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ABSTRACT

To truly understand human handwriting, machines must not only recognize glyphs
but also generate them. However, most existing approaches are limited to synthe-
sizing isolated characters or handwritten texts of linear sequences, whereas the
stylized synthesis of handwriting with arbitrary layout structures remains largely
underexplored, such as handwritten mathematical expression generation (HMEG).
Existing approaches have failed to address such cases, as it is challenging to simul-
taneously generate complex layout structures and imitate calligraphic styles, espe-
cially for out-of-vocabulary (OOV) expressions. Inspired by how humans write,
where layout structuring and glyph shaping are inherently separated, we there-
fore propose a glyph-layout decoupled paradigm for stylized HMEG. To better
facilitate the generation of arbitrary layout structures, we leverage printed layouts
as strong prior guidance and propose generating layout offsets instead of abso-
lute positions. To achieve stylized glyph-layout synthesis, we further incorporate
implicit context adaptation via cross-attention to jointly mimic structured layouts
and calligraphic glyphs from reference examples. By treating reference layouts
and glyphs as external implicit contexts, our model selectively attends to relevant
stylistic features of each symbol and its bounding box. Experiments demonstrate
that our method outperforms previous SoTA approaches in terms of visual quality,
semantic and structural correctness, and style consistency for stylized HMEG.

1 INTRODUCTION

Handwriting plays a critical role in human education, creativity, and cultural preservation; thus,
enabling machines to understand human handwriting is highly meaningful. However, an intelli-
gent system should not be limited to handwriting recognition alone, but also possess the ability to
generate human-like writing. With the recent advances in artificial intelligence techniques, it has
witnessed significant progress in handwriting recognition (Guan et al., 2024; Castro et al., 2024;
Guo et al., 2025) and generation (Ren et al., 2025; Pippi et al., 2025; Dai et al., 2023; Pippi et al.,
2023a). Nevertheless, most existing approaches are confined to synthesizing isolated glyphs or lin-
ear handwritten texts, while handwriting synthesis with arbitrary layout structures remains largely
underexplored, such as arbitrary handwritten mathematical expression generation (HMEG).

Therefore, this paper aims to generate stylized handwriting of arbitrary layout structures and out-of-
vocabulary (OOV) expressions (e.g., stylized HMEG), a direction that remains rarely explored. In
particular, we demonstrate that stylized HMEG is significantly more challenging than conventional
handwritten text generation (HTG) of linear sequences, due to the following aspects: (1) Arbitrary
Spatial Structures: In contrast to handwritten texts of linear sequences, handwritten mathematical
expressions (HMEs) involve two-dimensional spatial structures that arrange intricate symbols and
encode semantic relationships; (2) Structured OOV Expressions: Due to their structural complex-
ity, mathematical expressions are more difficult to represent; incorporating OOV textual contents
further amplifies its complexity and variability; (3) Glyph-Layout Imitation: Stylized HMEG re-
quires simultaneously imitating both complex layout structures and calligraphic styles of glyphs,
thus presenting greater challenges than HTG with linear structures.
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Figure 1: Comparison between our method and existing approaches for HMEG. (a) Image-to-
Image Translation often synthesizes unrealistic and low-quality handwriting. (b) Graph-to-Image
Translation frequently generates structurally incorrect or visually implausible HMEs, especially for
OOV expressions. (c) Our Layout-Glyph Decoupled Paradigm via Layout Offsets can generate
stylized handwriting of arbitrary layout structures and OOV expressions.

Although few recent works have attempted to explore HMEG, the aforementioned challenges remain
largely unsolved. As illustrated in Fig. 1 (a) and (b), existing approaches can be broadly classified
into two categories: (1) Image-to-Image (I2I) Translation: FormulaGAN (Springstein et al., 2021)
and ControlNet (Zhang et al., 2023) addressed HMEG as I2I translation, which directly converts
printed glyphs into stylized handwriting. However, it struggles to capture complex layout structures
and diverse calligraphic styles of HMEs, often resulting in unrealistic and low-quality handwriting.
(2) Graph-to-Image (G2I) Translation: Sg2Im (Johnson et al., 2018) and SgHMEG (Chen et al.,
2024) proposed a G2I translation pipeline, which first generates layout heatmaps conditioned on
LaTex symbol graphs and then decodes them into HMEs through an image decoder. Nevertheless,
it remains empirically challenging for such cases to generate diverse and accurate layouts from
symbol graphs (particularly for OOV expressions), which frequently leads to structurally incorrect
or visually implausible HMEs. This is because directly generating layouts of unknown positions but
with precise semantics is significantly difficult. More critically, none of the existing approaches
attempted to tackle stylized HMEG, which requires imitating both complex layout structures and
calligraphic styles of glyphs conditioned on reference examples.

Method Estimate
Layouts

OOV
Gen.

Stylized
Gen.

Quality↓
LSD† HWD FID

CycleGAN × × × × 0.688 84.14
FomulaGAN × × × × 0.717 74.68
ControlNet × × ✓ × 1.011 131.99
Sg2Im √∖ × × 8.158 0.452 10.02
SgHMEG √∖ × × 7.081 0.439 10.98
Ours ✓ ✓ ✓ 5.271 0.151 5.60

Table 1: Feature-by-feature comparison of different models for HMEG. “√∖”: generated layouts are
inconsistent with HME images, “LSD”: layout structure distance/similarity, “HWD”: handwriting
distance/score, †: only applicable to methods that generate layouts, “↓”: lower values are better.

To address these challenges, we propose a decoupled baseline that leverages layout offsets for styl-
ized handwriting generation of arbitrary structures and OOV expressions, as shown in Fig. 1 (c). Our
approach is motivated by the following core ideas: (1) Considering that human handwriting can be
naturally decomposed into structured layouts and individual glyphs, as also suggested in Ren et al.
(2025), perhaps a glyph-layout decoupled paradigm is more feasible for HMEG. This is because
directly generating stylized handwriting in such cases is highly challenging due to glyphs’ arbitrary
spatial arrangements, complex semantic relationships, and distinct calligraphic styles, especially for
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OOV HMEs. (2) Rather than directly predicting layouts of absolute positions, we leverage printed
layouts as strong prior guidance and propose generating layout offsets instead. This significantly
simplifies the layout generation and empirically improves the semantic correctness, thus enabling
handwriting generation of arbitrary structures. (3) To achieve stylized HMEG, we incorporate Im-
plicit Context Adaptation via cross-attention to jointly mimic the structured layouts and calligraphic
glyphs from reference examples. Reference layouts and glyphs serve as external implicit contexts,
enabling cross-attention to selectively focus on relevant style features of each symbol and bounding
box, thereby facilitating realistic and coherent handwriting generation.

Table 1 shows a feature-by-feature comparison of different models for HMEG. And our contribu-
tions are listed as follows:

• We propose a glyph-layout decoupled baseline via layout offsets for stylized HMEG, which
can synthesize stylized handwriting of arbitrary layout structures and OOV expressions.
Such a task remains largely underexplored, and our decoupled paradigm is demonstrated
to be more feasible for stylized HMEG than conventional I2I or G2I approaches.

• We leverage printed layouts as strong prior guidance and propose generating layout offsets
(instead of absolute layout positions). The strong prior guidance of template layouts largely
facilitates the layout generation of arbitrary structures, especially for OOV expressions.

• To achieve stylized glyph-layout synthesis, we incorporate implicit context adaptation via
cross-attention to jointly mimic structured layouts and calligraphic glyphs from references.
By treating reference layouts and glyphs as external implicit contexts, it selectively attends
to the relevant stylistic features of each symbol and its bounding box.

• Experiments demonstrate that our method outperforms previous SOTA approaches for styl-
ized HMEG in terms of visual quality, structural and semantic correctness, and style con-
sistency.

2 RELATED WORK

2.1 HANDWRITTEN TEXT SYNTHESIS WITH LINEAR SEQUENCES

HTG primarily aims to generate handwritten texts with linear structures. Primary approaches typi-
cally leveraged GANs (Alonso et al., 2019) to synthesize handwritten texts conditioned on specific
contents, such as ScrabbleGAN (Fogel et al., 2020). Stylized HTG has further been investigated
by integrating I2I translation techniques, including GANwriting (Kang et al., 2020), SLOGAN
(Luo et al., 2022), VATr (Pippi et al., 2023a), HiGAN+ (Gan et al., 2022), etc. Due to their strong
modeling and generative capabilities, diffusion models (Ho et al., 2020; Nichol & Dhariwal, 2021)
have also emerged as powerful generative models for HTG, such as DiffusionPen (Nikolaidou et al.,
2024), GC-DM (Ding et al., 2023), ZPL-LDM (Mayr et al., 2024), WordStylist (Nikolaidou et al.,
2023), etc. Recent works have further emphasized the importance of layouts for stylized HTG, such
as DLGOC (Ren et al., 2025). However, existing methods are limited to HTG of linear sequences.

2.2 HME GENERATION WITH COMPLEX STRUCTURES

Tremendous efforts have been made for HME recognition (Zhang et al., 2017; Li et al., 2022; Guo
et al., 2025), while stylized HMEG of arbitrary layout structures remains largely underexplored.
Few attempts have emerged recently, but all have failed to generate realistic HMEs with precise
layouts and semantics, especially for OOV expressions. FormulaGAN (Zhu et al., 2017) leveraged
I2I translation to directly transfer printed glyphs, often producing unrealistic and low-quality HMEs.
Sg2Im (Johnson et al., 2018) and SgHMEG (Chen et al., 2024) introduced symbol graphs to generate
layouts and then employed an I2I decoder to produce HMEs. However, such approaches typically
produce structurally incorrect or visually implausible HMEs, particularly for unseen expressions.
Nevertheless, stylized HMEG remains challenging as it requires simultaneously modeling complex
layouts and calligraphic glyphs of reference examples.

3
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3 METHODOLOGY

3.1 GLYPH-LAYOUT DECOUPLED GENERATION PARADIGM

Problem Statement. We aim to achieve stylized handwriting synthesis of arbitrary structures and
OOV expressions. Given the reference example Xr ↔ (Lr,Gr) with the layout Lr = [b1, · · · , bL]
and its handwritten glyphs Gr = [g1, · · · , gM ], our objective is to generate target handwriting
Xt ↔ (Lt,Gt) of the specific textual content T = [c1, · · · , cN ] while imitating both the structured
layouts and calligraphic styles of Xr, i.e.,

Xt = G(Xr, T ) ⇒ (Lt,Gt) = G(Lr,Gr, T ), (1)

where G is the handwriting generator, bl ∈ L is the bounding-box in layout L, ct ∈ T is the character
symbol, and gm ∈ G is a handwritten glyph of the specific character.

Layout-Glyph Decoupled Generation Paradigm. For stylized HMEG, it maximizes the likeli-
hood of Xt conditioning on the reference Xr and the specific textual expression T as

P (Xt|Xr, T ) = P (Lt,Gt|Lr,Gr, T ). (2)

Nevertheless, directly modeling the joint distribution of complex layouts and handwritten glyphs is
overwhelmingly challenging, especially for HMEs of complex layouts and structured expressions.
Motivated by the observation that humans often possess an implicit awareness of the spatial layout
of HMEs before producing individual glyphs, we hypothesize that layout planning and symbol
generation can be decoupled. Specifically, perhaps a more feasible solution is to decouple the
layout and glyph generation processes, i.e., first separately generating the layout and glyphs, and
then combining them to form the final HME. Thus, we can simplify and reformulate the problem as

P (Lt,Gt|Lr,Gr, T ) ⇒ P (Lt|��Gt,Lr,��Gr, T )P (Gt|��Lr,Gr, T ), (3)

under which we assume that the layout and glyph generation are independent of each other in
our decoupled synthesis paradigm. Therefore, our objective is to model the layout distribution
P (Lt|Lr, T ) and the glyph distribution P (Gt|Gr, T ) , respectively.

Facilitating Layout Generation with Offsets. It is challenging to directly generate stylized hand-
writing with arbitrary layout structures and precise semantics through an end-to-end pipeline.

sum

(Δx, Δy, ws, hs)

Printed Layout

Layout Offsets

Target Layout
Prior

Guidance

(xp,yp)

(xt,yt)

wp

hp

ht

wt

(Δx,Δy)=(xt,yt)-(xp,yp)

 ( ws, hs)=(wt,ht)/(wp,hp)

Printed

Target

Gl
predict

Gl
predict

T
render

T
render

Figure 2: Concept of layout generation with offsets.

As shown in Fig. 2, to facilitate layout generation, we further render T into the printed template with
the layout Lp and glyph embeddings Cp, i.e., T ↔ (Lp,Cp), and then utilize the printed layout Lp

as prior guidance, and finally infer the layout offsets ∆L = (Lt − Lp) instead of absolute layout
positions Lt, under which the layout generation can be re-formulated as

P (Lt|Lr, T ) ⇒ P (∆L|Lr,Lp,Cp), (4)

where [∆x,∆y, ws, hs] ∈ ∆L denotes the offset (i.e., the x/y offsets of absolute positions and the
scales of width and height) of each bounding-box from Lp to Lt. The layout generation becomes
easier since the printed layout Lp provides strong prior knowledge (especially for OOV expressions)
and the layout offsets ∆L empirically are minor compared to the overall layout.
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Imitation through Implicit Context Adaptation (ICA) To achieve stylized glyph-layout synthe-
sis, we introduce implicit context adaptation (ICA) via cross-attention to jointly mimic layouts and
calligraphic glyphs from reference examples. By treating reference layouts and glyphs as external
implicit contexts, it selectively attends to relevant style features of each symbol and its bounding box.
For instance, we leverage Gr as external contexts and perform ICA via cross-attention to mimic the
calligraphic glyphs of reference samples, and thus P (∆G|Gr, T ) ⇒ P (Gt|Gr,Cp,�

�Lp) can be
modeled as

P (Gt|Gr,Cp) ⇒ ξ

(
Softmax

Q(Cp)×K(Gr)√
d

× V(Gr)

)
, (5)

where × denotes the matrix multiply, Q,K,V are projection operations, ξ denotes the non-linear
projection (such as multilayer perceptrons), and d is the embedding dimension. Similarly, we can
model P (Lt|Lr, T ) by feeding Lr as external contexts to obtain the final latent representations of
target layouts.

3.2 NETWORK ARCHITECTURE

The overall framework for stylized HMEG is illustrated in Fig. 3, which follows a glyph-layout
decoupled generation paradigm. Given the reference Xr ↔ (Lr,Gr) and textual content T ↔
(Lp,Cp), we aim to generate Xt ↔ (Lt,Gt) with similar structures and calligraphic styles of Xr.
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Figure 3: A layout-glyph decoupled framework for stylized HMEG.

Glyph Generation via ICA We leverage a variational auto-encoder (VAE) (Kingma & Welling,
2014) as the glyph encoder Eg to extract calligraphic features of handwriting as

Eg(Gr) = ug + exp(
σg

2
)⊙ ϵ, (6)

where ug and σg are the means and variances of qϕ(z|Gr) that estimated by Eg , and ϵ is a noise
sampled from a standard normal distribution p(z) ∼ N (0, 1). Then, we perform ICA (Implicit
Context Adaptation) via cross-attention to obtain the target glyph embeddings as

FG = I (Eg(Gr),Cp) , (7)

where I denotes the ICA via cross-attention as described in Eq. (5), and FG ∈ RM×d are tar-
get glyph embeddings. We further decode each glyph embedding of FG into the sequences of
point location probability (through Gaussian mixture models) and three pen states, denoted as[
{πr, µ

x
r , µ

y
r , σ

x
r , σ

y
r , ρ

xy
r }Rr=1, p

1, p2, p3
]

for each point, and we decode each sequence to the trajec-

tory for presenting each glyph gm =
{
[∆uo,∆vo, p

1
o, p

2
o, p

3
o]
}O

o=1
following Ha & Eck (2018) and

obtain the target glyphs Gt = {gm}Mm=1.
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Layout Generation via ICA We also adopt the layout VAE El to extract latent presentations of
layouts. Thus, target layout embeddings are calculated as

F∆L = I (El(Lr), El(Lp)⊕Cp) , (8)
where ⊕ denotes the element-wise addition. Then, we can directly regress F∆L to obtain the layout
offsets as ∆L = {[∆xl,∆yl, w

s
l , h

s
l ]}

L
l=1 and obtain the target layout as Lt = ∆L+ Lp.

3.3 TRAINING OBJECTIVES

The entire framework is optimized with an end-to-end pipeline, where training objectives consist of
glyph synthesis, layout synthesis, and VAE losses.

Specifically, glyph synthesis objectives include:

• Glyph Generation Loss: We maximize the likelihood of target glyphs Gt = {gm}Mm=1 as

Ltrj
g = Eo,m

[
− logP ([∆uo,∆vo, p

1
o, p

2
o, p

3
o]m)

]
(9)

following Ha & Eck (2018), where each glyph gm contains O trajectory points.
• Character Recognition Loss: The glyphs Gt = {gm}Mm=1 are supposed to be recognizable, i.e.,

Lcls
g = Em[−c̃m logR(gm)] (10)

where c̃m is the label of gm, and R is a glyph recognizer.
• Calligraphic Style Loss: We further enforce the glyph encoder Eg to extract discriminative cal-

ligraphic styles. Concretely, we sample positive patch pairs (p, p+) from the same randomly
selected glyph gm and construct negative pairs (p, p−) from other glyphs of different samples,
and perform calligraphic contrastive learning as

Lsty
g = Ep

[
− log

exp(s(p, p+)/τ)∑
p− exp(s(p, p−/τ))

]
, (11)

where s(p, p+) = δ(p)⊤δ(p+) denotes the similarity, δ denotes the linear projection, p denotes
the patch of a randomly selected glyph gm, and τ is the temperature.

And, layout synthesis objectives include:

• Layout Generation Loss: We encourage the layout generator Gl to synthesize the target layouts
Lt that are indistinguishable (by the discriminator Dl) from the genuine layouts L̃ as

Ladv
l = EL̃[logDl(L̃)] + ELt

[log (1−Dl(Lt))] , (12)
which follows a generative adversarial training paradigm.

• Layout Reconstruction Loss: layout consistency is improved via self-reconstruction constraint
Lrcn
l = ELr,Tr

[||Lr − Gl(Lr, Tr)||1] , (13)
where Tr is the corresponding textual content of the reference Xr, and Gl is the layout generator.

• Layout Style Loss: We further encourage the layout encoder El to learn precise style features
of layouts. Specifically, we first sample positive patch pairs (e, e+) from the layouts of the same
writer and prepare negative patch pairs (e, e−) from other layouts of different writers. Thus, we
can achieve style constraints similar to Eq. (11) as

Lsty
l = Ee

[
− log

exp(s(e, e+)/τ)∑
e− exp(s(e, e−/τ))

]
. (14)

Lastly, Layouts & Glyphs Randomness is further introduced by incorporating VAE objectives as
Lvae
l = EL∗ [DKL(El(L∗)||N (0, 1))] , Lvae

g = EGr [DKL(Eg(Gr)||N (0, 1))] , (15)

where DKL is KL-Divergency, and the random noisy ϵ is sampled from normal distribution N (0, 1).

Therefore, overall training objectives are formulated as
LG,E = Ltrj

g + λcls
g Lcls

g + λsty
g Lsty

g︸ ︷︷ ︸
Glpyh

+λadv
l Ladv

l + λrcn
l Lren

l + λsty
l Lsty

l︸ ︷︷ ︸
Layout

+λvae
g Lvae

g + λvae
l Lvae

l︸ ︷︷ ︸
Randomness

,

(16)
where different λ∗ can be dynamically adjusted through the gradient balance as Fogel et al. (2020).
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4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets. We leveraged CROHME (Mouchère et al., 2016) as the benchmark dataset, which com-
prises over 10K HMEs covering 126 categories of symbols with the bounding-box level annotations.

Implementation Details. All evaluations are conducted on a workstation with an RTX-4090 GPU.
The whole model, implemented in PyTorch, is optimized via Adam (Kingma & Ba, 2014) with an
initial learning rate of 0.0001 and reaches convergence with over 600K training iterations.

Competitors. Considering that stylized HMEG remains largely underexplored, we therefore only
compare several approaches that can be adopted to this task, including CycleGAN (Zhu et al., 2017),
FormulaGAN (Springstein et al., 2021), Sg2Im (Johnson et al., 2018), SgHMEG (Chen et al.,
2024), and ControlNet (Zhang et al., 2023). It is worth noting that conventional HTG methods
(e.g., HiGAN+, VATr, GANwriting, etc.) are not applicable to HMEG, as they can only synthesize
handwritten texts of linear structures. In all comparisons, we use the official implementations with
default settings or the publicly released pre-trained models (if provided) for a fair comparison.

Evaluation Metrics. We thoroughly evaluated different models regarding the following aspects:

• Visual Quality: FID and SSIM evaluate the visual quality of synthetic HMEs.
• Semantic Correctness: ExpRate and WER measure the textual semantic correctness.
• Glyph Similarity: HWD (Pippi et al., 2023b) measures the calligraphic similarity of glyphs.
• Layout Similarity: We propose LSD (Layout Structure Distance; see Appendix A.3) to measure

the layout similarity, which is accessed by rendering bounding boxes of layouts into mask images,
and computing the FID score over those mask images, thereby measuring the distribution distance
between the generated and real layouts. We also leverage IOU for reconstruction scenarios.

All evaluation networks designed for computing metrics (such as FID, WER, HWD, etc.) are inde-
pendently pre-trained and are entirely separated from the generative models being optimized, and
there is no overlap between their training data and ours, thereby eliminating potential data leakage.

Evaluation Scenarios. We thoroughly evaluated different models under the following scenarios:

• Reconstruction. It reconstructs all HMEs of the training set with identical texts and seen styles.
• OOV Generation. The model not only generates the stylized HMEs of OOV expressions and

arbitrary structures, but it also mimics styles of unseen HMEs. Specifically, we evaluate under the
OOV setting using the official test set, which guarantees no overlap with the training set, i.e., the
writers are entirely distinct, and all test formulas (with their expressions and styles) are unseen.

4.2 COMPARISON WITH PREVIOUS SOTAS

Method Reconstruction OOV Generation
SSIM↑ IOU↑ FID↓ WER↓ ExpR↑ HWD↓ LSD↓ FID↓ WER ↓ ExpR ↑ HWD↓ LSD↓

CycleGAN† 0.757 × 84.14 0.252 0.346 0.688 × 124.8 0.273 0.281 0.748 ×
FormulaGAN† 0.724 × 74.68 0.134 0.451 0.717 × 141.9 0.112 0.519 0.753 ×
ControlNet† 0.659 × 131.99 0.934 0.027 1.011 × 156.70 0.966 0.024 0.918 ×
Sg2Im 0.787 0.324 10.02 0.287 0.235 0.452 8.158 30.35 0.447 0.162 0.473 7.919
SgHMEG 0.793 0.364 10.98 0.278 0.268 0.439 7.081 26.69 0.438 0.168 0.443 7.812
Ours 0.887 0.383 5.60 0.207 0.427 0.151 5.271 7.79 0.263 0.317 0.194 7.324

Table 2: Quantitative results of different models for stylized HMEG. †: the model cannot generate
explicit layouts, and therefore cannot measure the layout similarity, such as IOU and LSD.

We first make a quantitative comparison of competing models under different evaluation setups, as
shown in Table 2. It can be observed that our method signficantly outperforms previous SOTA mod-
els for HMEG in terms of visual quality, semantic and structural correctness, and style consistency.
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Ours
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Formula

GAN

CycleGAN

Printed

ControlNet
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Sg2Im

Figure 4: Qualitative results of different models from stylized HMEG.

We further provided a qualitative comparison in Fig. 4, and it can be observed that: (1) CycleGAN
and FormulaGAN are more likely to produce printed-like HMEs, often generating unrealistic hand-
writing with low visual quality. (2) Sg2Im and SgHMEG typically produced blurred and distorted
glyphs, and they also frequently generated incorrect structures of wrong semantics, especially for
OOV generation. (3) Although ControlNet can generate realistic images, the textual semantics and
layout structures are entirely incorrect. (4) Instead, our decoupled approach can generate realistic
HMEs of precise layout structures and calligraphic styles in all scenarios.

4.3 GENERALIZATION ANALYSIS

Source AddDelete Change

Figure 5: Handwriting manipulation.

Printed FormulaGAN OursSgHMEGSg2Im ControlNet Ours /ΔL

Figure 6: Generating HMEs of rare layout structures.

Handwriting Manipulation in Text Space We demonstrate that our method can perform hand-
writing manipulation in text space, while strictly preserving the original structural and calligraphic
styles. As shown in Fig. 5, given a source handwriting as the reference example, our model can edit
given handwriting by adding, deleting, or changing its partial glyphs/symbols, whereas the edited
HMEs preserve consistent layout structures and calligraphic styles of the source, demonstrating that
our model can achieve effective stylized HMEG, rather than memorizing the training data.

Generating Rare Layout Structures We further show a comparison of generating HMEs with
rare layout structures in Fig. 6. We can observe that: FormulaGAN tends to produce unrealistic
HMEs with blurred or distorted glyphs, ControlNet produces incorrect layouts and semantics, Sg2im
and SgHMEG struggle to model complex structures. In contrast, our method via layout offsets can
generate realistic HMEs of rare layout structures, demonstrating its strong generalization ability.
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Boosting HME Recognition via Generation If a generative model can synthesize diverse real-
istic handwriting samples, it should be capable of improving recognition through generation-based
augmentation. Therefore, we further validated whether our generative model can boost HME recog-
nition (HMER), as shown in Table 3. We selected CAN (Li et al., 2022) as the HMER baseline and
leveraged generative models to augment training data. It can be observed that our method success-
fully boosts HMER and outperforms the previous SOTA model for HMEG (i.e., SgHMEG).

Method Training
Data

Datasets (ExpR↑)
C-14 C-16 C-19

CAN (Base) real 0.464 0.506 0.542
CAN + SgH. real + synth. 0.465 0.522 0.577
CAN + Ours real + synth. 0.471 0.559 0.579

Table 3: Boosting recognition via generation.

Method Reconstruction OOV Gen.
IOU↑ ExpR↑ LSD↓ ExpR↑ LSD↓

Gaussian 0.140 0.131 19.066 0.134 17.017
Cond-RNN 0.263 0.387 7.432 0.271 8.412
Symbol Graph 0.364 0.268 7.081 0.168 7.812
Ours /∆L 0.372 0.394 5.794 0.255 7.682
Ours +∆L 0.383 0.427 5.271 0.317 7.324

Table 4: Comparison results of different layout
generation strategies.

4.4 ABLATION ON LAYOUT GENERATION STRATEGIES

As shown in Table 4, we further conducted an ablation study on different layout generation strate-
gies, including: Gaussian (Yu et al., 2024), Symbol Graph (Chen et al., 2024), Cond-RNN (Ren
et al., 2025), our cross-attention ICA w.o. layout offsets (i.e., Ours /∆L), and ours with layout off-
sets (i.e., Ours +∆L). Experiments show that our cross-attention ICA via layout offsets achieves
the best results for layout generation, demonstrating its effectiveness for HMEG of arbitrary layouts.

4.5 HUMAN EVALUATION

User Plausibility Study We further conducted a human evaluation with 20 educated participants,
who were shown random HMEs (half genuine and half generated) and asked to judge whether each
was written by humans or machines, resulting in a total of 1200 responses for evaluation. As shown
in Table 5, our model is perceived as plausible, with ∼50% of its outputs judged as human-written.

User Preference Study Participants were shown HMEs from each model with identical texts in
random orders and asked to select the most preferred one. We repeated this procedure 40 times,
resulting in 800 responses. As shown in Table 6, our model attains the majority of votes in all
instances regarding overall layouts and quality, demonstrating its superiority over competing models.

Actual
Labels

Human Prediction Overall
AccuracyReal Fake

Genuine 0.276 0.224 0.513Generated 0.263 0.237

Table 5: User plausibility study.

Target C.GAN F.GAN C.Net Sg2Im SgH. Ours

Layout† × × × 0.200 0.250 0.550
HME 0.069 0.150 0.036 0.150 0.164 0.431

Table 6: User preference study. †: Only methods that
can generate explicit layouts are included.

5 CONCLUSION

Stylized handwriting of arbitrary structures and OOV expressions (such as stylized HMEG) remains
largely underexplored, with existing methods falling short in addressing this challenge effectively. In
this paper, we introduce a glyph-layout decoupled generation paradigm for stylized HMEG, which is
more feasible than conventional I2I or G2I translation pipelines. Particularly, we propose to predict
layout offsets from printed templates rather than generating absolute positions, where the prior guid-
ance of templates simplifies the layout generation of arbitrary structures. Furthermore, we introduce
implicit context adaptation (ICA) via cross-attention to jointly mimic layouts and calligraphic styles
from reference examples. By treating reference layouts and glyphs as external implicit contexts,
ICA selectively attends to relevant style features for each symbol and its bounding box. Experi-
ments demonstrate that our method outperforms previous SoTA approaches for stylized HMEG.
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ETHICS STATEMENT

This work advances stylized handwritten mathematical expression generation for applications in
education, accessibility, and document digitization. All datasets used are publicly available, con-
taining no personal or sensitive information. While the method could be misused (e.g., for academic
dishonesty or forgery), our contribution is intended solely for research purposes, and we encourage
responsible use. We acknowledge limitations in stylistic diversity and the environmental cost of
training, and we have aimed to minimize computational overhead where possible.

REPRODUCIBILITY STATEMENT

This work has been conducted in accordance with standards for reproducibility in computational
research. The conceptual outline, architecture details, training objectives, and hyperparameters for
our proposed model are fully described in Section 3. All datasets used are publicly available and
cited, with justifications for their selection. Comprehensive experimental details, including training
configurations, evaluation scenarios, and evaluation metrics, are provided in Section 4.1.
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A APPENDIX

THE USE OF LARGE LANGUAGE MODELS (LLMS)

We disclose that large language models (LLMs) were used solely to aid the writing of this paper,
specifically for language polishing, including spelling and grammar checking. They did not con-
tribute to the research ideation, methodology, experiments, analysis, or substantive writing.

A.1 GENERATION RESULTS WITH DIFFERENT TEMPERATURES.

Despite relying on variational sampling, our method also enables the alternative controlled ran-
domness during inference by applying temperature sampling to the output of the Gaussian Mixture
Model, as illustrated in Fig. 7.
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Figure 7: HMEG with various temperatures.

A.2 LAYOUT VISUALIZATION OF DIFFERENT STRATEGIES.

To demonstrate the effectiveness of our layout generation strategies, we also provide a qualita-
tive comparison of different methods in Fig. 8, including: Gaussian (Yu et al., 2024), Sym-
bol Graph (Chen et al., 2024), Cond-RNN (Ren et al., 2025), our cross-attention ICA w.o. layout
offsets (i.e., Ours /∆L), and ours with layout offsets (i.e., Ours +∆L).
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Figure 8: Layout visualization of different strategies. Green areas indicate interactions between
genuine and generated layouts.

A.3 LAYOUT STRUCTURE DISTANCE (LSD).

To evaluate the layout similarity between generated and real layouts, we propose Layout Structure
Distance (LSD). Given a layout, we convert it into a foreground–background mask image by ren-
dering each bounding box as a filled foreground region on a blank background. This procedure
discards the sequential ordering of boxes while preserving the overall spatial arrangement. The
resulting mask images are passed through a pretrained Inception network to obtain high-level fea-
ture embeddings. Finally, we compute the Fréchet Inception Distance (FID) between the feature
distributions of generated and real layouts, which serves as the LSD metric. While alternative im-
plementations are possible, the overall idea and underlying principle of LSD remain consistent with
our approach.

13


	Introduction
	Related Work
	Handwritten Text Synthesis with Linear Sequences
	HME Generation with Complex Structures

	Methodology
	Glyph-Layout Decoupled Generation Paradigm
	Network Architecture
	Training Objectives

	Experiments
	Experimental Settings
	Comparison with Previous SOTAs
	Generalization Analysis
	Ablation on Layout Generation Strategies
	Human Evaluation

	Conclusion
	Appendix
	Generation Results with Different Temperatures.
	Layout Visualization of Different Strategies.
	Layout Structure Distance (LSD).


