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Abstract

Understanding another person’s creative output001
requires a shared language of association. How-002
ever, when training vision-language models003
such as CLIP, we rely on web-scraped datasets004
containing short, predominantly literal, alt-text.005
In this work, we introduce a method for mining006
contextualized associations for salient visual007
elements in an image that can scale to any un-008
labeled dataset. Given an image, we can use009
these mined associations to generate high qual-010
ity creative captions at increasing degrees of ab-011
straction. With our method, we produce a new012
dataset of visual associations and 1.7m creative013
captions for the images in MSCOCO. Human014
evaluation confirms that these captions remain015
visually grounded while exhibiting recogniz-016
ably increasing abstraction. Moreover, fine-017
tuning a visual encoder on this dataset yields018
meaningful improvements in zero-shot image-019
text retrieval in two creative domains: poetry020
and metaphor visualization. We release our021
dataset, our generation code and our models for022
use by the broader community.023

1 Introduction024

We make sense of visual art through shared asso-025

ciations (Gombrich, 2023). Studies from the cog-026

nitive sciences have shown that these associations027

come from our collective biological, social, cultural028

and environmental contexts (Ward and Kolomyts,029

2010). For example, skulls evoke death in many030

Western viewers. Consequently, creative vision-031

language tasks like art interpretation or image-to-032

poetry generation require models that can leverage033

these same associations (Huang et al., 2016; Hu034

et al., 2020; Liu et al., 2018; Lu et al., 2022).035

However, while training on image-text pairs036

scraped from the web has yielded powerful mod-037

els such as CLIP that are able to adapt to many038

downstream tasks, research has found that they of-039

ten fail to achieve similar zero-shot performance040

in tasks where the domain is largely different from041

Figure 1: Two images depicting trees in different set-
tings. Their alt-text makes no mention of the diverse
concepts that each tree evokes. Using our method, we
are able to mine contextualized associations at degrees
of abstraction that extend beyond literal description.

their pre-training data (Menon et al., 2024). This 042

is especially true in creative domains. In poetry 043

and metaphor visualization, CLIP’s capabilities are 044

limited (Guljajeva et al., 2023). We hypothesize 045

that this is because the text seen during its pre- 046

training is predominantly short alt-text which does 047

not explicitly include any associations for its ac- 048

companying imagery (see Figure 1). 049

Prior work has improved vision-language mod- 050

els (VLMs) by training on synthetic captions with 051

fine-grained detail, resulting in more nuanced im- 052

age understanding (Chen et al., 2024; Fan et al.; Lai 053

et al., 2024). This has produced meaningful per- 054

formance gains in classification and cross-modal 055

retrieval tasks in non-creative domains. 056

In our work, we extend this effort to creative 057

domains. We develop a method for mining contex- 058

tualized visual associations for the salient elements 059

in an unlabeled image. Here, we define contextu- 060
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alized associations as concepts related to a particu-061

lar visual element based on broader scene context062

(e.g., “celebration" for the Christmas tree in Figure063

1). Then, we use these mined visual associations to064

synthetically produce creative captions for each im-065

age at increasing degrees of abstraction, informed066

by Hayakawa’s “ladder of abstraction" from lin-067

guistics (Hayakawa, 1967). This results in captions068

that remain grounded to an image while making069

explicit the associations that the image evokes.070

Our data generation process is general purpose071

and can be arbitrarily scaled to any unlabeled cor-072

pus of images. We validate the quality of the re-073

sulting creative captions through 1) human eval-074

uation and 2) testing the ability of a visual en-075

coder fine-tuned on our synthetic dataset to adapt076

to two creative vision-language tasks: image-to-077

poetry retrieval and linguistic metaphor-to-visual078

metaphor retrieval (Liu et al., 2018; Chakrabarty079

et al., 2023a). We find that our synthetic captions080

reflect increasingly creative abstraction that aligns081

well with human judgment without introducing hal-082

lucination. Moreover, fine-tuning on these captions083

improves zero-shot multi-modal retrieval in both084

of our creative vision-language tasks.085

In summary, the contributions of our work are:086

• A novel approach for mining contextualized087

associations for visual elements in unlabeled088

images at increasing degrees of abstraction089

• A new dataset, extending MSCOCO with in-090

creasingly abstract visual associations and ac-091

companying high quality creative captions092

• A human evaluation of our dataset, validat-093

ing both the increasing abstraction and visual094

grounding of our synthetic captions095

• An evaluation of CLIP, fine-tuned on our096

dataset, showing improved performance for097

multiple creative cross-modal retrieval tasks098

Additionally, we release our dataset, genera-099

tion code and models for use by the broader com-100

munity: https://anonymous.4open.science/101

r/mining_visual_associations-1F0B.102

2 Related Work103

2.1 Conceptual Associations and Creativity104

Cognitive science has shown that creativity in-105

volves associative thinking (Ward and Kolomyts,106

2010). Often, this entails linking together related107

concepts through abstraction (Beaty and Kenett, 108

2023). In NLP, attempts to understand poetic lan- 109

guage, including metaphor, simile and emotion, 110

have required external associative knowledge to 111

help make sense of implicit meaning (Chakrabarty 112

et al., 2022). A common method for incorporating 113

such knowledge is through the use of association 114

lexicons. Previous studies have collected rich lexi- 115

cons for the colors and emotions evoked by differ- 116

ent words through painstaking human annotation 117

(Mohammad, 2013; Mohammad and Turney, 2013). 118

These were complemented by efforts at automat- 119

ing association mining through word embeddings 120

(Bolukbasi et al., 2016; Hu et al., 2019). In con- 121

trast with this prior work, we present a method 122

for automatically mining contextualized associa- 123

tions, where the same word’s related concepts vary 124

based on its surroundings. Moreover, while pre- 125

vious lexicons have typically focused on text, our 126

associations are visually contextualized, extending 127

association mining to a new modality. 128

2.2 Synthetic Image-Text Data 129

Due to the strength of current VLMs, recent work 130

has exploited synthetic data to improve the down- 131

stream performance of image encoders on vision- 132

language tasks (Zheng et al., 2024; Kong et al., 133

2024; Xiao et al., 2024; Liu et al., 2024; Yang 134

et al., 2023). Studies have found that generated 135

captions can be longer and more descriptive of 136

images than their naturally occurring references 137

(Chen et al., 2024; Sharifzadeh et al., 2024). Some 138

have even shown that training on such captions can 139

yield higher performance than training on those 140

from human annotators (Santurkar et al., 2022). 141

While exciting, the focus of much of this work has 142

been on improving the performance of VLMs on 143

standard image understanding tasks. In our work, 144

we expand this line of inquiry to include creative 145

domains. Building on our method for mining con- 146

textualized associations, we generate a corpus of 147

creative captions and show that training on these 148

captions yields significant improvements on zero- 149

shot image-poetry and image-metaphor retrieval. 150

3 Generating Abstracted Captions 151

Given an image I featuring visual elements VI , we 152

mine a set of contextualized associations Ad(vj) 153

for each vj ∈ VI at increasing degrees of abstrac- 154

tion, d ∈ D. Then, using these associations, we 155

generate a set of captions Cd(I) for each image I 156
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(a) Mining contextualized associations for grass.

(b) Generating creative captions using contextualized associations for grass.

Figure 2: Our method for mining contextualized associations and generating creative captions with increasing
abstraction. In Step 1, given an image, we prompt a VLM to generate a detailed caption. Then, in Step 2, we
prompt an LLM to mine associations for each of its salient visual elements at increasing degrees of abstraction.
Finally, in Step 3, we prompt a VLM to generate synthetic creative captions using our mined associations.

that reflect the specified degree of abstraction, d.157

In this work, we define contextualized associa-158

tions as concepts that are related to the specified159

visual element vi based on its broader scene con-160

text. For example, in Figure 1, a tree outside evokes161

different associations than an indoor Christmas tree162

in many Western viewers – these associations are163

mediated by each tree’s surroundings.164

We define five degrees of abstraction d, inspired165

by Hayakawa’s “ladder of abstraction" from lin-166

guistics (Hayakawa, 1967):167

1. Near Synonyms (d = 1): Close in meaning168

or form (e.g., Ball → Sphere).169

2. Slight Abstractions (d = 2): Slightly170

broader category (e.g., Ball → Toy).171

3. Broader Context (d = 3): Indirect, but172

linked through situational and emotional con-173

text (e.g., Ball → Game).174

4. Conceptual Associations (d = 4): More ab-175

stract or thematic (e.g., Ball → Competition).176

5. Full Abstractions (d = 5): Highly abstract177

or metaphorical (e.g., Ball → Journey).178

3.1 Mining Contextualized Associations 179

Given an image I with a short caption cshort, first, 180

we generate a detailed caption cdetailed using an 181

off-the-shelf vision-language model (VLM). Then, 182

we extract salient visual elements v1, . . . , vn ∈ VI 183

by identifying nouns, adjectives, and verbs in the 184

short caption cshort with high concreteness ratings 185

according to a lexicon (Brysbaert et al., 2014). 186

As large language models are trained on lan- 187

guage that is much richer than the language typi- 188

cally found in image alt-text, they function as high 189

quality repositories of common associations, espe- 190

cially when conditioned with complete scene con- 191

text (Tsimpoukelli et al., 2021). Thus, we prompt 192

a text-only frontier language model with both our 193

detailed caption cdetailed and our extracted visual 194

elements VI to mine contextualized associations 195

Ad(vj) for each vj ∈ V at every degree of abstrac- 196

tion d. We include the full prompt in A.2.2. 197

3.2 Generating Captions 198

Given an image I , a salient visual element vj and 199

its conceptual associations Ad(vj) at degree of 200

abstraction d, we prompt a VLM to generate a 201
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Object Image 1 Img 1 Associations Image 2 Img 2 Associations

’horse’

’people’

’bear’

Figure 3: Example from our corpus. For each object, we depict its contextualized associations at increasing degrees
of abstraction for two of its representative images. These associations change with its visual surroundings.

creative caption ccreative for each association in202

Ad(vj). We include the full prompt in A.2.3.203

4 Experiments204

4.1 Corpus Generation205

For our corpus of images with short captions206

(I, cshort), we use Microsoft Common Objects207

in Context (MSCOCO) (Lin et al., 2014) due208

to its extensive study in vision language model-209

ing. We note, however, that our method can be210

applied to any corpus of unlabeled images for211

which we can obtain high quality short captions;212

given the strength of current VLMs, this includes213

most image corpora (Bordes et al., 2024). To ex-214

tract salient visual elements from each short cap-215

tion cshort, we employ SpaCy’s part of speech216

tagger and filter words based on their concrete-217

ness ratings using the lexicon from Brysbaert218

et al. (2014) (requiring a minimum concreteness of219

3). We produce detailed descriptions of each im-220

age using Molmo-7B-D-0924 (Deitke et al., 2024).221

We use text-only GPT-4o-mini1 to mine contex-222

tualized associations at different degrees of ab-223

straction for each image’s salient visual elements224

based on its detailed description. Finally, we use225

Molmo-7B-D-0924 once again to generate a cre-226

ative caption ccreative for each extracted visual as-227

sociation. In total, we produce 1, 671, 835 creative228

captions for MSCOCOtrain and 102, 552 creative229

captions MSCOCOvalidation respectively.230

1specifically gpt-4o-mini-2024-07-18

4.2 Human Evaluation 231

In order to validate our method for mining contex- 232

tualized visual associations and generating creative 233

captions, we conduct a human evaluation of our 234

synthetic dataset. We recruit five native English 235

speakers to annotate a random sample of our cor- 236

pus, answering two questions of interest: First, how 237

visually grounded (i.e. free of mistakes / errors / 238

hallucinations) are the creative captions? And sec- 239

ond, how well do the generated creative captions 240

reflect increasing abstraction? 241

To evaluate visual grounding, for 100 creative 242

captions, we ask annotators to label whether the 243

caption is completely contradictory to or not rele- 244

vant to its image (rating of 1), contains many erro- 245

neous details but still describes its image (rating of 246

2), is an almost perfect caption with minor errors 247

(rating of 3) or represents a perfect caption where 248

there are no errors (rating of 4). 249

To evaluate abstraction, for each of 100 images, 250

we ask annotators to rank six of its captions in or- 251

der of increasing abstraction: its original caption 252

and one creative caption from each of our five ab- 253

straction degrees, presented in randomized order. 254

We include our task instructions and screenshots 255

of our annotation interfaces in section A.3.2. 256

4.3 Automatic Evaluation 257

In addition to a human evaluation, we validate 258

our method for mining contextualized associations 259

and generating creative captions by fine-tuning a 260

pre-trained visual encoder on our corpus of cre- 261

ative captions for MSCOCO. In particular, we ex- 262

4



Figure 4: Examples from each of our three evaluation tasks. Correct answers are highlighted in green.

pand OpenCLIP-ViT-B/322 with a learnable prefix263

specific to each of our five degrees of abstraction264

d ∈ D (Li and Liang, 2021; Menon et al., 2024).265

Keeping the rest of the model frozen, we update266

only these prefix embeddings by optimizing CLIP’s267

contrastive image-text matching loss on our corpus.268

We fine-tune these weights for a single epoch.269

We compare our baseline, OpenCLIP-ViT-B/32270

without any fine-tuning, to our fine-tuned model271

at all five different degrees of abstraction – that is,272

using each of our five learned abstraction prefixes.273

We evaluate image-text similarity scores from these274

models on three zero-shot tasks constructed from275

datasets in two creative domains:276

• Multi-Modal Poem (MultiM-Poem) (Liu277

et al., 2018): Contains 8, 292 images from278

Flickr paired by English majors with short279

poems (around 7 lines) from several online280

poetry sites3. We use MultiM-Poem for Task281

1, poetry-to-image retrieval: given a poem,282

retrieve its corresponding image.283

• HAIVMet (Chakrabarty et al., 2023b): Con-284

tains 1, 540 linguistic metaphors paired with285

both incorrect, overly literal, visualizations286

generated by DALL·E2 and correct, appropri-287

ately metaphorical, visualizations generated288

by DALL·E2 through chain-of-thought. We289

use HAIVMet for Task 2, visual metaphor-to-290

2pre-trained on the laion2b_s34b_b79k dataset
3Foundation3, PoetrySoup4, best-poem.net and poets.org

linguistic metaphor retrieval, and Task 3, lin- 291

guistic metaphor-to-visualization matching. 292

For our retrieval tasks, we report recall at k = 293

1, 5, 10, 20 as well as the average rank of the correct 294

text or image among all candidate texts or images 295

(where lower is better). For our matching task, 296

we report how often the correct visualization is 297

chosen over the incorrect visualization. We provide 298

examples of each evaluation task in Figure 4. 299

5 Results and Discussion 300

Abstraction % with Grounding ≥ 3

Captions at d = 1 0.9

Captions at d = 2 0.87

Captions at d = 3 0.93

Captions at d = 4 0.77

Captions at d = 5 0.92

Table 1: The percentage of our creative captions at
each degree of abstraction that our annotators judge as
exhibiting visual grounding ≥ 3 on our 4-point Likert
scale. Our captions demonstrate consistent alignment
with their paired images, despite increasing abstraction.

5.1 How good are our creative captions? 301

In Table 1, we show the results of our first human 302

evaluation task, rating the visual grounding of our 303

creative captions. While annotators rated captions 304

on a four-point Likert scale, we bucket the result- 305

ing labels into two groups, (1, 2), indicating poor 306
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Caption Type Average Rank
Original Captions 1.47

Captions at d = 1 2.69

Captions at d = 2 3.39

Captions at d = 3 4.03

Captions at d = 4 4.50

Captions at d = 5 4.98

Table 2: The average abstraction rank (out of 6) for
MSCOCO’s original and our creative captions. We find
that as our specified degree of abstraction increases,
annotators rank the resulting creative captions as ex-
hibiting more abstraction, validating our method.

visual grounding, and (3, 4) indicating acceptable307

visual grounding. First, we note we observe a Fleiss308

κ of 0.303, indicating fair agreement, for this vi-309

sual grounding assessment as calculated from three-310

way annotation on 20% of our tasks (Fleiss, 1971).311

When considering our overall results, we can see312

that our creative captions demonstrate consistent313

visual alignment with their images – in fact, at ab-314

straction degrees 1, 3 and 5, this is true of more315

than 90% of our creative captions. Our method316

for mining contextualized associations and generat-317

ing creative captions generally avoids introducing318

errors and hallucinations.319

In Table 2, we show the results of our second320

human evaluation task, ranking an image’s cap-321

tions (its original caption and a creative caption322

sampled for each of our five degrees of abstraction)323

in order of increasing abstraction. We collect three324

annotations for 20% of these tasks and observe a325

Fleiss κ of 0.283, indicating fair agreement, espe-326

cially given its subjective nature. When consider-327

ing our overall results, we can see the average rank328

of captions at each degree of abstraction reflects the329

intended abstraction, even relative to one another.330

Captions at smaller degrees have lower rank than331

captions at larger degrees. Original captions re-332

ceive the lowest average rank of 1.47 and captions333

at d = 5 receive the highest average rank of 4.98.334

Our method is capable of consistently generating335

increasingly abstract creative captions.336

5.2 Does OpenCLIP agree?337

Our human evaluation makes clear that our syn-338

thetic creative captions are both visually grounded339

and exhibit recognizably increasing abstraction.340

Does the original OpenCLIP model agree?341

To test this, for each image in our corpus, we342

calculate its similarity with its original caption and343

its similarity with its creative captions. Addition- 344

ally, as a baseline, we calculate its similarity with 345

captions containing obvious hallucinations from 346

the FOIL dataset (Shekhar et al., 2017). 347

On the left side of Figure 5, we plot how often 348

the original captions score higher than 1) our cre- 349

ative captions at increasing degrees of abstraction 350

and 2) the FOIL captions. As the degree of ab- 351

straction increases, OpenCLIP favors the original 352

captions more and more. In fact, at our highest 353

degree of abstraction, OpenCLIP prefers the origi- 354

nal caption 80% of the time, nearly the same rate 355

at which it prefers the original caption over the 356

hallucinatory captions from FOIL. This suggests a 357

strong preference for literal over creative captions. 358

On the right side of Figure 5, we plot how often 359

hallucinatory FOIL captions score higher than 1) 360

original captions and 2) our creative captions at 361

increasing degrees of abstraction. As the degree of 362

abstraction increases, it becomes more and more 363

difficult for OpenCLIP to distinguish between ob- 364

vious hallucinations and abstraction. In fact, at our 365

highest degree of abstraction, OpenCLIP does no 366

better than random guessing. This shows that stan- 367

dard image-text datasets result in models unable to 368

differentiate between hallucination and abstraction. 369

5.3 Do contextualized associations improve 370

downstream creative understanding? 371

In Tables 3, 4 and 5, we compare the performance 372

of OpenCLIP against the performance of our model 373

fine-tuned on our synthetic captions at all five de- 374

grees of abstraction across our selected creative 375

understanding tasks. In all three tasks, our creative 376

captions yield significant improvements over the 377

baseline despite no task-specific fine-tuning. 378

On poetry-to-image retrieval (Table 3), our fine- 379

tuned variant improves over the baseline in both 380

recall and average rank when the degree of abstrac- 381

tion is set to either 4 or 5, with 5, our highest degree 382

of abstraction, exhibiting the best performance. 383

On visual metaphor-to-textual metaphor re- 384

trieval, both zero-shot CLIP and our fine-tuned 385

variant struggle to achieve reasonable recall values. 386

However, when we plot the average rank of the 387

correct textual metaphor, we see that increasing 388

the degree of abstraction in our fine-tuned visual 389

encoder yields consistent reductions. 390

On linguistic metaphor-to-visualization match- 391

ing (Table 5), our fine-tuned variant improves over 392

the baseline at every degree of abstraction. Inter- 393

estingly, we observe the largest improvement at 394
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Figure 5: Plots comparing OpenCLIP’s scores for original (left) and hallucinatory (right) captions against its scores
for our creative captions. OpenCLIP favors literalism and cannot distinguish between hallucination and abstraction.

Model k = 1 (↑) k = 5 (↑) k = 10 (↑) k = 20 (↑) Avg Rank (↓)
OpenCLIP 0.1505 0.3089 0.4033 0.5043 70.46
OpenCLIP-FT (d = 1) 0.1454 0.3086 0.3934 0.4977 72.37
OpenCLIP-FT (d = 2) 0.1446 0.3048 0.3913 0.4877 72.37
OpenCLIP-FT (d = 3) 0.1485 0.3106 0.3935 0.4912 72.41
OpenCLIP-FT (d = 4) 0.1591 0.3233 0.4150 0.5147 68.96∗

OpenCLIP-FT (d = 5) 0.1624 0.3341 0.4162 0.5222 67.60∗

Table 3: Task 1: Poetry-to-Image Retrieval. Recall@k and average rank of OpenCLIP and a variant fine-tuned
on our creative caption corpus at increasing degrees of abstraction. At degrees 4 and 5, our fine-tuned model
outperforms the baseline across all metrics. * indicates significance at α = 0.05.

Model Avg Rank (↓)
OpenCLIP 3288.9
OpenCLIP-FT (d = 1) 3262.6
OpenCLIP-FT (d = 2) 3266.4
OpenCLIP-FT (d = 3) 3264.2
OpenCLIP-FT (d = 4) 3253.4
OpenCLIP-FT (d = 5) 3244.5∗

Table 4: Task 2: Visual Metaphor-to-Linguistic
Metaphor Retrieval. The average rank of OpenCLIP
and a variant fine-tuned on our creative caption corpus
at increasing degrees of abstraction. As abstraction in-
creases, our model’s average rank improves over the
baseline. * indicates significance at α = 0.05.

a relatively low degree of abstraction (d = 1), a395

break with prior trends.396

In making sense of the differences among our397

model’s performances across all three tasks, we398

hypothesize that one important source of varia-399

tion could be the composition of our evaluation400

data. Much like our synthetic corpus, which con-401

tains creative captions paired with ordinary images,402

MultiM-Poem contains figurative language paired 403

with photographs from Flickr. This poses a smaller 404

domain shift than HAIVMet, where creative lan- 405

guage is paired with creative imagery. Neverthe- 406

less, given the improvements exhibited by our fine- 407

tuned model and the relative ease of applying our 408

corpus generation technique to other image cor- 409

pora, we view our results as strong evidence for the 410

value of our mined associations in adapting vision- 411

language understanding to creative domains. 412

6 Conclusion & Future Work 413

In this work, we introduce a scalable method for 414

mining contextualized associations for visual ele- 415

ments that can be applied to any corpus of unla- 416

beled images. We use these associations to produce 417

a new dataset of increasingly abstract creative cap- 418

tions for MSCOCO. Both human judgment and au- 419

tomatic evaluation across three challenging image- 420

language tasks confirm the value of this method 421

for enabling creativity understanding. In the future, 422

we plan to extend this study beyond English and 423

7



Model Name % preference for DALL·E 2 (CoT) ↑
OpenCLIP 0.43
OpenCLIP-FT (d = 1) 0.59∗

OpenCLIP-FT (d = 2) 0.47
OpenCLIP-FT (d = 3) 0.54∗

OpenCLIP-FT (d = 4) 0.49
OpenCLIP-FT (d = 5) 0.50

Table 5: Task 3: Linguistic Metaphor-to-Visualization Matching. Preference for the correct visualization
of OpenCLIP and a variant fine-tuned on our creative caption corpus at increasing degrees of abstraction. All
abstraction settings improve over the baseline. * indicates significance at α = 0.05.

Western associations – recent work has shown that,424

in some cases, VLMs exhibit culturally specific425

regularities when prompted in different languages426

(Ananthram et al., 2024). It is our hope to leverage427

this to mine multicultural associations at scale.428

7 Limitations429

While our method for mining visual associations430

and generating creative captions is easy to scale,431

we acknowledge its reliance on gpt4o-mini, a paid432

closed source model. Additionally, we use Molmo433

to generate both the detailed descriptions and the434

creative descriptions of the images in our corpus.435

LLMs and VLMs are both prone to hallucinations436

and biases which could be reflected and reinforced437

by both our method and our dataset. Moreover,438

there is room for improvement across all evalua-439

tion tasks which can be achieved through using440

additional datasets including more variation in im-441

ages and captions as well as other prompting tech-442

niques that have not been explored in this work.443

Finally, our contextualized associations are lim-444

ited to the English language and likely reflect a445

Western-centric perspective. However our methods446

allows for scalability in other languages which can447

be conducted in future work.448
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A Appendix610

A.1 Computation and Model Specifics611

The base CLIP model has around 86 million612

parameters. Our CLIP model variant was trained613

on 1 NVIDIA RTX A6000 GPU for 1 epoch614

taking roughly 3 hours. We used a learning rate of615

1e-4 and torch.optim.Adam optimizer. We use616

early stopping and lowest validation loss with a617

patience = 3 on our synthetic corpus validation618

dataset to determine the best model.619

620

The specific version of Spacy we use is spacy621

3.8.4622

623

We use the OpenAI batch API to generate our624

associations. The specific hyperparemters we use625

apart from defaults is max_tokens: 1000626

627

The hyperparameters we use for628

Molmo is temperature=0.7, top_p=0.9,629

max_tokens=150, n=1.630

A.2 Generating Abstracted Captions631

A.2.1 Detailed Caption Prompt632

Below is the prompt used for generating the633

detailed caption of a given image.634

635

""USER: <image> Please generate a detailed636

caption of this image. ASSISTANT:"637

A.2.2 Mining Associations Prompt638

We prompt GPT-4o-mini using the batch API639

with the following system prompt where {con-640

text_caption} refers to the detailed caption641

generated for an image and {original_caption}642

refers to the MSCOCO caption of the image:643

644

"For a given list of words, generate a new list645

for each word using the same part of speech. The646

words should follow a semantic abstraction scale647

where distance increases from near-synonyms to648

abstract concepts.649

Approach:650

1. Distance 1 – Near Synonyms: Close in mean-651

ing or form (e.g., Ball → Sphere). 2. Distance652

2 – Slight Abstraction: Slightly broader category653

(e.g., Ball → Toy). 3. Distance 3 – Broader Con-654

text: Indirectly linked through situational and emo-655

tional context (e.g., Ball → Game). 4. Distance 4 –656

Conceptual Association: More abstract or theme-657

related (e.g., Ball → Competition). 5. Distance 5 –658

Full Abstraction: Highly abstract or metaphorical 659

(e.g., Ball → Journey). 660

Generate three words each for distances 1 to 5. 661

Generated words should fit into the overall emo- 662

tional and situational context of this context cap- 663

tion: {context_caption} 664

Generated words, when replaced with the origi- 665

nal word in this short caption {original_caption}, 666

should be semantically correct. 667

Do not generate the original word in the new gen- 668

erations. Use JSON format: the key is the original 669

word, and the value is a dictionary with distances 670

as keys and lists of generated words as values." 671

A.2.3 Abstracted Caption Prompt 672

Below is the prompt used to obtain creative 673

captions for an image for each of its salient objects 674

and associations generated. {all_words} contain 675

the salient words for the image with the original 676

word replaced with the association word at distance 677

{level}. {new_word} is the association word at 678

distance {level}. <image> is the input image 679

680

"USER: <image> Write a short caption 681

grounded in this image and semantically correct, 682

using fewer than 10 words. Choose some or all 683

of these words: {all_words} to best represent the 684

image. 685

Steer the caption’s style toward the abstraction 686

level _label_ following these rules: 687

- Distance 1: Near Synonyms – Close in mean- 688

ing to the original image - Distance 2: Slight Ab- 689

straction – Slightly more abstract than the image 690

- Distance 3: Broader Context – Indirectly linked 691

through situational or emotional context - Distance 692

4: Conceptual Association – More abstract, theme- 693

related to the image - Distance 5: Full Abstraction 694

– Highly abstract or metaphorical 695

The caption MUST include the word: 696

{new_word}. ASSISTANT:" 697

A.3 Evaluation 698

A.3.1 Significance Tests 699

We use pairwise t-tests to report significance 700

results on the results of task 3 involving a 701

pairwise preference of images. Specifically we use 702

scipy.stats ttest_rel implementation 703

704

We use wilcoxin tests to report significance re- 705

sults on task 1 and 2 involving average ranks of the 706

correctly retrieved image/text. Specifically we use 707

scipy.stats wilcoxon implementation 708
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A.3.2 Annotators and Annotation Interfaces709

We do not report demographics of annotators to710

maintain full anonymity. Collected annotator data711

are fully anonymized. Annotators were informed712

of their annotations would be used for research713

purposes. Below are the instructions and interfaces714

annotators used to complete the annotations tasks.715
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Figure 6: Instruction given to annotators for task 1 of Human Evaluation

Figure 7: Instruction given to annotators for task 1 of Human Evaluation
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Figure 8: Example interface for one annotation from task 1
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Figure 9: Example interface for one annotation from task 1
14


	Introduction
	Related Work
	Conceptual Associations and Creativity
	Synthetic Image-Text Data

	Generating Abstracted Captions
	Mining Contextualized Associations
	Generating Captions

	Experiments
	Corpus Generation
	Human Evaluation
	Automatic Evaluation

	Results and Discussion
	How good are our creative captions?
	Does OpenCLIP agree?
	Do contextualized associations improve downstream creative understanding?

	Conclusion & Future Work
	Limitations
	Appendix
	Computation and Model Specifics
	Generating Abstracted Captions
	Detailed Caption Prompt
	Mining Associations Prompt
	Abstracted Caption Prompt

	Evaluation
	Significance Tests
	Annotators and Annotation Interfaces



