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ABSTRACT

This work tackles an intriguing and fundamental open challenge in representation
learning: Given a well-trained deep learning model, can it be reprogrammed to
enhance its robustness against adversarial or noisy input perturbations without al-
tering its parameters? To explore this, we revisit the core feature transformation
mechanism in representation learning and propose a novel non-linear robust pat-
tern matching technique as a robust alternative. Furthermore, we introduce three
model reprogramming paradigms to offer flexible control of robustness under dif-
ferent efficiency requirements. Comprehensive experiments and ablation studies
across diverse learning models ranging from basic linear model and MLPs to shal-
low and modern deep ConvNets demonstrate the effectiveness of our approaches.
This work not only opens a promising and orthogonal direction for improving
adversarial defenses in deep learning beyond existing methods but also provides
new insights into designing more resilient AI systems with robust statistics. Our
implementation is available at https://anonymous.4open.science/r/NRPM-322C/.

1 INTRODUCTION

Deep neural networks (DNNs) have made significant impacts across various domains due to their
powerful capability of learning representation from high-dimensional data (LeCun et al., 2015;
Goodfellow et al., 2016). However, it has been well-documented that DNNs are highly vulnera-
ble to adversarial attacks (Szegedy, 2013; Biggio et al., 2013). These vulnerabilities are prevalent
across various model architectures, attack capacities, attack knowledge, data modalities, and pre-
diction tasks, which hinders their reliable deployment in real-world applications due to potential
economic, ethical, and societal risks (AI, 2023).

In light of the burgeoning development of AI, the robustness and reliability of deep learning models
have become increasingly crucial and of particular interest. A mount of endeavors attempting to
safeguard DNNs have demonstrated promising robustness, including robust training (Madry, 2017;
Zhang et al., 2019; Gowal et al., 2021; Li & Liu, 2023), regularization (Cisse et al., 2017; Zheng
et al., 2016), and purification techniques (Ho & Vasconcelos, 2022; Nie et al., 2022; Shi et al., 2021;
Yoon et al., 2021). However, these methods often suffer from catastrophic pitfalls like cumbersome
training processes or domain-specific heuristics, failing to deliver the desired robustness gains in an
efficient and adaptable manner.

Despite numerous advancements in adversarial defenses, an open challenge persists: Is it possible to
reprogram a well-trained model to achieve the desired robustness without modifying its parameters?
This question is of particular significance in the current era of large-scale models. Reprogramming
without training is highly efficient, as the pretraining-and-finetuning paradigm grants access to sub-
stantial open source pre-trained parameters, eliminating the need for additional training. Moreover,
reprogramming offers an innovative, complementary, and orthogonal approach to existing defenses,
paving the way to reshape the landscape of robust deep learning.

To address this research gap, we firstly delve deeper into the basic neurons of DNNs to investigate
the fundamental mechanism of representation learning. At its core, the linear feature transforma-
tions serve as an essential building block to capture particular feature patterns of interest in most
deep learning models. For instance, the Multi-Layer Perceptron (MLP) fundamentally consists of
multiple stacked linear mapping layers and activation functions; the convolution operations in Con-
volution Neural Networks (CNNs) (He et al., 2016) execute a linear feature mapping over local
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patches using the convolution kernels; the attention mechanism in Transformers (Vaswani, 2017)
performs linear transformations over the contextualized token vectors. This linear feature mapping
functions as Linear Pattern Matching by capturing the certain patterns that are highly correlated with
the model parameters. However, this pattern matching manner is highly sensitive to data perturba-
tions, which explains the breakdown of the deep learning models under the adversarial environments.

To this end, we propose a novel approach, Nonlinear Robust Pattern Matching, which significantly
improves the robustness while maintaining the feature pattern matching behaviors. Furthermore, we
also introduce a flexible and efficient strategy, Robustness Reprogramming, which can be deployed
under three paradigms to improve the robustness, accommodating varying resource constraints and
robustness requirements. This innovative framework promises to redefine the landscape of robust
deep learning, paving the way for enhanced resilience against adversarial threats.

Our contributions can be summarized as follows: (1) We propose a new perspective on represen-
tation learning by formulating Linear Pattern Matching (the fundamental mechanism of feature
extraction in deep learning) as ordinary least-square problems; (2) Built upon our novel viewpoint,
we introduce Nonlinear Robust Pattern Matching as an alternative robust operation and provide the-
oretical convergence and robustness guarantees for its effectiveness; (3) We develop an innovative
and adaptable strategy, Robustness Reprogramming, which includes three progressive paradigms to
enhance the resilience of given pre-trained models; and (4) We conduct comprehensive experiments
to demonstrate the effectiveness of our proposed approaches across various backbone architectures,
using multiple evaluation methods and providing several insightful analyses.

2 RELATED WORKS

Adversarial Attacks. Adversarial attacks can generally be categorized into two types: white-box
and black-box attacks. In white-box attacks, the attacker has complete access to the target neural
network, including its architecture, parameters, and gradients. Examples of such attacks include
gradient-based methods like FGSM (Goodfellow et al., 2014), DeepFool (Moosavi-Dezfooli et al.,
2016), PGD (Madry, 2017), and C&W attacks (Carlini & Wagner, 2017). On the other hand, black-
box attacks do not have full access to the model’s internal information; the attacker can only use the
model’s input and output responses. Examples of black-box methods include surrogate model-based
method (Papernot et al., 2017), zeroth-order optimization (Chen et al., 2017), and query-efficient
methods(Andriushchenko et al., 2020; Alzantot et al., 2019). Additionally, AutoAttack (Croce &
Hein, 2020b), an ensemble attack that includes two modified versions of the PGD attack, a fast
adaptive boundary attack (Croce & Hein, 2020a), and a black-box query-efficient square attack (An-
driushchenko et al., 2020), has demonstrated strong performance and is often considered as a reliable
benchmark for evaluating adversarial robustness.

Adversarial Defenses. Numerous efforts have been made to enhance the robustness of deep learn-
ing models, which can broadly be categorized into empirical defenses and certifiable defenses. Em-
pirical defenses focus on increasing robustness through various strategies: robust training meth-
ods (Madry, 2017; Zhang et al., 2019; Gowal et al., 2021; Li & Liu, 2023) introduce adversarial
perturbations into the training data, while regularization-based approaches (Cisse et al., 2017; Zheng
et al., 2016) stabilize models by constraining the Lipschitz constant or spectral norm of the weight
matrix. Additionally, detection techniques Metzen et al. (2017); Feinman et al. (2017); Grosse et al.
(2017) aim to defend against attacks by identifying adversarial inputs. Purification-based approaches
seek to eliminate the adversarial signals before performing downstream tasks (Ho & Vasconcelos,
2022; Nie et al., 2022; Shi et al., 2021; Yoon et al., 2021). Recently, some novel approaches have
emerged by improving robustness from the perspectives of ordinary differential equations (Kang
et al., 2021; Li et al., 2022; Yan et al., 2019) and generative models (Wang et al., 2023; Nie et al.,
2022; Rebuffi et al., 2021). Beyond empirical defenses, certifiable defenses (Cohen et al., 2019;
Gowal et al., 2018; Fazlyab et al., 2019) offer theoretical guarantees of robustness within specific
regions against any attack. However, many of these methods suffer from significant overfitting issues
or depend on domain-specific heuristics, which limit their effectiveness and adaptability in achieving
satisfying robustness. Additionally, techniques like robust training often entail high computational
and training costs, especially when dealing with diverse noisy environments, thereby limiting their
scalability and flexibility for broader applications. The contribution of robustness reprogramming in
this work is fully orthogonal to existing efforts, and they can be integrated for further enhancement.
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3 ROBUST NONLINEAR PATTERN MATCHING

In this section, we begin by exploring the vulnerability of representation learning from the perspec-
tive of pattern matching and subsequently introduce a novel robust feature matching in Section 3.1.
Following this, we develop a Newton-IRLS algorithm, which is unrolled into robust layers in Sec-
tion 3.2. Lastly, we present a theoretical robustness analysis of this architecture in Section 3.3.

Notation. Let the input features of one instance be represented as x = (x1, . . . , xD)
⊤ ∈ RD, and

the parameter vector as a = (a1, . . . , aD)
⊤ ∈ RD, where D denotes the feature dimension. For

simplicity, we describe our method in the case where the output is one-dimensional, i.e., z ∈ R.

3.1 A NEW PERSPECTIVE OF REPRESENTATION LEARNING

Linear Pattern Matching
(LPM)

Nonlinear Robust Pattern Matching
(NRPM)
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Figure 1: Vanilla Linear Pattern Matching (LPM) vs. Nonlinear Robust Pattern Matching (NRPM).

Fundamentally, DNNs inherently function as representation learning modules by transforming raw
data into progressively more compact embeddings (LeCun et al., 2015; Goodfellow et al., 2016).
The linear feature transformation, z = a⊤x =

∑D
d=1 ad · xd, is the essentially building block of

deep learning models to capture particular feature patterns of interest. Specifically, a certain pattern
x can be captured and matched once it is highly correlated with the model parameter a.

Despite the impressive capability of linear operator in enhancing the representation learning of
DNNs, the vanilla deep learning models have been validated highly vulnerable (Szegedy, 2013;
Biggio et al., 2013). Existing approaches including robust training and regularization tech-
niques (Madry, 2017; Cisse et al., 2017; Zheng et al., 2016) aim to improve the robustness of feature
transformations by constraining the parameters a with particular properties. However, these meth-
ods inevitably alter the feature matching behaviors, often leading to clean performance degradation
without necessarily achieving improved robustness.

Different from existing works, we aim to introduce a novel perspective by exploring how to design
an alternative feature mapping that enhances robustness while maximally preserving feature match-
ing behaviors. First, we formulate the linear feature pattern matching as the optimal closed-form
solution of the following problem:

min
z∈R

L(z) =
D∑

d=1

( z

D
− ad · xd

)2

,

where the first-order optimality condition ∂L(z)
∂z = 0 yields the linear transformation z∗ =

∑D
d=1 ad·

xd. Since this estimation is highly sensitive to outlying values due to the quadratic penalty, we

3
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propose to derive a robust alternative inspired by the Least Absolute Deviation (LAD) estimation:

min
z∈R

L(z) =
D∑

d=1

∣∣∣ z
D

− ad · xd

∣∣∣ . (1)

By replacing the quadratic penalty with a linear alternative on the residual z/D−ad ·xd, the impact
of outliers can be significantly mitigated according to robust statistics (Huber & Ronchetti, 2011).

3.2 ALGORITHM DEVELOPMENT AND ANALYSIS

Although the LAD estimator offers robustness implication, the non-smooth objective in Eq. (1) poses
a challenge in designing an efficient algorithm to be integrated neural network layers. To this end,
we leverage the Newton Iterative Reweighted Least Squares (Newton-IRLS) algorithm to address
the non-smooth nature of the absolute value operator | · | by optimizing an alternative smoothed
objective function U with Newton method. In this section, we will first introduce the localized
upper bound U for L in Lemma 3.1, and then derive the Newton-IRLS algorithm to optimize L.
Lemma 3.1. Let L(z) be defined in Eq. (1), and for any fixed point z0, U(z, z0) is defined as

U(z, z0) =
D∑

d=1

wd · (adxd − z/D)2 +
1

2
L(z0), (2)

where wd = 1
2|adxd−z0/D| . Then, for any z, the following holds:

(1) U(z, z0) ≥ L(z), (2) U(z0, z0) = L(z0).

Proof. Please refer to Appendix B.1.

The statement (1) indicates that U(z, z0) serves as an upper bound for L(z), while statement (2)
demonstrates that U(z, z0) equals L(z) at point z0. With fixed z0, the alternative objective U(z, z0)
in Eq. (2) is quadratic and can be efficiently optimized. Therefore, instead of minimizing the non-
smooth L(z) directly, the Newton-IRLS algorithm will obtain z(k+1) by optimizing the quadratic
upper bound U(z, z(k)) with second-order Newton method:

z(k+1) = D ·
∑D

d=1 w
(k)
d adxd∑D

d=1 w
(k)
d

(3)

where w(k)
d = 1

|adxd−z(k)/D| . Please refer to Appendix B.2 for detailed derivation. As a consequence

of Lemma 3.1, we can conclude the iteration {z(k)}Kk=1 fulfill the loss descent of L(z):

L(z(k+1)) ≤ U(z(k+1), z(k)) ≤ U(z(k), z(k)) = L(z(k)).
This implies Eq. (3) can achieve convergence of L by optimizing the localized upper bound U .

Implementation. The proposed non-linear feature pattern matching is expected to improve the ro-
bustness against data perturbation in any deep learning models by replacing the vanilla linear feature
transformation. In this paper, we illustrate its use cases through MLPs and convolution models. We
provide detailed implementation techniques in Appendix A. Moreover, we will demonstrate how to
leverage this technique for robustness reprogramming for representation learning in Section 4.

3.3 THEORETICAL ROBUSTNESS ANALYSIS

In this section, we conduct a theoretical robustness analysis comparing the vanilla Linear Pattern
Matching (LPM) architecture with our Nonlinear Robust Pattern Matching (NRPM) based on in-
fluence function (Law, 1986). For simplicity, we consider a single-step case for our Newton-
IRLS algorithm (K = 1). Denote the weighted feature random variable as X and correspond-
ing empirical distribution as F (X) = 1

D

∑D
d=1 I{X=adxd}. Then we can represent LPM as

zLPM := TLPM (F ) =
∑D

d=1 adxd and NRPM as zNRPM := TNRPM (F ) = D ·
∑D

d=1 wdadxd∑D
d=1 wd

,

where wd = 1
|adxd−zLPM/D| . We derive their influence functions in Theorem 3.2 to demonstrate

their sensitivity against input perturbations, with a proof presented in Appendix B.3.
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Theorem 3.2 (Robustness Analysis via Influence Function). The influence function is defined as the
sensitivity of the estimate to a small contamination at ∆x:

IF (∆x;T, F ) = lim
ϵ→0

T (Fϵ)− T (F )

ϵ

where the contaminated distribution becomes Fϵ = (1− ϵ)F + ϵδ∆x, where δ∆x is the Dirac delta
function centered at ∆x and F is the distribution of x. Then, we have:

IF (∆x;TLPM , F ) = D(∆x− zLPM/D),

and

IF (∆x;TNRPM , F ) =
Dw∆x (∆x− zNRPM/D)∑D

d=1 wd

where w∆x =
1

|∆x− zLPM/D|
.

Theorem 3.2 provide several insights into the robustness of LPM and NRLPM models:

• For LPM, the influence function is given by D(∆x − y) = D(∆x − zLPM/D), indicating that
the sensitivity of LPM depends on the difference between the perturbation ∆x and the average
clean estimation zLPM/D.

• For NRPM, the influence function is Dw∆x(∆x−zNRPM/D)∑D
d=1 wd

, where w∆x = 1
|∆x−zLPM/D| . Al-

though the robustness of NRPM is affected by the difference ∆x− zNRPM/D, the influence can
be significantly mitigated by the weight w∆x, particularly when ∆x deviates from the average
estimation zLPM/D of the clean data.

These analyses provide insight and explanation for the robustness nature of the proposed technique.

4 ROBUSTNESS REPROGRAMMING

In this section, it is ready to introduce the robustness programming techniques based on the non-
linear robust pattern matching (NRPM) derived in Section 3.1. One naive approach is to simply
replace the vanilla linear pattern matching (LPM) with NRPM. However, this naive approach does
not work well in practice, and we propose three robustness reprogramming paradigms to improve
the robustness, accommodating varying resource constraints and robustness requirements.

Algorithm 1 Hybrid Architecture
Require: {xd}Dd=1, {ad}Dd=1, λ.

Initialize z
(0)
NRPM = zLPM =

∑D
d=1 ad · xd

for k = 0, 1, . . . ,K − 1 do
w

(k)
d = 1

|adxd−z
(k)
NRPM/D|

∀ d ∈ [D]

z
(k+1)
NRPM = D ·

∑D
d=1 w

(k)
d adxd∑D

d=1 w
(k)
d

end for
return λ · zLPM + (1− λ) · z(K)

NRPM

While NRPM enhances model robustness, it
can lead to a decrease in clean accuracy, par-
ticularly in deeper models. This reduction
in performance may be due to the increas-
ing estimation error across layers. To balance
the clean-robustness performance trade-off be-
tween LPM and NRPM, it is necessary to de-
velop a hybrid architecture as shown in Algo-
rithm 1, where their balance is controlled by
hyperparameters {λl}Ll=1 and L is the number
of layers in the entire model. Based on this hy-
brid architecture, we propose three robustness
reprogramming paradigms as shown in Figure 2:

Paradigm 1: without fine-tuning, good robustness with zero cost. As deep learning models be-
come increasingly larger, it is critical to fully utilize pre-trained model parameters. Since the robust
NRPM slightly refines the vanilla LPM through an adaptive instance-wise reweighting scheme, en-
suring that the pre-trained LPM parameters still fit well within NRPM architecture. Additionally, by
adjusting the hyperparameters {λl}Ll=1 with pre-trained parameters, we can strike an ideal balance
between natural and robust accuracy. It is worth noting that relying solely on pre-trained parameters
with plug-and play paradigm significantly reduces computational costs, which is crucial in the era
of large-scale deep learning.

Paradigm 2: only fine-tuning {λl}Ll=1, strong robustness with slight cost. One drawback of
Paradigm 1 is that we specify the same λ for all the layers and need to conduct brute force hyper-
parameters search to obtain the optimal one. However, hyper-parameters search is time-consuming

5
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Figure 2: Three Robustness Reprogramming Paradigms : (1) Paradigm 1 freezes the model param-
eters and treats {λl}Ll=1 as fixed hyperparameter; (2) Paradigm 2 freezes the model parameters but
allows {λl}Ll=1 to be learnable; (3) Paradigm 3 enables both the model parameters and {λl}Ll=1 to
be learnable.

and computation-intensive. Moreover, the entire model requires layer-wise {λl}Ll=1 to balance the
LPM and NRPM for different layers. To solve it, we propose Paradigm 2, which automatically
learns optimal λ with light-weight fine-tuning. This paradigm only fine-tunes the hyperparameters
{λl}Ll=1 while keeping the model parameters frozen, which is very efficient.

Paradigm 3: overall fine-tuning, superior robustness with acceptable cost. To achieve best
robustness, we can make both the model parameters {ad}Dd=1 and the hyperparameters {λl}Ll=1
learnable. By refining these parameters based on the pre-trained model, we can prevent clean per-
formance degradation. Moreover, with learnable {λl}Ll=1 during adversarial training, the model can
automatically select the optimal combination to enhance both clean and robust performance. This
paradigm is still efficient since it only needs to fine-tune the model lightly with a few training epochs.

5 EXPERIMENT

In this section, we comprehensively evaluate the effectiveness of our proposed Robustness Repro-
gramming techniques using a wide range of backbone architectures, starting from basic MLPs, pro-
gressing to shallow LeNet model, and extending to the widely-used ResNets architecture.

5.1 EXPERIMENTAL SETTING

Datasets. We conduct the experiments on MNIST LeCun & Cortes (2005), SVHN (Netzer et al.,
2011), CIFAR10 (Krizhevsky et al., 2009), and ImageNet10 (Russakovsky et al., 2015) datasets.

Backbone architectures. We select backbones ranging from very basic MLPs with 1, 2, or 3
layers, to mid-level architectures like LeNet, and deeper networks such as ResNet10, ResNet18, and
ResNet34 (He et al., 2016). In some experiments with ResNets, we chose the narrower version (with
the model width reduced by a factor of 8) for the consideration for computation issue. Additionally,
we also choose one popular architecture MLP-Mixer (Tolstikhin et al., 2021).

Evaluation methods. We assess the performance of the models against various attacks under L∞
norm, including FGSM (Goodfellow et al., 2014), PGD-20 (Madry, 2017), C&W (Carlini & Wag-
ner, 2017), and AutoAttack (Croce & Hein, 2020b). Among them, AutoAttack is an ensemble attack
consisting of three adaptive white-box attacks and one black-box attack, which is considered as a
reliable evaluation method to avoid the false sense of security. In addition to empirical robustness
evaluation, we also evaluate certified robustness to further demonstrate the robustness of our pro-
posed architecture.

Baselines & Hyperparameter setting. For backbone ResNets, we compare the baselines including
PGD-AT (Madry, 2017), TRADES (Zhang et al., 2019), MART (Wang et al., 2019), SAT (Huang
et al., 2020), and AWP (Wu et al., 2020). We train the baselines for 200 epochs with batch size 128,
weight decay 2e-5, momentum 0.9, and an initial learning rate of 0.1 that is divided by 10 at the

6
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100-th and 150-th epoch. For the backbone MLPs and LeNet, we train the vanilla models for 50
epochs. Our robustness reprogramming will fine-tune the pre-trained models for 5 epochs.

5.2 ROBUSTNESS REPROGRAMMING ON MLPS

Table 1: Robustness reprogramming under 3 paradigms on MNIST with 3-layer MLP as backbone.

Method / Budget Natural 0.05 0.1 0.15 0.2 0.25 0.3 [λ1, λ2, λ3]
Normal-train 90.8 31.8 2.6 0.0 0.0 0.0 0.0 \

Adv-train 76.4 66.0 57.6 46.9 35.0 23.0 9.1 \
90.8 31.8 2.6 0.0 0.0 0.0 0.0 [1.0, 1.0, 1.0]
90.8 56.6 17.9 8.5 4.6 3.0 2.3 [0.9, 0.9, 0.9]
90.4 67.1 30.8 17.4 10.6 6.5 4.5 [0.8, 0.8, 0.8]
89.7 73.7 43.5 25.5 16.9 11.7 9.2 [0.7, 0.7, 0.7]

Paradigm 1 88.1 75.3 49.0 31.0 22.0 15.5 12.4 [0.6, 0.6, 0.6]
(without tuning) 84.1 74.4 50.0 31.9 22.8 18.1 14.3 [0.5, 0.5, 0.5]

78.8 70.4 48.3 33.9 24.1 18.4 14.6 [0.4, 0.4, 0.4]
69.5 62.6 45.2 31.5 23.1 19.0 15.5 [0.3, 0.3, 0.3]
58.5 53.2 38.2 27.6 22.2 16.4 12.9 [0.2, 0.2, 0.2]
40.7 38.3 29.7 22.8 16.8 12.9 11.1 [0.1, 0.1, 0.1]
18.8 17.6 16.4 14.6 12.4 10.7 9.4 [0.0, 0.0, 0.0]

Paradigm 2 (tuning λ) 81.5 75.3 61.2 44.7 33.7 26.0 20.1 [0.459, 0.033, 0.131]
Paradigm 3 (tuning all) 86.1 81.7 75.8 66.7 58.7 50.1 39.8 [0.925, 0.119, 0.325]

Comparison of robustness reprogramming via various paradigms. To compare the robustness of
our robustness reprogramming under 3 paradigms as well as the vanilla normal/adversarial training,
we evaluate the model performance under FGSM attack across various budgets with 3-layer MLP
as backbone model. From the results in Table 1, we can make the following observations:

• In terms of robustness, our Robustness Reprogramming across three paradigms progressively en-
hances performance. In Paradigm 1, by adjusting {λl}Ll=1, an optimal balance between clean and
robust accuracy can be achieved without the need for parameter fine-tuning. Moreover, Paradigm
2 can automatically learn the layer-wise set {λl}Ll=1, improving robustness compared to Paradigm
1 (with fixed {λl}Ll=1). Furthermore, Paradigm 3, by fine-tuning all the parameters, demonstrates
the best performance among all the methods compared.

• Regarding natural accuracy, we can observe from Paradigm 1 that increasing the inclusion of
NRLM (i.e., smaller {λl}Ll=1) results in a decline in performance. But this sacrifice can be miti-
gated by fine-tuning {λl}Ll=1 or the entire models as shown in Paradigm 2&3.

Table 2: Automated learning of {λl}Ll=1 under adversarial training with various noise levels.

Budget Natural 0.05 0.1 0.15 0.2 0.25 0.3 Learned {λl}Ll=1

Adv-train (ϵ = 0.0) 91.3 75.7 45.0 24.9 14.9 10.5 8.0 [0.955, 0.706, 0.722]
Adv-train (ϵ = 0.05) 91.2 76.8 50.6 27.8 16.6 10.5 8.1 [0.953, 0.624, 0.748]
Adv-train (ϵ = 0.1) 91.0 82.6 62.5 41.7 26.4 19.8 14.9 [0.936, 0.342, 0.700]
Adv-train (ϵ = 0.15) 90.6 82.3 66.8 49.4 35.0 25.5 19.9 [0.879, 0.148, 0.599]
Adv-train (ϵ = 0.2) 90.3 82.5 67.5 49.3 35.8 27.0 21.3 [0.724, 0.076, 0.420]
Adv-train (ϵ = 0.25) 87.7 81.0 66.0 48.5 36.4 26.6 21.6 [0.572, 0.049, 0.243]
Adv-train (ϵ = 0.3) 81.5 75.3 61.2 44.7 33.7 26.0 20.1 [0.459, 0.033, 0.131]

Behavior analysis on automated learning of {λl}Ll=1. In Paradigm 2, we assert and expect that the
learnable {λl}Ll=1 across layers can achieve optimal performance under a specified noisy environ-
ment while maintaining the pre-trained parameters. To further validate our assertion and investigate
the behavior of the learned {λl}Ll=1, we simulate various noisy environments by introducing ad-
versarial perturbations (FGSM) into the training data at different noise levels, ϵ. We initialize the
{λl}Ll=1 across all layers to 0.5. From the results shown in Table 2, we can make the following
observations:
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• The learned {λl}Ll=1 values are layer-specific, indicating that setting the same {λl}Ll=1 for each
layer in Paradigm 1 is not an optimal strategy. Automated learning of {λl}Ll=1 enables the discov-
ery of the optimal combination across layers.

• As the noise level in the training data increases, the learned {λl}Ll=1 values tend to decrease,
causing the hybrid architecture to resemble a more robust NRPM architecture. This suggests that
our proposed Paradigm 2 can adaptively adjust {λl}Ll=1 to accommodate noisy environments.

Ablation studies. To further investigate the effectiveness of our proposed robust architecture, we
provide several ablation studies on backbone size, attack budget measurement, additional backbone
MLP-Mixer (Tolstikhin et al., 2021),the number of layers K in the Appendix C.2, Appendix C.3,
and Appendix C.4, respectively. These experiments demonstrate the consistent advantages of our
method across different backbone sizes and attack budget measurements. Additionally, increasing
the number of layers K can further enhance robustness, though at the cost of a slight decrease in
clean performance.

5.3 ROBUSTNESS REPROGRAMMING ON CONVOLUTION

Robustness reprogramming on convolution. We evaluate the performance of our robustness re-
programming with various weight {λl}Ll=1 in Figure 3 , where we can observe that incorporating
more NRPM-induced embedding will significantly improve the robustness while sacrifice a little bit
of clean performance. Moreover, by fine-tuning NRPM-model, we can significantly improve robust
performance while compensating for the sacrifice in clean accuracy.

Adversarial fine-tuning. Beyond natural training, we also validate the advantage of our NRPM
architecture over the vanilla LPM under adversarial training. We utilize the pretrained parameter
from LPM architecture, and track the clean/robust performance across 10 epochs under the adver-
sarial fine-tuning for both architectures in Figure 4. The curves presented demonstrate the consistent
improvement of NRPM over LPM across all the epochs.

Figure 3: Robustness reprogramming on LeNet.
The depth of color represents the size of budget.

Figure 4: Adversarial fine-tuning on LeNet.

Hidden embedding visualization. We also conduct visualization analyses on the hidden embedding
to obtain better insight into the effectiveness of our proposed NRPM. First, we quantify the differ-
ence between clean embeddings (x or zi) and attacked embeddings (x′ or z′

i) across all layers in
Table 3, and visualize them in Figure 5 and Figure 11. The results in Table 3 show that NRPM-LeNet
has smaller embedding difference across layers, indicating that our proposed NRPM architecture in-
deed mitigates the impact of the adversarial perturbation. Moreover, as demonstrated in the example
in Figure 5, the presence of adversarial perturbations can disrupt the hidden embedding patterns,
leading to incorrect predictions in the case of vanilla LeNet. In contrast, our NRPM-LeNet appears
to lessen the effects of such perturbations and maintain predicting groundtruth label. From the fig-
ures, we can also clearly tell that the difference between clean attacked embeddings of LPM-LeNet
is much more significant than in NRPM-LeNet.

Additional experiments. To further demonstrate the effectiveness of our proposed method, we
include experiments on two additional datasets, SVHN and ImageNet10, which are provided in
Appendix D.2. All these experiments demonstrate consistent advantages of our proposed method.
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Table 3: Embedding difference between clean and adversarial data (ϵ = 0.3) in LeNet - MNIST

LPM-LeNet || · ||1 || · ||2 || · ||∞
|x− x′| 93.21 27.54 0.30
|z1 − z′

1| 271.20 116.94 1.56
|z2 − z′

2| 79.52 62.17 1.89
|z3 − z′

3| 18.77 22.56 2.32
|z4 − z′

4| 9.84 18.95 3.34

NRPM-LeNet || · ||1 || · ||2 || · ||∞
|x− x′| 90.09 26.67 0.30
|z1 − z′

1| 167.52 58.55 1.19
|z2 − z′

2| 19.76 4.27 0.56
|z3 − z′

3| 3.63 0.98 0.50
|z4 − z′

4| 2.21 0.79 0.57

(a) Visualization on LPM-LeNet. (b) Visualization on NRPM-LeNet.

Figure 5: Visualization of hidden embeddings. The LPM-LeNet is more sensitive to perturbation
compared to the NRPM-LeNet: (a) When comparing zi (1st row) and z′

i (2nd row), LPM (left)
shows a more significant difference than NRPM (right). (b) When comparing the likelihood of pre-
dictions, the perturbation misleads LPM from predicting 4 to 8, while NRPM consistently predicts
4 in both clean and noisy scenarios.

5.4 ROBUSTNESS REPROGRAMMING ON RESNETS

In this section, we will evaluate the robustness of robustness reprogramming on ResNets across
various attacks and further validate the effectiveness under diverse settings in the ablation studies.

Table 4: Robustness reprogramming on CIFAR10 with narrow ResNet18 as backbone.

Budget ϵ Natural 8/255 16/255 32/255 {λl}Ll=1
67.89 41.46 16.99 3.17 λ = 1.0
59.23 40.03 23.05 8.71 λ = 0.9
40.79 28.32 20.27 13.70 λ = 0.8

Paradigm 1 24.69 18.34 15.31 13.09 λ = 0.7
(without tuning) 17.84 14.26 12.63 11.66 λ = 0.6

15.99 12.51 11.42 11.07 λ = 0.5
10.03 10.02 10.0 10.0 λ = 0.4

Paradigm 2 (tuning λ) 69.08 44.09 24.94 12.63 Learnable
Paradigm 3 (tuning all) 71.79 50.89 39.58 30.03 Learnable

Robustness reprogramming on ResNets. We evaluate the robustness under PGD of our robust-
ness reprogramming via three paradigms in Table 4. From the results, we can observe that: (1) In
Paradigm 1, adding more NRPM-based embeddings without fine-tuning leads to a notable drop in
clean performance in ResNet18, which also limits the robustness improvement. (2) In Paradigm 2,
by adjusting only the {λl}Ll=1 values, we can improve the clean and robust performance, indicating
the need of layer-wise balance across different layers. (3) In Paradigm 3, by tuning both {λl}Ll=1
and parameters, we observe that both the accuracy and robustness can be further improved.

Adversarial robustness. To validate the effectiveness of our robustness reprogramming with ex-
isting method, we select several existing popular adversarial defenses and report the experimental
results of backbone ResNet18 under various attacks in Table 5. From the results we can observe that
our robustness reprogramming exhibits excellent robustness across various attacks.
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Table 5: Adversarial robsustness on CIFAR10 with ResNet18 as backbone.

Method Natural PGD FGSM C&W AA DeepFool SPSA AVG
PGD-AT 80.90 44.35 58.41 46.72 42.14 14.81 62.92 44.89

TRADES-2.0 82.80 48.32 51.67 40.65 36.40 25.91 64.29 44.54
TRADES-0.2 85.74 32.63 44.26 26.70 19.00 12.98 57.79 32.23

MART 79.03 48.90 60.86 45.92 43.88 25.63 56.55 46.96
SAT 63.28 43.57 50.13 47.47 39.72 22.34 53.47 42.78
AWP 81.20 51.60 55.30 48.00 46.90 26.25 61.37 48.24

Consistency 84.37 45.19 53.84 43.75 40.88 21.27 65.91 45.14
DYNAT 82.34 52.25 65.96 52.19 45.10 28.72 67.97 52.03

Paradigm 3 (Ours) 80.43 57.23 70.23 64.07 52.60 36.50 67.56 58.03

Figure 6: Certified robustness via randomized
smoothing with various σ levels.

Figure 7: Ablation study on backbone size.
The depth of color represents budget size.

Certified Robustness. Additionally, we also evaluate the certified robustness using randomized
smoothing with various σ levels in Figure 6. The curves presented in the figure demonstrate a
significant advantage of our NRPM over vanilla LPM, further validating the effectiveness of our
proposed architecture.

Different backbone sizes & budgets. Here, we conduct ablation studies on the backbone size &
budget under AutoAttack in Figure 7 and leave the results under PGD in Appendix E.1. The results
show the evident advantage of our NRPM architecture.

6 CONCLUSION

This paper addresses a fundamental challenge in representation learning: how to reprogram a well-
trained model to enhance its robustness without altering its parameters. We begin by revisiting
the essential linear pattern matching in representation learning and then introduce an alternative
non-linear robust pattern matching mechanism. Additionally, we present a novel and efficient Ro-
bustness Reprogramming framework, which can be flexibly applied under three paradigms, making
it suitable for practical scenarios. Our theoretical analysis and comprehensive empirical evaluation
demonstrate significant and consistent performance improvements. This research offers a promising
and complementary approach to strengthening adversarial defenses in deep learning, significantly
contributing to the development of more resilient AI systems.

STATEMENT

Ethics statement. This paper proposes robustness reprogramming techniques to enhance the ro-
bustness and safety of machine learning models. We do not identify any potential negative concerns.
Reproducibility statement. This paper provides all necessary technique details for reproducibility,
including theoretical analysis, algorithm details, experimental settings, pseudo code, implementa-
tion, and source code of the proposed techniques.
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A EFFICIENT IMPLEMENTATION OF ROBUST CONVOLUTION/MLPS

In the main paper, we formulate the pixel-wise algorithm for notation simplicity. However, it is not
trivial to implement such theory into practice in convolution and MLPs layer. Here, we will present
the detailed implementation or techniques for each case.

A.1 ROBUST MLPS

In MLPs, we denote the input as X ∈ RD1 , the output embedding as Z ∈ RD2 , the model parameters
as A ∈ RD1×D2 . The pseudo code is presented in Algorithm 2.

Algorithm 2 Robust MLPs with NRPM
1 def RobustMLP(X, A, eps = 1e-3, K = 3):
2 AX = X.unsqueeze(-1) * A
3 D = X.shape[0]
4 Z = torch.matmul(X, A) # Initialization as LPM-estimation
5 For _ in range(K):
6 DIST = torch.abs(KX - Z/D) # Distance
7 W = 1/(DIST + eps)
8 W = normalize(W, p=1, dim=0)
9 Z = D*(W*AX).sum(dim=0) # Update

10 return Z

A.2 ROBUST CONVOLUTION

Unfolding. To apply robust estimation over each patch, we must first unfold the convolution into
multiple patches and process them individually. While it’s possible to use a for loop to extract
patches across the channels, height, and width, this approach is not efficient. Instead, we can lever-
age PyTorch’s torch.nn.functional.unfold function to streamline and accelerate both the
unfolding and computation process.

B THEORETICAL PROOF

B.1 PROOF OF LEMMA 3.1

Proof. Since
√
a ≤ a

2
√
b
+

√
b

2 and the equlity holds when a = b, by replacemnet as a = (adxd −
z/D)2 and b = (adxd − z0/D)2, then

|adxd − z/D| ≤ 1

2
· 1

|adxd − z(k)/D|
· (adxd − z/D)2 +

1

2
|adxd − z0/D|

= wd · (adxd − z/D)2 +
1

2
|adxd − z0/D|

Sum up the items on both sides, we obtain

L(z) =
D∑

d=1

|adxd − z/D| ≤
D∑

d=1

wd · (adxd − z/D)2 +
1

2

D∑
d=1

|adxd − z0/D| = U(z, z0)

and the equality holds at a = b (z = z0):
U(z0, z0) = L(z0). (4)

B.2 DERIVATION OF IRLS ALGORITHM

Proof.

U ′(z(k), z(k)) =
1

D

D∑
d=1

w
(k)
d · 2(z(k)/D − adxd)
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U ′′(z(k), z(k)) =
2

D2

D∑
d=1

w
(k)
d

z(k+1) = z(k) − U ′(z(k), z(k))

U ′′(z(k), z(k))
(5)

= z(k) −
1
D

∑D
d=1 w

(k)
d · 2(z(k)/D − adxd)

2
D2

∑D
d=1 w

(k)
d

(6)

= D ·
∑D

d=1 w
(k)
d adxd∑D

d=1 w
(k)
d

(7)

where w(k)
d = 1

2 ·
1

|adxd−z(k)/D| . Since the constant in w
(k)
d can be canceled in the updated formula-

tion, we have:

w
(k)
d =

1

|adxd − z(k)/D|
.

B.3 PROOF OF THEOREM 3.2

Proof. For notation simplicity, we denote y = 1
DTLPM (F ), yϵ = 1

DTLPM (Fϵ), z =
1
DTNRPM (F ), zϵ = 1

DTNRPM (Fϵ). Since ϵ is very small and D is large enough, we can assume
|adxd − y| ≈ |adxd − yϵ| for simplicity.

Influence function for LPM. The new weighted average yϵ under contamination becomes:

yϵ = (1− ϵ)y + ϵ∆x

Taking the limit as ϵ → 0, we get:

IF (∆x;TLPM , F ) = lim
ϵ→0

D(yϵ − y)

ϵ
= lim

ϵ→0

Dϵ(∆x− y)

ϵ
= D(∆x− y) = D(∆x− zLPM/D)

This shows that the weighted average y is directly influenced by ∆x, making it sensitive to outliers.

Influence function for NRPM. Next, we consider the reweighted estimate z, when we introduce a
small contamination at ∆x, which changes the distribution slightly. The contaminated reweighted
estimate zϵ becomes:

zϵ =
(1− ϵ)

∑D
d=1 wdadxd + ϵw∆x∆x

(1− ϵ)
∑D

d=1 wd + ϵw∆x

We can simplify the expression for zϵ as:

zϵ =

∑D
d=1 wdadxd + ϵ(w∆x∆x−

∑D
d=1 wdadxd)

(1− ϵ)
∑D

d=1 wd + ϵw∆x
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First, expand the difference zϵ − z:

zϵ − z =

∑D
d=1 wdadxd + ϵ(w∆x∆x−

∑D
d=1 wdadxd)

(1− ϵ)
∑D

d=1 wd + ϵw∆x

−
∑D

d=1 wdadxd∑D
d=1 wd

=

∑D
d=1 wdadxd ·

∑D
d=1 wd + ϵ(w∆x∆x−

∑D
d=1 wdadxd) ·

∑D
d=1 wd

[(1− ϵ)
∑D

d=1 wd + ϵw∆x] ·
∑D

d=1 wd

+
[(1− ϵ)

∑D
d=1 wd + ϵw∆x] ·

∑D
d=1 wdadxd

[(1− ϵ)
∑D

d=1 wd + ϵw∆x] ·
∑D

d=1 wd

=
ϵ(w∆x∆x−

∑D
d=1 wdadxd) ·

∑D
d=1 wd − ϵ(w∆x −

∑D
d=1 wd) ·

∑D
d=1 wdadxd

[(1− ϵ)
∑D

d=1 wd + ϵw∆x] ·
∑D

d=1 wd

=
ϵ(w∆x∆x ·

∑D
d=1 wd − w∆x ·

∑D
d=1 wdadxd)

[(1− ϵ)
∑D

d=1 wd + ϵw∆x] ·
∑D

d=1 wd

Finally, divide the difference by ϵ and take the limit as ϵ → 0:

IF (∆x;TNRPM , F ) = lim
ϵ→0

D(zϵ − z)

ϵ

= D ·
w∆x∆x ·

∑D
d=1 wd − w∆x ·

∑D
d=1 wdadxd∑D

d=1 wd ·
∑D

d=1 wd

=
Dw∆x (∆x− zNRPM/D)∑D

d=1 wd

Since w∆x is small for outliers (large |∆x − zLPM/D|), the influence of ∆x on NRPM is dimin-
ished compared to the influence on LPM. Therefore, NRPM is more robust than LPM because the
influence of outliers is reduced.
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C ADDITIONAL EXPERIMENTAL RESULTS ON MLPS

C.1 MLP-MIXER

MLP-Mixer (Tolstikhin et al., 2021) serves as an alternative model to CNNs in computer vision.
Building on the excellent performance of basic MLPs, we further explore the effectiveness of our
NRPM with MLP-Mixer, presenting the results in Figure 8 and Table 6. The results validate the
effectiveness of our proposed methdod in MLP-Mixer with different blocks across various budgets.

Figure 8: Robustness under PGD on MLP-Mixer. The depth of the color represents the size of the
budget.

Table 6: Adversarial Robustness of MLP-Mixer - CIFAR10

Model Natural ϵ = 1/255 ϵ = 2/255 ϵ = 3/255 ϵ = 4/255 ϵ = 8/255
LPM-MLP-Mixer-2 77.45 38.55 10.39 2.24 0.34 0.0
NRPM-MLP-Mixer-2 76.86 64.27 49.62 37.22 27.99 15.73
LPM-MLP-Mixer-4 78.61 35.99 9.35 1.45 0.19 0.0
NRPM-MLP-Mixer-4 77.51 66.72 51.73 39.43 30.88 18.31
LPM-MLP-Mixer-8 78.98 40.55 12.81 3.27 0.73 0.01
NRPM-MLP-Mixer-8 78.32 66.82 52.73 40.37 32.66 20.61

C.2 THE EFFECT OF BACKBONE SIZE.

We select the MLP backbones with different layers to investigate the performance under different
model sizes. We report the performance with the linear models of 1 (784 - 10), 2 (784 - 64 -10), 3
(784 - 256 - 64 -10) layers. We present the fine-tuning results for both the LPM model and NRPM
model in Table 7, from which we can make the following observations:

• Our RosNet show better robustness with different size of backbones

• Regarding clean performance, linear models with varying layers are equivalent and comparable.
However, our RosNet shows some improvement as the number of layers increases.

• The robustness of our RosNet enhances with the addition of more layers. This suggests that
our robust layers effectively mitigate the impact of perturbations as they propagate through the
network.

C.3 ATTACK BUDGET MEASUREMENT

In previous results of different backbone sizes, we notice the NRPM model is not effective enough
under L∞-attack. To verify the effect the attack budget measurement, we evaluate the robustness
under L∞,L2,L0 attacks where the budget is measured under the L∞,L2,L0-norms, that is, ∥x −

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 7: Robustness of MLPs with different layers on MNIST.

Model Size Arch / Budget 0 0.05 0.1 0.15 0.2 0.25 0.3

1 Layer LPM-model 91.1 12.0 7.1 0.5 0.0 0.0 0.0
NRPM-model 87.6 14.0 13.6 12.9 12.1 11.5 10.3

2 Layers LPM-model 91.6 32.9 2.6 0.2 0.0 0.0 0.0
NRPM-model 89.1 37.0 34.2 30.7 25.8 22.7 21.2

3 Layers LPM-model 90.8 31.8 2.6 0.0 0.0 0.0 0.0
NRPM-model 90.7 47.2 45.1 37.8 30.8 24.9 21.1

(a) L0-attack (b) L2-attack (c) L∞-attack

Figure 9: Robustness under attacks with different norms.

x′∥p ≤ budget, where p = 0, 2,∞. We can make the following observations from the results in
Figure 9:

• Our NRPM architecture consistently improve the robustness over the LPM-backbone across vari-
ous attacks and budgets.

• Our NRPM model experiences a slight decrease in clean accuracy, suggesting that the median
retains less information than the mean.

• Our NRPM model shows improved performance under the L0 and L2 attacks compared to the L∞
attack. This behavior aligns with the properties of mean and median. Specifically, under the L∞
attack, each pixel can be perturbed up to a certain limit, allowing both the mean and the median
to be easily altered when all pixels are modified. Conversely, under the L2 and L0 attacks, the
number of perturbed pixels is restricted, making the median more resilient to disruption than the
mean.

C.4 EFFECT OF DIFFERENT LAYERS K

To investigate the effect of the number of iterations K in the unrolled architecture, we present the
results with increasing K on combined models in the Table 8 and Figure 10 in the appendix. As K
increases, the hybrid model can approach to the NRPM architecture, which makes the model more
robust while slightly sacrificing a little bit natural accuracy.
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Table 8: Ablation study on number of layers K - MLP - MNIST

K / ϵ 0 0.05 0.1 0.15 0.2 0.25 0.3
λ = 0.9

K = 0 90.8 31.8 2.6 0.0 0.0 0.0 0.0
K = 1 90.8 56.6 17.9 8.5 4.6 3.0 2.3
K = 2 90.7 76.1 44.0 26.8 18.0 13.4 9.3
K = 3 90.7 82.1 56.7 37.4 26.3 19.9 16.3
K = 4 90.6 83.5 61.1 42.7 29.4 22.7 18.0

λ = 0.8
K = 0 90.8 31.8 2.6 0.0 0.0 0.0 0.0
K = 1 90.4 67.1 30.8 17.4 10.6 6.5 4.5
K = 2 90.4 81.1 56.2 36.2 26.0 19.3 15.5
K = 3 90.3 81.4 61.8 42.9 31.8 23.7 19.5
K = 4 90.3 82.5 64.3 45.6 33.1 25.3 22.0

λ = 0.7
K = 0 90.8 31.8 2.6 0.0 0.0 0.0 0.0
K = 1 89.7 73.7 43.5 25.5 16.9 11.7 9.2
K = 2 89.1 80.3 56.4 39.7 28.4 21.4 18.5
K = 3 88.9 80.3 61.8 44.0 33.2 24.4 19.2
K = 4 88.4 79.6 61.3 43.6 33.9 26.3 21.4

λ = 0.6
K = 0 90.8 31.8 2.6 0.0 0.0 0.0 0.0
K = 1 88.1 75.3 49.0 31.0 22.0 15.5 12.4
K = 2 86.2 77.1 56.2 39.3 29.2 22.6 17.1
K = 3 85.5 75.9 55.8 40.2 30.7 23.1 18.8
K = 4 84.0 74.7 56.2 39.6 29.4 22.1 18.7

λ = 0.5
K = 0 90.8 31.8 2.6 0.0 0.0 0.0 0.0
K = 1 84.1 74.4 50.0 31.9 22.8 18.1 14.3
K = 2 80.3 71.0 53.5 37.0 26.9 21.5 16.4
K = 3 79.0 69.6 53.7 38.1 29.2 23.2 19.5
K = 4 77.7 66.6 51.2 37.9 29.7 23.7 19.8
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(a) λ = 0.5 (b) λ = 0.6

(c) λ = 0.7 (d) λ = 0.8

(e) λ = 0.9

Figure 10: Effect of layers K

D ADDITIONAL EXPERIMENTAL RESULTS ON LENET

D.1 VISUALIZATION OF HIDDEN EMBEDDING

We put several examples of the visualizations of hidden embedding in Figure 11.
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Figure 1: Visualization of hidden embedding

9

Figure 11: Visualization of hidden embedding

D.2 ADDITIONAL DATASETS

Besides MNIST, we also conduct the experiment on SVHN and ImageNet10, and show the results
under PGD in Table 9 and Table 10, respectively.

Table 9: Robustness of LeNet under PGD on SVHN.
Model / Budget ϵ 0/255 1/255 2/255 4/255 8/255 16/255 32/255 64/255

LPM-LeNet 83.8 68.6 49.3 27.1 8.2 3.0 1.9 1.3
NRPM-Lenet 83.2 72.4 54.6 35.4 20.1 14.3 11.8 7.9

Table 10: Robustness of LeNet under PGD on ImageNet10.
Model / Budget ϵ 0/255 2/255 4/255 8/255

LPM-LeNet 53.72 13.11 7.67 3.89
NRPM-LeNet 53.55 15.06 13.68 12.50
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E ADDITIONAL EXPERIMENTAL RESULTS ON RESNETS

E.1 EFFECT OF BACKBONE SIZE

Figure 12: Ablation study on backbone size. (PGD)
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