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ABSTRACT

We study programmatic weak supervision, where in contrast to labeled data, we
have access to weak labelers, each of which either abstains or provides noisy
labels corresponding to any input. Most previous approaches typically employ
latent generative models that model the joint distribution of the weak labels and
the latent “true” label. The caveats are that this relies on assumptions that may not
always hold in practice such as conditional independence assumptions over the
joint distribution of the weak labelers and the latent true label, and more general
implicit inductive biases in the latent generative models. In this work, we con-
sider a more explicit form of side-information that can be leveraged to denoise
the weak labeler, namely the bounds on the average error of the weak labelers.
We then propose a novel but natural weak supervision objective that minimizes a
regularization functional subject to satisfying these bounds. This turns out to be
a difficult constrained optimization problem due to discontinuous accuracy bound
constraints. We provide a continuous optimization formulation for this objec-
tive through an alternating minimization algorithm that iteratively computes soft
pseudo labels on the unlabeled data satisfying the constraints while being close to
the model, and then updates the model on these labels until all the constraints are
satisfied. We follow this with a theoretical analysis of this approach and provide
insights into its denoising effects in training discriminative models given multiple
weak labelers. Finally, we demonstrate the superior performance and robustness
of our method on a popular weak supervision benchmark.

1 INTRODUCTION

Acquiring high-quality labeled data, which is critical for supervised learning, is often very expen-
sive. The burgeoning field of programmatic weak supervision addresses this caveat by training
models from “weak labelers,” which are functions that either abstain or provide noisy labels corre-
sponding to any input (Zhang et al., 2022). Such weak labelers could range from domain-expert-
specified functions, to rule-based systems, heuristics, or even pre-trained models. There are two
main challenges in learning a predictor using only weak labelers: each weak labeler covers only part
of the input space (due to abstention) and it is typically noisy. Thus, one has to generalize beyond
the coverage regions, as well as denoise within them.

To learn from weak labelers, most prior works draw from developments in related fields such as
crowdsourcing (Estellés-Arolas & González-Ladrón-de Guevara, 2012; Wazny, 2017), employing
latent generative models that model the joint distribution of the weak labels and the latent “true”
label. Conditional inference on the true label then provides a natural approach to aggregate multiple
noisy labels to less noisy “pseudo-labels” which provide an estimate of the true label. However, this
relies on the implicit inductive bias since non-parametric mixture models are known to not be iden-
tifiable without any further assumptions (Kasahara & Shimotsu, 2014; Aragam et al., 2020). For
example, Snorkel (Ratner et al., 2017; 2018) imposes both (a) conditional independence assump-
tions among the weak labelers and the true label (b) parametric assumptions on the latent generative
model. However, these assumptions might not be applicable and are in general difficult to validate
with domain experts. In addition, the denoising step does not take advantage of modern hypothe-
sis classes such as deep neural networks. Instead, it is common to follow a two-staged approach:
denoising step to estimate pseudo-labels and then train a neural network using these pseudo-labels.

We also note that this learning from weak labelers is closely related to a subfield of learning with
noisy labels that also faces a denoising problem (Angluin & Laird, 1988; Blum et al., 1998; Natara-
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jan et al., 2013). Here, we assume that a noisy label is obtained by passing the unknown true label
through a noise channel that is usually assumed to be independent of the input (Natarajan et al.,
2013). There is also a general noise model that could depend on the input called Massart noise
(Massart & Nédélec, 2006) which is known to lead to a computationally hard learning problem (Di-
akonikolas et al., 2019a; 2022). A recent line of work shows that we can make headway in this
difficult setting, provided we have additional side information on the aggregate amount of noise e.g.
the fraction of data points that can be corrupted. At a high level, these methods work by learn-
ing under such a corruption constraint (Donoho & Liu, 1988), and have led to considerable recent
advances in learning given corrupted data (Awasthi et al., 2014; 2017; Diakonikolas et al., 2018;
2019b; Prasad et al., 2018). However, we remark that results from learning with noisy labels are
not directly applicable to our setting since the levels of noise induced by our weak labelers do not
satisfy the amount of structure needed by these works that assume that most training data is clean
except for some fraction of noisy points.

Regardless, we believe that programmatic weak supervision can considerably benefit from connec-
tions with the field of learning from noisy labels and that it forms a rich area of research. As our first
step towards leveraging such a connection, we consider the following natural and explicit inductive
bias that domain experts might provide, a bound on the accuracy of each weak labeler (similar to a
bound on the fraction of corrupted data in the learning from noisy label setting), where accuracy can
either be with respect to target Bayes optimal classifier or with respect to the underlying stochastic
label distribution. Our first contribution is to develop a constraint-based approach to aggregate weak
labelers by viewing the accuracy bound as a constraint, and accordingly impose this constraint on
the model to be learned. We pose the problem as learning the simplest model (with respect to some
regularization functional) that satisfies all of these constraints (Section 2). This objective is however
difficult along multiple facets: it is a constrained optimization problem, with discontinuous accuracy
bound constraints. While there is a rich literature in continuous convex surrogates of classification
accuracy (or error), they are not immediately applicable in our setting since a bound on the accuracy
does not translate to a bound on any particular surrogate loss, and recall that it is these accuracy
bounds that form our domain-expert provided side-information.

Our second contribution is a scalable optimization algorithm. This is based on a projection function
that projects the model onto the set of all functions that satisfy the constraints. First, we show that the
projection objective can be reduced to a linear program when the error bounds are given with respect
to the target Bayes optimal classifier (Section 3.1), and a convex optimization problem when they
are given respect to the target label distribution (Section 3.2). The convex optimization problem for
the latter case results in an efficient and robust algorithm that can also be used as an approximation
when the constraints are given with respect to the target classifier.

Our third contribution is a rigorous analysis of our constrained estimator (Section 4). We note that
the traditional statistical learning theoretic tools are not applicable since we have no labeled data.
We provide two tools to bound the error of the learned classifier: i) an agreement region based
analysis ii) corrected triangle inequality. Both approaches involve disparate denoising coefficients
that track the benefit of having multiple rather than a single weak labeler. We further refine this
to provide a tighter extension of the bounds from the limited support to the overall space using a
subtle Lipschitz notion that might be of independent interest even outside the context of this paper.
Lastly, we demonstrate the robustness and competitive performance of our method on a popular
weak supervision benchmark (Zhang et al., 2021) in Section 5.

2 LEARNING FROM WEAK LABELER CONSTRAINTS

Setup: We consider the general setting of multi-class classification, with input space X , output
space Y = {1, . . . ,K}, joint distribution P over X × Y , and marginal distribution over X denoted
by PX which we assume to be continuous. We use uppercase letters (e.g., X) to represent random
variables and lowercase letters (e.g., x) for deterministic variables. For a vector x ∈ Rd, we denote
xk as the kth entry of x. Let p∗(x) = p(y|x) ∈ RK be the conditional distribution of y given x, and
let f∗(x) = argmaxk p

∗(x)k denote the Bayes optimal classifier. Our goal is to learn a classifier
f : X → Y that minimizes the expected misclassification error with respect to the Bayes optimal
classifier f∗, i.e. minimizes Pr(f(X) ̸= f∗(X)), or the error with respect to the stochastic label
itself: Pr(f(X) ̸= Y ). In our setting, we assume that we only have access to unlabeled data drawn
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i.i.d. from PX and weak labelers {gj}j∈[m], where each weak labeler gj : X → Y ∪ {∅} maps any
point in the instance space to the label space or abstains from prediction (denoted by ∅). We denote
the coverage set of the weak labeler by Sj := {x ∈ X | gj(x) ̸= ∅}. We consider formulating
a classifier from a smooth real-valued function h : X → RK from some hypothesis class F e.g.
neural networks. This function induces a conditional distribution denoted by ph, which we obtain
by applying the softmax function, ph(x)k = exp(h(x)k)/

∑K
i=1 exp(h(x)i). For any conditional

distribution p such that argmaxy p(x)y is unique for each x, we denote the corresponding classifier
as clf(p) where clf(p)(x) = argmaxk p(x)k.

Accuracy bounds and the corresponding constraints: We assume we have additional side infor-
mation about the average error of each weak labeler gj on its coverage set Sj . First, this can be an
error bound with respect to the Bayes optimal classifier f∗ given by

ρclf(gj , f
∗) := Pr

X∼PX

(gj(X) ̸= f∗(X)|X ∈ Sj) ≤ ηj . (1)

Since our target Bayes optimal classifier f∗ only differs from gj by a fraction of at most ηj on Sj , a
natural learning strategy is to encourage our hypothesis to also have the same behavior (differ from
gj at most ηj). This leads to a constraint ρclf(gj , clf(pf )) ≤ ηj . We propose to learn the simplest
hypothesis f (with respect to a regularization functional R(f)) that satisfies all of these constraints
which can be formalized as the following objective with constraints on classifier outputs:

min
f∈F
R(f) s.t. ρclf(gj , clf(pf )) ≤ ηj , ∀j ∈ [m]. (2)

On the other hand, if we may instead have access to an error with respect to the stochastic labels
sampled from p∗, the bound is given by

ρdist(gj , p
∗) := Pr

X∼PX ,Y∼p∗(X)
(gj(X) ̸= Y |X ∈ Sj) ≤ ηj . (3)

Here gj is a classifier but Y is a random variable distributed according to p∗(X), so the proba-
bility that gj(x) is not equal to y for each x is given by

∑
k ̸=gj(x)

p∗(x)k, thus ρdist(g, p
∗) ≡

EX∼PX
[
∑

k ̸=gj(x)
p∗(x)k]. Similar to before, we have the following objective with constraints on

classifier probabilistic labels:

min
f∈F
R(f) s.t. ρdist(gj , pf ) ≤ ηj , ∀j ∈ [m] (4)

3 ALGORITHMS

In this section, we will first examine an algorithm for solving the learning objective with constraints
on classifiers (equation 2) through an alternating minimization algorithm. This requires a projection
step that projects a conditional distribution into the set of conditional distributions that satisfy the
constraints. We will describe a method for estimating this projection and show that it can be reduced
to a linear program. Finally, we will extend our algorithm to solve the objective with constraints on
the distribution (equation 4). We provide proofs for results in this section in Appendix B.

3.1 LEARNING OBJECTIVE WITH CONSTRAINTS ON CLASSIFIER

The key challenge in solving equation 2 is that it is a constrained optimization problem and these
constraints are not continuous. As a key initial step, we define a projection loss of a conditional
distribution p to a class of classifiers that satisfies the constraint. We denote a set of all conditional
distributions that satisfy the constraints as

Qclf =
⋂
j

Qj,clf , where Qj,clf = {q : X → ∆K | ρclf(gj , clf(q)) ≤ ηj}. (5)

We consider a projection loss from any conditional distribution p to a set of conditional distributions
Q given by,

d(p,Q) = inf
q∈Q

EX [DKL(q(X)||p(X))] (6)

where DKL is the KL-divergence. We can show that d(p,Qclf) is zero if and only if p ∈ Qclf .
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Lemma 3.1. For any p such that clf(p) is well defined, i.e. argmaxy p(x)y is unique for each x,
we have d(p,Qclf) = 0 if and only if p ∈ Qclf .

From Lemma 3.1, we may replace the constraints in equation 2 with the projection loss instead. This
would still lead to the same optimal solution. We have an objective

min
f∈F
R(f) s.t. d(pf , Qclf) = 0 (7)

We consider a relaxation of this objective into an unconstrained optimization problem,

min
f∈F
R(f) + α · d(pf , Qclf) (8)

where α trades off satisfying the constraints with a notion of simplicity of distribution specified
through the regularization. This relaxed objective is now more suitable for a gradient-based opti-
mization since it is continuous. We can rewrite this objective as

min
q∈Qclf ,f∈F

L(f, q) := R(f) + αEX [DKL(q(X)||pf (X))] (9)

This is a minimization problem in f ∈ F , q ∈ Qclf for which we propose to use an alternating
minimization algorithm where we keep track of a sequence of (ft, qt) and update as follows

1. ft+1 = argmin
f∈F
R(f) + αEX [DKL(qt(X)||pf (X))] (10)

2. qt+1 = arg min
q∈Qclf

EX [DKL(q(X)||pft+1
(X))] (11)

We can show that this algorithm leads to a sequence of (ft, qt) that is decreasing in L(ft, qt):
Lemma 3.2. A sequence (ft, qt) with an update in equation 10 and equation 11 satisfies
L(ft+1, qt+1) ≤ L(ft, qt).

Proof. L(ft+1, qt+1) ≤ L(ft+1, qt) from minimization in equation 11 and L(ft+1, qt) ≤ L(ft, qt)
from minimization in equation 10.

Solving step 1 (equation 10). It can be seen that the KL term in equation 10 is simply the cross
entropy loss with respect to the pseudo soft labels given by q. Thus this first step of the alternating
minimization algorithm simply fits a regularized classifier to these pseudo labels. Further, one does
not need to estimate the exact minima at each step, as long as the next iterate reduces the objective,
i.e. L(ft+1, qt+1) < L(ft, qt). Thus one can take a single or few steps of gradient descent in
equation 10 to get ft+1 from ft.

Solving step 2 (equation 11). This step of the alternating minimization algorithm computes the
soft pseudo labels on the training data so that the constraints are satisfied. This is a much more
involved step, which we detail in the following section, where we show that estimating the projection
qt can be reduced to a linear program. Before doing so, we first remark that the constraints on
classifiers may not be robust to a small perturbation. For example, if one have a uniform conditional
distribution punif = (1/K, . . . , 1/K), we can make a small perturbation ∆p of size at most ϵ such
that clf(punif + ∆p) = k for any label k. This implies that there exists a conditional distribution p
such that d(p,Q) is small but clf(p) can be arbitrary.
Lemma 3.3. Let Q = {q ∈ X → ∆K | clf(q) ∈ H} for some set of classifiers H. For any ϵ > 0
and any classifier f , there exists a conditional distribution p such that clf(p) = f and d(p,Q) < ϵ.

To alleviate this problem, we enforce an additional constraint by making sure that q puts a higher
probability on one label than the rest,

Λϵ := {q ∈ X → ∆K | for each x,∃y : q(x)y ≥ (1 + ϵ)q(x)k for k ̸= y} (12)

With this additional constraint, we can show that d(p,Q) bounds the error in satisfaction of the
classifier constraints, and further show that the projection problem can be solved efficiently.
Proposition 3.4. For any ϵ, ν > 0 there exists δ(ϵ, ν) > 0 such that if d(p,Λϵ∩Qclf) < δ(ϵ, ν) then
ρclf(gj , clf(p)) ≤ ηj + ν/|Sj |, where |Sj | = PX(X ∈ Sj) is the size of coverage set Sj of weak
labeler gj with respect to marginal distribution PX .
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Proposition 3.5. Given Q = Λϵ∩Qclf for Λϵ defined in equation 12 and Qclf defined in equation 5,
for any conditional distribution p, the optimal projection q∗ = argminq∈Q E[DKL(q(X)||p(X))]
can be found as follows,

1. Solve for optimal clf(q∗) as

clf(q∗) = argmin
h∈X→Y

EX [ProjKL(p(X);∆K
h(X),ϵ)] : ρclf(gj , h) ≤ ηj (13)

where
∆K

y,ϵ =
{
r ∈ ∆K | ry ≥ (1 + ϵ)rk ,∀k ̸= y

}
,

ProjKL(u;S) = min
r∈S

DKL(r||u). (14)

2. Solve for an optimal distribution q∗ given the optimal clf(q∗). For each x,

q∗(x) = argmin
r

DKL(r||p(x)) : r ∈ ∆K,ϵ
clf(q∗)(x) (15)

A key ingredient is the subset of the simplex ∆K
y,ϵ, comprising probabilities that are more confident

about the label y with some margin ϵ. For any u ∈ ∆K , and label y ∈ [K], ProjKL(u; ∆
K
y,ϵ) is a

convex optimization problem since the objective DKL(r||u) is convex in r and the constraints in ∆K
y,ϵ

are linear. While we can use a black box convex optimization solver, we solve this more efficiently
by reparameterizing into an unconstrained objective and using a fast heuristic approximation (see
Appendix D.2 for more details).

Given c(x, y) = ProjKL(p(x);∆
K
y,ϵ) for each x, y, the optimization in step 1 can be framed as

an integer linear programming (ILP) problem by using a one-hot representation of the optimiz-
ing variable h as µ : X → {0, 1}K , with µ(x)y = 1 for y = h(x) and µ(x) = 0 otherwise.
The objective then becomes EX [

∑K
y=1 µ(X)yc(X, y)] and the constraint ρclf(gj , h) ≤ ηj becomes

E[
∑

y ̸=gj(X) µ(X)y] ≤ ηj . For each x, we have an additional constraint
∑K

y=1 µ(x)y = 1. Both
the objective and constraints are linear in µ, resulting in an ILP. ILPs are usually inefficient to solve,
however we find empirically that the LP relaxation works very well for this class of ILPs (see Ap-
pendix D.1 for more details). One issue with solving the ILP is that it can still be slow even with LP
relaxation since it involves one constraint for each unlabeled data x. We can’t also take a small batch
size when using a stochastic gradient descent since the constraints involve the population means of
the weak labeler accuracies. Finally, this is not robust to misspecification of the error bounds as the
constraints might become infeasible. In the next section, we propose our method for the learning
objective with constraints on distribution (equation 4). Interestingly, we found that it can also be
viewed as an approximation of the algorithm presented in this section, yet it overcomes issues of
efficiency and robustness, resulting in a more practical solution that is effective in both settings.

3.2 LEARNING OBJECTIVE WITH CONSTRAINTS ON DISTRIBUTION

Let Qdist be the set of conditional distributions that satisfy the constraints on distribution,

Qdist =
⋂
j

Qj,dist, where Qj,dist = {q : X → ∆K | ρdist(gj , q) ≤ ηj}. (16)

Now, with a similar proof, we would also have a version of Lemma 3.1 for the constraints on
distribution, and further d(p,Qdist) bounds the error in satisfying the constraints without the need
of imposing any additional constraint.
Proposition 3.6. For Qdist defined in equation 16, we have d(p,Qdist) = 0 if and only if p ∈ Qdist.
Furthermore, for any ν > 0 there exists δ(ν) > 0 such that if d(p,Qdist) < δ(ν) then ρdist(gj , p) ≤
ηj + ν/|Sj |, where |Sj | = PX(Sj) is the size of coverage set Sj of weak labeler gj with respect to
marginal distribution PX .

This allows us to derive the same alternating minimization algorithm as in equation 10 and equa-
tion 11. While the first step is identical, the main benefit of working with the constraints on distri-
bution is that the second projection step can be directly posed as a convex optimization problem.

min
q:X 7→∆|K|

E[DKL(q(X)||p(X))] s.t. E[q(X)gj(X)|x ∈ Sj ] ≥ 1− ηj , ∀j ∈ [m]. (17)

We can also derive the optimal solution of equation 17.
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Proposition 3.7. Given Qdist as defined in equation 16, for any conditional distribution p, the
optimal projection q∗ = argminq∈Qdist

E[DKL(q(X)||p(X))] is given by q∗ = pλ
∗

where

pλ(x)y := Zλ(x) exp(
∑

j:gj(x)=y

λ)p(x)y (18)

Zλ(x) is the normalization constant. The optimal λ∗ is given by the following optimization:

λ∗ = min
λ≥0

m∑
j=1

λj s.t. ρdist(gj , p
λ) ≤ ηj ∀j ∈ [m] (19)

The optimization for λ∗ can be solved by a coordinate wise alternating minimization. Given current
iterate λ, pick some j, and update λj as

λj = min
λ≥0

λ s.t. ρdist(gj , p
λ) = 1− E[Zλ(x) exp(λ)p

λ−j (X)gj(X)] ≤ ηi (20)

where λ−j = (λ1, . . .λj−1, 0,λj+1, . . .λm). Note that while optimizing for a particular coordinate
λj , we only consider the constraint associated with gj . This can be seen as relaxation of the true
constraint which is an intersection of m constraints. While this does not ensure satisfaction of all of
the constraints as the alternating minimization proceeds, it lends us a simple method to solve this by
a Newton-Raphson root finding method as follows:

Reset: λi = 0

Repeat until convergence: λi ← λi + log(1 + (1− ηi − τi(hi))+/τi(hi(1− hi))),

hi(x) = pλ(x)gi(x)

τi(h) = E[h(X)|X ∈ Si]

(21)

For derivations and proofs, see appendix B. For computational efficiency, we also propose a single
parallel update for all λi instead of performing the alternating minimization sequentially, by using
a single step of the above Newton-Raphson method parallelly across all i given the starting point
λ = 0 as:

λi = log(1 + (1− ηi − τi(pi))+/τi(pi(1− pi))), (pi(x) = p(x)gi(x)). (22)

This does not give an exact projection of p on Qdist, but can be thought of as an approximate
projection that finds a q that is closer to Qdist than p is to Q, on average. Overall, we summarize our
learning algorithm (equation 10, equation 11) with our proposed projection step below,

Summary of our learning algorithm. We have an alternating minimization algorithm where we
track the pair (ft, qt). Here, ft : X → RK is a real-valued function from our hypothesis class
(e.g., neural networks), and qt represents its projection onto the set of distributions that satisfy our
constraints. At each iteration t, we perform the following steps

1. Estimate qt+1 given ft.
(a) Calculate a conditional distribution given by ft with a softmax function σ,

pft(x) = softmax(ft(x)) ∈ ∆K (23)

(b) We use a one-step parallel Newton-Raphson update to calculate λj for each weak labeler j
(equation 22). For simplicity, for each unlabeled data xi for i = 1, . . . , n, we denote the
gj(xi)

th coordinate of pft(xi) as zij := pft(xi)gj(xi) then

λj = log(1 + (1− ηj −
1

cj

∑
i:gj(xi )̸=∅

zij)+/(
1

cj

∑
i:gj(xi )̸=∅

(zij)(1− zij))), (24)

cj is the number of data points that gj does not abstain, cj =
∑n

i=1 1[gj(xi) ̸= ∅].
(c) Finally, we use λ to calculate qt+1(x). We first compute the unnormalized version of qt+1,

q̃t+1(xi)k = pft(xi)k exp(
∑

j:gj(xi)=k

λj). (25)

Then qt+1(xi) = q̃t+1(xi)/
∑K

k=1 q̃t+1(xi)k.

6
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2. Estimate ft+1 given qt+1. This step is equivalent to fitting a ft+1 with respect to the soft pseudo
labels given by qt+1. Our loss of ft is given by

L(ft; qt+1) = R(ft) + α · 1
n

n∑
i=1

ℓCE(ft(xi), qt+1(xi))

where ℓCE is a cross-entropy loss. We then update ft+1 with a gradient descent; ft+1 = ft−ν·∇L
where ν is a learning rate.

We also provide a compact version of our algorithm in Algorithm 1 in Appendix C. Finally, we
remark that the sets Qj,dist can also be viewed as a convex approximation of the constraint sets
Qj,clf (see Appendix E for more details). Therefore, the method developed in this section is also
applicable (as an approximation) for the setting of constraints on classifiers but it is more efficient
and also robust to misspecification in error bounds ηj compared to the algorithm in Section 3.1.

4 THEORETICAL ANALYSIS OF THE OBJECTIVE

In this section, we provide some theoretical insights into the denoising effect of weak labeler con-
straints. We focus on the setting of constraints on classifiers (estimation objective equation 2). We
learn a conditional distribution pf and thus correspondingly a classifier clf(pf ) that minimizes a
regularization functional R(f) subjected to weak labeler constraints. Minimizing R(f) implicitly
defines a hypothesis class of classifiers as F = {clf(pf ) : R(f) < δ} for some δ > 0. Let
Hj = {h : X → [K] | ρclf(gj , h) ≤ ηj} (hereHj is a set of classifiers which differ from Qj which
is a set of conditional distributions). We learn a classifier f ∈ F̃ := F ∩

⋂
j Hj . The constraints

lead to a smaller class F̃ ⊆ F ′, which implies that a typical measure of complexity V of the function
class F̃ such as Rademacher complexity is also smaller than F . Thus, we can quantify the benefit
of the weak labeler constraints via the ratio V(F̃)/V(F). However, such a function class statistical
complexity analysis merely makes the natural qualitative point that we require less labeled data to
learn from F̃ than F . It does not provide a bound per se on the accuracy of our learned classifier,
because we are not using any labeled data to select f .

4.1 ERROR GUARANTEE ON AGREEMENT REGION

Recall that we minimize R(f) subject to satisfying constraints. We start with the observation that
the weak labeler constraint directly restricts the output of a classifier to be similar to that of the weak
labeler in its coverage set. For example, given a weak labeler that makes a constant prediction in a
small region, any linear separator that satisfies the accuracy bound constraint can only slice off the
coverage set by a fraction of at most η (Figure 1 (left)). This leads to an area in the middle where
the decision boundary can’t pass through: otherwise, the classifier would differ too much from the
weak labeler. This resembles the classical notion of agreement regions (Cohn et al., 1994; Balcan
et al., 2006), which we thus use to characterize the impact of weak labelers on F .
Definition 4.1. For a set of classifiers F , the agreement region is the set of all points where any
classifier in F agrees, Agree(F ) = {x ∈ X | ∀f1, f2 ∈ F, f1(x) = f2(x)}.

Under realizability, we can show that the error of any f ∈ F̃ in the agreement region is zero.
Furthermore, we can show that as multiple constraints are used, the resulting agreement region
will always be larger than or equal to the union of agreement regions for individual constraints. In
Figure 1, we provide an example with linear classifiers where the agreement regions from multiple
constraints are larger than the union of the agreement region from each individual constraint. This
is a possible explanation of the implicit denoising effect of multiple weak labelers when learning
from a function class F . Formally, we denote an error of a classifier f within the set S as

errS(f) := Pr(f(X) ̸= f∗(X) | S). (26)

Lemma 4.2. For any function class F , and corresponding constrained class F̃ , so long as f∗ ∈ F̃ ,
for any f ∈ F̃ , errAgree(F̃)(f) = 0.

Lemma 4.3. For a function class F and constraintsH1,H2, we have
Agree(F ∩H1) ∪Agree(F ∩H2) ⊆ Agree(F ∩H1 ∩H2).

7
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Figure 1: The figure shows the agreement region of the class of linear separators given two weak
labeler constraints: one weak labeler labels red in the red circle, and the other labels blue in the blue
circle. A linear separator can only differ from each weak labeler by a fraction of η of its support,
and therefore the agreement region is given by the middle region of each coverage set (left). The
agreement regions from multiple constraints are larger than the union of the agreement region from
each individual constraint (right).

4.2 ERROR GUARANTEE ON THE COVERAGE UNION

In the previous section, we used the geometry of constrained function classes in general. Here, we
note that the specific form of our constraints (weak labelers error bound) naturally leads to an error
guarantee via triangle inequality.
Lemma 4.4. LetHj = {h : X → [K] | ρclf(gj , h) ≤ ηj} then for any f ∈ Hj ,

errSj
(f) ≤ ηj + ρclf(gj , f

∗) (27)

We show that it is possible to have a better guarantee than the combination of the error bound from
triangle inequality when we have multiple constraints with conflicting regions.
Theorem 4.5. Let H1, . . . ,Hk be constraints of the form Hj = {h : X → [K] | ρclf(gj , h) ≤ ηj},
each with different constant weak labels, gj(X) = j − 1 for all j = 1, . . . , k, then for any f ∈⋂

j Hj , we have

errS(f) ≤
k∑

j=1

(ηj + ρclf(gj , f
∗))

Pr(Sj)

Pr(S)
−

∑
σ⊆{1,...,k},

|σ|≥2

(2|σ| − 3)
Pr(Bσ)

Pr(S)
. (28)

when S =
⋃k

j=1 Sj , Bσ = (
⋂

i∈σ Si) ∩ (
⋂

i∈{1,...,k}\σ S
c
i ) are minterms.

The first term on the RHS is the error guarantee from naively combining multiple error guarantees
based on the triangle inequality. The improvement is in the second term which is the region where
weak labelers have a conflict (Bσ), more conflict leads to a better error bound. The main idea is
that whenever there is a conflict, a classifier can match with only one weak labeler. Therefore, to
be approximately close to all weak labelers, it must closely match the other weak labelers in areas
outside of the conflict. We note that while our result is applicable to when each weak labeler has a
different label if we have multiple weak labelers that predict the same label, we can merge them into
a super weak labeler by combining the coverage region e.g. S1 ∪ S2 and then derive the new η as a
linear combination of η1, η2 e.g. η = η1 Pr(S1)+η2 Pr(S2)

Pr(S1)+Pr(S2)
, before applying Theorem 4.5.

4.3 EXTENDING ERROR GUARANTEES TO ENTIRE INPUT SPACE

The previous two sections provided error guarantees in subsets of the input space: the first over the
agreement region of the constrained function class, and the second on the union of the coverage sets
of the weak labelers. In this section, we provided a more nuanced analysis based on a smoothness
argument which can be used to generalize beyond the coverage set or the agreement region. Intu-
itively, if f performs well on one region, and the underlying probability distribution is smooth then
we would expect it to perform well in a neighbor region as well.
Theorem 4.6. Let P be a joint distribution over X ×Y such that Pr(Y = y | X = x) is L-Lipschitz
w.r.t. a metric d where for all k = 1, . . . ,K and x1, x2 ∈ X ,

|Pr(Y = k | X = x1)− Pr(Y = k | X = x2)| ≤ Ld(x1, x2), (29)
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then for any classifier f and a region S, we have

Pr(f(X) ̸= Y ) ≤ Pr(f(X) ̸= Y | X ∈ S)(1 + tf (S)) + Luf (S) (30)

The terms tf (S), uf (S) are distance between PX and PX condition on X ∈ S,

tf (S) = sup
k
|Pr(f(X) = k | X ∈ S)− Pr(f(X) = k)

Pr(f(X) = k | X ∈ S)
| (31)

uf (S) =
∑
k

Pr(f(X) = k)Wd(PX|S∩{x|f(x)=k}, PX|{x|f(x)=k}) (32)

and Wd is a Wasserstien distance and we denote PX|A for a distribution PX condition on X ∈ A.

In this theorem, we analyze an error w.r.t. to y instead of f∗ since we require the smoothness of
the underlying data distribution. The generalization bound is small whenever PX is close to PX

condition on X ∈ S. First, tf (S) is zero whenever Pr(f(X) = k | X ∈ S) = Pr(f(X) = k) for
all k, that is, the proportion of label k predicted by f is the same in both original distribution and the
distribution conditional on S. Second, uf (S) is a bit stronger where it is small when the Wasserstein
distance is small which is when S covers areas with high probability mass in X . The smoothness
of f is implicit in the term uf (S) in terms of the regions {x | f(x) = k}. We provide full proof in
Appendix I. We remark that tf (S), uf (S) only depends on the marginal distribution and, therefore,
can be calculated solely from unlabeled data for any classifier f .

5 EXPERIMENTAL EVALUATION

Bio CDR Chem IMDB Semeval TREC Yelp Youtube Avg. rank

Sup (V) 64.21.1 59.90.6 35.91.4 64.31.3 59.63.0 52.13.7 73.41.4 80.91.2 6.8
MV 56.40.4 68.40.4 52.60.5 75.70.7 65.32.5 37.31.1 69.10.5 82.20.6 5.8
Snorkel 63.40.5 61.20.4 41.81.0 71.30.6 59.21.0 33.41.7 71.80.9 76.81.3 7.8
LoL(S) 55.50.8 67.40.4 51.60.4 75.30.6 53.42.0 38.72.8 70.61.4 79.10.9 7
Ours (C) 63.50.5 68.50.7 52.20.8 74.31.3 67.52.1 46.72.7 78.60.5 80.71.3 4.6
Ours (V) 62.60.8 67.90.5 53.30.5 72.51.1 79.42.4 63.12.1 75.30.7 90.21.4 4.1

Sup (T) 75.40.8 80.70.5 80.10.2 81.40.6 82.91.9 66.92.3 87.00.3 89.70.6 1.1
Ours (T) 64.80.7 69.10.2 55.60.3 74.81.1 77.31.4 66.32.9 78.30.3 88.00.4 2.8
Oursclf(T ) 60.90.9 66.00.4 49.80.7 73.31.0 81.01.9 57.21.2 75.80.5 87.30.3 5.1

Table 1: Average test accuracy and the corresponding standard error (over 5 random train-val-test
split of the data) of our proposed algorithm and the baselines. We bold methods that are within
a standard error of the best-performing method. Sup (T) and Sup (V) are supervised learning on
the training set and the validation set respectively. MV, Snorkel, and Lol(S) are Majority vote,
Snorkel, and Losses over labels (Simple) baselines. Ours is our proposed method (Algorithm 1)
with different ways to estimate the error bound ηj . Ours (V) is when we estimate ηj from the labels
from the validation set, given a Beta(1, 2) prior. Ours (C) is when we use a constant ηj and tune this
on the validation set. Ours (T) is when ηj is estimated from the labels from the training set. Finally,
Oursclf is our algorithm with respect to constraints on the classifier (Section 3.1).

Experiment details: We show comparison of our proposed method and baselines on 8 text classifi-
cation datasets from the WRENCH benchmark Zhang et al. (2021). We provide the dataset statistics
in Appendix G.1. For all methods and datasets, we use a neural network with a single hidden layer
and hidden size of 16 on top of the pre-trained BERT text embeddings. We train our model with
a full batch gradient descent with an Adam optimizer with a learning rate in [0.001, 0.003, 0.01],
weight decay in [0.001, 0.003, 0.01] and number of epochs in range(1, 500, 5). We tune these hy-
perparameters on the validation set of size 100 for each dataset. For our proposed method, we
implement Algorithm 1 with an L2 regularization. Since the WRENCH benchmark does not pro-
vide error bounds ηj for each weak labeler, we consider 3 strategies to estimate ηj ; i) we estimate ηj
from the labels from the validation set, given a Beta(1, 2) prior, ii) we treat ηj as a fixed constant η
for all weak labelers and tune this η on the validation set, iii) we estimate ηj from the labels from the
training set which we treat as a ground truth error of each weak labeler. See Appendix F for more

9
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details on estimating error bound from the vaildation set. Finally, we also implement our algorithm
with respect to constraints on the classifier (Section 3.1) with a linear programming relaxation of the
integer linear program (see Appendix G.3 for more details).

Baselines: We compare with three baselines: Majority Vote (MV), Snorkel Metal (Ratner et al.,
2017) and Losses over Labels simple (LoL (S)) (Sam & Kolter, 2023). The majority vote and
Snorkel are two-staged approaches where we first aggregate weak labels and then train a neural
network on the aggregated labels. The Majority vote simply takes the majority vote between the
non-abstain weak labels for each data point while Snorkel deploys a latent generative model to
estimate soft labels from the weak labels. On the other hand, Losses over Labels (simple) is a one-
staged approach that directly minimizes a weighted linear combination of the loss with respect to
each weak labeler. We also compare to a baseline of simply performing a supervised learning on
labels from the validation set, to avoid concerns regarding possibly large validation sets as raised by
Zhu et al. (2023).

Results: Our proposed method (Ours (V)) is the best performing approach compared to other base-
lines (Table 1). This does not solely come from the fact that we have a large number of labels in
the validation set since supervised learning on the validation set (with the best hyperparameters)
still performs worse than ours on almost every dataset. Surprisingly, our method with a constant ηj
(Ours (C)), also performs competitively and is the second best performing approach overall. On the
other hand, having access to a more accurate error bound can lead to a performance increase across
the board (Ours (T)). In addition, we found that most constraints are satisfied by the models trained
by our algorithms (see Table G.2).

Ablation on noisy weak labeler error bounds: We assume that the error bound ηj is given as a
form of domain knowledge (or estimated from a small validation set). As such, we may have ηj that
can be far from the ground truth error. In this section, we explore such impact on the performance
of our algorithm and we do so by adding noise to the “ground truth” ηj (estimated from the training
labels), given by η̃j = ηj + ϵ, ϵ ∼ Uniform(−a, a) and use η̃j as inputs of our algorithm. We see
that our algorithm is quite robust and the performance drops graciously as the noise level increases
(Figure 2).
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Figure 2: Impact of using noisy error bounds η̃j = ηj + ϵ, ϵ ∼ Uniform(−a, a) for a ∈ [0, 0.5]. The
accuracy is averaged over 5 random splits of data and the shaded area is the standard error.

6 CONCLUSION

In this paper we provided a principled approach to learn from weak labelers - weak classifiers that
label a subset of the input space, without making stringent assumptions about dependencies between
them, or about their noise model. Instead we consider the expected error / accuracy as the only source
of information that characterizes the weakness of labelers. This information can either be given by
domain experts or can be estimated from a small amount of labeled data given only a weak prior on
the accuracy. We finally proposed a robust and scalable algorithm that can learn from multiple noisy
weak labelers even when only noisy estimates of expected errors are provided. An interesting future
direction could be do combine information about dependencies between weak labelers when such
information is given along with the information about the expected error.
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Özgür Yeniay. Penalty function methods for constrained optimization with genetic algorithms.
Mathematical and computational Applications, 10(1):45–56, 2005.

Xingrui Yu, Bo Han, Jiangchao Yao, Gang Niu, Ivor Tsang, and Masashi Sugiyama. How does dis-
agreement help generalization against label corruption? In International Conference on Machine
Learning, pp. 7164–7173. PMLR, 2019.

Rich Zemel, Yu Wu, Kevin Swersky, Toni Pitassi, and Cynthia Dwork. Learning fair representations.
In International conference on machine learning, pp. 325–333. PMLR, 2013.

Jieyu Zhang, Yue Yu, Yinghao Li, Yujing Wang, Yaming Yang, Mao Yang, and Alexander Ratner.
Wrench: A comprehensive benchmark for weak supervision. In Thirty-fifth Conference on Neural
Information Processing Systems Datasets and Benchmarks Track (Round 2), 2021.

Jieyu Zhang, Cheng-Yu Hsieh, Yue Yu, Chao Zhang, and Alexander Ratner. A survey on program-
matic weak supervision. arXiv preprint arXiv:2202.05433, 2022.

Jieyu Zhang, Linxin Song, and Alex Ratner. Leveraging instance features for label aggregation
in programmatic weak supervision. In International Conference on Artificial Intelligence and
Statistics, pp. 157–171. PMLR, 2023.

Wen Li Zhao, Pierre Gentine, Markus Reichstein, Yao Zhang, Sha Zhou, Yeqiang Wen, Changjie
Lin, Xi Li, and Guo Yu Qiu. Physics-constrained machine learning of evapotranspiration. Geo-
physical Research Letters, 46(24):14496–14507, 2019.

Dawei Zhu, Xiaoyu Shen, Marius Mosbach, Andreas Stephan, and Dietrich Klakow. Weaker than
you think: A critical look at weakly supervised learning, 2023.

Yinhao Zhu, Nicholas Zabaras, Phaedon-Stelios Koutsourelakis, and Paris Perdikaris. Physics-
constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification
without labeled data. Journal of Computational Physics, 394:56–81, 2019.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A ADDITIONAL RELATED WORK

A.1 PROGRAMMATIC WEAK SUPERVISION.

Programmatic weak supervision Ratner et al. (2016), is a learning paradigm where subject matter
expert encodes their domain knowledge in terms of weak labelers (labeling functions). These are
functions that either provide labels (weak labels) or abstain from prediction on any input. The key
question is how to learn from such weak labels that are potentially noisy. A general approach in-
volves two steps of aggregating weak labels into less noisy labels and then training a discriminative
classifier on the inferred labels. Various statistical label models have been developed for label ag-
gregation, and most of these only depend on the weak labels Ratner et al. (2016; 2018; 2019); Bach
et al. (2017); Varma et al. (2017); Fu et al. (2020); Kuang et al. (2022). Recent methods incorpo-
rate the input information into this weakly supervised learning pipeline Chen et al. (2022); Pukdee
et al. (2022); Zhang et al. (2023) e.g. smoothness of the label with respect to the input instance
or pretrained-embedding. Alternatively, there is a line of works that learns from weak labels in an
end-to-end fashion. The label model and the discriminative model are parameterized and are trained
jointly Cachay et al. (2021); Karamanolakis et al. (2021); Awasthi et al. (2020); Sam & Kolter
(2023). A key prior work is constrained label learning Arachie & Huang (2021), which involves
learning pseudo labels under constraints before training a discriminative model. Unlike our method,
CLL’s initial step is independent of the function class and remains a two-step process.

A.2 LEARNING WITH NOISY LABELS

Learning from data with noisy labels has been a prominent research problem that has received sub-
stantial attention from the machine learning community. The main assumption is that the observed
labels are flipped with some probability. There is a line of works in theoretical machine learning
that focuses on the learnability and polynomial-time algorithms for various noise models Kearns &
Vazirani (1994); Cesa-Bianchi et al. (1999); Angluin & Laird (1988); Awasthi et al. (2014; 2015);
Diakonikolas et al. (2019a); Balcan & Haghtalab. On the other hand, in the statistical learning the-
ory community, various works are concerned with different surrogate losses or unbiased estimators
Natarajan et al. (2013); Prasad et al. (2020); Natarajan et al.; Charoenphakdee et al. (2019); Xia et al.
(2019; 2020). Recently, numerous studies have focused on learning noisy labels on deep neural net-
works Song et al. (2022); Karimi et al. (2020); Yu et al. (2019); Han et al. (2018; 2020). Despite rich
theoretical and empirical research in this area, these approaches cannot be employed in our context
since the noisy labels in our setting are deterministic given the input and label.

A.3 LEARNING FROM CONSTRAINTS

Constrained optimization focuses on finding the optimal solution to a problem within given con-
straints Bertsekas (2014); Gill et al. (2019); Chong et al. (2023). The principal method involves con-
verting the constrained optimization problem into an unconstrained one. This can be accomplished
by adding auxiliary variables, as seen in the Lagrange multiplier method Rockafellar (1993), or by
incorporating a penalty term that penalizes the objective function when constraints are violated Coit
et al. (1996); Fortin & Glowinski (2000); Yeniay (2005). Additionally, gradient-based approaches
like PGD include a projection step to ensure the solution stays within a feasible region after each up-
date Chen & Wainwright (2015); Madry et al. (2018). For specific types of constraints such as linear
or quadratic, there are dedicated algorithms designed to address these constrained scenarios Heady
et al. (1963); Dantzig (2002); Frank et al. (1956); Boggs & Tolle (1995). In the field of machine
learning, the optimization goal is the empirical loss, and constraints can be used to enforce desirable
features in a machine learning model, such as fairness Zemel et al. (2013); Mehrabi et al. (2021),
robustness Cohen et al. (2019); Kurakin et al. (2016), or privacy Dwork et al. (2006). Recent studies
have begun incorporating constraints derived from domain knowledge into models, such as physics
constraints Zhao et al. (2019); Zhu et al. (2019); Karniadakis et al. (2021), explanation constraints
Pukdee et al. (2023), and weak supervision Ganchev et al. (2010); Hu et al. (2016), with the aim of
improving model performance.
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B PROOFS OF PROPERTIES OF PROJECTION LOSS AND COMPUTING THE
PROJECTION

Lemma B.1. For Qclf defined in equation 5, i.e.

Qclf =
⋂
j

Qj,clf , where Qj,clf = {q : X → ∆K | ρclf(gj , clf(q)) ≤ ηj}. (33)

where
ρclf(gj , clf(q)) = E[gj(X) ̸= clf(q)(X)|gj(X) ̸= ϕ] (34)

and clf(q) is defined as
clf(q)(x) = argmax

y
q(x)y (35)

(assuming argmaxy q(x)y is unique. If argmaxy q(x)y is not unique for some x then clf(q) is not
well defined. )

then for any p such that clf(p) is well defined, we have d(p,Qclf) =
infq∈Qclf

E[DKL(p(X)||q(X))] = 0 if and only if p ∈ Qclf .

Proof. If p ∈ Qclf , we would have d(p,Qclf) ≤ E[DKL(p(X)||p(X))] = 0. Conversely when
d(p,Qclf) = 0 we prove that p ∈ Qclf i.e. ρclf(gj , p) ≤ ηj for all j ∈ [m].

First, we prove that
inf

q∈Qclf

E[dTV (p(X), q(X))] = 0 (36)

where dTV is defined as

dTV (u, v) = 1/2 ·
K∑

k=1

|uk − vk| (37)

Using Pinsker’s inequality,
dTV (u, v) ≤

√
DKL(u||v)/2 (38)

we have
E[dTV (p(X), q(X))] = E[dTV (p(X), q(X))] (39)

≤ E[
√

DKL(p(X)||q(X))/2] (40)

≤
√

E[DKL(p(X)||q(X))]/2 (from Jenson’s) (41)
Thus

inf
q∈Qclf

E[dTV (p(X), q(X))] ≤ inf
q∈Qclf

√
E[DKL(p(X)||q(X))]/2 (42)

≤
√

inf
q∈Qclf

E[DKL(p(X)||q(X))]/2 (43)

≤ 0 (44)
Let us say p ̸∈ Qclf , there exists some ϵ > 0 such that ρclf(gj , p) ≥ ηj + ϵ for some j ∈ [m].

Pr(gj(X) ̸= clf(p)(X)|X ∈ Sj) ≥ ηj + ϵ (45)
where Sj = {x : gj(x) ̸= ϕ} is the coverage set of gj . Let S′ ⊆ Sj defined as S′ = {x : gj(x) ̸=
clf(p)(x)}. Denoting |S| = Pr(X ∈ S), since |S′|/|Sj | ≥ ηj + ϵ, and assuming |Sj | > 0, we have
|S′| > 0.

Now for any q ∈ Qclf , we have
Pr(clf(q)(X) ̸= gj(X)|X ∈ Sj) ≤ ηj (46)

Then
Pr(clf(q)(X) ̸= gj(X)|X ∈ Sj) = Pr(clf(q)(X) ̸= gj(X)|X ∈ S′, X ∈ Sj)P (X ∈ S′|X ∈ Sj)

(47)

= Pr(clf(q)(X) ̸= gj(X)|X ∈ S′)P (X ∈ S′, X ∈ Sj)/P (X ∈ Sj) (48)

= Pr(clf(q)(X) ̸= gj(X)|X ∈ S′)P (X ∈ S′)/P (X ∈ Sj) (49)

= Pr(clf(q)(X) ̸= gj(X)|X ∈ S′)|S′|/|Sj | (50)
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Thus,

Pr(clf(q)(X) ̸= gj(X)|X ∈ S′) = Pr(clf(q)(X) ̸= gj(X)|X ∈ Sj)|Sj |/|S′| (51)

≤ ηj |Sj |/|S′| (52)
≤ ηj/(ηj + ϵ) (53)

Hence,

Pr(clf(q)(X) = gj(X)|X ∈ S′) = 1− Pr(clf(q)(X) ̸= gj(X)|X ∈ S′) (54)
≥ 1− ηj/(ηj + ϵ) (55)
≥ ϵ/(ηj + ϵ) (56)

Since clf(p)(x) ̸= gj(x) for x ∈ S′, clf(q)(x) = gj(x) implies clf(p)(x) ̸= clf(q)(x). Thus

Pr(clf(q)(X) ̸= clf(p)(X)|X ∈ S′) ≥ ϵ/(ηj + ϵ) (57)

Let S′′ = {x ∈ S′ : clf(q)(x) ̸= clf(p)(x)}, we have

Pr(X ∈ S′′|X ∈ S′) ≥ ϵ/(ηj + ϵ) (58)

And thus,

Pr(X ∈ S′′|X ∈ S′)P (X ∈ S′) = P (X ∈ S′′, X ∈ S′) = P (X ∈ S′′) (59)

Pr(X ∈ S′′|X ∈ S′) = P (X ∈ S′′)/P (X ∈ S′) (60)

P (X ∈ S′′)/P (X ∈ S′) ≥ ϵ/(ηj + ϵ) (61)

|S′′| ≥ |S′|ϵ/(ηj + ϵ) > 0 (62)

Now let
µ(x) = max

k ̸=clf(p)(x)
p(x)clf(p)(x) − p(x)k (63)

For clf(p) to be well defined, µ(x) must be greater than 0, i.e. µ(x) > 0 for all x.

Since clf(p)(x) ̸= clf(q)(x) for x ∈ S′′, we have for any x ∈ S′′

p(x)clf(p)(x) ≥ p(x)clf(q)(x) + µ(x) (64)

q(x)clf(q)(x) ≥ q(x)clf(p)(x) (65)

Or

p(x)clf(p)(x) ≥ p(x)clf(q)(x) + µ(x) (66)

−q(x)clf(p)(x) ≥ −q(x)clf(q)(x) (67)

p(x)clf(p)(x) − q(x)clf(p)(x) ≥ p(x)clf(q)(x) − q(x)clf(q)(x) + µ(x) (68)

(p(x)clf(p)(x) − q(x)clf(p)(x))+(q(x)clf(q)(x) − p(x)clf(q)(x)) ≥ µ(x) (69)

|p(x)clf(p)(x) − q(x)clf(p)(x)|+|p(x)clf(q)(x) − q(x)clf(q)(x)| ≥ µ(x) (70)

dTV (p(x), q(x)) ≥ µ(x)/2 (71)

E[dTV (p(X), q(X))|X ∈ S′′] ≥ E[µ(X)/2|X ∈ S′′] (72)

Since infq∈Qclf
E[dTV (p(X), q(X))] = 0, there exists some q ∈ Qclf such that

E[dTV (p(X), q(X))] < |S|E[µ(X)/2|X ∈ S] (73)

for any set S with |S| > 0. In particular this holds for S = S′′ since |S′′| > 0. Then

E[dTV (p(X), q(X))] ≥ E[dTV (p(X), q(X))I(X ∈ S′′)] (74)

= E[dTV (p(X), q(X))|X ∈ S′′] Pr(X ∈ S′′) (75)

= E[dTV (p(X), q(X))|X ∈ S′′]|S′′| (76)

Thus

E[dTV (p(X), q(X)|X ∈ S′′)]|S′′| < |S′′|E[µ(X)/2|X ∈ S′′] (77)

E[dTV (p(X), q(X)|X ∈ S′′)] < E[µ(X)/2|X ∈ S′′] (78)

which leads to a contradiction.
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Lemma B.2. Let Q = {q : clf(q) ∈ H} for some set H of classifiers. For any classifier f and any
ϵ > 0, there exists a conditional distribution p such that clf(p) = f and d(p,Q) < ϵ.

Proof. We claim that for any classifiers f1, f2 there exists sequences of conditional distributions
{qt1}∞t=1, {qt2}∞t=1 such that clf(qt1) = f1, clf(q

t
2) = f2 for all t, and limt→∞ qt1 = limt→∞ qt2. The

main idea is that we can slightly perturb a uniform distribution to achieve any classifier. Formally,
we define qt1(x)k = 1/K − δ/((K − 1) · t) for k ̸= f1(x) and qt1(x)k = 1/K + δ/t for k = f1(x),
where K = |Y| is the number of classes. We can define qt2 in the same manner. It’s clear that both
sequence converges to a uniform distribution, that is, limt→∞ qt1(x)y = limt→∞ qt2(x)y = 1/K for
all x, y even when f1, f2 are completely different.

Now for any classifier h ∈ H and any classifier f , there exists a sequence {qth}, {qtf} such that
clf(qth) = h, clf(qtf ) = f for all t and that limt→∞ qth = limt→∞ qtf . Since clf(qth) = h, we know
that qth ∈ Q and this implies that

lim
t→∞

d(qtf , Q) = lim
t→∞

min
q∈Q

E[DKL(q(X)||qtf (X))] (79)

≤ lim
t→∞

E[DKL(q
t
h(X)||qtf (X))] = 0. (80)

The last line comes from the fact that limt→∞ qth = limt→∞ qtf . As a result, we can conclude that
for any ϵ, there exists some t for which p = qth satisfies d(p,Q) < ϵ and clf(p) = f .

Proposition B.3. For any ϵ, ν > 0 there exists δ(ϵ, ν) > 0 such that if d(p,Λϵ ∩ Qclf) < δ(ϵ, ν)
then ρclf(gj , clf(p)) ≤ ηj + ν/|Sj |, where |Sj | = PX(X ∈ Sj) is the size of coverage set Sj of
weak labeler gj with respect to marginal distribution PX . In particular δ(ϵ, ν) = νL(ϵ)

(1+ν) where L(ϵ)
is a strictly increasing function in ϵ given by

L(ϵ) =
(1 + ϵ) log(1 + ϵ)− (2 + ϵ) log(1 + ϵ/2)

K + ϵ
(81)

where K is the number of classes. The bound can be rephrased as the following inequality: For all
p such that d(p,Qϵ

clf) < L(ϵ), we have

ρclf(gj , clf(p)) ≤ ηj +
d(p,Qϵ

clf)

(L(ϵ)− d(p,Qϵ
clf))|Sj |

(82)

where Qϵ
clf = Λϵ ∩Qclf .

Proof. First, we prove the following

ρclf(gj , clf(p)) ≤ ηj + min
q∈Qclf

dclf(p, q)/|Sj | (83)

where dclf(p, q) is defined as

dclf(p, q) = Pr
X
(clf(p)(X) ̸= clf(q)(X)) (84)

ρclf(gj , clf(p)) = Pr
X
(clf(p)(X) ̸= gj(X)|X ∈ Sj)

≤ Pr
X
(clf(p)(X) ̸= clf(q)(X)|X ∈ Sj) + Pr

X
(clf(q)(X) ̸= gj(X)|X ∈ Sj) for all q

Thus

ρclf(gj , clf(p)) ≤ min
q∈Qclf

Pr
X
(clf(p)(X) ̸= clf(q)(X)|X ∈ Sj) + Pr

X
(clf(q)(X) ̸= gj(X)|X ∈ Sj)

≤ min
q∈Qclf

Pr
X
(clf(p)(X) ̸= clf(q)(X)|X ∈ Sj) + max

q∈Qclf

Pr
X
(clf(q)(X) ̸= gj(X)|X ∈ Sj)

≤ min
q∈Qclf

Pr
X
(clf(p)(X) ̸= clf(q)(X)|X ∈ Sj) + ηj

≤ min
q∈Qclf

Pr
X
(clf(p)(X) ̸= clf(q)(X), X ∈ Sj)/|Sj |+ ηj

≤ min
q∈Qclf

Pr
X
(clf(p)(X) ̸= clf(q)(X))/|Sj |+ ηj

= ηj + min
q∈Qclf

dclf(p, q)/|Sj |
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Next, we will prove the bound on infq∈Qclf
dclf(p, q), i.e.

inf
q∈Qclf

dclf(p, q) ≤
d(p,Qϵ

clf)

(L(ϵ)− d(p,Qϵ
clf))

(85)

For any conditional distributions p, q ∈ X → ∆K define the following

dkl(p, q) = E[DKL(q(X)||p(X))] (86)

d+kl(p, q) = E[DKL(q(X)||p(X))| clf(p)(X) = clf(q)(X)] (87)

d−kl(p, q) = E[DKL(q(X)||p(X))| clf(p)(X) ̸= clf(q)(X)] (88)

Consider the following sublemma.
Sublemma B.3.1. For any q ∈ Qϵ

clf , if dkl(p, q) < L(ϵ) then

dclf(p, q) ≤
dkl(p, q)

L(ϵ)− dkl(p, q)
(89)

where
L(ϵ) = inf

q∈Qϵ
clf ,p

d−kl(p, q) (90)

The bound in equation 85 directly follows from the above sublemma. This is proved as follows.

inf
q∈Qclf

dclf(p, q) = inf
q∈Qϵ

clf

dclf(p, q)

≤ inf
q∈Qϵ

clf

dkl(p, q)

L(ϵ)− dkl(p, q)

≤
infq∈Qϵ

clf
dkl(p, q)

supq∈Qϵ
clf

L(ϵ)− dkl(p, q)

=
infq∈Qϵ

clf
dkl(p, q)

L(ϵ)− infq∈Qϵ
clf

dkl(p, q)

=
d(p,Qϵ

clf)

L(ϵ)− d(p,Qϵ
clf)

Finally d(p,Qϵ
clf) ≤

νL(ϵ)
(1+ν) gives us infq∈Qclf

dclf(p, q) ≤ ν, and thus ρclf(gj , clf(p)) ≤ ν/|Sj |+ηj .

Now we proof sublemma B.3.1. First note that,

dkl(p, q) = dclf(p, q)d
−
kl(p, q) + (1− dclf(p, q))d

+
kl(p, q) (91)

Now

d+kl(p, q) =
dkl(p, q)− dclf(p, q)d

−
kl(p, q)

1− dclf(p, q)

≤ dkl(p, q)− dclf(p, q)L(ϵ)

1− dclf(p, q)

≤ dkl(p, q) + (dkl(p, q)− L(ϵ))
dclf(p, q)

1− dclf(p, q)

< dkl(p, q)

Further,

dclf(p, q) =
dkl(p, q)− d+kl(p, q)

d−kl(p, q)− d+kl(p, q)

≤ dkl(p, q)

d−kl(p, q)− d+kl(p, q)

<
dkl(p, q)

L(ϵ)− dkl(p, q)
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Now we are only left to prove the form of L(ϵ) given in equation 81.

Recall Λϵ was defined in equation 12 as

Λϵ := {q : X → ∆k | for each x, ∃y : q(x)y ≥ (1 + ϵ)q(x)k for k ̸= y} (92)

For a distribution u ∈ ∆K , let cj(u) refer to the top j’th class, i.e. c1(u), . . . cK(u) is a permutation
of [K] s.t. uc1(u) ≥ . . . ucK(u). Let tj(u) refer to the corresponding probability i.e. tj(u) = ucj(u).

Let λϵ = {u ∈ ∆K : t1(u) ≥ (1 + ϵ)tj(u) ∀j > 1}. This is connected to Λϵ as

Λϵ = {q : X → ∆K : ∀x, q(x) ∈ λϵ}
Now

L(ϵ) = inf
q∈Qϵ

clf ,p
d−kl(p, q) (93)

= inf
q∈Qϵ

clf ,p
E[DKL(q(X)||p(X))| clf(p)(X) ̸= clf(q)(X)] (94)

= inf
h∈H,p

E[ inf
u∈λϵ,c1(u)=h(X)

DKL(u||p(X))| clf(p)(X) ̸= c1(u)] (95)

(whereH = {h : ρclf(gj , h) ≤ ηj}) (96)
= inf

h∈H
E[ inf

u∈λϵ:c1(u)=h(X),v∈∆K :c1(v) ̸=c1(u)
DKL(u||v)] (97)

= inf
u∈λϵ,v∈∆K :c1(v) ̸=c1(u)

DKL(u||v) (98)

= inf
u,v∈∆K

DKL(u||v) : c1(v) ̸= c1(u), t1(u) ≥ (1 + ϵ)tj(u) ∀j > 1 (99)

Now without loss of generality, let cj(u) = j. With some abuse of notation, we also use u, v to
refer to the minimizer of objective in equation 99. The minimizer exists since the constraints induce
closed sets. Then first we will prove that

cj(v) = cj(u) = j for j ≥ 3 (100)

Assume the contrary. Then there exists k ≥ 3 such that vk > v2. This implies

(u2 − uk) log(vk/v2) > 0 (101)
u2 log(1/v2) + uk log(1/vk) > u2 log(1/vk) + uk log(1/v2) (102)

u2 log(u2/v2) + uk log(uk/vk) > u2 log(u2/vk) + uk log(uk/v2) (103)

DKL(u||v) > DKL(u||v′) (104)

where v′ is defined as
v′2 = vk, v

′
k = v2, v

′
j = vj for j ̸= k, 2 (105)

But u, v was the minimizer of the objective in equation 99, which contradicts the above implication
in equation 104.

Since c1(u) = 1 ̸= c1(v), we get c1(v) = 2, and c2(v) = 1. To recap we have

cj(u) = j (106)
c1(v) = 2, c2(v) = 1, cj(v) = j for j ≥ 3 (107)

Next we will prove that
v1 = v2 (108)

Let

x = (v2 − v1)/2 (109)
y = (v2 + v1)/2 (110)

Since c1(v) = 2, v2 ≥ v1 and so x, y ≥ 0. We have

v1 = y − x (111)
v2 = y + x (112)

K∑
j=3

vj = 1− 2y (113)
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Now,

L(ϵ) = u1 log(u1/y − x) + u2 log(u2/y + x) +

K∑
j=3

uj log(uj/vj)

∇xL(ϵ) = u1/(y − x)− u2(y + x)

=
u1(y + x)− u2(y − x)

y2 − x2

=
x(u1 + u2) + y(u1 − u2)

y2 − x2

> 0

Thus L(ϵ) is minimized for x = 0.

Next, we have the following inequality
n∑

i=1

ai log(ai/bi) ≥ (

n∑
i=1

ai) log(

n∑
i=1

ai/

n∑
i=1

bi) (114)

This follows Jenson’s inequality, given a discrete distribution f :
∑n

i=1 fi = 1, we have
n∑

i=1

fi log(ti) ≥ log(

n∑
i=1

fiti)

Substituting fi = ai/
∑n

i=1 ai, and ti = bi/ai, we get the required inequality. We use this inequality
to have

K∑
j=3

uj log(uj/vj) ≥ (

K∑
j=3

uj) log(

K∑
j=3

uj/

K∑
j=3

vj) (115)

This gives us

L(ϵ) ≥ u1 log(u1/v1) + u2 log(u2/v2) + (1− u1 − u2) log

(
1− u1 − u2

1− v1 − v2

)
(116)

We had v1 = v2. So, substituting v1 = v2 = y, we have

L(ϵ) ≥ f(y) = u1 log u1/y + u2 log u2/y + (1− u1 − u2) log

(
1− u1 − u2

1− 2y

)
∇yf(y) = −u1/y − u2/y +

2(1− u1 − u2)

1− 2y

=
2y − u1 − u2

1− 2y

∇2
yf(y) =

2(1− u1 − u2)

(1− 2y)2
> 0

Thus f(y) is minimized for ∇yf(y) = 0, giving y = v1 = v2 = (u1 + u2)/2. Substituting in
equation 116, we get

L(ϵ) ≥ u1 log(2u1/(u1 + u2)) + u2 log(2u2/(u1 + u2)) (117)

Let x = (u1 − u2)/2 (and thus u1 = y + x, u2 = y − x) we have

L(ϵ) ≥ f(x) = (y + x) log(1 + x/y) + (y − x) log(1− x/y)

∇xf(x) = log(1 + x/y)− log(1− x/y) > 0

Since u1 ≥ (1+ ϵ)u2, we have y+x ≥ (1+ ϵ)(y−x), thus f(x) is minimized for x = yϵ/(2+ ϵ).
Using y = (u1 + u2)/2, we have

L(ϵ) ≥ (u1 + u2) ((1 + ϵ)/(2 + ϵ) log(2(1 + ϵ)/(2 + ϵ)) + 2y/(2 + ϵ) log(2/(2 + ϵ)))

=

(
u1 + u2

2 + ϵ

)
((1 + ϵ) log(1 + ϵ)− (2 + ϵ) log(1 + ϵ/2))
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Now to bound u1 + u2, consider the following.

Since uj ≤ u2 for j ≥ 3, we have

(K − 1)u2 ≥
K∑
j=2

uj = 1− u1

u2 ≥
1− u1

K − 1

u1 + u2 ≥
1 + u1(K − 2)

K − 1

Further since u1 ≥ (1 + ϵ)uj for j ≥ 2, we have,

(K − 1)u1 ≥ (1 + ϵ)

K∑
j=2

uj

u1 ≥
(1 + ϵ)(1− u1)

K − 1

u1 ≥
1 + ϵ

K + ϵ

Substituting back we get

u1 + u2 ≥
2 + ϵ

K + ϵ

Substituting in the bound for L(ϵ) we finally get

L(ϵ) ≥ (1 + ϵ) log(1 + ϵ)− (2 + ϵ) log(1 + ϵ/2)

K + ϵ
(118)

Now to prove L(ϵ) is strictly increasing and positive for ϵ > 0, we have L(0) = 0 and

∇ϵL(ϵ) = ∇ϵf(ϵ)/(K + ϵ)− f(ϵ)/(K + ϵ)2

=
(K − 1) log(1 + ϵ)− (K − 2) log(1 + ϵ/2)

(K + ϵ)2

> 0

Proposition B.4. Given Q = Λϵ∩Qclf for Λϵ defined in equation 12 and Qclf defined in equation 5,
for any conditional distribution p, the optimal projection q∗ = arg infq∈Q E[DKL(q(X)||p(X))] can
be found as follows,

1. Solve for optimal clf(q∗) as

clf(q∗) = argmin
h∈X→Y

EX [ProjKL(p(X);∆K
h(X),ϵ)] : ρclf(gj , h) ≤ ηj (119)

where

∆K
y,ϵ =

{
r ∈ ∆K | ry ≥ (1 + ϵ)rk ,∀k ̸= y

}
,

ProjKL(u;S) = inf
r∈S

DKL(r||u). (120)

2. Solve for an optimal distribution q∗ given the optimal clf(q∗). For each x,

q∗(x) = argmin
r

DKL(r||p(x)) : r ∈ ∆K,ϵ
clf(q∗)(x) (121)
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Proof. Given Λϵ = {q ∈ X → ∆K | ∀x, q(x) ∈
⋃K

k=1 ∆
K
k,ϵ}. We have

q∗ = argmin
q∈Q

E[DKL(q(X)||p(X))]

= argmin
q∈Λϵ

E[DKL(q(X)||p(X))] : q ∈ Qclf

= argmin
q∈Λϵ

E[DKL(q(X)||p(X))] : ρ(gj , clf(q)) ≤ ηj ∀j ∈ [m]

= argmin
q∈Λϵ

min
h∈X→Y

E[DKL(q(X)||p(X))] : ρ(gj , h) ≤ ηj , h = clf(q)

= argmin
q:q=q′

min
q′∈Λϵ

min
h∈X→Y

E[DKL(q
′(X)||p(X))] : ρ(gj , h) ≤ ηj , h = clf(q′)

= argmin
q:q=q′

min
h∈X→Y

min
q′∈Λϵ

E[DKL(q
′(X)||p(X))] : ρ(gj , h) ≤ ηj , h = clf(q′)

= argmin
q:q=q′

min
h∈X→Y

(
min
q′∈Λϵ

E[DKL(q
′(X)||p(X))] : clf(q′) = h

)
: ρ(gj , h) ≤ ηj

= argmin
q:q(x)=ux

min
h∈X→Y

E
[

min
uX∈∆K

DKL(uX ||p(X)) : uX ∈ ∆K
h(X),ϵ)

]
: ρ(gj , h) ≤ ηj

Thus

q∗(x) = argmin
u∈∆K

DKL(u||p(X)) : u ∈ ∆K
h∗(X),ϵ (122)

where

h∗ = argmin
h∈X→Y

E
[

min
uX∈∆K

DKL(uX ||p(X)) : uX ∈ ∆K
h(X),ϵ)

]
: ρ(gj , h) ≤ ηj (123)

Since u∗
x ∈ ∆K

h∗(x),ϵ, it implies clf(u∗) = h∗, and since q∗(x) = u∗
x, clf(q∗) = clf(u∗) = h∗. Thus

clf(q∗) = min
h∈X→Y

E[ProjKL(p(X);∆K
h(X),ϵ)] : ρ(gj , h) ≤ ηj (124)

and

q∗(x) = argmin
u∈∆K

DKL(u||p(X)) : u ∈ ∆K
clf(q∗)(X),ϵ (125)

Proposition B.5. For Qdist defined in equation 16, we have d(p,Qdist) = 0 if and only if p ∈ Qdist.
Furthermore, for any ν > 0 there exists δ(ν) > 0 such that if d(p,Qdist) < δ(ν) then ρdist(gj , p) ≤
ηj + ν/|Sj |, where |Sj | = PX(Sj) is the size of coverage set Sj of weak labeler gj with respect to
marginal distribution PX . In particular δ(ν) = ν2/2.

Rephrasing we get the following bound:

ρdist(gj , p) ≤ ηj +
√

2d(p,Qdist)/|Sj |

Proof. Define E(p) = minq∈Qdist
EX [dTV (p(X), q(X))], where dTV is the TV distance:

dTV (u, v) = 1/2 ·
K∑

k=1

|uk − vk| (126)

First, we prove the following

ρdist(gj , p) ≤ ηj + 2 min
q∈Qdist

EX [dTV (p(X), q(X))]/|Sj | (127)
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ρdist(gj , p) = E[
∑

k ̸=gj(X)

p(X)gj(X)|X ∈ Sj ] (128)

= E[
∑

k ̸=gj(X)

p(X)gj(X) − q(X)gj(X)|X ∈ Sj ] + E[
∑

k ̸=gj(X)

q(X)gj(X)|X ∈ Sj ] for all q

(129)

≤ E[
∑
k

|p(X)k − q(X)k|X ∈ Sj ] + E[
∑

k ̸=gj(X)

q(X)gj(X)|X ∈ Sj ] (130)

≤ E[
∑
k

|p(X)k − q(X)k|I(X ∈ Sj)]/|Sj |+ ρdist(gj , q) (131)

≤ E[
∑
k

|p(X)k − q(X)k|]/|Sj |+ ρdist(gj , q) (132)

ρdist(gj , p) ≤ 2E[dTV (p(X), q(X))]/|Sj |+ ρdist(gj , q) (133)
The above holds for all q. Thus

ρdist(gj , p) ≤ min
q∈Qdist

2E[dTV (p(X), q(X))]/|Sj |+ ρdist(gj , q) (134)

≤ min
q∈Qdist

2E[dTV (p(X), q(X))]/|Sj |+ max
q∈Qdist

ρdist(gj , q) (135)

≤ 2 min
q∈Qdist

E[dTV (p(X), q(X))]/|Sj |+ ηj (136)

(137)

Further using Pinsker’s Inequality

dTV (u, v) ≤
√
DKL(u||v)/2

we have
E[dTV (p(X), q(X))] = E[dTV (q(X), p(X))] (138)

≤ E[
√
DKL(q(X)||p(X))/2] (139)

≤
√

E[DKL(q(X)||p(X))]/2 (from Jenson’s) (140)

min
q∈Qdist

E[dTV (p(X), q(X))] ≤ min
q∈Qdist

√
E[DKL(q(X)||p(X))]/2 (141)

≤
√

min
q∈Qdist

E[DKL(q(X)||p(X))]/2 (142)

≤
√

d(p,Qdist)/2 (143)

Finally d(p,Qdist) ≤ ν2/2 implies minq∈Qdist
E[dTV (p(X), q(X))] ≤ ν/2, and thus ρdist(gj , p) ≤

ν/|Sj |+ ηj .

Proposition B.6. Given Qdist as defined in equation 16, for any conditional distribution p, the
optimal projection q∗ = argminq∈Qdist

E[DKL(q(X)||p(X))] is given by q∗ = pλ
∗

where

pλ(x)y := Zλ(x) exp(
∑

j:gj(x)=y

λ)p(x)y (144)

Zλ(x) is the normalization constant. The optimal λ∗ is given by the following optimization:

λ∗ = min
λ≥0

m∑
j=1

λj s.t. ρdist(gj , p
λ) ≤ ηj ∀j ∈ [m] (145)

Proof. The problem is a convex optimization with affine constraints since ρdist(gj , q) =
E[
∑

y ̸=gj(X) q(X)y]. To restate it is,

min
q∈X→∆K

E[DKL(q(X)||p(X))] (146)

s.t. E[
∑

y ̸=gj(X)

q(X)y] ≤ ηj ∀j ∈ [m] (147)
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In terms of unconstrained variable q ∈ X → RK , this becomes

min
q∈X→RK

E[
K∑

k=1

q(X)k log(q(X)k/p(X)k)] (148)

s.t. E[
∑

y ̸=gj(X)

q(X)y] ≤ ηj ∀j ∈ [m] (149)

K∑
y=1

q(x)y = 1 for all x (150)

q(x)y ∈ [0, 1] for all x, and y ∈ [K] (151)

Since log is undefined for nonpositive values and assuming p(x)y > 0 for all x, y, we only need to
consider q(x)y ∈ R+, thus we can ignore the constraint q(x)y ≥ 0. q(x)y ≤ 1 also follows from
the constraint

∑K
y=1 q(x)y = 1. Hence the constraint q(x)y ∈ [0, 1] can be ignored. Rephrasing we

have

min
q∈X→RK

+

E[
K∑

k=1

q(X)k log(q(X)k/p(X)k)] (152)

s.t. E[q(X)gj(X)] ≥ 1− ηj ∀j ∈ [m] (153)
K∑

k=1

q(x)k = 1 for all x (154)

Here we subtracted from 1, both sides of the inequality constraint.

Now we form the lagrangian L(q,λ, µ) where λ ∈ Rm
+ , a Lagrange multiplier for each inequality

constraint, and µ ∈ X → R, the Lagrange multiplier for equality constraints.

L(q,λ, µ) =E[
K∑

k=1

q(X)k log(q(X)k/p(X)k)]

+ E[µ(X)(1−
K∑

k=1

q(X)k)] +

m∑
j=1

λj(1− ηj − E[q(X)gj(X)|X ∈ Sj ])

We have

min
q∈X→RK

+

max
λ∈Rm

+ ,µ∈X→R
L(q,λ, µ) = min

q∈Qdist

E[DKL(q(X)||p(X))]

Since the optimization is convex, a point (q∗,λ∗, µ∗) that satisfies the KKT conditions is optimal.
KKT stationarity condition implies that

∇qL(q∗,λ∗, µ∗) = 0 (155)

where derivative of an objective L(g) = E[
∑K

k=1 f(g(X, k))] where f : R→ R is a scalar function,
with respect to a function g in X × [K] → R is defined using methods in calculus of variation as a
function in X × [K]→ R

∇gL(g)(x, y) = E[δ(X = x)f ′(g(X, y))] = d(x)f ′(g(x, y)) (156)

where d is the probability density associated with marginal distribution P on X . Thus we have

∇qL(q∗,λ∗, µ∗)(x, y) = d(x)(1 + log q∗(x)y/p(x)y − µ∗(x)−
∑
j

λ∗
j I(y = gj(x))) = 0 (157)

Using
∑

y q
∗(x)y = 1, we can eliminate µ∗(x) to get q∗(x)y for x in support of P (d(x) > 0)

q∗(x)y = Zλ∗(x) exp(
∑

j:gj(x)=y

λ∗
j )p(x)y (158)
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where Zλ∗(x) is the normalization constant

Zλ∗(x) = 1/(

K∑
y=1

exp(
∑

j:gj(x)=y

λ∗
j )p(x)y) (159)

Complementary slackness condition on the inequality constraints imply
λ∗
i (1− ηi − E[q∗(X)gi(X)|X ∈ Si]) = 0 ; ∀i ∈ [m] (160)

Singling out λ∗
i from expression of q∗(x)y in equation 158, q∗(x)gi(x) becomes

q∗(x)gi(x) =
exp(λ∗

i +
∑

j ̸=i:gj(x)=gi(x)
λ∗
j )p(x)gi(x)

exp(λ∗
i +

∑
j ̸=i:gj(x)=gi(x)

λ∗
j )p(x)gi(x) +

∑
y ̸=gi(x)

exp(
∑

j:gj(x)=y λ
∗
j )p(x)y

(161)
or

q∗(x)gi(x) = exp(λ∗
i )fi(x)/(exp(λ

∗
i )fi(x) + 1− fi(x)) (162)

where

fi(x) = exp(
∑

j ̸=i:gj(x)=gi(x)

λ∗
j )p(x)gi(x)/(

K∑
y=1

exp(
∑

j ̸=i:gj(x)=y

λ∗
j )p(x)y) (163)

fi depends on λ∗
j for j ̸= i but dependence is dropped for convenience.

The complementary slackness condition in equation 160 now becomes

λ∗
i

(
1− ηi − E

[
exp(λ∗

i )fi(X)

exp(λ∗
i )fi(X) + 1− fi(X)

|X ∈ Si

])
= 0 (164)

Let ℓ(t) = E
[

t·fi(X)
t·fi(X)+1−fi(X) |X ∈ Si

]
. We have

δ

δt
ℓ(t) = E

[
fi(X)(1− fi(X))

(tfi(X) + 1− fi(X))2
|X ∈ Si

]
> 0 (165)

and
δ2

δt2
ℓ(t) = E

[
−2(fi(X))2(1− fi(X))

(tfi(X) + 1− fi(X))3
|X ∈ Si

]
< 0 (166)

(We assume p(x)y ∈ (0, 1) and thus fi(x) ∈ (0, 1) to get the above inequalities.)

Therefore, ℓ is a strictly increasing and concave function in t, and thus ℓ(exp(λ)) is strictly increas-
ing in λ. Thus from complementary slackness condition in equation 164, if ℓ(exp(0)) ≥ 1− ηi then
λ∗
i = 0, else λ∗

i = λ : ℓ(exp(λ)) = 1− ηi. Together this can be written as
λ∗
i = min

λ≥0
λ : ℓ(exp(λ)) ≥ 1− ηi (167)

or

λ∗
i = min

λ≥0
λ : E

[
exp(λ)fi(X)

exp(λ)fi(X) + 1− fi(X)
|X ∈ Si

]
≥ 1− ηi (168)

Plugging back fi defined in equation 163, and using definition of pλ, this is

λ∗
i = min

λ≥0
λ : E[pλ(X)gi(X)] ≥ 1− ηi (169)

where λi = λ, and λj = λ∗
j for j ̸= i. Or equivalently

λ∗
i = argmin

λi≥0

m∑
j=1

λj : ρ(gi, p
λ) ≤ ηi (170)

where λj = λ∗
j for j ̸= i.

And thus combining for all i we get,

λ∗ = argmin
λ≥0

m∑
j=1

λj : ρ(gj , p
λ) ≤ ηj ∀j ∈ [m] (171)

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Proposition B.7. Given the optimization problem

λ∗ = argmin
λ≥0

m∑
j=1

λj : ρ(gj , p
λ) ≤ ηj ∀j ∈ [m] (172)

The solution found by the following alternating minimization procedure is optimal if the outer loop
converges (The inner loop (equation 174) always converges).

Start with λ = 0. Then repeat until convergence:

1. Pick j ∈ [m], either randomly or in a round robin fashion.

2. Solve for
λj = argmin

λ
λ : ρ(gj , p

λ−j ) ≤ ηj (173)

where λ−j = [λ1 . . .λj−1, 0,λj+1,λm] as follows:

Start: λj = 0

Repeat until convergence: λj ← λj + log(1 + (1− ηj − τj(hj))+/τj(hj(1− hj)))

τj(h) = E[h(X)|X ∈ Sj ]
(174)

where hj(x) = pλ(x)gj(x).

Proof. First, we show that the solution to the constrained optimization in equation 173 with respect
to λ for a fixed λ−j can be found by the iterative algorithm described in equation 174. The LHS of
the constraint in equation 173, ρ(gj , pλ−j ) is a function of the form

E[exp(λ)fj(X)/(exp(λ)fj(X) + 1− fj(X))|X ∈ Sj ] (175)

where
fj(x) = exp(

∑
k ̸=j:gk(x)=gj(x)

λk)p(x)gj(x)/(
∑
y

exp(
∑

k ̸=j:gk(x)=y

λk)p(x)y)

which is strictly increasing and concave in exp(λ) as proved in equation 165. Suppose
E[hj(X;λt,λ−j)|X ∈ Sj ] < 1− ηj . Then λj can also be written as

λj = min
λ≥0

λ : E[hj(X;λt + λ,λ−j)|X ∈ Sj ] ≥ 1− ηj

We have

hj(x;λ
t + λ,λ−j) = exp(λ)hj(x;λ

t,λ−j)/(exp(λ)hj(x;λ
t,λ−j) + 1− hj(x;λ

t,λ−j))

Letting µ(s) = E[hj(X; log s + λt,λ−j)|X ∈ Sj ]. This is of the form in 175 and is strictly
increasing and concave in s as proved in equation 165, and equation 166 respectively. λj is thus
given as exp(s), s > 1 s.t. µ(s) = 1 − ηj . If a differentiable function µ is strictly increasing and
concave we have for any s1, s2

µ(s1) < µ(s1 + (µ(s2)− µ(s1))/µ
′(s1)) < µ(s2) (176)

Observe that s = s1 + (µ(s2)− µ(s1))/µ
′(s1) is also one iteration of the Newton-Raphson method

to solve for s′ : µ(s′) = µ(s2) starting with s = s1.

Using s1 = 1 and s2 : µ(s2) = 1− ηi, we get

µ(1) < µ(1 + (1− ηi − µ(1))/µ′(1)) < 1− ηi (177)

We have µ(1) = E[hj(X;λt,λ−j)|X ∈ Sj ] and µ′(1) = E[hj(X;λt,λ−j)(1 −
hj(X;λt,λ−j))|X ∈ Sj ] Thus

λt+1 = λt + log

(
1 +

(1− ηi − E[hj(X;λt,λ−j)|X ∈ Sj ])

E[hj(X;λt,λ−j)(1− hj(X;λt,λ−j))|X ∈ Sj ]

)
(178)
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satisfies
E[hj(X;λt,λ−j)|X ∈ Sj ]) < E[hj(X;λt+1,λ−j)|X ∈ Sj ]) < 1− ηi (179)

In particular given λt, we apply one step update of Newton-Raphson method on
E[hj(X;λt,λ−j)|X ∈ Sj ] to get λt+1 and thus subsequently use hj(;λ

t+1,λ−j) to apply the
next update. Convergence of these updates is faster than directly applying Newton’s method on the
starting function E[hj(X;λ0 = 0,λ−j)|X ∈ Sj ] which is

exp(λt+1) = exp(λt) +

(
1 +

(1− ηi − E[hj(X;λt,λ−j)|X ∈ Sj ])

E[hj(X;λt,λ−j)(1− hj(X;λt,λ−j))|X ∈ Sj ]

)
(180)

or

λt+1 = λt + log

(
1 +

exp(−λt)(1− ηi − E[hj(X;λt,λ−j)|X ∈ Sj ])

E[hj(X;λt,λ−j)(1− hj(X;λt,λ−j))|X ∈ Sj ]

)
(181)

This results in a lower update since λt > 0 or exp(−λt) < 1.

Now we show that if the alternating minimization converges it leads to the optimal solution λ∗.

Suppose the algorithm converges but the solution λ found is not optimal. This implies that λ satisfies
all of the constraints, but the KKT complementary slackness condition given in equation 164 is
violated. Since E[hj(X;λ,λ−j)|X ∈ Sj ] is a strictly increasing function in λ, and λj solves for λ in
equation 173 given λ−j , if λj > 0, then the equality must be satisfied, otherwise λj can be reduced
(since λj > 0) without violating the inequality constraint. Thus either E[hj(X;λ,λ−j)|X ∈ Sj ] =
1− ηj or λj = 0 which satisfies the KKT complementary slackness condition.
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C COMPACT VERSION OF OUR ALGORITHM

Algorithm 1 Learning from weak labeler constraints
Input: Unlabeled data {xi}ni=1, weak labelers {gj}mj=1 and the corresponding error bounds
{ηj}mj=1. A smooth real-valued function f : X → RK .
wij := gj(xi) ∈ [K] ∪ {∅} // Weak labels
cj :=

∑
i sij // Coverage

for each epoch do
zi ← f(xi) // Logits
pi ← σ(zi) // Probabilities
ej ← (1− ηj −

∑
i:wij ̸=∅ pi/cj)+ // Error in constraints

dj ←
∑

i:wij ̸=∅ pi(1− pi)/cj
λj ← log(1 + ej/dj) // One step parallel newton update to find λ (equation 22)
(hi)k ← (zi)k +

∑
j λjI(wij = k) // Logits of projected distribution (equation 22)

loss← 1
n

∑n
i=1 ℓce(zi, σ(hi)) // Cross entropy loss

f ← update(f,R(f) + α · loss) // Gradient descent update (equation 10)
end for
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Figure 3: Max error in satisfying convex approximation of constraints (maxj ρdist(gj , q)−ηj), (left)
vs max error in satisfying classifier constraints (maxj ρ(gj , clf(q))− ηj), (right) averaged over 100
runs of random draws of p and weak labelers, where q = π(p,Qdist), i.e. the projection q is found
by projecting p on constraints on distribution as described in section 3.2.

D ADDITIONAL RESULTS ON SOLVING THE ILP

D.1 SOLVING THE ILP THROUGH LP

For the particular ILP in equation 13 we have, empirically we found that the optimal solution of
the relaxed LP is mostly integral, and approximating the non integer by its integral solution almost
always satisfies the constraints (the error in constraint satisfaction ρclf(gj , clf(q))− ηj).

In Figure 4 and 5, we show the performance of solving the ILP after LP relaxation. We used
‘scipy.linprog’ in Python to solve the LP. In particular, Figure 4 shows that the constraints are sat-
isfied well (the error ρclf(gj , clf(q)) − ηj is small), and 5 shows that only a small fraction of the
variables (one variable for each unlabeled data x) are non-integral.
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Figure 4: Max error in satisfaction of classifier constraints (maxj ρ(gj , clf(q))− ηj), averaged over
100 runs of random draws of p and weak labelers, where q = π(p,Qclf), i.e. the projection q is
found by projecting p on the constraints on classifier through LP relaxation of the ILP described in
3.5.
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Figure 5: Fraction of non-integral points after solving the LP relaxed version of ILP averaged over
100 runs of random draws of p and weak labelers.
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Figure 6: Max of DKL(h||p)/DKL(h
∗||p) over 1000 uniformly random draws of p. h denotes the

solution of 182 found by approximation (equation 184) or gradient descent (20 steps after initial ap-
proximation) and h∗ denotes the optimal solution as found by “cvxpy.CLARABEL” convex solver.

D.2 ESTIMATION OF THE COST VECTOR

ProjKL(p(x);∆
K
y,ϵ) and q∗(x) from equation 14, and equation 15 requires solving an optimization

problem. We expand the DKL term to have

min
h∈∆K

K∑
i=k

hi log(hk/p(x)k) s.t. hy ≥ (1 + ϵ)hk,∀k ̸= y (182)

which can be solved by a black box convex solver. However, it can also be reparameterized in
λ ∈ RK−1

+ to get an unconstrained optimization as,

hk = exp(−λk)/Z for k ̸= y, hy = (1 + ϵ)/Z; Z =
∑
k

hk (183)

The objective is no longer convex in λ but projected gradient descent (projection to RK−1
+ ) can still

be used to find a local minima. In particular, we find the approximation

λi = log(max
j

p(x)j/p(x)i) (184)

yields h for which DKL(h||p(x)) is empirically found to be within a small constant factor from
the optimal. This can further be used as a starting point for gradient descent which then results in
a solution close to optimal. In Figure 6, we show empirically that our approximation is within a
constant factor from the optimal as found by ‘cvxpy.CLARABEL’ convex solver in Python, and a
few iterations of projected gradient descent after this approximation finds a solution very close to
the optimal.
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E CONVEX APPROXIMATION OF THE CONSTRAINT ON CLASSIFIER WITH THE
CONSTRAINT ON DISTRIBUTION

We remarked that the constraint sets Qj,dist that impose constraints on distribution, i.e.

Qj,dist = {q ∈ X → ∆K | ρdist(gj , q) ≤ ηj} (185)

can be considered as a convex approximation to the constraint sets Qj,clf that impose constraints on
classifiers, i.e.

Qj,clf = {q ∈ X → ∆K | ρclf(gj , clf(q)) ≤ ηj} (186)

First, we note that for distributions that are very confident on one label, i.e. for any x, there is a y,
such that p(x)y > 1− ϵ for a small ϵ, we can quantify the extent of approximation.
Lemma E.1. If for any x there is a y, such that p(x)y > 1− ϵ, then

ρclf(gj , clf(p)) ≤ ρdist(gj , p)/(1− ϵ)

and
ρdist(gj , p) ≤ ρclf(gj , clf(p))(1− ϵ) + ϵ

Thus any p that satisfies ρclf(gj , clf(p)) ≤ (ηj − ϵ)/(1 − ϵ) lies in Qj,dist and any p ∈ Qj,dist

satisfies ρclf(gj , clf(p)) ≤ ηj/(1− ϵ).

Proof.

ρdist(g, p) = E[
∑

k ̸=g(X)

p(X)k|X ∈ S, clf(p)(X) = g(X)] Pr(clf(p)(X) = g(X)|X ∈ S)

+ E[
∑

k ̸=g(X)

p(X)k|X ∈ S, clf(p)(X) ̸= g(X)] Pr(clf(p)(X) ̸= g(X)|X ∈ S)

≤ ϵ(1− ρclf(g, clf(p))) + ρclf(g, clf(p))

ρdist(g, p) ≤ ρclf(g, clf(p))(1− ϵ) + ϵ

ρdist(g, p) ≥ 0 + (1− ϵ)ρclf(g, clf(p))

ρclf(g, clf(p)) ≤ ρdist(g, p)/(1− ϵ)

We dropped subscript j for convenience. Substituting ρclf(gj , clf(p)) ≤ (ηj − ϵ)/(1 − ϵ) in bound
for ρclf , we get ρdist(gj , p) ≤ ηj . Similarly substituting ρdist(gj , p) ≤ ηj in bound for ρclf we get
ρclf(gj , clf(p)) ≤ ηj/(1− ϵ).

The above lemma suggests that if the true distribution makes confident predictions, (which is often
the case for many real world classification setting), then imposing a constraint on distribution is
close to imposing constraint on classifier. However, this is only a sufficient condition and the convex
approximation can be good without such a condition as well.

In Figure, 3 we show the maximum error in satisfaction of any classifier constraint
maxj ρclf(gj , clf(q)) − ηj for p sampled uniformly at random when we use the method for pro-
jecting on constraints on distribution, i.e. q = π(p,Qdist). The data for weak labelers was generated
randomly by first drawing Sj such that |Sj | ∼ N (0.6, 0.3) and error bound ηj ∼ N (0.3, 0.3) and
then choosing weak labels uniformly at random such that their expected error in Sj is ηj . To estimate
the projection π(p,Qdist), 20 steps of alternating minimization in a round-robin fashion (iterating
over all constraints one by one) is performed to find λ (proposition B.7), where each step for each
constraint i is optimized for 10 steps to find λi given current iterate λ−i.

F ESTIMATING ACCURACY BOUND FROM THE VALIDATION SET

Our algorithm needs some estimate of the error bounds ηj . Often they are not given but we have
some small validation set with true labels, which can be leveraged to get bounds.

One can be tempted to estimate ηj for each labeler gj separately from available labels in its coverage
region Sj . This approach is problematic since many weak labelers have a small coverage set Sj such
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that it is unlikely to have coverage in the validation set. Indeed if the validation set was large enough
to have good coverage for all weak labelers, supervised learning may perform well enough rendering
any additional information provided by weak labeler constraints uninformative. We consider two
ways to alleviate this problem of low coverage.

First, we consider a prior distribution on weak labeler errors ηj and then compute a Bayesian pos-
terior from the labeled set (and use its mean as the estimate of the bound ηj). When there are no
labels in the coverage, the posterior remains the same as the prior. One example of a prior is a Beta
prior β(α, β) under which observing k incorrect out of n samples induces the posterior with mean
(k + α)/(n + α + β). This can also be viewed as domain experts providing a general prior belief
about errors instead of individual error estimates/ bounds for each weak labeler.

Second, we consider a shared parameterization of errors as ηj = hϕ(gj , Sj) and then treat ϕ as a
hyperparameter to be tuned on the validation set. A simple instance of this shared parameterization
is a common bound ηj = ϕ , i.e. hϕ(·) = ϕ. This can also be viewed as domain experts pro-
viding relative information about errors, such as the average errors of different weak labelers are
similar/correlated.
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G ADDITIONAL EXPERIMENT DETAILS

G.1 DATASET STATISTICS

Dataset Num classes Num labelers Mean Accuracy Mean Coverage

Youtube 2 10 0.83± 0.14 0.17± 0.09
IMDB 2 5 0.71± 0.15 0.24± 0.31
Bioresponse 2 20 0.64± 0.09 0.17± 0.20
Yelp 2 8 0.74± 0.09 0.18± 0.20
CDR 2 33 0.72± 0.13 0.06± 0.12
Chemprot 10 26 0.47± 0.17 0.06± 0.07
Semeval 9 164 0.77± 0.40 0.01± 0.03
Trec 6 68 0.73± 0.37 0.03± 0.08

Table 2: Dataset statistics includes the number of classes, the number of weak labelers, and the mean
accuracy and coverage of the weak labelers.

G.2 ERROR IN SATISFACTION OF CONSTRAINTS

Table G.2 shows the errors in satisfaction of classifier constraints for our trained classifier f∗
clf , when

projecting on Qclf (row Ourclf(T ) in table 1) as ∆j
clf , and f∗

dist when projecting on Qdist (row
Our(T ) in table 1) as ∆j

dist.

∆j
clf = (ρclf(gj , f

∗
clf))− ηj)+ (187)

∆j
dist = (ρclf(gj , f

∗
dist))− ηj)+ (188)

meanj∆
j =

m∑
j=1

wj∆
j (189)

where wj = |Sj |/
m∑
j=1

|Sj | (190)

For most datasets we see that almost all constraints are satisfied. Despite projecting on Qdist,

Bio CDR Chem IMDB Semeval Trec Yelp Youtube

# Classes 2 2 10 2 9 6 2 2
# Labelers 20 33 26 5 164 68 8 10

meanj∆
j
dist 0.00.0 0.00.0 0.00.0 0.020.02 0.00.0 0.00.0 0.00.0 0.00.0

meanj∆
j
clf 0.00.0 0.00.0 0.020.01 0.050.01 0.00.0 0.020.01 0.010.0 0.010.01

maxj ∆
j
dist 0.080.15 0.070.07 0.190.29 0.110.05 0.00.01 0.120.06 0.030.01 0.010.01

maxj ∆
j
clf 0.030.01 0.050.05 0.280.22 0.120.03 0.050.03 0.550.29 0.060.01 0.040.03

Table 3: Mean and Max error in satisfaction of constraints

∆j
dist which measures error in satisfying classifier constraint is small indicating that projecting on

distribution works well empirically for satisfying constraints on classifier.

G.3 EXPERIMENT DETAILS OF SOLVING THE ILP

In table 1, we also reported our results for the method of projecting on the constraint on classifiers
through solving the ILP in 3.5, as Ourclf(T ). We did not have access to the true conditional distribu-
tion, and so we could not estimate accuracy bounds with respect to the target Bayes optimal classifier
equation 1. Instead, we use the same bounds as estimated from training labels by interpreting them
as noisy bounds with respect to the target classifier.
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We use the python function “scipy.linprog’ to solve the ILP and estimate the projection. ϵ in 12
was set to 0.2. The cost vector ProjKL(p(X);∆K

y,ϵ) of the ILP is estimated as described in D.2, in
particular we use the approximation λk = log(maxj p(x)j/p(x)k) for λk in equation 183. To limit
the number of constraints in the linear program, we use stochastic gradient descent with a batch size
of 1000. We take a single gradient step in each iteration of the alternating minimization in 3.2.
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H ERROR GUARANTEE INSIDE THE COVERAGE OF WEAK LABELERS

Theorem H.1. LetH1, . . . ,Hk be constraints of the formHj = {h : X → [K] | ρclf(gj , h) ≤ ηj},
each with different constant weak labels, gj(X) = j − 1 for all j = 1, . . . ,K, then for any f ∈⋂

j Hj , we have

errS(f) ≤
k∑

j=1

(ηj + errSj (gj))
Pr(Sj)

Pr(S)
−

∑
σ⊆{1,...,k},

|σ|≥2

(2|σ| − 3)
Pr(Bσ)

Pr(S)
. (191)

when S =
⋃k

j=1 Sj , Bσ = (
⋂

i∈σ Si) ∩ (
⋂

i∈{1,...,k}\σ S
c
i ) are minterms.

Proof. (Theorem 4.5 Let Bσ = (
⋂

i∈σ Si) ∩ (
⋂

i∈{1,...,k}\σ S
c
i ) be minterms. For simplicity, we

denote Bj = B{j} and write Pr(f(X) ̸= f∗(X);B) = Pr(X ∈ {x ∈ X | f(x) ̸= f∗(x)} ∩ B).
Since the weak labelers gj(x) are constant and different for each gj , without loss of generality, we
assume that gj(x) = j − 1 for any x ∈ Sj and for all j = 1, . . . , k. Intuitively, Bj are regions in Sj

with no other conflicting weak labels. We observe that

errS(f) Pr(X ∈ S) (192)
= Pr(f(X) ̸= f∗(X);S) (193)

=

k∑
j=1

Pr(f(X) ̸= f∗(X);Bj) + Pr(f(X) ̸= f∗(X);S −
k⋃

j=1

Bj) (Bi ∩Bj = ∅, i ̸= j)

(194)

≤
k∑

j=1

Pr(f(X) ̸= j − 1;Bj) + Pr(f∗(X) ̸= j − 1;Bj) + Pr(X ∈ S −
k⋃

j=1

Bj) (△ inequality

(195)

Since f ∈
⋂

j Hj , for j = 1, . . . , k, we have

Pr(f(X) ̸= j − 1;Sj) ≤ ηj Pr(X ∈ Sj) (196)
Pr(f(X) ̸= j − 1;Bj) + Pr(f(X) ̸= j − 1;Sj −Bj) ≤ ηj Pr(X ∈ Sj) (197)
Pr(f(X) ̸= j − 1;Bj) ≤ ηj Pr(X ∈ Sj)− Pr(f(X) ̸= j − 1;Sj −Bj). (198)

Similarly, since f∗ ∈
⋂

j Hj , for j = 1, . . . , k, we also have

Pr(f∗(X) ̸= j − 1;Bj) ≤ errSj (gj) Pr(Sj)− Pr(f∗(X) ̸= j − 1;Sj −Bj). (199)

Substitute these inequalities to the above, we have

errS(f) Pr(X ∈ S) ≤
k∑

j=1

(ηj + errSj
(gj)) Pr(X ∈ Sj)− Pr(f(X) ̸= j − 1;Sj −Bj) (200)

− Pr(f∗(X) ̸= j − 1;Sj −Bj) + Pr(X ∈ S −
k⋃

j=1

Bj) (201)

The region Sj − Bj is the area in Sj with at least one other conflicting region, we can write this as
a combination of minterms that represent each weak label in each region,

Sj −Bj =
⋃

σ⊆{1,...,k},
j∈σ,|σ|≥2

Bσ (202)
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Therefore,
k∑

j=1

Pr(f(X) ̸= j − 1;Sj −Bj) (203)

=

k∑
j=1

Pr(X ∈ Sj −Bj)− Pr(f(X) = j − 1;Sj −Bj) (204)

=

k∑
j=1

Pr(X ∈ Sj −Bj)−
k∑

j=1

∑
σ⊆{1,...,k},
j∈σ,|σ|≥2

Pr(f(X) = j − 1;Bσ) (from equation 202) (205)

=

k∑
j=1

Pr(X ∈ Sj −Bj)−
∑

σ⊆{1,...,k},
|σ|≥2

∑
j∈σ

Pr(f(X) = j − 1;Bσ) (206)

=

k∑
j=1

Pr(X ∈ Sj −Bj)−
∑

σ⊆{1,...,k},
|σ|≥2

Pr(f(X) + 1 ∈ σ;Bσ) (label starts from 0) (207)

≥
k∑

j=1

Pr(X ∈ Sj −Bj)−
∑

σ⊆{1,...,k},
|σ|≥2

Pr(X ∈ Bσ) (208)

The second to last step holds from the fact that for each σ, we will see Bσ , |σ| times for each element
j ∈ σ in terms of Pr(f(X) = j − 1;Bσ). The same argument also holds for f∗. Substitute this
back to the equation equation 200

errS(f) Pr(X ∈ S) ≤
k∑

j=1

(ηj + errSj
(gj)) Pr(X ∈ Sj)− 2

k∑
j=1

Pr(X ∈ Sj −Bj) (209)

+ 2
∑

σ⊆{1,...,k},|σ|≥2

Pr(X ∈ Bσ) + Pr(X ∈ S −
k⋃

j=1

Bj). (210)

Finally, we can write each term as a combination of Bσ ,

Pr(X ∈ S −
k⋃

j=1

Bj) =
∑

σ⊆{1,...,k},
|σ|≥2

Pr(X ∈ Bσ), (211)

k∑
j=1

Pr(X ∈ Sj −Bj) =
∑

σ⊆{1,...,k},
|σ|≥2

|σ|Pr(X ∈ Bσ) (212)

Substitute in, we have the result,

errS(f) Pr(X ∈ S) ≤
k∑

j=1

(ηj + errSj (gj)) Pr(X ∈ Sj)−
∑

σ⊆{1,...,k},
|σ|≥2

(2|σ| − 3)Pr(X ∈ Bσ).

(213)

or in short, we write

errS(f) ≤
k∑

j=1

(ηj + errSj
(gj))

Pr(Sj)

Pr(S)
−

∑
σ⊆{1,...,k},

|σ|≥2

(2|σ| − 3)
Pr(Bσ)

Pr(S)
. (214)
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I EXTENDING THE ERROR GUARANTEE TO THE AREA OUTSIDE OF THE
WEAK LABELERS COVERAGE WITH A SMOOTHNESS PROPERTY

To prove Theorem 4.6, we rely on the following observation.
Lemma I.1. Let f be an L-Lipschitz function w.r.t. a metric d. For any distribution P,Q we have

EX∼P [f(X)]− EY∼Q[f(Y )] ≤Wd(P,Q) (215)

where Wd(P,Q) is a Wasserstein distance between P,Q where the cost function is given by d.

Proof. For any distribution P,Q and a transport plan T : X × X between P,Q, we have

EX∼P [f(X)]− EY∼Q[f(Y )] =

∫
f(x)p(x)dx−

∫
f(y)q(y)dy (216)

=

∫ ∫
f(x)T (x, y)dydx−

∫ ∫
f(y)T (x, y)dxdy (217)

=

∫ ∫
|f(x)− f(y)|T (x, y)dydx ≤ L

∫ ∫
d(x, y)T (x, y)dydx. (218)

When T is the optimal transport plan, the right-hand side term is the smallest, which is the definition
of the Wasserstein distance Wd(P,Q).

The following Theorem is a generalization of Theorem 4.6.
Theorem I.2. Let P be a joint distribution over X ×Y such that Pr(Y = y | X = x) is L-Lipschitz
w.r.t. a metric d where for all k = 1, . . . ,K and x1, x2 ∈ X ,

|Pr(Y = k | X = x1)− Pr(Y = k | X = x2)| ≤ Ld(x1, x2), (219)

For any set S and f we write an error of f with respect to P as ẽrrS(f) = Pr(f(X) ̸= Y | X ∈ S),
then for any subsets C,D ⊆ X , we have

ẽrrD(f) ≤ ẽrrC(f)(1 + tf (C,D)) + Luf (C,D) (220)

when

tf (C,D) = sup
k
|PrC(f(X) = k | X ∈ C)− Pr(f(X) = k | X ∈ D)

Pr(f(X) = k | X ∈ C)
| (221)

and
uf (C,D) =

∑
j

Pr
D
(f(X) = k)Wd(PX|C∩{x|f(x)=k}, PX|D∩{x|f(x)=k}), (222)

Wd is a Wasserstien distance and we denote PX|A for a distribution PX condition on X ∈ A.

Proof. First, we write an error term as a combination of errors for each prediction of f(x),

ẽrrD(f) = Pr(f(X) ̸= Y | X ∈ D) (223)

=

K∑
k=1

Pr(f(X) ̸= Y | f(X) = k,X ∈ D) Pr(f(X) = k | X ∈ D) (224)

=

K∑
k=1

Pr(Y ̸= k | f(X) = k,X ∈ D) Pr(f(X) = k | X ∈ D). (225)

We observe that

|Pr(Y ̸= k | f(X) = k,X ∈ D)− Pr(Y ̸= k | f(X) = k,X ∈ C)| (226)
= |Pr(Y = k | f(X) = k,X ∈ D)− Pr(Y = k | f(X) = k,X ∈ C)| (227)
= |EX∼PX|D∩{x|f(x)=k} [Pr(Y = k | X)]− EX∼PX|C∩{x|f(x)=k} [Pr(Y = k | X)]| (228)

≤ LWd(PX|D∩{x|f(x)=k}, PX|C∩{x|f(x)=k}) (229)
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In the second to last line, we can think of Pr(Y = k|X) as a function of X for which we can then
apply Lemma I.1 to achieve the last line. For compactness of our notation, we denote PrC(·) =
PrX(· | X ∈ C). Substitute this back to the equation above, we have

ẽrrD(f) ≤
K∑

k=1

Pr
C
(Y ̸= k | f(X) = k) Pr

D
(f(X) = k) (230)

+

K∑
k=1

|Pr
D
(Y ̸= k | f(X) = k)− Pr

C
(Y ̸= k | f(X) = k)|Pr

D
(f(X) = k) (231)

≤
K∑

k=1

Pr
C
(Y ̸= k | f(X) = k) Pr

D
(f(X) = k) (232)

+

K∑
k=1

LWd(PX|D∩{x|f(x)=k}, PX|C∩{x|f(X)=k}) Pr
D
(f(x) = k) (233)

=

K∑
k=1

Pr
C
(Y ̸= k | f(X) = k) Pr

D
(f(X) = k) + Luf (C,D). (234)

Finally, we also observe that

K∑
k=1

Pr
C
(Y ̸= k | f(X) = k) Pr

D
(f(X) = j) (235)

=

K∑
k=1

Pr
C
(Y ̸= k | f(X) = k) Pr

C
(f(X) = k)(1 +

PrD(f(X) = k)− PrC(f(X) = k)

PrC(f(X) = k)
) (236)

≤
K∑

k=1

Pr
C
(Y ̸= k | f(X) = k) Pr

C
(f(X) = k)|1 + PrD(f(X) = k)− PrC(f(X) = k)

PrC(f(X) = k)
| (237)

≤(
K∑

k=1

Pr
C
(Y ̸= k | f(X) = k) Pr

C
(f(X) = k))(1 + sup

k
|PrD(f(X) = k)− PrC(f(X) = k)

PrC(f(X) = k)
|)

(238)
=ẽrrC(f)(1 + tf (C,D)) (239)

Combine with the above, we have

ẽrrD(f) ≤ ẽrrC(f)(1 + tf (C,D)) + Luf (C,D) (240)
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