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ABSTRACT

Large Language Models (LLMs) have demonstrated remarkable performance
across a wide range of tasks, but their deployment is often constrained by substan-
tial memory footprints and computational costs. While prior work has achieved
significant progress in compressing and accelerating linear layers, nonlinear lay-
ers—such as SiLU, RMSNorm, and Softmax—still heavily depend on high-
precision floating-point operations. In this paper, we propose a calibration-free,
dynamic-programming-optimal, and hardware-friendly framework called Non-
uniform Linear Interpolation (NLI). NLI is capable of efficiently approximating a
variety of nonlinear functions, enabling seamless integration into LLMs and other
deep neural networks with almost no loss in accuracy. NLI ingeniously recasts
cutpoint selection as a dynamic-programming problem, achieving the globally
minimal interpolation error inO(M ×N2) time via Bellman’s optimality principle.
Based on the NLI algorithm, we also design and implement a plug-and-play univer-
sal nonlinear computation unit. Hardware experiments demonstrate that the NLI
Engine achieves more than 4× improvement in computational efficiency compared
to the state-of-the-art designs.

1 INTRODUCTION

Large language models (LLMs; e.g., GPT3-175B Zong & Krishnamachari (2022), LLaMA3-405B
Touvron et al. (2023), and Deepseek-R1-671B Guo et al. (2024)) have achieved remarkable success
across various domains, such as text translation Tekgurler (2025), image classification Naeem et al.
(2023) and text generation Li et al. (2024). However, due to the massive model size, LLMs impose
significant demands on both memory bandwidth and computation. This makes edge deployment of
LLMs extremely challenging, hindering the further application of LLMs.

Recent research efforts have focused on using low-bit, high-efficiency data formats Lin et al. (2024) to
improve the computational efficiency of linear layers. For example, SmoothQuant Xiao et al. (2023)
achieves W8A8 integer quantization by smoothing activation values. OSTquant Hu et al. (2025)
optimizes the distribution of weights and activations through orthogonal transformations and scaling,
enabling W4A8 integer quantization. Moreover, many hardware architectures support low-bit linear
computations, further enhancing the efficiency of linear layers. For example, the Tensor Cores in the
NVIDIA H100 NVIDIA (2023) natively support INT8 linear operations. Gemmini Genc et al. (2021)
also supports INT8 linear operations. However, the computation of nonlinear layers (e.g., Softmax,
RMSNorm, SiLU) in LLMs still heavily depends on high-precision floating-point formats (such as
FP32), resulting in substantial computational overhead. This further exacerbates the performance
disparity between linear and nonlinear operations in LLM inference. For example, in the H100
SXM5, the FP16 linear computational power is 1024 × greater than that of the special function units,
yet in scenarios with a head attention size of 128, the demand for linear computational power is 256
× that of nonlinear computational power.

Nonlinear functions in LLMs typically involve hardware-intensive transcendental functions (e.g.,
exp) and some complicated algebraic functions (e.g., square root, and reciprocal functions). Some
prior works accelerate these functions via hardware-friendly approximations. For example, Softermax
Stevens et al. (2021) uses low-precision arithmetic to implement Softmax operations through a base
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Figure 1: (a) Range of SiLU activations in representative LLMs; values can exceed ±100 (e.g.,
Qwen2.5-32B, Qwen3-8B). (b) Wikitext-2 perplexity (log-scale) with FP32, NN-LUT, and our
NLI. NN-LUT collapses when outliers occur—perplexity skyrockets up to 7.0×104—whereas NLI
matches FP32 across scales.

replacement strategy. I-Bert Kim et al. (2021) proposed approximation techniques to compute GELU,
Softmax, and LayerNorm using INT32 arithmetic. Although these designs achieve high efficiency
and accuracy for certain nonlinear operations in the BERT model, they do not reliably transfer to other
LLMs with hundreds of billions of parameters (e.g., LLaMA, Qwen, OPT). Moreover, their inherent
hardware inflexibility further limits their applicability in NPUs. Other researchers have attempted to
propose more general-purpose methods. For example, NN-LUT Yu et al. (2022) computes nonlinear
functions using first-order derivative fitting (y = sx+ t), offering good generality within a certain
input range. To maintain model accuracy, it introduces a data calibration method. Although NN-LUT
works well for the modest activation spans found in early models such as BERT, its coverage collapses
when confronted with the extreme outliers characteristic of LLMs. As shown in Figure 1(a), the SiLU
inputs of seven representative LLMs frequently exceed ±100. In contrast, NN-LUT was designed
and validated only for the input domain (−5, 5), so these inputs clearly lie beyond its expected scope.
When the same NN-LUT configuration is applied to these out-of-range values, the approximation
error compounds throughout the network and the model fails to converge, producing a Wikitext-2
perplexity surge of up to 7 × 104 (Figure 1 (b)). Taken together, for LLMs at tens to hundreds of
billions of parameters, current acceleration strategies for nonlinear functions remain insufficient. This
combination of narrow validity ranges, reliance on calibration, and hardware inflexibility further
limits robustness and deployability.

In this paper, we propose a calibration-free, dynamic-programming-optimal, and hardware-friendly
framework called Non-uniform Linear Interpolation (NLI). NLI consists of two parts: NLI-Algorithm
(software) and NLI-Engine (hardware). NLI-Algorithm replaces nonlinear evaluations with non-
uniform interpolation in the FP16 domain. We formulate the cutpoint selection as a dynamic
programming problem with an additive approximation objective that exhibits optimal substructure,
enabling solution via the Bellman optimality principle. This yields globally optimal cutpoints and a
calibration-free lookup table that is reusable across layers and models. NLI-Engine is a universal plug-
and-play hardware block designed for nonlinear function computation based on the NLI algorithm.
It improves computational efficiency by optimizing the underlying computation strategy. Software
experiments demonstrate that NLI incurs negligible accuracy loss in the open-source LLMs Qwen and
LLaMA, nor does it affect the accuracy of other DNN models. Hardware experiments demonstrate
that the NLI Engine achieves more than 4× improvement in computational efficiency compared to the
state-of-the-art designs. The main contributions presented are as follows:

• Algorithm: We introduce the Non-uniform Linear Interpolation (NLI) framework, which
casts cutpoint selection into a dynamic programming (DP) problem. Given a fixed nonlinear
operator f and a set of N sorted candidate points in the FP16 domain, we minimize an addi-
tive interpolation error that sums per-segment costs over M segments. Owing to the optimal
substructure, the Bellman recursion solves for the globally optimal partition in O(MN2)
time. The resulting LUT is calibration-free—it depends only on f and numeric settings
rather than data distributions—and is therefore reusable across layers and models. We
provide a complete pipeline with implementation-ready interfaces and complexity-annotated
pseudocode, facilitating immediate deployment with custom CUDA/Triton kernels.

• Hardware Design: We designed a general-purpose nonlinear computing circuit based on
NLI engine. By leveraging a software-hardware co-design approach, we implemented a
two-level address translation module to reduce the overhead of address conversion circuits.
In addition, we employ pipelining to further boost throughput.
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• Comprehensive Experiment: To demonstrate the practicality of NLI, we conduct exper-
iments from both software and hardware perspectives. The software experiments show
that our approximation strategy incurs negligible accuracy degradation in LLMs inference.
Moreover, NLI exhibits strong generality, making it applicable not only to LLMs but also to
other DNN models. We further synthesize the NLI engine using the SMIC 28nm technology
and conduct a comprehensive analysis of its area, power, throughput and efficiency in
comparison with SOTA designs.

2 BACKGROUND & RELATED WORK

2.1 NONLINEAR OPERATIONS OF LLMS

Mainstream LLMs such as LLaMA Touvron et al. (2023) and Qwen Bai et al. (2023) are typically
composed of multi-head self-attention layers and feed-forward network (FFN) layers. Each self-
attention layer includes one Softmax operation and one RMSNorm operation. Each FFN layer
contains one SiLU operation and one RMSNorm operation. For MoE-based architectures such
as DeepSeek-V3 Guo et al. (2024), each Transformer block typically contains multiple nonlinear
operators—most commonly Softmax and RMSNorm—but can also incorporate Sigmoid for
expert routing. Our approach remains broadly applicable here, as the Sigmoid operator can likewise
be approximated through non-uniform linear interpolation, thereby offering a unified framework for
various activations within MoE architectures. The definitions of these functions are as follows:

RMSNorm(x) =
x√

Mean(x2) + ϵ
, Softmax(xi) =

e xi−max(x)∑
j e

xj−max(x)
, SiLU(x) =

x

1 + e−x
. (1)
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Figure 2: Approximation quality of the SiLU activation over the range [−150, 150], which covers
≥99.9% of activations under our measurement protocol (see Figure. 1 (a) and Appendix. A.4). Panel
(a) and Panel (b) show the result of NN-LUT, and panel (c) shows our NLI framework. For each
method we plot (top-left) the function curve, (bottom-left) the absolute error on a logarithmic scale,
and (right) a zoom-in over [-5,5]. Red dots denote LUT cutpoints. NN-LUT suffers from pronounced
error spikes, whereas NLI preserves near-machine-precision fidelity throughout the LLM-typical
range, reducing worst-case error by several orders of magnitude.

As shown in the equations, these nonlinear operations contribute significantly to the overall runtime
due to the high computational cost of floating-point arithmetic. Therefore, numerous approximation
techniques have been proposed to alleviate the hardware costs. It is worth noting that earlier LLMs,
such as OPT Zhang et al. (2022) and BLOOM Workshop et al. (2022), may have slight variations in
their nonlinear operators compared to the equations above. However, the nonlinear functions they
involve are still primarily based on exponential (ex) and square root (

√
x) operations.

2.2 GENERAL-PURPOSE NONLINEAR COMPUTATION WORK

As a general-purpose NPU, it must be capable of handling a wide range of neural networks. Different
types of neural networks utilize various nonlinear operators, such as Softmax, Tanh, and ArcTan.
While circuit-level optimization for a specific operator can achieve high efficiency and precision, it
lacks flexibility and imposes significant limitations on broader applicability. Therefore, we attempt to
approximate nonlinear functions using a general-purpose approach.

2.2.1 LINEAR LUT FITTING

Linear LUT Cantoni (1971); Karst (1958) approximation is a more generalized method for computing
nonlinear functions. It approximates various nonlinear operators by storing N pairs of approximation
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parameters in a LUT. The computation formula is as follows:

LinearLUT(x) =


k1x+ b1 if x < d1,

kix+ bi if di−1 ≤ x < di, for 1 < i ≤ N − 1,

kNx+ bN if x ≥ dN−1.

(2)

Equation 2 shows that, for a fixed number of segments N, the approximation error is governed by
the three linear parameters k, b, and d. NN-LUT Yu et al. (2022) extends LUT-Linear by modelling
the search for (k, b, d) with a Linear–ReLU–Linear network, whose piece-wise linearity allows the
network weights to be analytically converted into the desired parameters. Although this strategy
achieves high accuracy within the authors’ test range, our re-implementation (the original code is not
public) reveals a strong dependence on the span of the training data, leading to two major drawbacks:
1. Severe extrapolation error. When the training samples cover only a narrow interval—for SiLU,
[-10,10]—the network generalises poorly outside that range, and its error explodes (Figure 2(a)). 2.
Poor convergence on wide ranges. Expanding the interval to [-150,150], which covers 99.9% of the
activations observed in mainstream LLMs, makes optimisation unstable; regions with high curvature
(e.g., [-10,10]) cannot be fitted well, as shown in Figure 2(b). When the LUTs produced by NN-LUT
are used to replace nonlinear operations in LLMs, model accuracy drops sharply (Figure 1(b)),
underscoring that NN-LUT lacks generality for nonlinear functions with wide input ranges.

2.2.2 INTERPOLATION-BASED APPROXIMATIONS AND A UNIFIED ERROR BOUND

A standard strategy for approximating a nonlinear operator f(·) on resource-constrained accelerators
is to replace it by an interpolation algorithm that reconstructs outputs from preselected support
points using a local rule. Here, “interpolation algorithm” covers linear, piecewise polynomial, and
spline-based variants.

Piecewise polynomial and spline-base variants. Polynomial interpolation and other higher-order
Liu et al. (2015) interpolation methods have lower computational efficiency, so they are not suitable
for NPUs. Previous works, such as NVDLA NVDLA (2017), have attempted to maintain accuracy
by introducing an additional sub-table for regions where the function has steep variations, in addition
to the base table. While this approach improves precision, it requires a two-level computation circuit,
leading to lower efficiency. Moreover, for nonlinear functions with smooth slope variations, such as
Cos, this method fails to achieve high accuracy.

Linear interpolation For a single segment [a, b] with f ∈ C2([a, b]), the exact (real-arithmetic)
linear interpolant P (x) admits the familiar worst-case bound. However, implementations evaluate a
finite-precision approximation P̃ (x) whose error includes both the analytical interpolation term and a
rounding/quantization term. The two can be combined into a single bound:

max
x∈[a,b]

∣∣f(x)− P̃ (x)
∣∣ ≤ (b− a)2

8
max
x∈[a,b]

|f ′′(x)|︸ ︷︷ ︸
interpolation term

+ εnum︸︷︷︸
finite-precision term

, (3)

where the first term is the classical linear–interpolation remainder and the finite-precision contribution
can be bounded, to first order in the unit roundoffs, by

εnum ≤
(
γ1(uc) + γ2(ua)

) (
|yi|+ |yi+1|

)
, γk(u) =

k u

1− k u
. (4)

Here yi = f(a) and yi+1 = f(b) are the endpoint values for the segment; uc models coeffi-
cient/storage precision (e.g., fp16 vs. fp32 for slopes/LUT values) and ua models arithmetic precision
for the multiply–add evaluation. Equation 3 clarifies the accuracy levers of interpolation-based
approximations: (i) the number of support points (more points shrink the segment length (b−a)), (ii)
the distribution of points (allocating denser cuts where |f ′′(x)| is large tightens the bound), and (iii)
the storage and arithmetic precision (lower precision increases the total error via the finite-precision
term εnum). In practice, three widely used design heuristics fall short for modern LLMs. First,
uniform sampling is intrinsically mismatched to functions with highly nonuniform curvature: since
the worst-case linear–interpolation error on [a, b] scales as (b−a)2

8 max |f ′′|, uniform spacing leaves
high-curvature regions under-resolved and wastes budget elsewhere; classical approximation theory

4
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Figure 3: Comparison between the full-precision reference and our NLI approximation on two
representative nonlinear functions—exp and rsqrt. We use 10 macro-intervals: the first and last
are not subdivided, and each of the middle eight is uniformly partitioned into 32 bins; accounting
for shared endpoints, this yields 2 + 32 × 8 + 1 = 259 cutpoints. The lower panels plot absolute
error (log scale); the worst-case error stays below 1.2× 10−3 across the FP16 domain. Additional
visualizations and cutpoint layouts are provided in Appendix A.6.

recommends concentrating nodes in “difficult” regions (e.g., Chebyshev-like layouts) to mitigate
Runge-type instability. Second, curvature-driven point allocation is not universally applicable: for
many operators used in inference, the second derivative may be unavailable in closed form, whereas
the numerical term εnum is typically left uncontrolled. Third, training/calibration–based LUT
fitting ties accuracy to the span and distribution of calibration data; outside that span, extrapolation
degrades and convergence becomes brittle. These limitations motivate a data-free, globally optimal
placement of cutpoints under a fixed budget.

3 SOFTWARE METHODOLOGY

In this section, we present a calibration-free, and globally optimal (for a fixed knot budget) interval
search algorithm for nonlinear functions, together with a more efficient hardware computation
strategy.

3.1 PROPOSED NON-UNIFORM INTERPOLATION LUT VIA DYNAMIC PROGRAMMING

The discussion in Sec 2.2.2 (Equation. 3) shows that linear–interpolation error reflects both curvature
and finite–precision terms, which explains why uniform sampling, curvature–driven allocation, and
training/calibration–based LUTs each break down on LLMs. We therefore tackle the complementary
design question: given a fixed budget of M cutpoints (i.e., M−1 segments), where should the
cutpoints be placed on the FP16 grid to minimize the global error actually seen by hardware? We
cast this as a discrete dynamic program over the FP16 domain: the DP states and transitions (defined
below) minimize the mean relative error on {x0, . . . , xN−1}, include endpoint clamping at both the
first and last cutpoints (the left clamp is captured in the D[0, k] boundary term, and the right clamp
as an explicit tail term), and are calibration–free.

Setup. We implement nonlinear operators via table lookup on the FP16 grid. Let X = {x0 <
· · · < xN−1} be all finite FP16 numbers that lie in the legal domain of f (NaNs are dropped; ±∞
are clamped to the nearest finite endpoint). We choose M cutpoints B = {b0, . . . , bM−1} ⊂ X with
b0 = x0 and bM−1 = xN−1, inducing M−1 macro-intervals. At inference time, inputs below b0
(resp. above bM−1) are clamped to b0 (resp. bM−1).

Problem statement. Given f , we seek B that minimizes the average relative interpolation error on
the FP16 grid. Within each [bi, bi+1] we approximate f by the straight line through the endpoints
(bi, f(bi)) and (bi+1, f(bi+1)).

Rationale. We optimize M cutpoints over the sorted FP16 grid {x0, . . . , xN−1} for a target
function f . Define two DP tables with explicit shapes and index ranges:

D ∈ RM×N , P ∈ ZM×N , L ∈ {0, . . . ,M−1}, k ∈ {0, . . . , N−1}.
Their meanings are:

5
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• D[L, k]: the minimum error over the prefix {x0, . . . , xk} when xk is chosen as the L-th cutpoint.
• P [L, k]: the predecessor index (location of the (L−1)-th cutpoint) that attains D[L, k].

Error functional (mean relative error). For any segment [xi, xk] (i < k), let Pi,k(x) be the straight
line through endpoints (xi, f(xi)) and (xk, f(xk)). We define

Err(i→k) =
1

k − i+ 1

k∑
j=i

∣∣f(xj)− Pi,k(xj)
∣∣

max{|f(xj)|, τ}
,

where we set τ = 2−14, which equals the smallest positive normal value in IEEE 754 binary16
(FP16). This choice avoids over-amplifying relative errors for numerically near-zero activations while
aligning the denominator floor with the FP16 normal/subnormal boundary.

Boundary. Inputs smaller than the first cutpoint are replaced by the first cutpoint’s value. Hence, for
the first cutpoint placed at xk,

D[0, k] =
1

k + 1

k∑
j=0

∣∣f(xj)− f(xk)
∣∣

max{|f(xj)|, τ}
, P [0, k] = k.

Transition. For 1≤L≤M−1 and L≤k≤N−1,

D[L, k] = min
i∈{L−1,...,k−1}

{
D[L− 1, i] + Err(i→k) + last error(L, k)

}
,

where the tail-clamping penalty is nonzero only at the last cutpoint:

last error(L, k) =


1

max{1, N − 1− k}

N−1∑
j=k+1

∣∣f(xj)− f(xk)
∣∣

max{|f(xj)|, τ}
, L = M − 1,

0, otherwise.

Set P [L, k] to the argmin index i that achieves D[L, k].

Optimal value. The best M cutpoints correspond to the minimum value in the last DP row:

Cost∗ = min
k

D[M − 1, k].

Backtracking. Let k⋆ = argmink D[M − 1, k]. Recover the indices of cutpoints by following
predecessors:

best points =
[
k⋆, P [M − 1, k⋆], P [M − 2, P [M − 1, k⋆]], . . .

]
(then reverse to ascending).

Computational cost. The straightforward implementation is O(M × N2) (each state scans all
predecessors). For typical settings (M ≤ 11, N ≤ 63 488) the search completes in under ten minutes
on a single NVIDIA RTX 4090 GPU with Triton.

The complete procedure is summarized in Algorithm 1. A naı̈ve variant could set the DP budget
to the full fine-grained table and search over M=259 cutpoints directly, but this inflates the DP
time roughly 26× (empirically ≈ 5 hours on our setup) and would also mandate a large number of
comparators in hardware, hurting throughput, area, and power.

Instead, we adopt a hardware-consistent layout with ten macro-intervals: the first and last are not
subdivided, and each of the middle eight is uniformly partitioned into 32 bins. Under this layout, the
DP only needs to optimize the macro endpoints, i.e., M=11 cutpoints, which reduces search time by
about 26× while producing LUTs that map directly to the two-level address translation. This design
yields higher hardware efficiency (fewer comparators and smaller on-chip tables). Figure 2(c) and
Figure 3 further visualise the resulting approximation quality: with only 2+8×32+1 = 259 cutpoints,
our NLI overlaps almost perfectly with the FP32 curve, keeping the worst-case absolute error below
1.2× 10−3. Additional operators and cutpoint configurations are reported in Appendix A.6.
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3.2 HARDWARE-FRIENDLY COMPUTATION STRATEGY

In this section, we propose a hardware-friendly computation strategy that utilizes two-level address
translation. By leveraging simple computations, this approach significantly reduces the number of
comparators and improves hardware efficiency.

Traditional address translation modules rely on multiple comparators. For example, with 259 cut
points, the system generates 258 sub-intervals, requiring 259 parallel comparisons to determine the
corresponding LUT address for an input data point. This leads to significant hardware overhead. To
address this, we adopt a two-level address translation strategy. First, we divide the 259 cut points
into a structure of (2 + 8× 32 + 1), meaning 8 sub-intervals, each containing 32 cut points, along
with two boundary values representing positive and negative infinity. Then, we use 10 comparators
to determine which major interval the input data belongs to. Next, based on the interval index, we
retrieve the multiply scale factor for that interval. After performing the multiplication, we apply a
floor operation, and the resulting integer value serves as the LUT index. By utilizing a pipelined
design, the latency introduced by the two-level approach is effectively hidden. Additionally, all
multiply scale factors are precomputed offline and preloaded into dedicated registers. In this case,
only 10 16-bit registers are required for storage. The detailed steps are shown in Algorithm 1.

As shown in Algorithm 2, the two-level address translation approach utilizes simple lookup and
arithmetic operations. By applying the transformation y = kx within each sub-interval, the address
conversion is efficiently completed, eliminating the need for over 200 FP16 comparators. The
computation formula for the linear interpolation can be summarized as follows:

y = Decimal × (LUT [Index+ 1]− LUT [Index]) + LUT [Index] (5)

4 HARDWARE METHODOLOGY
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Figure 4: The hardware circuit design of a nonlinear computing unit, using two computing circuits
sharing a set of Multiply scale factor and function value registers as an example.

In this section, we introduce the NLI Engine, a plug-and-play hardware module that leverages the
optimized computation flow of the NLI algorithm to enable efficient nonlinear computation on NPUs.

Since current DNN accelerators fabricated with 28nm technology, e.g., Google TPU v1 Google
(2016), operate at around 1GHz, we have adopted a four-stage pipeline design to align with the clock
frequencies of most NPUs. The NLI engine implements the following functions: LUT and interval
cutpoint preloading, two-level address translation, interpolation coefficient (Decimal) computation,
and linear interpolation algorithm. The following are the detailed hardware design specifications of
NLI engine:

Stage 1 — Major-interval select & alignment. An interval comparator (10 comparators) selects the
macro-interval index I∈{0, . . . , 9} using preloaded left boundaries left[I]; inputs are clamped to
[left[0],left[9]]. An FP16 subtractor computes the aligned offset ∆x = x− left[I].
Stage 2 — Micro-address generation. Each macro-interval has a preloaded scale mul[I] and a base
pointer base[I] (start index in the global LUT). An FP16 multiplier forms u = ∆x · mul[I]; the
floor unit yields the integer micro-index a = ⌊u⌋ and the fractional coefficient t = u− a (a ∈ [0, 31]
for the middle eight intervals, a = 0 at the ends). The global LUT address is g = base[I] + a.

Stage 3 — Table read & slope prep. A dual-port SRAM (259 entries) returns two adjacent values:
y0 = LUT[g] and y1 = LUT[g + 1] in one cycle. An FP16 subtractor computes the local slope
∆y = y1 − y0.
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Stage 4 — Linear interpolation. An FP16 multiplier–adder evaluates y = y0 + t ·∆y (optionally
fused FMA), then rounds to FP16.

This four-stage pipeline, together with the two-level address translation (I, a), reduces comparators
from 259 to 10 and shrinks address-translation overhead, improving throughput, area, and power.

5 EVALUATION

Table 1: NLI accuracy across datasets. Columns are datasets (higher is better except perplexity).
Boldface rows highlight our method.

Model Method Accuracy (↑) Perplexity (↓)

MMLU GSM8k HumanEval Zero-shot Avg Wikitext-2

Llama3-8B
FP32 62.16 50.19 35.37 68.11 6.14
NN-LUT 60.01 49.42 34.15 65.93 8.28
NLI 62.14 50.49 35.37 68.24 6.14

Llama3-70B
FP32 75.13 80.82 40.85 73.78 2.86
NN-LUT 73.99 79.06 37.2 72.48 5.13
NLI 75.11 81.27 40.63 73.85 2.86

Qwen2.5-7B
FP32 70.56 44.28 40.24 67.48 7.46
NN-LUT 25.51 0 0 30.13 28194
NLI 70.67 43.97 39.63 67.63 7.46

Qwen2.5-32B
FP32 81.74 70.13 56.71 70.76 5.32
NN-LUT 25.51 0 0 30.70 70360
NLI 81.68 70.07 55.88 70.67 5.32

Qwen1.5-110B
FP32 79.26 84.44 50.84 72.42 4.81
NN-LUT 75.99 76.15 43.03 69.08 6.83
NLI 79.31 84.41 50.16 72.48 4.81

Qwen3-8B
FP32 72.94 88.10 63.41 66.68 9.72
NN-LUT 23.59 0 0 33.61 825.31
NLI 72.98 88.17 62.59 66.76 9.73

Qwen3-30B-A3B
FP32 77.86 85.44 31.21 67.59 8.70
NN-LUT 28.46 0 0 65.60 10.76
NLI 77.88 85.39 30.38 67.65 8.70

5.1 SOFTWARE EVALUATION

For evaluation, we first run NLI to search macro cutpoints for each nonlinear operator under a
10–macro-interval layout: the middle eight intervals are uniformly split into 32 bins, while the
first/last are unsplit with endpoint clamping. We then replace nonlinear operators in Llama and
Qwen (PyTorch Paszke (2019)) and report perplexity on Wikitext-2 Merity et al. (2016), a stan-
dard zero-shot suite (ARC-c/e Clark et al. (2018), BoolQ Clark et al. (2019), PIQA Bisk et al.
(2020), HellaSwag Zellers et al. (2019), OBQA Mihaylov et al. (2018), LAMBADA Paperno et al.
(2016), SIQA Sap et al. (2019), WinoGrande Sakaguchi et al. (2021)), and three widely used bench-
marks—MMLU Hendrycks et al. (2020) (broad factual/problem-solving across 57 disciplines),
HumanEval Chen et al. (2021) (functional code-generation accuracy), and GSM8k Cobbe et al.
(2021) (multi-step grade-school math). We cover multiple model scales and, to test generality beyond
LLMs, repeat the substitution on ViT and CNNs.

From Table 1, we observe that replacing nonlinear operators with NLI in Llama and Qwen yields no
accuracy drop on the zero-shot suite (detailed results in Appendix A.5.2) and does not increase PPL.
Moreover, performance on MMLU, HumanEval, and GSM8k remains nearly on par with FP32. Our
nonlinear computation strategy has minimal impact on the accuracy of open-source Llama/Qwen
models—even without any data calibration. Beyond LLMs, substituting NLI for nonlinear operators
in ViT and representative CNNs yields no statistically significant accuracy degradation; full per-model
results are reported in Appendix A.5.1 (Table 7).

5.1.1 ABLATION

Table 2: Ablation I on Qwen2.5-7B: two-level
NLI (259) vs macro-only (11).

Method Cutpoints MMLU GSM8k

FP32 – 70.56 44.28
NLI (2+8×32+1) 259 70.67 43.97
Macro-only (DP, M=11) 11 21.14 0

Table 3: Ablation II on Qwen2.5-7B: accuracy (↑)
and cutpoint-search time (↓).

Method Cutpoints MMLU GSM8k Search time(s)

FP32 – 70.56 44.28 –
NLI (2+8×32+1) 259 70.67 43.97 610
Non-uniform 259 (DP) 259 70.65 44.08 17000
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As shown in Table 2, we evaluate on Qwen2.5-7B with zero-shot MMLU and GSM8K. Compared
to the proposed two-level layout NLI (259 total cutpoints), the macro-only variant optimizes only
M=11 endpoints and applies a single piecewise-linear fit over the FP16 grid (with no per-macro
uniform sub-bins). This ablation isolates the benefit of uniform micro-partitioning within each
macro-interval— demonstrating that using only 11 cutpoints is insufficient on both benchmarks.

We compare NLI with a direct DP over 259 non-uniform cutpoints (no macro/micro constraint) on
Qwen2.5-7B. As shown in Table 3, accuracy on MMLU/GSM8k is essentially unchanged, while
the search time explodes (∼28× slower) and the resulting layout is hardware-unfriendly, incurring
higher area/latency costs.

Table 4: Ablation III on Qwen2.5-7B:
accuracy comparison on MMLU and
GSM8k.

Method Cutpoints MMLU GSM8k
FP32 – 70.56 44.28
NLI (2+8×32+1) 259 70.65 43.97
Uniform 259 259 45.91 18.13
Curvature 259 259 65.74 32.58

We further compare NLI with two common heuristics us-
ing the same total budget of 259 points: (i) Uniform 259
(uniformly spaced over the FP16 grid), and (ii) Curvature
259 (density proportional to a curvature proxy). Both use
the same linear interpolation and inference pipeline as NLI.
Table 4 summarizes results.

5.2 HARDWARE EVALUATION

The experiments in the previous sections have demonstrated that our NLI approximation method
achieves high accuracy and generality. In this section, to demonstrate the efficiency of the NLI engine,
we compare NLI engine with two state-of-the-art nonlinear computational units.

We implemented the hardware circuit design using Chisel Bachrach et al. (2012). The circuit was
synthesized with Design Compiler Muchnick (1997) under the SMIC 28nm process library to obtain
area , power, and timing information.

Table 5: Hardware area breakdown.

LUT Comparator Multiplier Adder Others Total (µm2)

NN-LUT 12268 10496 205 134 135 23238
RI-LUT 12268 10496 410 268 205 23647
NLI 6445 410 205 536 191 7787

Table 6: Hardware comparison.

Clock Freq. Area (µm2) Power (mW ) Throughput Efficiency

NN-LUT 1GHz 23238 46 1G 0.94
RI-LUT 1GHz 23647 48 1G 0.88
NLI 1GHz 7787 34 1G 3.78

Table 5 shows the areas of LUTs, multipliers, adders, and Others (registers, shifters, etc.) in the three
general nonlinear computational units: NLI, NN-LUT, and RI-LUT. It can be seen that NLI (with 259
cut points) saves 68% and 69% in area compared with the other two SOTAs (NN-LUT and RI-LUT,
each with 256 cut points).

NN-LUT Yu et al. (2022) and RI-LUT Kim et al. (2023) require storing 512× 16 bits of data (256 K
values and 256 B values). NLI only needs to store data for 259 16-bit cut points and 10 16-bit scale
factors , so it has a smaller LUT area. Also, our hardware-friendly algorithm cuts down the number
of comparators. NN-LUT and RI-LUT need 256 comparators to divide into 256 interval addresses,
while NLI only needs 10 comparators for ten intervals.

Table 6 provides a detailed comparison of the NLI Engine, NN-LUT, and RI-LUT hardware modules
under a 1 GHz clock frequency in terms of area, power, Throughput ( the number of nonlinear
operators computed per cycle × clock frequency), and Efficiency (Throughput/(area× power)).
The NLI Engine exhibits lower power consumption, primarily due to reduced static power resulting
from fewer LUTs and comparator modules. Since all three hardware units employ pipelining, each
cycle produces one completed result once the pipeline is filled. Therefore, the throughput of all three
modules is 1G. Benefiting from its lower area and power consumption, the NLI Engine achieves
4.02× higher efficiency than NN-LUT and 4.29× higher efficiency than RI-LUT.

6 CONCLUSION

In this paper, we propose NLI, a non-uniform linear interpolation method for efficiently approximat-
ing nonlinear functions in large language models. By formulating cutpoint selection as a dynamic
programming problem, NLI achieves near-optimal accuracy with minimal hardware overhead. Ex-
periments demonstrate that NLI maintains model accuracy without calibration, generalizes well
across diverse models, and significantly reduces hardware resource usage compared to state-of-the-art
methods. We believe NLI provides a practical solution for deploying large models efficiently on
resource-limited hardware.
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This work does not involve human subjects, personal data, or sensitive content. It focuses solely on
algorithmic and hardware-level optimization of nonlinear function approximation. Therefore, we
believe it does not raise ethical concerns.

REPRODUCIBILITY STATEMENT

We provide complete details of our algorithms, hyperparameters, and evaluation protocols in the
main paper and appendix. All models are evaluated on publicly available benchmarks (Wikitext-2,
ARC, BoolQ, PIQA, HellaSwag, OBQA, LAMBADA, SIQA, WinoGrande, MMLU, HumanEval,
GSM8k, and standard vision datasets). The code for constructing lookup tables, performing DP
cutpoint search, and reproducing our experiments will be released upon publication. These resources
will ensure full reproducibility of the reported results.
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A APPENDIX

A.1 DP-OPTIMAL MACRO CUTPOINT SEARCH

Algorithm 1: DP-Optimal Macro Cutpoint Search (NLI; mean relative error with endpoint
clamping)
Input: Sorted FP16 grid X = {x0, . . . , xN−1}; target function f(·); number of cutpoints

M≥2; small constant τ > 0.
Output: Optimal cutpoints B = {b0, . . . , bM−1} with bL ∈ X and their values {f(bL)}.
1. Precompute values

for k ← 0 to N − 1 do
yk ← f(xk)

2. Define error functionals
// Mean relative error of the endpoint-anchored line on [i, k]

1 Err(i, k) ≜
1

k − i+ 1

k∑
j=i

∣∣ yj − Pi,k(xj)
∣∣

max{|yj |, τ}
, Pi,k(x) = yi +

yk − yi
xk − xi

(x− xi) ;

// Right-end clamping penalty for the last cutpoint (zero if
k = N−1)

2 TailClamp(k) ≜

 1
N−1−k

∑N−1
j=k+1

∣∣ yj−yk

∣∣
max{|yj |,τ} , k < N − 1,

0, k = N − 1 ,

3. Initialize DP tables
// d ∈ RM×N stores minimal prefix cost; p ∈ ZM×N stores

predecessors
Initialize d[L, k]← +∞, p[L, k]← −1 for all L, k;
// Left-end clamping: first cutpoint at xk uses constant yk

on [0, k]
for k ← 0 to N − 1 do

d[0, k]← 1
k+1

∑k
j=0

| yj−yk |
max{|yj |,τ} ;

p[0, k]← k;

4. Fill DP (macro endpoints)
for L← 1 to M − 1 do

for k ← L to N − 1 do
best← +∞; arg← −1;
for i← L− 1 to k − 1 do

val← d[L− 1, i] + Err(i, k) + 1{L=M−1} · TailClamp(k);
if val < best then

best← val;;
arg← i

d[L, k]← best; p[L, k]← arg;

5. Backtrack optimal cutpoints
k⋆ ← argmink∈{M−1,...,N−1} d[M − 1, k];
// Recover indices of M cutpoints, from last to first
idx[M − 1]← k⋆;
for L←M − 1 down to 1 do

idx[L− 1]← p[L, idx[L]];
for L← 0 to M − 1 do

bL ← xidx[L]; f(bL)← yidx[L];

return B = {b0, . . . , bM−1} and {f(bL)}M−1
L=0 ;
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A.2 NLI COMPUTATION FLOW

Algorithm 2: NLI Computation Flow
Input: FP16 input x; interval endpoints Point[0:10] (11 points); per-interval scales Mul[0:9]

(10 values); LUT values LUT [0:258] (259 points); uniform bins per macro-interval
Dn=32 for intervals 1 . . . 8.

Output: Nonlinear output y.
Constants: M=10 intervals; indices are 0-based.;

Preload registers: Point Reg ← Point, Mul Reg ←Mul, LUT Reg ← LUT .;
// one-time load

Clamp input to domain: x← clip
(
x, Point Reg[0], Point Reg[10]

)
.;

Locate interval Index ∈ {0, . . . , 9}: for i← 0 to 9 do
if Point Reg[i] ≤ x < Point Reg[i+1] then

Index← i; break

// Equivalently, this can be done via bucketize.

Local coordinate in interval Index:
Temp← x− Point Reg[Index]; // offset within the interval
Mul Temp← Temp×Mul Reg[Index]; // scaled position
Address← ⌊Mul Temp⌋; // integer bin (0 for intervals 0/9; 0..31
for 1..8)
Decimal←Mul Temp−Address; // fractional part within the bin

Global LUT index indices:

indices←
{
0 +Address, if Index = 0,

1 + (Index−1) ·Dn +Address, if Index ≥ 1.

Linear interpolation from LUT:
Left← LUT Reg[indices], Right← LUT Reg[indices+1]
y ← Left+Decimal × (Right− Left)

Boundary saturation:
if x ≤ Point Reg[0] then y ← LUT Reg[0];
if x ≥ Point Reg[10] then y ← LUT Reg[258];
return y

A.3 LLM USAGE DECLARATION

We disclose that large language model (LLM) tools were used only for language editing—copy-
editing, stylistic smoothing, and minor rephrasing of prose—and limited formatting assistance. No
LLM was involved in conceiving the research, proposing methods, generating technical content,
writing code, running experiments, analyzing data, or drawing conclusions.

All substantive elements of this work were completed by the authors, including:

• problem formulation, research design, and overall narrative structure;

• algorithmic development, theoretical reasoning/derivations, implementation, and debugging;

• experimental design, data collection and preprocessing, execution, evaluation, and interpre-
tation of results.

Any text suggestions produced by LLM tools were reviewed and edited by the authors. The authors
accept full responsibility for the scientific validity, accuracy, and originality of the manuscript and
affirm adherence to standards of academic integrity.
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A.4 ACTIVATION COVERAGE MEASUREMENT PROTOCOL

Models and operators. We measure the pre-activation inputs to nonlinear operators (e.g., SiLU,
RMSNorm, Softmax) across the LLMs listed in Figure. 1 (a).

Data and setup. To align with our main evaluation, we use the same public corpora employed in
Sec. 5 (e.g., Wikitext-2 for perplexity and the zero-shot suite for accuracy). All models are run in
FP16 inference with the same tokenization and maximum sequence length as in our evaluation.

Aggregation across layers and tokens. For each model, we collect activations from all layers over
all tokens. We then compute the 0.05th and 99.95th percentiles of the resulting distribution. To form
a symmetric interval, we set rmodel = max{|q0.0005|, |q0.9995|} and define the model-specific range
as [−rmodel, rmodel].

Cross-model coverage. We aggregate models by taking the union of their symmetric ranges, i.e.,
rmax = maxmodel rmodel, and define the LLM-typical domain as [−rmax, rmax]. In our measurements,
rmax ≤ 150, hence [−150, 150] covers ≥99.9% of observed activations.

Outliers. Values outside this domain account for ≤0.1% of activations and are clamped at runtime
by our engine; they have negligible impact on end-to-end accuracy.

A.5 FULL EXPERIMENT RESULTS.

A.5.1 SUPPLEMENTARY EVALUATION ON NON-LLM TASKS

Table 7: Accuracy performance of NLI on vision models

Model Method mAP (%) Top-1 Acc (%)
(obj det) (cls)

DETR FP32 39.4 —
NLI 39.4 —

ViT-Small FP32 — 74.7
NLI — 74.7

RT-DETR-L FP32 52.5 —
NLI 52.5 —

YOLOv8-M FP32 50.1 —
NLI 50.1 —

To further verify the generality of NLI beyond LLMs, we replaced the nonlinear operators in repre-
sentative vision models, including YOLOv8 Varghese & Sambath (2024), DETR Carion et al. (2020),
ViT Dosovitskiy et al. (2020), and RT-DETR Zhao et al. (2024). As shown in Table 7, employing
NLI for nonlinear operator computation does not incur any accuracy degradation, demonstrating that
the proposed framework is broadly applicable across diverse architectures and modalities.

A.5.2 FULL ZERO-SHOT EVALUATION ON LLMS

Table 8 reports the complete zero-shot evaluation results of NLI, NN-LUT, and FP32 baselines on
all considered LLMs. Compared with NN-LUT, NLI consistently preserves baseline-level accuracy
across tasks and scales, while avoiding the severe degradation observed with NN-LUT.

A.6 ADDITIONAL NLI VISUALISATIONS AND FP16 CUTPOINTS TABLES

To demonstrate the breadth and stability of NLI across common nonlinear operators, Figure 5
visualises fits for eight functions widely used in modern models: exp, gelu, rsqrt, reciprocal,
hardswish, mish, sigmoid, and tanh. Each panel contains two subplots: the left shows the
full FP16-domain behaviour (top: FP32 reference in teal and NLI in orange; bottom: absolute error
on a log scale), and the right provides a zoom-in around the high-curvature region that typically
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Table 8: NLI accuracy on multiple LLMs. Boldface rows highlight our method.

Model Method Zero-Shot (↑) Perplexity (↓)
ARC-c ARC-e BoolQ PIQA HellaS OBQA Lam. SIQA WinoG. Avg. Wikitext-2

Llama3-8B FP32 53.16 77.78 81.25 80.74 79.10 44.80 75.66 47.08 73.40 68.11 6.14
NN-LUT 50.11 75.21 79.18 78.93 77.66 42.60 75.07 45.47 71.24 65.93 8.28

NLI 53.67 77.78 81.41 80.74 79.23 44.80 75.70 47.08 73.72 68.24 6.14

Llama3-70B FP32 64.25 86.03 85.29 84.44 85.00 48.60 79.35 50.67 80.43 73.78 2.86
NN-LUT 63.16 84.99 84.06 82.69 83.51 46.16 78.97 50.01 78.76 72.48 5.13

NLI 64.33 86.07 85.08 84.39 84.92 49.00 79.41 50.67 80.74 73.85 2.86

Qwen2.5-7B FP32 51.28 76.47 85.96 78.67 79.55 48.00 67.67 50.36 69.38 67.48 7.46
NN-LUT 19.62 25.38 37.83 52.12 25.61 28.20 0.00 33.01 49.41 30.13 28194

NLI 51.37 76.39 85.96 79.82 79.46 48.20 67.67 50.61 69.22 67.63 7.46

Qwen2.5-32B FP32 58.36 77.19 89.69 81.39 85.25 46.00 75.26 50.05 73.64 70.76 5.32
NN-LUT 20.99 23.95 38.63 53.92 26.64 28.80 0.00 33.21 50.12 30.70 70360

NLI 58.28 77.44 89.72 81.23 85.18 45.40 75.20 50.15 73.40 70.67 5.32

Qwen1.5-110B FP32 55.46 76.94 88.90 83.84 86.13 46.60 78.52 54.35 81.06 72.42 4.81
NN-LUT 52.01 74.08 83.87 80.32 83.77 42.40 75.99 51.32 77.96 69.08 6.83

NLI 55.80 77.10 88.96 83.90 86.11 46.80 78.36 54.25 81.06 72.48 4.81

Qwen3-8B FP32 55.29 80.93 86.70 77.69 74.92 41.40 64.04 51.84 67.32 66.68 9.72
NN-LUT 23.01 28.99 41.65 57.16 30.13 29.71 4.90 36.14 50.79 33.61 825.31

NLI 55.29 80.93 86.70 77.90 75.11 41.53 64.21 51.79 67.36 66.76 9.73

Qwen3-30B-A3B FP32 52.30 79.38 88.59 79.43 76.68 45.00 64.84 51.23 69.85 67.59 8.70
NN-LUT 50.71 77.86 87.03 77.69 75.23 44.13 60.00 49.76 68.01 65.60 10.76

NLI 52.24 79.58 88.57 79.51 77.68 44.98 64.91 51.46 69.94 67.65 8.70

dominates the global error budget. Red dots mark the LUT cutpoints produced by our 2+8× 32+1
budget (top-level endpoints plus uniformly spaced interior cuts). Across all eight operators, NLI
tracks the FP32 curve almost perfectly; the worst-case absolute error remains within 1.5×10−3 over
the entire domain and is orders of magnitude smaller in most subranges.

Table 9 lists the top-level FP16 cutpoint endpoints (in decimal) that define 10 macro-intervals for
each operator. The full lookup table with 2 + 8 × 32 + 1 = 259 entries is obtained by placing 32
uniformly spaced cut points inside each macro-interval and adding two boundary values. During
inference, FP16 inputs that fall below the smallest endpoint or above the largest endpoint are clamped
to the respective boundary before lookup, which guarantees numerical stability for extreme values
(e.g., very small arguments in rsqrt and reciprocal). For completeness, we also release the
exact LUTs used in our experiments.
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Figure 5: NLI approximation quality for eight representative nonlinear operators: (a) exp, (b) gelu,
(c) rsqrt, (d) reciprocal, (e) hardswish, (f) mish, (g) sigmoid, and (h) tanh. For each
operator, the left subplot shows the full-domain fit (top: FP32 reference vs. NLI; bottom: absolute
error in log scale), while the right subplot zooms into the high-curvature region. Red dots denote
LUT cutpoints generated under an 2+8× 32+1 budget. NLI closely overlaps the FP32 reference,
keeping the worst-case absolute error within 1.5×10−3 across the FP16 domain.
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Function Range #Segments Top-level cutpoints (FP16, decimal)

gelu [−5.5390625, 65504.0] 2+8× 32+1 -5.5390625, -5.15625, -3.18359375,
-0.98046875, -0.1229248046875,
-0.00374603271484375,
0.0035247802734375, 0.11322021484375,
0.78076171875, 4.10546875, 65504.0

silu [−20.359375, 65504.0] 2+8× 32+1 -20.359375, -17.109375, -8.3671875,
-1.9755859375, -0.255615234375,
-0.007244110107421875,
0.0072174072265625, 0.228515625,
1.58203125, 10.46875, 65504.0

exp [−17.34375, 11.0859375] 2+8× 32+1 -17.34375, -15.171875, -8.890625,
-5.2734375, -2.35546875,
-0.3583984375, 0.91650390625,
3.451171875, 6.84765625, 10.9453125,
11.0859375

reciprocal [1.5318394×10−5, 65504.0] 2+8× 32+1 1.5318394e-05, 2.2590160e-05,
4.6992302e-04, 7.0533752e-03,
8.8378906e-02, 1.07421875, 15.546875,
244.5, 3694.0, 46560.0, 65504.0

rsqrt [5.9604645×10−8, 65504.0] 2+8× 32+1 5.9604645e-08, 7.7486038e-07,
1.1140108e-04, 1.8644333e-03,
3.0029297e-02, 0.48193359375,
7.7734375, 129.75, 2406.0, 47456.0,
65504.0

hardswish [−3.0, 65504.0] 2+8× 32+1 -3.0, -2.984375, -1.87890625,
-0.5390625, -0.059326171875,
-0.000743865966796875,
0.0034942626953125, 0.11968994140625,
0.78369140625, 3.001953125, 65504.0

tanh [−4.5078125, 4.5078125] 2+8× 32+1 -4.5078125, -3.79296875, -1.55078125,
-0.5302734375, -0.028564453125,
0.0364990234375, 0.423828125,
1.076171875, 2.0390625, 4.0625,
4.5078125

mish [−20.34375, 65504.0] 2+8× 32+1 -20.34375, -19.90625,
-10.921875, -6.2265625,
-1.615234375, -0.237060546875,
-0.00699615478515625,
0.01538848876953125, 0.491455078125,
4.70703125, 65504.0

sigmoid [−17.34375, 8.3203125] 2+8× 32+1 -17.34375, -15.765625, -10.65625,
-8.15625, -6.3046875, -4.421875,
-2.6640625, -0.7998046875,
1.9462890625, 6.90234375, 8.3203125

Table 9: Top-level cutpoint endpoints used by NLI. Each row lists 11 FP16 cutpoints (decimal) that
define 10 macro-intervals; placing 32 uniformly spaced cut points inside each macro-interval plus two
boundary values yields a total of 2+8×32+1 = 259 entries. Inference uses clamping: FP16-domain
inputs below the smallest cutpoint or above the largest cutpoint are clipped to the respective endpoint.
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