + 1)CΓ,
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then for any j > i, y, y′, w, ∥∥∥w∗
θj − w∗

θi

∥∥∥ ≤LwLθαi,j−1,∣∣Pθj (y, y
′)− Pθi(y, y

′)
∣∣ ≤LPLθαi,j−1,∥∥Fθj (w, y)− Fθi(w, y)
∥∥ ≤L′

FLθαi,j−1 (∥w∥+ U ′
F ) ,∥∥F̄θj (w)− F̄θi(w)

∥∥ ≤L′′
FLθαi,j−1 (∥w∥+ U ′′

F ) .

Proof.

∥∥∥w∗
θj − w∗

θi

∥∥∥ ≤ j−1∑
k=i

∥∥∥w∗
θk+1
− w∗

θk

∥∥∥
≤

j−1∑
k=i

∥∥∥w∗
θk+1
− w∗

Γ(θk)

∥∥∥ (Assumption 3.6)

≤
j−1∑
k=i

Lw∥θk+1 − Γ(θk)∥

=

j−1∑
k=i

Lw∥wk+1 − Γ(wk)∥

=

j−1∑
k=i

Lw∥Γ(uk+1)− Γ(Γ(uk))∥ (Lemma 3.8)

≤
j−1∑
k=i

Lw∥uk+1 − Γ(uk)∥

=

j−1∑
k=i

Lwαk∥Fθk(Γ(uk), Yk)− Γ(uk)∥

≤
j−1∑
k=i

Lwαk (UF + LF ∥Γ(uk)∥+ ∥Γ(uk)∥) (Lemma D.10)

≤
j−1∑
k=i

Lwαk (UF + LFCΓ + CΓ)

=LwLθαi,j−1.

Similarly we can get ∣∣Pθj (y, y
′)− Pθi(y, y

′)
∣∣ ≤LPLθαi,j−1.

Moreover,

∥∥Fθj (w, y)− Fθi(w, y)
∥∥ ≤ j−1∑

k=i

∥∥Fθk+1
(w, y)− Fθk(w, y)

∥∥
≤

j−1∑
k=i

∥∥Fθk+1
(w, y)− FΓ(θk)(w, y)

∥∥ (Assumption 3.6)

≤
j−1∑
k=i

L′
F ∥θk+1 − Γ(θk)∥ (∥w∥+ U ′

F )

≤L′
FLθαi,j−1 (∥w∥+ U ′

F ) .
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Since Pθ = PΓ(θ), it is easy to see dθ(y) = dΓ(θ)(y). Consequently, F̄θ(w) = F̄Γ(θ)(w). We can then similarly get∥∥F̄θj (w)− F̄θi(w)
∥∥ ≤L′′

FLθαi,j−1 (∥w∥+ U ′′
F ) ,

which completes the proof.

Lemma C.6. (Lemma 5.4 of De Farias & Van Roy (2000)) There exists an ᾱ such that for all α ∈ (0, ᾱ) and all θ,

∥fα
θ (w)− w∗

θ∥ ≤ κα∥w − w∗
θ∥,

where

κα
.
=
√
1− (1− γ) inf

θ
λmin (X⊤Dπθ

X)α < 1.

Here λmin(·) denotes the minimum eigenvalue of a symmetric positive definite matrix.

Proof. The proof is due to De Farias & Van Roy (2000); we rewrite it in our notation for completeness. We first recall

fα
θ (w) =w + α

(
X⊤Dπ̃θ

(γPπ̃θ
− I)Xw +X⊤Dπ̃θ

r
)
,

w∗
θ =−

(
X⊤Dπ̃θ

(γPπ̃θ
− I)X

)−1
X⊤Dπ̃θ

r.

Define

gθ(w)
.
=X⊤Dπ̃θ

(γPπ̃θ
− I)Xw +X⊤Dπ̃θ

r

=X⊤Dπ̃θ
X
(
X⊤Dπ̃θ

X
)−1

X⊤Dπ̃θ
(Tπ̃θ

Xw −Xw)

=X⊤Dπ̃θ
ΠDπ̃θ

Tπ̃θ
Xw −X⊤Dπ̃θ

Xw

=X⊤Dπ̃θ

(
ΠDπ̃θ

Tπ̃θ
Xw −Xw

)
.

By the contraction property (see, e.g., Tsitsiklis & Roy (1996)),∥∥∥ΠDπ̃θ
Tπ̃θ

Xw −Xw∗
θ

∥∥∥
Dπ̃θ

≤ γ∥Xw −Xw∗
θ∥Dπ̃θ

.

Consequently,

(w − w∗
θ)

⊤gθ(s)

= (Xw −Xw∗
θ)

⊤
Dπ̃θ

(
ΠDπ̃θ

Tπ̃θ
Xw −Xw

)
=(Xw −Xw∗

θ)
⊤
Dπ̃θ

(
ΠDπ̃θ

Tπ̃θ
Xw −Xw∗

θ +Xw∗
θ −Xw

)
≤∥Xw −Xw∗

θ∥Dπ̃θ

∥∥∥ΠDπ̃θ
Tπ̃θ

Xw −Xw∗
θ

∥∥∥
Dπ̃θ

− ∥Xw −Xw∗
θ∥2Dπ̃θ

(Cauthy-Schwarz inequality)

≤(γ − 1)∥Xw −Xw∗
θ∥2Dπ̃θ

=(γ − 1)(w − w∗
θ)

⊤ (X⊤Dπ̃θ
X
)
(w − w∗

θ).

Since X⊤Dπθ
X is symmetric and positive define, eigenvalues are continuous in the elements of the matrix, Λ̄π is compact,

we conclude, by the extreme value theorem, that

C1
.
= inf

θ
λmin

(
X⊤Dπθ

X
)
> 0.

Consequently, for any y and θ,

y⊤X⊤Dπθ
Xy ≥ C1∥y∥2,
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implying

y⊤X⊤Dπ̃θ
Xy ≥ C1∥y∥2.

It follows immediately that

(w − w∗
θ)

⊤gθ(w) ≤ −(1− γ)C1∥w − w∗
θ∥2. (29)

Moreover, let xi be the i-the column of X , we have

∥gθ(w)∥2 =

K∑
i=1

(
x⊤
i Dπ̃θ

(
ΠDπ̃θ

Tπ̃θ
Xw −Xw

))2
≤

K∑
i=1

∥xi∥2Dπ̃θ

∥∥∥ΠDπ̃θ
Tπ̃θ

Xw −Xw
∥∥∥2
Dπ̃θ

(Cauchy-Schwarz inequality)

≤
K∑
i=1

∥xi∥2Dπ̃θ

(∥∥∥ΠDπ̃θ
Tπ̃θ

Xw −Xw∗
θ

∥∥∥
Dπ̃θ

+ ∥Xw∗
θ −Xw∥Dπ̃θ

)2

≤(1 + γ)2
K∑
i=1

∥xi∥2Dπ̃θ
∥Xw∗

θ −Xw∥2Dπ̃θ

=(1 + γ)2

(
K∑
i=1

∥xi∥2Dπ̃θ

)∥∥X⊤Dπ̃θ
X
∥∥∥w − w∗

θ∥2.

According to the extreme value theorem,

C2
.
= sup

θ

(
K∑
i=1

∥xi∥2Dπθ

)∥∥X⊤Dπθ
X
∥∥ <∞.

Consequently, we have

∥gθ(w)∥2 ≤ (1 + γ)2C2∥w − w∗
θ∥2. (30)

Combining (29) and (30) yields

∥fα
θ (w)− w∗

θ∥2 =∥w + αgθ(w)− w∗
θ∥2

=∥w − w∗
θ∥2 + 2α(w − w∗

θ)
⊤gθ(w) + α2∥gθ(w)∥2

≤
(
1− 2α(1− γ)C1 + (1 + γ)2α2C2

)
∥w − w∗

θ∥2.

Consequently, if

α < ᾱ
.
=

(1− γ)C1

(1 + γ)2C2
,

we have

1− 2α(1− γ)C1 + (1 + γ)2α2C2 ≤ 1− (1− γ)C1α.

Defining

κα
.
=
√
1− (1− γ)C1α

then completes the proof. Importantly, both C1 and C2 here are independent of CΓ.
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D. Proof of Auxiliary Lemmas
D.1. Proof of Lemma A.1

Lemma D.1. (Bound of T1)

T1 ≤ LwLθαt

∥∥Γ(ut)− w∗
θt

∥∥.
Proof.

T1 =
〈
Γ(ut)− w∗

θt , w
∗
θt − w∗

θt+1

〉
≤
∥∥Γ(ut)− w∗

θt

∥∥∥∥∥w∗
θt − w∗

θt+1

∥∥∥
≤
∥∥Γ(ut)− w∗

θt

∥∥LwLθαt (Lemma C.5)

D.2. Proof of Lemma A.2

Lemma D.2. (Bound of T2)

T2 ≤ −(1− καt
)
∥∥Γ(ut)− w∗

θt

∥∥2.
Proof.

T2 =
〈
Γ(ut)− w∗

θt , f
αt

θt
(Γ(ut))− Γ(ut)

〉
=
〈
Γ(ut)− w∗

θt , f
αt

θt
(Γ(ut))− w∗

θt

〉
−
〈
Γ(ut)− w∗

θt ,Γ(ut)− w∗
θt

〉
≤
∥∥Γ(ut)− w∗

θt

∥∥∥∥fαt

θt
(Γ(ut))− w∗

θt

∥∥− ∥∥Γ(ut)− w∗
θt

∥∥2
≤
∥∥Γ(ut)− w∗

θt

∥∥καt

∥∥Γ(ut)− w∗
θt

∥∥− ∥∥Γ(ut)− w∗
θt

∥∥2 (Assumption 3.4)

=− (1− καt)
∥∥Γ(ut)− w∗

θt

∥∥2.
D.3. Proof of Lemma A.3

Lemma D.3. (Bound of T31)

T31 ≤ 8(LwLθ + 1)αt−ταt ,t−1

(
A2
∥∥Γ(ut)− w∗

θt

∥∥2 + C2
)
.

Proof.

T31 =
〈
Γ(ut)− w∗

θt −
(
Γ(ut−ταt

)− w∗
θt−ταt

)
, Fθt(Γ(ut), Yt)− F̄θt(Γ(ut))

〉
≤
∥∥∥Γ(ut)− w∗

θt −
(
Γ(ut−ταt

)− w∗
θt−ταt

)∥∥∥∥∥Fθt(Γ(ut), Yt)− F̄θt(Γ(ut))
∥∥.

For the first term, we have ∥∥∥Γ(ut)− w∗
θt −

(
Γ(ut−ταt

)− w∗
θt−ταt

)∥∥∥
≤
∥∥Γ(ut)− Γ(ut−ταt

)
∥∥+ ∥∥∥w∗

θt − w∗
θt−ταt

∥∥∥
≤
∥∥Γ(ut)− Γ(ut−ταt

)
∥∥+ LwLθαt−ταt ,t−1 (Lemma C.5)

≤4αt−ταt ,t−1(A∥Γ(ut)∥+B) + LwLθαt−ταt ,t−1 (Lemma C.2)

≤4αt−ταt ,t−1(A
∥∥Γ(ut)− w∗

θt

∥∥+A
∥∥w∗

θt

∥∥+B) + LwLθαt−ταt ,t−1

≤4αt−ταt ,t−1(LwLθ + 1)(A
∥∥Γ(ut)− w∗

θt

∥∥+A
∥∥w∗

θt

∥∥+B + 1).
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For the second term, we have∥∥Fθt(Γ(ut), Yt)− F̄θt(Γ(ut))
∥∥

≤∥Fθt(Γ(ut), Yt)∥+
∥∥F̄θt(Γ(ut))− F̄θt(w

∗
θt)
∥∥+ ∥∥w∗

θt

∥∥ (Assumption 3.4(i))

≤UF + LF ∥Γ(ut)∥+
∥∥F̄θt(Γ(ut))− F̄θt(w

∗
θt)
∥∥+ ∥∥w∗

θt

∥∥ (Lemma D.10)

=UF + LF ∥Γ(ut)∥+
∥∥∥∥∥∑

y

dθt(y)
(
Fθt(Γ(ut), y)− Fθt(w

∗
θt , y)

)∥∥∥∥∥+ ∥∥w∗
θt

∥∥
≤UF + LF ∥Γ(ut)∥+ LF

∥∥Γ(ut)− w∗
θt

∥∥+ ∥∥w∗
θt

∥∥
≤UF + LF

∥∥Γ(ut)− w∗
θt

∥∥+ LF

∥∥w∗
θt

∥∥+ LF

∥∥Γ(ut)− w∗
θt

∥∥+ ∥∥w∗
θt

∥∥
≤A
∥∥Γ(ut)− w∗

θt

∥∥+A
∥∥w∗

θt

∥∥+B.

Combining the two inequalities together yields〈
Γ(ut)− w∗

θt −
(
Γ(ut−ταt

)− w∗
θt

)
, Fθt(Γ(ut), Yt)− F̄θt(Γ(ut))

〉
≤4(LwLθ + 1)αt−ταt ,t−1(A

∥∥Γ(ut)− w∗
θt

∥∥+ C)2

≤8(LwLθ + 1)αt−ταt ,t−1(A
2
∥∥Γ(ut)− w∗

θt

∥∥2 + C2),

which completes the proof.

D.4. Proof of Lemma A.4

Lemma D.4. (Bound of T32)

T32 ≤ 16αt−ταt ,t−1(1 + LwLθαt−ταt ,t−1)
(
A2
∥∥Γ(ut)− w∗

θt

∥∥2 + C2
)
.

Proof.

T32 =
〈
Γ(ut−ταt

)− w∗
θt−ταt

, Fθt(Γ(ut), Yt)− Fθt(Γ(ut−ταt
), Yt) + F̄θt(Γ(ut−ταt

))− F̄θt(Γ(ut))
〉

≤
∥∥∥Γ(ut−ταt

)− w∗
θt−ταt

∥∥∥∥∥Fθt(Γ(ut), Yt)− Fθt(Γ(ut−ταt
), Yt) + F̄θt(Γ(ut−ταt

))− F̄θt(Γ(ut))
∥∥.

For the first term, we have∥∥∥Γ(ut−ταt
)− w∗

θt−ταt

∥∥∥ (31)

=
∥∥∥Γ(ut−ταt

)− w∗
θt−ταt

− (w∗
θt − w∗

θt)
∥∥∥

≤
∥∥Γ(ut−ταt

)− w∗
θt

∥∥+ ∥∥∥w∗
θt − w∗

θt−ταt

∥∥∥
≤
∥∥Γ(ut−ταt

)− w∗
θt

∥∥+ LwLθαt−ταt ,t−1 (Lemma C.5)

≤
∥∥Γ(ut−ταt

)− Γ(ut)
∥∥+ ∥∥Γ(ut)− w∗

θt

∥∥+ LwLθαt−ταt ,t−1

≤∥Γ(ut)∥+
B

A
+
∥∥Γ(ut)− w∗

θt

∥∥+ LwLθαt−ταt ,t−1 (Lemma C.2)

≤(1 + LwLθαt−ταt ,t−1)

(∥∥w∗
θt

∥∥+ ∥∥Γ(ut)− w∗
θt

∥∥+ B

A
+
∥∥Γ(ut)− w∗

θt

∥∥+ 1

)
≤2(1 + LwLθαt−ταt ,t−1)

(
Uw +

B

A
+
∥∥Γ(ut)− w∗

θt

∥∥+ 1

)
≤
2(1 + LwLθαt−ταt ,t−1)

A

(
A
∥∥Γ(ut)− w∗

θt

∥∥+ C
)
.
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For the second term,

∥∥Fθt(Γ(ut), Yt)− Fθt(Γ(ut−ταt
), Yt) + F̄θt(Γ(ut−ταt

))− F̄θt(Γ(ut))
∥∥

≤
∥∥Fθt(Γ(ut), Yt)− Fθt(Γ(ut−ταt

), Yt)
∥∥+ ∥∥F̄θt(Γ(ut−ταt

))− F̄θt(Γ(ut))
∥∥

≤LF

∥∥Γ(ut−ταt
)− Γ(ut)

∥∥+ ∥∥∥∥∥∑
y

dθt(y)
(
Fθt(Γ(ut−ταt

), y)− Fθt(Γ(ut), y)
)∥∥∥∥∥

≤2LF

∥∥Γ(ut−ταt
)− Γ(ut)

∥∥
≤A
∥∥Γ(ut−ταt

)− Γ(ut)
∥∥

≤4Aαt−ταt ,t−1 (A∥Γ(ut)∥+B) (Lemma C.2)

≤4Aαt−ταt ,t−1(A
∥∥Γ(ut)− w∗

θt

∥∥+A
∥∥w∗

θt

∥∥+B).

Combining the two inequalities together yields

T32 ≤8αt−ταt ,t−1(1 + LwLθαt−ταt ,t−1)(A
∥∥ut − w∗

θt

∥∥+ C)2

≤16αt−ταt ,t−1(1 + LwLθαt−ταt ,t−1)
(
A2
∥∥ut − w∗

θt

∥∥2 + C2
)
,

which completes the proof.

D.5. Proof of Lemma A.5

Lemma D.5. (Bound of T331)

E [T331] ≤
8αt(1 + LwLθαt−ταt ,t−1)

A

(
A2E

[∥∥Γ(ut)− w∗
θt

∥∥2]+ C2
)
.

Proof.

E [T331] (32)

=E
[〈

Γ(ut−ταt
)− w∗

θt−ταt
, Fθt−ταt

(Γ(ut−ταt
), Ỹt)− F̄θt−ταt

(Γ(ut−ταt
))
〉]

=E
[
E
[〈

Γ(ut−ταt
)− w∗

θt−ταt
, Fθt−ταt

(Γ(ut−ταt
), Ỹt)− F̄θt−ταt

(Γ(ut−ταt
))
〉
|
θt−ταt
ut−ταt
Yt−ταt

]]
=E

[〈
Γ(ut−ταt

)− w∗
θt−ταt

,E
[
Fθt−ταt

(Γ(ut−ταt
), Ỹt)− F̄θt−ταt

(Γ(ut−ταt
)) |

θt−ταt
ut−ταt
Yt−ταt

]〉]
≤E

[∥∥∥Γ(ut−ταt
)− w∗

θt−ταt

∥∥∥∥∥∥∥E [Fθt−ταt
(Γ(ut−ταt

), Ỹt)− F̄θt−ταt
(Γ(ut−ταt

)) |
θt−ταt
ut−ταt
Yt−ταt

]∥∥∥∥] .
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We now bound the inner expectation.∥∥∥∥E [Fθt−ταt
(Γ(ut−ταt

), Ỹt)− F̄θt−ταt
(Γ(ut−ταt

)) |
θt−ταt
ut−ταt
Yt−ταt

]∥∥∥∥
=

∥∥∥∥∥∑
y

(
Pr

(
Ỹt = y |

θt−ταt
ut−ταt
Yt−ταt

)
− dθt−ταt

(y)

)
Fθt−ταt

(Γ(ut−ταt
), y)

∥∥∥∥∥
≤max

y

∥∥∥Fθt−ταt
(Γ(ut−ταt

), y)
∥∥∥∑

y

∣∣∣∣Pr(Ỹt = y |
θt−ταt
ut−ταt
Yt−ταt

)
− dθt−ταt

(y)

∣∣∣∣
≤max

y

∥∥∥Fθt−ταt
(Γ(ut−ταt

), y)
∥∥∥αt (Definition of ταt ) (33)

≤αt

(
UF + LF

∥∥Γ(ut−ταt
)
∥∥) (Lemma D.10)

≤αt

(
UF + LF

∥∥Γ(ut−ταt
)− Γ(ut)

∥∥+ LF ∥Γ(ut)∥
)

≤αt

(
B +A

(
∥Γ(ut)∥+

B

A

)
+A∥Γ(ut)∥

)
(Lemma C.2)

≤αt (2B + (A+ 1)∥Γ(ut)∥)
≤2αt (B +A∥Γ(ut)∥)
≤2αt

(
B +A

∥∥Γ(ut)− w∗
θt

∥∥+A
∥∥w∗

θt

∥∥)
≤2αt

(
A
∥∥Γ(ut)− w∗

θt

∥∥+ C
)

Using the above inequality and (31) yields

E [T331]

≤E
[
4αt(1 + LwLθαt−ταt ,t−1)

A

(
A
∥∥Γ(ut)− w∗

θt

∥∥+ C
)2]

≤E
[
8αt(1 + LwLθαt−ταt ,t−1)

A

(
A2
∥∥Γ(ut)− w∗

θt

∥∥2 + C2
)]

,

which completes the proof.

D.6. Proof of Lemma A.6

Lemma D.6. (Bound of T332)

E [T332] ≤
8|Y|LPLθ

∑t−1
j=t−ταt

αt−ταt ,j
(1 + LwLθαt−ταt ,t−1)

A

(
A2E

[∥∥Γ(ut)− w∗
θt

∥∥2]+ C2
)
.

Proof.

E [T332]

=E
[〈

Γ(ut−ταt
)− w∗

θt−ταt
, Fθt−ταt

(Γ(ut−ταt
), Yt)− Fθt−ταt

(Γ(ut−ταt
), Ỹt)

〉]
≤E

[∥∥∥Γ(ut−ταt
)− w∗

θt−ταt

∥∥∥∥∥∥∥E [Fθt−ταt
(Γ(ut−ταt

), Yt)− Fθt−ταt
(Γ(ut−ταt

), Ỹt) |
ut−ταt
θt−ταt
Yt−ταt

]∥∥∥∥]
(Similar to (32))

≤E
[
2(1 + LwLθαt−ταt ,t−1)

A

(
A
∥∥Γ(ut)− w∗

θt

∥∥+ C
)

× 2|Y|LPLθ

t−1∑
j=t−ταt

αt−ταt ,j

(
A
∥∥Γ(ut)− w∗

θt

∥∥+ C
) ]
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(Using (31) and Lemma D.11)

≤
8|Y|LPLθ

∑t−1
j=t−ταt

αt−ταt ,j
(1 + LwLθαt−ταt ,t−1)

A

(
A2E

[∥∥Γ(ut)− w∗
θt

∥∥2]+ C2
)
,

which completes the proof.

D.7. Proof of Lemma A.7

Lemma D.7. (Bound of T333)

T333 ≤
4L′

FLθαt−ταt ,t−1(1 + LwLθαt−ταt ,t−1)

A2

(
A2
∥∥Γ(ut)− w∗

θt

∥∥2 + C2
)
.

Proof.

T333 =
〈
Γ(ut−ταt

)− w∗
θt−ταt

, Fθt(Γ(ut−ταt
), Yt)− Fθt−ταt

(Γ(ut−ταt
), Yt)

〉
≤
∥∥∥Γ(ut−ταt

)− w∗
θt−ταt

∥∥∥∥∥∥Fθt(Γ(ut−ταt
), Yt)− Fθt−ταt

(Γ(ut−ταt
), Yt)

∥∥∥
≤
2(1 + LwLθαt−ταt ,t−1)

A

(
A
∥∥Γ(ut)− w∗

θt

∥∥+ C
)

× L′
FLθαt−ταt ,t−1

(∥∥Γ(ut−ταt
)
∥∥+ U ′

F

)
(Using (31) and Lemma C.5) .

Since ∥∥Γ(ut−ταt
)
∥∥ (34)

≤
∥∥Γ(ut−ταt

)− Γ(ut)
∥∥+ ∥Γ(ut)∥

≤2∥Γ(ut)∥+
B

A
(Lemma C.2)

≤2
∥∥Γ(ut)− w∗

θt

∥∥+ 2
∥∥w∗

θt

∥∥+ B

A
,

we have

T333 ≤
8L′

FLθαt−ταt ,t−1(1 + LwLθαt−ταt ,t−1)

A2

(
A2
∥∥Γ(ut)− w∗

θt

∥∥2 + C2
)
,

which completes the proof.

D.8. Proof of Lemma A.8

Lemma D.8. (Bound of T334)

T334 ≤
4L′′

FLθαt−ταt ,t−1(1 + LwLθαt−ταt ,t−1)

A2

(
A2
∥∥Γ(ut)− w∗

θt

∥∥2 + C2
)
.

Proof.

T334 =
〈
Γ(ut−ταt

)− w∗
θt−ταt

, F̄θt−ταt
(Γ(ut−ταt

))− F̄θt(Γ(ut−ταt
))
〉

≤
∥∥∥Γ(ut−ταt

)− w∗
θt−ταt

∥∥∥∥∥∥F̄θt(Γ(ut−ταt
))− F̄θt−ταt

(Γ(ut−ταt
))
∥∥∥

≤
2(1 + LwLθαt−ταt ,t−1)

A

(
A
∥∥Γ(ut)− w∗

θt

∥∥+ C
)

× L′′
FLθαt−ταt ,t−1

(∥∥Γ(ut−ταt
)
∥∥+ U ′′

F

)
(Using (31) and Lemma C.5) .

Using (34) completes the proof.
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D.9. Proof of Lemma A.9

Lemma D.9. (Bound of T5)

T5 ≤ 2
(
A2
∥∥Γ(ut)− w∗

θt

∥∥2 + C2
)
.

Proof.

T5 =∥Fθt(Γ(ut), Yt)− Γ(ut)∥2

≤ (∥Fθt(Γ(ut), Yt)∥+ ∥Γ(ut)∥)2

≤ (UF + (LF + 1)∥Γ(ut)∥)2 (Lemma D.10)

≤ (B +A∥Γ(ut)∥)2

≤
(
B +A

∥∥Γ(ut)− w∗
θt

∥∥+A
∥∥w∗

θt

∥∥)2
≤2
(
A2
∥∥Γ(ut)− w∗

θt

∥∥2 + C2
)

Lemma D.10. For any θ, w, y,

∥Fθ(w, y)∥ ≤ UF + LF ∥w∥

Proof. Assumption 3.5 implies that

∥Fθ(w, y)∥ − ∥Fθ(0, y)∥ ≤ ∥Fθ(0, y)− Fθ(w, y)∥
≤ LF ∥w − 0∥,

which completes the proof.

Lemma D.11. ∥∥∥∥E [Fθt−ταt
(Γ(ut−ταt

), Yt)− Fθt−ταt
(Γ(ut−ταt

), Ỹt) |
ut−ταt
θt−ταt
Yt−ταt

]∥∥∥∥
≤2|Y|LPLθ

t−1∑
j=t−ταt

αt−ταt ,j
(A
∥∥Γ(ut)− w∗

θt

∥∥+ C)

Proof. In this proof, all Pr and E are implicitly conditioned on ut−ταt
, θt−ταt

, Yt−ταt
. We use Θt to denote the set of all

possible θt given ut−ταt
, θt−ταt

, Yt−ταt
. Obviously, Θt is a finite set. We have

Pr(Yt = y′)

=
∑
y

∑
z∈Θt

Pr(Yt = y′, Yt−1 = y, θt = z)

=
∑
y

∑
z∈Θt

Pr(Yt = y′ | Yt−1 = y, θt = z) Pr(Yt−1 = y, θt = z)

=
∑
y

∑
z∈Θt

Pz(y, y
′) Pr(Yt−1 = y) Pr(θt = z|Yt−1 = y)
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Pr
(
Ỹt = y′

)
=
∑
y

Pr
(
Ỹt−1 = y

)
Pθt−ταt

(y, y′)

=
∑
y

Pr
(
Ỹt−1 = y

)
Pθt−ταt

(y, y′)
∑
z∈Θt

Pr(θt = z|Yt−1 = y)

=
∑
y

∑
z∈Θt

Pr
(
Ỹt−1 = y

)
Pθt−ταt

(y, y′) Pr(θt = z|Yt−1 = y)

Consequently, ∑
y′

∣∣∣Pr(Yt = y′)− Pr
(
Ỹt = y′

)∣∣∣
≤
∑
y,y′

∑
z∈Θt

∣∣∣Pr(Yt−1 = y)Pz(y, y
′)− Pr

(
Ỹt−1 = y

)
Pθt−ταt

(y, y′)
∣∣∣Pr(θt = z | Yt−1 = y).

Since for any z ∈ Θt,∣∣∣Pr(Yt−1 = y)Pz(y, y
′)− Pr

(
Ỹt−1 = y

)
Pθt−ταt

(y, y′)
∣∣∣

≤
∣∣∣Pr(Yt−1 = y)Pz(y, y

′)− Pr
(
Ỹt−1 = y

)
Pz(y, y

′)
∣∣∣

+
∣∣∣Pr(Ỹt−1 = y

)
Pz(y, y

′)− Pr
(
Ỹt−1 = y

)
Pθt−ταt

(y, y′)
∣∣∣

≤
∣∣∣Pr(Yt−1 = y)− Pr

(
Ỹt−1 = y

)∣∣∣Pz(y, y
′) + LPLθαt−ταt ,t−1 Pr

(
Ỹt−1 = y

)
(Lemma C.5) ,

we have ∑
y′

∣∣∣Pr(Yt = y′)− Pr
(
Ỹt = y′

)∣∣∣
≤
∑
y

∣∣∣Pr(Yt−1 = y)− Pr
(
Ỹt−1 = y

)∣∣∣+ |Y|LPLθαt−ταt ,t−1.

Applying the above inequality recursively yields

∑
y′

∣∣∣Pr(Yt = y′)− Pr
(
Ỹt = y′

)∣∣∣ ≤ |Y|LPLθ

t−1∑
j=t−ταt

αt−ταt ,j
.

Consequently, ∥∥∥E [Fθt−ταt
(Γ(ut−ταt

), Yt)− Fθt−ταt
(Γ(ut−ταt

), Ỹt)
]∥∥∥

=

∥∥∥∥∥∑
y

(
Pr(Yt = y)− Pr

(
Ỹt = y

))
Fθt−ταt

(Γ(ut−ταt
), y)

∥∥∥∥∥
≤max

y

∥∥∥Fθt−ταt
(Γ(ut−ταt

), y)
∥∥∥|Y|LPLθ

t−1∑
j=t−ταt

αt−ταt ,j

≤2|Y|LPLθ

t−1∑
j=t−ταt

αt−ταt ,j
(A
∥∥Γ(ut)− w∗

θt

∥∥+ C) (Using (33)),

which completes the proof.
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