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Abstract

This paper presents an approach to active learning that considers the non-independent and
identically distributed (non-i.i.d.) structure of a clinical trial setting. There exists two types
of clinical trials: retrospective and prospective. Retrospective clinical trials analyze data
after treatment has been performed; prospective clinical trials collect data as treatment
is ongoing. Traditional active learning approaches are often unrealistic in practice and
assume the dataset is i.i.d. when selecting training samples; however, in the case of clinical
trials, treatment results in a dependency between the data collected at the current and past
visits. Thus, we propose prospective active learning to overcome the limitations present in
traditional active learning methods, where we condition on the time data was collected. We
compare our proposed method to the traditional active learning paradigm, which we refer
to as retrospective in nature, on one clinical trial dataset and one non-clinical trial dataset.
We show that in clinical trial settings, our proposed method outperforms retrospective
active learning.
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1. Introduction

Clinical trials exist to determine the effect of certain treatments on a population through a
strict set of procedures and regimens (Chien et al. (2022)). This differs from other medical
settings, where there is no constraint on the treatment provided to patients. As indicated
in Figure 1, there are two main types of clinical trials used by researchers: retrospective and
prospective (Song and Chung (2010)). These clinical trials differ in their direction in time.
For example, retrospective clinical trials examine previously collected data from past patient
visits, as shown in Figure 1. Therefore, retrospective clinical trials have immediate access to
all collected data (Song and Chung (2010)). On the other hand, prospective clinical trials
are executed over time as patients receive treatment. Thus, prospective clinical trials are a
laborious, time-consuming process, where a patient is diagnosed and treated at each visit.
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Figure 1: Retrospective vs Prospective Clinical Trial Description

Machine learning is a solution to alleviate the immense diagnosing burden placed on
medical professionals in Figure 1 (McDonald et al. (2015), Erickson et al. (2017)), though
these approaches are rarely adopted in clinical practice due to a large labeled data require-
ment (Roh et al. (2019)). To this end, active learning is frequently used when machine
learning applications impose a budget for the amount of data to label. Active learning
is an iterative process that uses query strategies to acquire a smaller subset of training
samples across multiple training rounds (Settles (2009)). It mirrors the prospective clinical
trial routine depicted in Figure 1, where a round of training an active learning algorithm
parallels a patient visit in the clinical trial process.

Even though active learning resembles the flow of prospective clinical trials, it is rarely
adapted to clinical trial data, and even when it is, active learning is not performed in a way
that matches the data collection process (Fowler et al. (2023)). Specifically, traditional ac-
tive learning attempts view the active learning process for medical data from a retrospective
lens, where the entirety of the collected data is an option to query from (Logan et al. (2022),
Smailagic et al. (2018)). Thus, these approaches contribute to unrealistic assumptions of
active learning performance in real clinical trial scenarios, as the model queries and relies
on data samples it otherwise would not have access to.

By treating active learning in a retrospective manner, relevant correlations that exist
across time amongst data samples are also disregarded. Traditional query strategies sample
data based on solely a criteria unique to each strategy, thus treating all data samples as
i.i.d. (Settles (2009), Wang and Ye (2015)). However, in a clinical trial setting, the data
collection and treatment process is non-i.i.d since at any given visit, the current patient
information depends on medical data from past visits. Hence, traditional active learning
approaches lose relevant information (such as deteriorating health), as they sample data
regardless of which visit it was collected from.

In this work, we argue instead that the active learning process for clinical trial data
must be viewed from the prospective clinical trial lens in Figure 1 due to the nature of
the data collection and treatment administration process. We refer to traditional active
learning methods as retrospective active learning, which assumes access to the entirety of
the collected data. In contrast, we refer to prospective active learning as active learning
methods that follow the structure of prospective clinical trials by querying data sequentially
based on patient visit number. Hence, we consider the data collection process of clinical
trials that creates time-related dependencies across data in clinical trial datasets, and we aim
to understand reasons as to why machine learning with clinical trial data must be different
from other non-i.i.d. medical datasets through insights about the treatment process. The
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contributions are as follows: (1) We convert both retrospective and prospective clinical trials
into active learning frameworks by following Figure 1, (2) We compare the performance for
this setup against retrospective active learning on the classification of Optical Coherence
Tomography (OCT) from an ophthalmology prospective clinical trial, and (3) We compare
the performance of prospective active learning on a non-clinical trial chest x-ray dataset.

2. Relating the Concept of non-i.i.d. to Clinical Trials

Figure 2: Prospective clinical trial data collection process

A clinical trial dataset is i.i.d. if a patient’s data deposited at a particular visit has
no dependency on previous visit data. However, in prospective clinical trial settings, the
effect of a certain treatment is analyzed across several visits, and the resulting clinical trial
dataset is non-i.i.d. To understand the non-i.i.d. nature of clinical trial datasets, consider
an ophthalmology prospective clinical trial for Diabetic Retinipathy (DR) and Diabetic
Macular Edema (DME) assessment, illustrated in Figure 2. In this clinical trial, assume we
have a set of patients P = {p1, · · · , pN}, where each pn ∈ P represents a unique patient.
Additionally, each pn is associated with a set of visits T = {t1, · · · , tD}. At a visit td, a
patient pn is assessed through examination of the patient’s OCT data Xn,d, indicating the
patient number n and visit number d the data originated from. Clinical trials typically
then administer a uniform treatment to the population. In Figure 2, patients receive an eye
injection I1 or I2 corresponding to which disease the patient is diagnosed with. This differs
from what is done in hospitals, where patients with the same disease do not necessarily
receive the same treatment. In clinical trials, however, a patient’s OCT data at a particular
visit can be represented as Xn,d = I1(Xn,d−1) or Xn,d = I2(Xn,d−1), as Xn,d is a result of
the treatment decision at patient pn’s previous visit td−1 and is thus non-i.i.d.

We argue that by disregarding the non-i.i.d. structure of a clinical trial dataset, per-
formance of active learning approaches suffer due to the overall order in which the data is
analyzed. As depicted in Figure 2, clinical trials have a distinct treatment being adminis-
tered, which differs based on disease diagnosis. We term this an intervention, represented
by I1 for DR or I2 for DME. In the context of classification, estimating the intervention
function by utilizing machine learning algorithms is a viable way to classify a data sample
as a particular class. However, if the data is observed non-sequentially, the intervention
estimated is likely not equivalent to the actual intervention, resulting in an incorrect classi-
fication result since the data at a particular visit is dependent on all previous intervention
functions applied during past visits. By creating a framework that queries images in a se-
quential manner based on patient visit number, we utilize the non-i.i.d. property of clinical
trials resulting from the treatment administration process depicted in Figure 2.
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3. Methodology

For our experiments, we utilize the OLIVES (Prabhushankar et al. (2022)) OCT clinical
trial dataset for DR and DME detection. We also use the NIH ChestX-ray8 (Wang
et al. (2017)) non-clinical trial dataset for Consolidation detection in chest x-ray scans.
Further details on the dataset and training can be found in Appendix A.

For our results, we adapt the retrospective and prospective clinical trial framework
presented in Figure 2 in terms of active learning. We present the layout of this framework
in Figure 3. Specifically, in retrospective active learning, we implement the acquiring of
a batch of b new data samples X∗ as X∗ = argmax

xt1 ,...,xtb
∈Xpool

ar(xt1 , . . . , xtb), where ar is the

acquisition function for the retrospective setting as shown in Figure 3. In the case of
retrospective active learning, this is simply a pre-existing query strategy.

For prospective active learning, the non-i.i.d. structure of the data is taken into consid-
eration. Our selection of samples in this case is X∗ = argmax

xt1 ,...,xtb
∈Xpool

ap(xt1 , . . . , xtb |d), where

we augment the previous equation such that we condition the selection based on the time
or visit number d of when the data was collected. This results in ap, which constrains the
selection space on which pre-existing strategies can operate. To understand the difference

Figure 3: Active learning framework: I) Choose query strategy and sample from Xpool II)
Add sampled data X∗ to the training set Xtrain III) Evaluate model on test set

between ar and ap, consider the OLIVES dataset. At the first visit, OCT scans will be
collected from N patients, resulting in N × 49 OCT scans. When performing prospective
active learning via ap, we only have N × 49 OCT scans to sample from in the first round.
For the next round, there are the remaining OCT scans from the first visit not selected
during the first round, as well as N × 49 OCT scans corresponding to the patients’ second
visit, that can be sampled during the second round of training the model. In other words,
each round d of training an active learning model corresponds to patients’ visit d and past
(unused) visit data. Retrospective active learning instead has access to the N × 49 OCT
scans from the first visit, the N × 49 OCT scans from the second visit, and so forth. Hence
at the first round there are D×N × 49 OCT scans to choose from, where D represents the
total number of visits recorded in the dataset. Afterwards, retrospective active learning has
access to the unused OCT scans from the previous rounds.
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4. Results

A comparison between retrospective and prospective active learning on the OLIVES dataset
using the Resnet-18 architecture (He et al. (2016)) and a query size of 256 is shown in Figure
4 across 5 seeds for the following query strategies: Random, Margin, and Least Confidence.
In these plots, the x-axis corresponds to the number of rounds, while the y-axis corresponds
to the performance accuracy on the test set. Overall, for majority of the query strategies
the prospective active learning setting outperforms the traditional retrospective setting.
Because prospective active learning queries data in a sequential manner, we hypothesize that
prospective active learning distinguishes between the two types of treatment administered
to the two disease classes. To further validate this claim, we assess the impact of the order
in which visits are integrated into the sampling process in prospective active learning.

Figure 4: Retrospective active learning (RAL) vs Prospective active learning (PAL) test
accuracy results averaged over 5 seeds.

We define a new experimental setup, where the prospective active learning framework
randomly queries new visits non-sequentially at each round. Results for this setup are pre-
sented in Figure 5. In Figure 5, prospective active learning fails to consistently outperform
traditional retrospective active learning, implying that the order in which these images are
added to the model’s training pool is significant. In particular, it implies that the model
must receive the images consecutively in order to provide accuracy benefits over retrospec-
tive active learning, indicating that each patient visit can not be treated indepedently.

Figure 5: Retrospective active learning (RAL) vs Prospective active learning (PAL) test
accuracy results averaged over 5 seeds, where PAL queries visits non-sequentially.

Lastly, we compare the performance of retrospective and prospective active learning in
a non-clinical trial medical dataset, the NIH ChestX-ray8 dataset, in Figure 6 using the
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Densenet-121 architecture (Huang et al. (2017)) and a query size of 384. Figure 6 shows
consolidation detection results in chest x-ray scans for the Random, Margin, and Least
Confidence query strategies averaged over 5 seeds. We report results using the AUROC
score, as done in the original dataset paper (Wang et al. (2017)). As shown in Figure 6,
prospective active learning appears to offer no performance gain on this dataset. The causes
for this are most likely the difference in the data collection process. The NIH ChestX-
ray8 dataset is constructed from numerous radiology reports. In other words, no set
treatment is administered to patients in the NIH ChestX-ray8 dataset. When a dataset
follows the clinical trial structure in Figure 2, the results indicate that querying data in a
sequential manner boosts performance results due to the model better able to distinguish
between interventions administered to the different disease classes, like what is shown in
Figure 4 with the OLIVES dataset. The results in Figure 6, however, show that in a non-
clinical trial dataset, prospective active learning does not offer the same benefits as observed
in Figure 4, due to an inconsistency in treatment administered across disease classes.

Figure 6: Retrospective active learning (RAL) vs Prospective active learning (PAL) AU-
ROC scores for consolidation detection averaged over 5 seeds.

5. Conclusion

Our work shows that a prospective active learning framework attains higher accuracy than
traditional active learning approaches when applied to a clinical trial dataset that has
known interventional and time dependencies. Our work suggests that machine learning
in clinical trial settings should be performed to align with the data collection process, as
sampling sequentially allows the model to learn the interventions across the data. The
value of this approach lies in exploiting information readily known during the clinical trial
treatment process, such as the time of a patient’s visit and the uniform, distinct treatment
given to patients depending on their disease status. This differs from other clinical settings,
such as in hospitals, where the uniformity in treatment ceases to exist. Future work could
investigate the effect of incorporating other time-relevant clinical information when patient
visit numbers may not be available.
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Appendix A. Dataset and Additional Training Details

A.1 Dataset Details

For our experiments, we utilize the OLIVES (Prabhushankar et al. (2022)) dataset. The
OLIVES dataset consists of 78, 189 OCT images, collected from two different clinical trials.
The two clinical trials are denoted as PRIME, which recruited patients with DR, and
TREX, which recruited patients with DME. The patients in PRIME and TREX received
two distinct treatments, allowing the assumptions from Figure 2 to reflect the structure of
the actual dataset. As illustrated in Figure 2, the DR patients in PRIME receive treatment
I1, whereas the DME patients in TREX receive a different treatment I2. The train set for
this dataset includes 76 unique eyes, utilizing the remaining 20 eyes for our test set. The
test set is composed of 2, 000 images from various visits and is balanced between disease
classes.

We also perform experiments on the NIH ChestX-ray8 dataset (Wang et al. (2017)),
consisting of 14 disease classes. Due to the large imbalance of disease classes, the dataset
was pre-processed to include only 8 of the more prevalent diseases. These include: Effusion,
Infiltration, Mass, Nodule, Atelectasis, Pneumothorax, Pleural Thickening, and Consolida-
tion. Furthermore, the dataset presents a ’No Finding’ label when an image has none of
these 8 diseases; due to the extreme prevalence of images associated with a ’No Finding’
label, 5, 000 of these images were randomly sampled to be included in our pre-processed
dataset. The resulting dataset has 19, 796 unique patients, resulting in 64, 535 chest x-ray
scans. We then include 10,862 unique patients in our train set, 5,959 patients in our test
set, and the remaining 2,975 patients in our validation set. The test set is composed of
20, 380 images from various visits.

A.2 Training Details

For our OCT experiments, we utilize the Pytorch implementation of the Resnet18 architec-
ture (He et al. (2016)), with the linear layer being altered to accommodate binary classifi-
cation. Thus, the input into the Resnet18 model is a batch of OCT images, and the output
is a binary classification decision corresponding to the presence of either DR or DME. We
train this model each round for DR/DME detection until a minimum accuracy of 97% is
met. The Adam optimizer was used during training with a learning rate of 0.00015, follow-
ing the training routine for OCT images from (Prabhushankar et al. (2022), Logan et al.
(2022)). All OCT images were resized to 128 × 128 and were normalized with µ = 0.1706
and σ = 0.2112. For Figures 4, 5, a query size of 256 is used, initializing the model with
128 samples.

For the chest x-ray experiments, we use a Densenet-121 architecture pretrained on Ima-
geNet in PyTorch, with the linear layer being altered to include eight outputs and a sigmoid
nonlinearity applied afterwards (Huang et al. (2017), Rajpurkar et al. (2017)). The output of
this approach is a sequence of binary labels corresponding to the presence or absence of the
following eight diseases: Effusion, Infiltration, Mass, Nodule, Atelectasis, Pneumothorax,
Pleural Thickening, and Consolidation. The training regimen was adopted from (Rajpurkar
et al. (2017)), where the model is trained each round until there has been no improvement
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on the validation set in 3 epochs. We use stochastic gradient descent as our optimizer, with
a learning rate of 0.001. All chest x-ray images were resized to 224 × 224 and normalized
with the ImageNet mean and standard deviation. For Figure 6, a query size of 384 is used,
initializing the model with 200 samples.
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