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ABSTRACT

Recent work has shown that diffusion models memorize and reproduce training
data examples. At the same time, large copyright lawsuits and legislation such
as GDPR have highlighted the need for erasing datapoints from diffusion models.
However, retraining from scratch is often too expensive. This motivates the setting
of data unlearning, i.e., the study of efficient techniques for unlearning specific
datapoints from the training set. Existing concept unlearning techniques require
an anchor prompt/class/distribution to guide unlearning, which is not available
in the data unlearning setting. General-purpose machine unlearning techniques
were found to be either unstable or failed to unlearn data. We therefore propose a
family of new loss functions called Subtracted Importance Sampled Scores (SISS)
that utilize importance sampling and are the first method to unlearn data with
theoretical guarantees. SISS is constructed as a weighted combination between
simpler objectives that are responsible for preserving model quality and unlearning
the targeted datapoints. When evaluated on CelebA-HQ and MNIST, SISS achieved
Pareto optimality along the quality and unlearning strength dimensions. On Stable
Diffusion, SISS successfully mitigated memorization on nearly 90% of the prompts
we tested. We release our code online.1

1 INTRODUCTION

The recent advent of diffusion models has revolutionized high-quality image generation, with large
text-to-image models such as Stable Diffusion (Rombach et al., 2022) demonstrating impressive
stylistic capabilities. However, these models have been shown to memorize and reproduce specific
training images, raising significant concerns around data privacy, copyright legality, and the generation
of inappropriate content (Carlini et al., 2023; Cilloni et al., 2023). Incidents such as the discovery
of child sexual abuse material in LAION (Thiel, 2023; Schuhmann et al., 2022) as well as the need
to comply with regulations like the General Data Protection Regulation and California Consumer
Privacy Act that establish a “right to be forgotten” (Hong et al., 2024; Wu et al., 2024), underscore
the urgency of developing effective methods to remove memorized data from diffusion models.

Retraining on a new dataset is often prohibitively expensive, and the bulk of traditional machine
unlearning techniques have been built for classical supervised machine learning (Cao & Yang, 2015;
Ginart et al., 2019; Izzo et al., 2021; Bourtoule et al., 2021). Recently, a new wave of research
on unlearning in diffusion models has emerged, but it has focused almost exclusively on concept
unlearning in text-conditional models (Gandikota et al., 2023; Kumari et al., 2023; Zhang et al.,
2023; Gandikota et al., 2024; Schramowski et al., 2023; Heng & Soh, 2023; Fan et al., 2024). These
approaches aim to remove higher-level concepts, e.g., the styles of painters or nudity, rather than
specific datapoints from the training data needed to battle unwanted memorization. This paper focuses
on the problem of efficient machine unlearning in diffusion models with the objective of removing
specific datapoints, a problem that we refer to as data unlearning.

Unlike concept unlearning, the data unlearning setting has a concrete gold standard: retraining without
the data to be unlearned. The goal of data unlearning is to achieve unlearning performance as close as
possible to retraining while using less computational resources. To quantify unlearning performance,
we focus on three separate areas: the degree of unlearning, the amount of quality degradation after
unlearning, and the amount of compute needed. Examples of these areas are highlighted in Figures 1
and 2.

1Anonymous code release: https://tinyurl.com/dataunlearningiclr
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Figure 1: Examples of quality degradation across unlearning methods. On all 3 datasets, we find
that our SISS method is the only method capable of unlearning specific training datapoints while
maintaining the original model quality. See Tables 1, 2 and Figure 6a for complete quantitative results
on quality preservation.

When applied to data unlearning, general-purpose machine unlearning techniques face certain
limitations: naive deletion (fine-tuning on data to be kept) tends to be slow in unlearning, while
NegGrad (gradient ascent on data to be unlearned) (Golatkar et al., 2020) forgets the data to be kept,
leading to rapid quality degradation. State-of-the-art class and concept unlearning techniques do not
apply to our setting because they require an anchor prompt/class/distribution to guide the unlearning
towards which we do not assume access to. For example, Heng & Soh (2023) select a uniform
distribution over pixel values to replace the 0 class on MNIST; however, the desired unlearning
behavior would be to instead generate digits 1 − 9 when conditioned on 0. Even if one selects
the target distribution to be a random example/label from all other classes as Fan et al. (2024) do,
it is not always clear what “all other classes” are in the text-conditional case. Furthermore, these
prior experiments are targeting prompts/classes instead of datapoints and do not apply in the case of
unconditional diffusion models. A notable exception is EraseDiff (Wu et al., 2024) which can unlearn
data by fitting the predicted noise to random noise targets that are not associated with a prompt/class.

In this work, we derive an unlearning objective that combines the objectives of naive deletion and
NegGrad. For further computational efficiency, we unify the objective through importance sampling,
cutting the number of forward passes needed to compute it by half. We term our objective Subtracted
Importance Sampled Scores (SISS). As seen in Figure 1, SISS allows for the computationally efficient
unlearning of training data subsets while preserving model quality. It does so because the naive
deletion component preserves the data to be kept, while the NegGrad component targets the data to
be unlearned. The addition of importance sampling balances between the two components through a
parameter λ, where λ = 0 and λ = 1 behave like naive deletion and NegGrad, respectively. We find
that λ = 0.5 behaves as a mixture of the two, giving the desirable combination of quality preservation
and strong unlearning.

We demonstrate the effectiveness of SISS on CelebA-HQ (Karras et al., 2018), MNIST with T-Shirt,
and Stable Diffusion. On all 3 sets of experiments, SISS preserved the original model quality as
shown in Figure 1. On CelebA-HQ with the objective of unlearning a celebrity face, SISS was
Pareto-optimal with respect to the FID and SSCD similarity metric in Figure 2, cutting the latter by
over half. The base model for MNIST with T-Shirt was trained on MNIST (Deng, 2012) augmented
with a specific T-shirt from Fashion-MNIST (Xiao et al., 2017). The objective was to unlearn the
T-shirts, and SISS was again found to be Pareto-optimal with respect to the Inception Score and
exact likelihood, increasing the latter by a factor of 8. Finally, on Stable Diffusion, we found SISS to
successfully mitigate memorization on almost 90% of the prompts we tested.
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2 RELATED WORK

Machine Unlearning. Machine unlearning is the notoriously difficult problem of removing the
influence of datapoints that models were previously trained on (Cao & Yang, 2015; Bourtoule et al.,
2021; Shaik et al., 2024). Over the past years, it has received increased attention and relevance
due to privacy regulation such as the EU’s Right to be Forgotten (Ginart et al., 2019; Izzo et al.,
2021; Golatkar et al., 2020; Tarun et al., 2023). The first wave of methods mostly approached
classical machine learning methods like linear and logistic regression (Izzo et al., 2021), k-means
clustering (Ginart et al., 2019), statistical query learning methods (Cao & Yang, 2015), Bayesian
methods (Nguyen et al., 2020) or various types of supervised deep learning methods (Golatkar et al.,
2020; Tarun et al., 2023). Some of these methods require modifications to the training procedure,
e.g., training multiple models on distinct dataset shards (Bourtoule et al., 2021; Golatkar et al.,
2024), whereas others can be applied purely in post-training such as NegGrad (Golatkar et al., 2020)
and BlindSpot (Tarun et al., 2023). Recently, generative models have become a popular paradigm.
While unlearning in this paradigm is less explored, there are early approaches looking at Generative
Adversarial Networks (GANs) (Kong & Alfeld, 2023), language models (Liu et al., 2024; Yao et al.,
2024) and on diffusion models via sharding (Golatkar et al., 2024).

Memorization in Diffusion Models. Large-scale diffusion models trained on image generation
have recently attracted the attention of copyright lawsuits since they are prone to memorizing training
examples (Somepalli et al., 2023a; Carlini et al., 2023; Somepalli et al., 2023b; Webster, 2023).
Somepalli et al. (2023a) showed that Stable Diffusion (Rombach et al., 2022) exhibits verbatim
memorization for heavily duplicated training data examples. Webster (2023) classified different types
of memorization, introducing types of partial memorization. Carlini et al. (2023) discusses various
black-box extraction and membership inference attacks and demonstrates them successfully on Stable
Diffusion. Most recently, mitigation strategies have been introduced, e.g., by manually modifying
the text prompts (Somepalli et al., 2023b) or taking gradients steps in prompt space to minimize the
magnitude of text-conditional noise predictions (Wen et al., 2024).

Concept Unlearning in Diffusion Models. Recently, the problem of unlearning has become popu-
lar in the context of diffusion models, though almost exclusively in the form of concept unlearning:
while the classical setting of machine unlearning deals with forgetting specific datapoints from the
training set – which we call data unlearning for clarity – the setting of concept unlearning deals
with forgetting higher level concepts in text-conditional models, e.g., nudity or painting styles (Shaik
et al., 2024; Gandikota et al., 2023; Kong & Chaudhuri, 2024; Kumari et al., 2023; Zhang et al., 2024;
Heng & Soh, 2023). Zhang et al. (2023) introduces Forget-Me-Not, a concept unlearning technique
that minimizes the cross-attention map for an undesired prompt and also introduces ConceptBench as
a benchmark. Gandikota et al. (2023) find an alternate approach to concept unlearning fine-tuning by
fitting to noise targets that are biased away from the predicted noise with respect to an undesirable
prompt. Similarly, Schramowski et al. (2023) also bias the noise away from an undesired prompt
but do so only at inference time. UnlearnCanvas is a benchmark introduced by Zhang et al. (2024)
to measure concept unlearning for artistic styles and objects. EraseDiff (Wu et al., 2024) discusses
the data unlearning setting but only studies the settings of unlearning classes or concepts. Lastly, Li
et al. (2024) indeed studies data unlearning but solely in the case of image-to-image models. To the
authors’ knowledge, the data unlearning setting remains a gap in the diffusion model literature.

3 PRELIMINARIES

We define the data unlearning problem as follows: given access to a training dataset X =
{x1, x2, . . . , xn} with n datapoints and a diffusion model ϵθ that was pretrained on X , our goal is to
unlearn a k-element subset A = {a1, a2, . . . , ak} ⊂ X . We refer to A as the unlearning set.

More specifically, we wish to efficiently unlearn A through deletion fine-tuning which moves θ
towards a set of parameters θ′ so that ϵθ′ is no longer influenced by A. Ideally, ϵθ′ should behave
as if it were trained from scratch on X \A. In practice, however, retraining can be computationally
infeasible. The key research question in data unlearning is identifying strategies for obtaining models
that (1) preserve quality, (2) no longer generate A unless generalizable from X \ A, and (3) are
efficient.
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Consider the standard DDPM forward noising process (Ho et al., 2020) where for a clean datapoint
x0, the noisy sample xt at time t is given by

q(xt|x0) = N (xt; γtx0, σtI). (1)

The parameters γt and σt are set by the variance schedule. A simple approach to data unlearning
is by fine-tuning on X \A where the objective is to minimize the simplified evidence-based lower
bound (ELBO):

LX\A(θ) = EpX\A(x)Eq(xt|x) ∥ϵ− ϵθ(xt, t)∥22 (2)

where pS refers to the discrete uniform distribution over any set S. We refer to this approach as naive
deletion because it does not involve sampling from the unlearning set A. Another general-purpose
machine unlearning approach is NegGrad (Golatkar et al., 2020) which performs gradient ascent on
A, maximizing

LA(θ) = EpA(a)Eq(at|a) ∥ϵ− ϵθ(at, t)∥22 . (3)

NegGrad is effective at unlearning A but is unstable in that the predicted noise will grow in magnitude,
and the model will eventually forget data from X \A.

More recently, EraseDiff (Wu et al., 2024) unlearns by minimizing the objective

LX\A(θ) + λEϵf∼U(0,Id)EpA(a)Eq(at|a) ∥ϵf − ϵθ(at, t)∥22
through a Multi-Objective Optimization framework. Other state-of-the-art diffusion unlearning
approaches such as SalUn (Fan et al., 2024) and Selective Amnesia (Heng & Soh, 2023) are designed
only for conditional models and cannot be extended to the data unlearning setting. When unlearning
a class c, they require either fitting to the predicted noise of a different class c′ ̸= c or specifying a
distribution q(x | c) to guide ϵθ towards when conditioned on c, neither of which we assume access
to.

4 PROPOSED METHOD: SUBTRACTED IMPORTANCE SAMPLED SCORES
(SISS)

Assume the data unlearning setting from Section 3 with dataset X of size n and unlearning set A of
size k. The naive deletion loss from Eq. 2 can be split up as

LX\A(θ) = EpX\A(x)Eq(xt|x) ∥ϵ− ϵθ(xt, t)∥22 =
∑

x∈X\A

1

n− k
Eq(xt|x) ∥ϵ− ϵθ(xt, t)∥22

=
∑
x∈X

1

n− k
Eq(xt|x) ∥ϵ− ϵθ(xt, t)∥22 −

∑
a∈A

1

n− k
Eq(at|a) ∥ϵ− ϵθ(at, t)∥22

=
n

n− k
EpX(x)Eq(xt|x)

∥∥∥∥xt − γtx

σt
− ϵθ(xt, t)

∥∥∥∥2
2

(4)

− k

n− k
EpA(a)Eq(at|a)

∥∥∥∥at − γta

σt
− ϵθ(at, t)

∥∥∥∥2
2

.

By employing importance sampling (IS), we can bring the two terms from Eq. 4 together, requiring
only one model forward pass as opposed to two forward passes through ϵθ on both xt and at. IS
restricts us to two choices: we either pick our noisy sample from q( · | x) or q( · | a). However, a
defensive mixture distribution (Hesterberg, 1995) parameterized by λ allows us to weigh sampling
between q( · | x) and q( · | a), giving us the following SISS loss function:

ℓλ(θ) = EpX(x)EpA(a)Eqλ(mt|x,a) (5)

4
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[
n

n− k

q (mt|x)
(1− λ)q (mt|x) + λq (mt|a)

∥∥∥∥mt − γtx

σt
− ϵθ(mt, t)

∥∥∥∥2
2

− k

n− k

q (mt|a)
(1− λ)q (mt|x) + λq (mt|a)

∥∥∥∥mt − γta

σt
− ϵθ(mt, t)

∥∥∥∥2
2

]

where mt is sampled from the mixture distribution qλ defined by a weighted average of the densities
of q(mt|x) and q(mt|a)

qλ (mt|x, a) := (1− λ)q (mt|x) + λq (mt|a) . (6)

Employing IS and a defensive mixture distribution preserves the naive deletion loss. That is,

ℓλ(θ) = LX\A(θ)∀λ ∈ [0, 1]. (7)

We further prove that gradient estimators of the two loss functions used to update model parameters
during deletion fine-tuning are also the same in expectation.

Lemma 1. In expectation, gradient estimators of a SISS loss function ℓλ(θ) and the naive deletion
loss LX\A(θ) are the same.

Proof. Follows from Eq. 7 and linearity of expectation. See Appendix A.2 for a complete proof.

Notice that the second term in Eq. 4 is the same as the NegGrad objective in Eq. 3 up to a constant.
Hence, to boost unlearning on A, we increase its weight by a factor of 1 + s where s > 0 is a
hyperparameter, referred to as the superfactor. The final weighted SISS loss ℓs,λ(θ) can be written as

EpX(x)EpA(a)Eqλ(mt|x,a)

[
n

n− k

q (mt|x)
(1− λ)q (mt|x) + λq (mt|a)

∥∥∥∥mt − γtx

σt
− ϵθ(mt, t)

∥∥∥∥2
2

(8)

− (1 + s)
k

n− k

q (mt|a)
(1− λ)q (mt|x) + λq (mt|a)

∥∥∥∥mt − γta

σt
− ϵθ(mt, t)

∥∥∥∥2
2

]
.

and is studied for stability and interpretability in Appendix A.1.

Despite Lemma 1, we find distinct SISS behavior for λ = 0 and λ = 1 that emulates naive deletion
and NegGrad, respectively. We speculate that this discrepency is due to high gradient variance.
Namely, for λ = 0, the SISS only selects noisy samples from q( · |x) that are high unlikely to come
from q( · |a). As a result, the first term of the SISS loss dominates, resulting in naive deletion-like
behavior. Similarly, for λ = 1, the second term of the SISS loss will dominate which matches
NegGrad. Thus, in practice, we choose λ = 0.5 to ensure the beneficial properties of both naive
deletion and NegGrad in SISS.

5 EXPERIMENTS

We evaluate our SISS method, its ablations, EraseDiff, NegGrad, and naive deletion through un-
learning experiments on CelebA-HQ, MNIST T-Shirt, and Stable Diffusion. The SISS ablations are
defined as follows:

Setting λ = 0 and λ = 1. Using λ = 0 or λ = 1 effectively disables the use of the mixture
distribution and can be viewed as using only importance sampling.

SISS (No IS). The loss function defined in Eq. 4 after manipulating LX\A(θ) disables the use
of importance sampling. Note, however, that it requires two forward passes through the denoising
network ϵθ and is thus doubly more expensive in compute and memory.

Our model quality metrics are standard and given by the Frechet Inception Distance (FID) (Heusel
et al., 2017), Inception Score (IS) (Salimans et al., 2016), and CLIP-IQA (Wang et al., 2023). To
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Figure 2: CelebA-HQ SSCD Metric Calculation. The process begins by taking the training face to be
unlearned and injecting noise as part of the DDPM’s forward noising process. Prior to unlearning,
denoising the noise-injected face will result in a high similarity to the original training face. After
unlearning, we desire for the denoised face to be significantly less similar to the training face.

evaluate the strength of unlearning, we employ the SSCD (Pizzi et al., 2022) to measure the similarity
between celebrity faces before and after unlearning as in Figure 2. On MNIST T-Shirt and Stable
Diffusion, we analyze the decay in the proportion of T-shirts and memorized images through sampling
the model. Moreover, we also use the exact likelihood computation (Song et al., 2021b) that allows
us to directly calculate the negative log likelihood (NLL) of the datapoint to unlearn. More details on
the experimental setup and resources used are provided in Appendix B.

The objective across all 3 sets of experiments is to establish the Pareto frontier between model quality
and unlearning strength.

To ensure stability of our SISS method, we adjust the superfactor s in Eq. 8 so that the gradient norm
of the second NegGrad term responsible for unlearning is fixed to roughly 10% of the gradient norm
of the first naive deletion term responsible for ensuring the model retains X \A. This helps to control
the second term’s magnitude which can suffer from an exploding gradient.

5.1 CELEBA-HQ

The CelebA-HQ dataset consists of 30000 high-quality celebrity faces (Karras et al., 2018). We
use the unconditional DDPM trained by Ho et al. (2020) as our pretrained model. 6 celebrity faces
were randomly selected to separately unlearn across all 7 methods. We found that injecting noise to
timestep t = 250 on the celebrity face to be unlearned and denoising both before and after unlearning
had a significant difference in similarity to the original face. Figure 2 illustrates this procedure and
the quantification of similarity through the SSCD metric. The decrease in SSCD by over 50% is
observed visually in Figure 3 where SISS (λ = 0.5) and SISS (No IS) guide the model away from
the celebrity to be unlearned. Guiding the model away from generating the celebrity face even with
strong signal from timestep t = 250 indicates that the model is no longer incentivized to generate the
face, especially at inference-time which starts from pure noise.

The SSCD, NLL, and FID unlearning and quality metrics averaged across faces are provided in Table
1. Figure 4a highlights the Pareto optimality of SISS (λ = 0.5) and SISS (No IS) along the FID and
SSCD dimensions. All other methods either significantly increased the model FID or left the SSCD
unaffected. In addition, we found that SISS (λ = 0.5) maintained high quality when unlearning 50
celebrity faces sequentially for 60 steps each with a final FID of 20.3, suggesting model stability over
time.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

SISS (λ = 0.5)

SISS (No IS)

SISS (λ = 0.0)

Naive Deletion

Steps
0 12 24 36 48 60

Figure 3: Visualization of celebrity unlearning over fine-tuning steps on quality-preserving methods.
The images shown are made by applying noise to the original face and denoising as explained in
Figure 2. Only SISS (λ = 0.5) and SISS (No IS) demonstrate the ability to guide the model away
from generating the celebrity face.

Table 1: CelebA-HQ Unlearning Metrics. All methods were run for 60 fine-tuning steps on 6 separate
celebrity faces. Methods in blue preserve the model quality, while the methods in red significantly
decrease model quality. Only SISS (λ = 0.5) and SISS (No IS) are able to preserve model quality
and unlearn the celebrity faces simultaneously relative to the pretrained model.

Method FID ↓ NLL ↑ SSCD ↓
Pre-trained 30.3 1.257 0.87
Naive deletion 19.6 1.240 0.87
SISS (λ = 0.0) 20.1 1.241 0.87
SISS (λ = 0.5) 25.1 1.442 0.36
SISS (No IS) 20.1 1.592 0.32

EraseDiff 117.8 4.445 0.19
SISS (λ = 1.0) 327.8 6.182 0.02
NegGrad 334.3 6.844 0.02

5.2 MNIST T-SHIRT

We train an unconditional DDPM on the MNIST dataset augmented with a T-shirt from Fashion-
MNIST at a rate of 1% (Xiao et al., 2017). This experiment serves as a toy setting of analyzing the
unlearning behavior of a single data point. After training, we found that the model generated the
T-shirt at a rate p = 0.74% with a 95% confidence interval of (0.68%, 0.81%). Table 2 highlights
the rate of T-shirts after unlearning, showing that while naive deletion and SISS (λ = 0) significantly
reduce the rate, only SISS (λ = 0.5) and SISS (No IS) are able to reach 0%.

Furthermore, Figure 4b highlights the Pareto optimality of SISS (λ = 0.5) and SISS (No IS) with
respect to Inception Score and NLL even when including retraining. Much like the CelebA-HQ
results, all other methods either significantly decreased the Inception Score or did not change the
T-shirt’s NLL except, of course, retraining.
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Figure 4: On both datasets, the only Pareto improvements over the pretrained model are given by
SISS (λ = 0.5) and SISS (No IS). Remarkably, on MNIST T-Shirt, the two methods are Pareto
improvements over the retrained model as well.

Table 2: MNIST T-Shirt Unlearning Metrics. p represents the fraction of T-shirts observed from
sampling 30720 images. Methods in blue preserve model quality, while methods in red significantly
decrease model quality. All numbers are averaged across 5 seeds for each method. We illustrate the
decay in p as unlearning progresses for SISS (λ = 0.5).

Method Steps IS ↑ NLL ↑ p ↓
Pre-trained 117500 9.6 1.00 0.74%
Retrain 117500 9.6 6.17 0%
Naive deletion 300 9.5 1.19 0.04%
SISS (λ = 0.0) 300 9.4 1.04 0.003%
SISS (λ = 0.5) 300 9.2 8.09 0%
SISS (No IS) 300 9.2 8.68 0%

EraseDiff 100 5.1 12.04 N/A
SISS (λ = 1.0) 100 1.2 9.30 N/A
NegGrad 100 1.3 15.79 N/A
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p · 103

SISS (λ = 0.5)
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Figure 5: Visualization of memorization mitigation on Stable Diffusion v1.4 using SISS (λ = 0.5).
The number of memorized samples decreases from 6 to 0 on the partially-memorized prompt “Mothers
influence on ”her young hippo.” Note the two apostrophes in red were purposefully inserted to turn
the fully-memorized prompt into a partially-memorized prompt (see Section 5.3 for details).

5.3 STABLE DIFFUSION

We curate a set of 45 prompts that induce memorization on Stable Diffusion v1.4 drawn from Webster
(2023). The objective is to unlearn the memorized training image from LAION corresponding to
each prompt. Stable Diffusion is a text-conditional model; however, by keeping the prompt fixed, it
can be treated as an unconditional model which is where we perform unlearning.

SISS requires a set of training examples that include both unlearning set and non-unlearning set
members. Applying it to memorization mitigation on Stable Diffusion requires addressing two
fundamental issues: the lack of relevant training examples and the strong memorization of prompts.

Lack of training examples. For a given memorized prompt, there is only one corresponding training
LAION image. However, our method relies on having access to a dataset X \ A. We instead
synthetically generate this dataset by sampling 128 images for each prompt and using a k-means
classifier for labelling each image as memorized (A) or not (X \A).

Strong memorization of prompts. Many of the prompts sourced from Webster (2023) are fully-
memorized, i.e. our synthetically-generated dataset from this prompt would exclusively contain
examples of memorized images. Inspired by the prompt modification results of Somepalli et al.
(2023b), we manually delete and add tokens to obtain a partially-memorized prompt that generates
a greater frequency of non-memorized images on each of our 45 prompts without fully mitigating
memorization. The caption of Figure 5 shows an example of a partially-memorized prompt where
two apostrophes were inserted to introduce sample diversity. For each prompt, we perform deletion
fine-tuning on the synthetic dataset of its modified version.

We note that SISS (λ = 0) had numerical instability issues on Stable Diffusion because the NegGrad
term is often very small, causing extremely large scaling factors. Thus, we excluded it from this
experiment since it would be equivalent to naive deletion if scaling were disabled. Figure 6a shows
that only SISS (λ = 0.5), SISS (No IS), and naive deletion are able to maintain high model quality as
deletion fine-tuning occurs.

With respect to unlearning strength, Figure 6b illustrates that SISS (λ = 0.5) and SISS (No IS) are
more successful in unlearning on the partially-memorized prompts than EraseDiff and naive deletion
where success is the combination of reaching 0 out of 16 memorized samples and maintaining a
CLIP-IQA of at least 0.35 throughout deletion fine-tuning. In addition, the two SISS methods exhibit
better unlearning generalization to the fully-memorized prompts, suggesting that the model updates
done with the partially-memorized prompt extend to the fully-memorized prompt in latent space.
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Figure 6: Stable Diffusion Quality and Unlearning Results. SISS (λ = 0.5) and SISS (No IS)
preserve model quality as strongly as naive deletion. EraseDiff has a moderately negative impact on
quality, while the other methods significantly degrade quality. Naive deletion and EraseDiff have
noticably poorer success when compared to our SISS methods and do not generalize well to the
fully-memorized prompts. Success is defined as a run having no memorized image outputted in 16
samples at the end, and the average CLIP-IQA score being at least 0.35 throughout the run.

6 CONCLUSION

Prior methods in diffusion unlearning have been focused on class and concept unlearning. We
introduce SISS, a novel method for data unlearning in diffusion models that utilizes importance
sampling for computational efficiency. Our method is able to effectively unlearn training datapoints
while maintaining model quality. It exhibits Pareto optimality on multiple datasets across the quality
and unlearning dimensions as well as strong memorization mitigation performance on text-conditional
models such as Stable Diffusion. In the future, we hope to analyze the unlearning generalization
across prompts in more detail and find a way around the “prompt modification” step that is hard to
automate. Additional future directions include analyzing data unlearning on other data modalities
such as audio and video. To finish, we remark that while our method may be successful in unlearning,
it may not be enough legally for copyrighted data since that data is a part of the unlearning process
itself.
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A SISS MATH

A.1 STABILITY ANALYSIS AND INTERPRETATION OF SISS

Recall that the weighted loss ℓs,λ(θ) is

EpX(x)EpA(a)Eqλ(mt|x,a)

[
n

n− k

q (mt|x)
(1− λ)q (mt|x) + λq (mt|a)

∥∥∥∥mt − γtx

σt
− ϵθ(mt, t)

∥∥∥∥2
2

− (1 + s)
k

n− k

q (mt|a)
(1− λ)q (mt|x) + λq (mt|a)

∥∥∥∥mt − γta

σt
− ϵθ(mt, t)

∥∥∥∥2
2

]
.
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An advantage of sampling from the defensive mixture distribution qλ is that the importance weights
of the noise norms are bounded for 0 < λ < 1

0 ≤ q (mt|x)
(1− λ)q (mt|x) + λq (mt|a)

≤ 1

1− λ
(9)

0 ≤ q (mt|a)
(1− λ)q (mt|x) + λq (mt|a)

≤ 1

λ
, (10)

ensuring greater numerical stability during deletion fine-tuning. The choice of writing the superfactor
as 1 + s allows us to rewrite the outermost expectation to sample from pX\A instead of pX :

ℓs,λ(θ) =
∑
x∈X

1

n− k
Eq(xt|x) ∥ϵ− ϵθ(xt, t)∥22 (11)

− (1 + s)
∑
a∈A

1

n− k
Eq(at|a) ∥ϵ− ϵθ(at, t)∥22

=
∑

x∈X\A

1

n− k
Eq(xt|x) ∥ϵ− ϵθ(xt, t)∥22 (12)

− s
∑
a∈A

1

n− k
Eq(at|a) ∥ϵ− ϵθ(at, t)∥22

= EpX\A(x)Eq(xt|x) ∥ϵ− ϵθ(xt, t)∥22 (13)

− s
k

n− k
EpA(a)Eq(at|a) ∥ϵ− ϵθ(at, t)∥22

= EpX\A(x)Eq(xt|x)

∥∥∥∥xt − γtx

σt
− ϵθ(xt, t)

∥∥∥∥2
2

(14)

− s
k

n− k
EpA(a)Eq(at|a)

∥∥∥∥at − γta

σt
− ϵθ(at, t)

∥∥∥∥2
2

= EpX\A(x)EpA(a)Eqλ(mt|x,a) (15)[
q (mt|x)

(1− λ)q (mt|x) + λq (mt|a)

∥∥∥∥mt − γtx

σt
− ϵθ(mt, t)

∥∥∥∥2
2

− s
k

n− k

q (mt|a)
(1− λ)q (mt|x) + λq (mt|a)

∥∥∥∥mt − γta

σt
− ϵθ(mt, t)

∥∥∥∥2
2

]
.

From Eq. 12, we see that the weighted loss ℓs,λ(θ) has two separate terms: the naive deletion
loss LX\A(θ) and a term proportional to the NegGrad loss that discourages the generation of A’s
members. Thus, Eq. 12 is equivalent to

LX\A(θ)− s
k

n− k
LA(θ)

where the superfactor s controls the weight of the NegGrad term LA. As a result, we can directly
view ℓs,λ as interpolating between naive deletion and NegGrad with s controlling the strength of
NegGrad.

Notice that if t is small then q(mt|x) ≫ q(mt|a) if mt is sampled from q( · |x) and q(mt|x) ≪
q(mt|a) if mt is sampled from q( · |a). If λ = 0, we know q(mt|x) ≫ q(mt|a), making the
importance ratio of the first term in the SISS loss equal to 1, and the second importance ratio
equal to 0. Hence, SISS with λ = 0 will be equivalent to naive deletion. Similarly, if λ = 1,
q(mt|x) ≪ q(mt|a) and the second importance ratio will dominate, which is equivalent to NegGrad.
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A.2 PROOF OF LEMMA 1

Lemma 1 Restated. Gradient estimators of ℓλ(θ) and LX\A(θ) are the same in expectation. That
is, in expectation, Monte Carlo estimates of

∇θℓλ(θ) =EpX(x)EpA(a)Eqλ(mt|x,a) (16)[
∇θ

(
n

n− k

q (mt|x)
(1− λ)q (mt|x) + λq (mt|a)

∥∥∥∥mt − γtx

σt
− ϵθ(mt, t)

∥∥∥∥2
2

− k

n− k

q (mt|a)
(1− λ)q (mt|x) + λq (mt|a)

∥∥∥∥mt − γta

σt
− ϵθ(mt, t)

∥∥∥∥2
2

)]
and Monte Carlo estimates of

∇θLX\A(θ) = EpX\A(x)Eq(xt|x)

[
∇θ ∥ϵ− ϵθ(xt, t)∥22

]
(17)

are equal.

Proof. Note that Eqs. 16 and 17 are direct consequences of the linearity of expectation which allows
us to take the gradient with respect to θ inside the expectation operations. The equivalence of the two
loss functions (Eq. 7) implies that

∇θℓλ(θ) = ∇θLX\A(θ). (18)

When combined with Eqs. 16 and 17, we see that the Monte Carlo gradient estimators are the same
in expectation. □

B EXPERIMENTAL SETUP

All diffusion models were trained and fine-tuned using the Hugging Face diffusers package
along with the Adam optimizer (Kingma & Ba, 2015). YAML configuration files with all run settings
can be found in the config/ directory of our codebase.

The CelebA-HQ experiments used a pretrained checkpoint from Ho et al. (2020) hosted at https://
huggingface.co/google/ddpm-celebahq-256. Our pretrain and retrain unconditional
MNIST T-Shirt DDPMs were trained for 250 epochs with a batch size of 128 images and a learning
rate of 1e − 4 with cosine decay. Both models used the same DDPM sampler at inference with
50 backwards steps. For the Stable Diffusion experiments, we used version 1.4 hosted at https:
//huggingface.co/CompVis/stable-diffusion-v1-4 as our pretrained checkpoint
with 50-step DDIM as the sampler (Song et al., 2021a). The models for all 3 sets of experiments use
a U-Net backbone.

Deletion fine-tuning experiments were run starting from the EMA versions of the trained MNIST
T-Shirt DDPMs as well as the pre-trained Stable Diffusion model. For MNIST T-Shirt, the same
hyperparameters were kept from pretraining to run fine-tuning. In the case of CelebA-HQ and Stable
Diffusion, we did not perform the pretraining and chose a batch size of 64 and 16 images with a
learning rate of 5e− 6 and 1e− 5, respectively.

While most individual experiments were not very computationally expensive (roughly half an hour
on average), sweeping across all different baselines and and mixture parameters λ totaled to over
500 runs. To streamline this process, a cluster of 8 NVIDIA H100 GPUs were used to execute large
numbers of runs in parallel. In addition, an g5.xlarge instance with an NVIDIA A10G GPU on AWS,
a personal home computer with an NVIDIA RTX 3090, and a cluster of 3 NVIDIA A4000 GPUs
were the primary code development environments.
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