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Abstract
Dialogue summarization is receiving increas-
ing attention from researchers due to its ex-
traordinary difficulty and unique application
value. We observe that current dialogue sum-
marization models have flaws that may not be
well exposed by frequently used metrics such
as ROUGE. In our paper, we re-evaluate 18
categories of metrics in terms of four dimen-
sions: coherence, consistency, fluency and rel-
evance, as well as a unified human evaluation
of various models in dialogue summarization
for the first time. Some noteworthy trends
which are different from the conventional sum-
marization tasks are identified. We will release
DialSummEval, a multi-faceted dataset of hu-
man judgments containing the outputs of 14
models on SAMSum.1

1 Introduction

Neural network based approaches and sizable
datasets have led to significant progress in
researches towards conventional summarization
tasks such as news and scientific papers (Lin and
Ng, 2019). Compared with conventional sum-
marization tasks, dialogue summarization has re-
ceived increasing attention from researchers due
to its great difficulty and unique application value
(Feng et al., 2021a). With the proposal of dialogue
summary datasets such as SAMSum (Gliwa et al.,
2019), DialogSum (Chen et al., 2021) and Medi-
aSum (Zhu et al., 2021), a number of models for
automatic generation of dialogue summaries have
emerged (Feng et al., 2021b; Liu and Chen, 2021;
Zou et al., 2021; Qi et al., 2021; Chen and Yang,
2020; Chen and Yang, 2021; Zhao et al., 2020; Liu
et al., 2021).

There is no denying that these studies have
made promising progress, but it remains a chal-
lenge to evaluate these advances comprehen-
sively. Current studies generally use the SAMSum

1Code and data will be available at https://github.
com/kite99520/DialSummEval

dataset and adopt ROUGE (Lin, 2004), an n-gram-
based automatic evaluation metric using reference
summaries, as the overall evaluation criterion for
summary quality, complemented by manual eval-
uation. Schluter (2017) and Graham (2015) illus-
trate the limitations of ROUGE in evaluating sum-
marization tasks. Also the manual evaluation pro-
tocols vary from one research to another based on
our observations.

We argue that the inadequate evaluation mech-
anism may have become a major obstacle to the
progress of dialogue summarization researches.
Many studies, such as Chen and Yang (2020)
and Tang et al. (2021), have pointed out that the
current dialogue summarization models still have
many shortcomings, such as wrong references, in-
correct reasoning and improper gender pronouns,
and ROUGE may not reflect these problems ef-
fectively. For example, Gabriel et al. (2021)
note that ROUGE-1 and ROUGE-L fail to ac-
curately measure factual inconsistency across do-
mains. Our case study in Table 1 also illustrates
this point. However, it is impractical to perform
frequent time-consuming and costly manual eval-
uation. The alternative is to introduce or propose
more reliable automatic evaluation metrics to eval-
uate the models in a more comprehensive and fine-
grained manner.

Although there are automatic evaluation met-
rics for measuring the quality of all aspects of
summaries on conventional summarization tasks,
especially for factual consistency (Huang et al.,
2021), it is difficult to guarantee that they will
still perform well on dialogue summarizarion. Re-
cently proposed automatic metrics for evaluating
generic natural language generation tasks such as
BERTScore (Zhang* et al., 2020), BARTScore
(Yuan et al., 2021) have also not been experi-
mented on dialogue summarization. The high ab-
straction level, low extraction rate, and the re-
quirement for complex reasoning power of the

https://github.com/kite99520/DialSummEval
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Dialogue Reference Summary Generated Summary R-1 R-2 R-L
Kirsten: Youth group
this Friday, don’t be late.
Alex: What time?
Kirsten: 7 pm. We’re going
bowling, so we’ll meet up
and then all go together.
Alex: Cool. See you.
Kirsten: Bye

Kirsten reminds Alex
that the youth group
meets this friday at
7 pm and go bowling.

Kirsten is going
bowling with her
youth group this
Friday at 7 pm.

0.69 0.44 0.61

Ola: Hey running late
Ola: I should be free by 8
Kurt: Sure no prob, call me

Ola should be free
by 8. Kurt wants her
to call him.

Ola will be late.
She should be
free by 8. Kurt
will call her.

0.69 0.42 0.67

Table 1: Case study of some outputs of BART on SAMSum. The ROUGE values of these outputs have substantially
exceeded the state of the art on SAMSum. The summary in the first row fails in relevance, and the second has a
factual error.

dialogue summarization task present new chal-
lenges to automatic evaluation metrics. There
have been a number of manual evaluation datasets
and analytical studies for conventional summariza-
tion tasks ((Dang and Owczarzak, 2008); Fabbri
et al., 2021b; Bhandari et al., 2020), but very little
work has been done on systematic analysis of di-
alogue summarization models and evaluation met-
rics. Our work will fill the gap in this area and
includes the following contributions: 1) We iden-
tify evaluation problems in the field of dialogue
summarization and point out the urgent need of au-
tomatic evaluation metrics that better adapt to dia-
logue summarization. 2) We collect and provide
a sizable, multi-faceted dataset of manual evalua-
tions for dialogue summarization, which contains
the output of 14 models, and the dataset will be
released. 3) We re-evaluate the performance of 18
types of automatic evaluation metrics on dialogue
summarization. 4) We evaluate a variety of dia-
logue summarization models (extractive, abstrac-
tive, and recently based on pre-trained language
models) in a unified manner.

2 Related Work

Meta-Evaluation with Human Judgments Au-
tomatic evaluation Metrics such as ROUGE (Lin,
2004) and BERTScore (Zhang* et al., 2020))
were compared with other metrics when proposed.
However, they are basically not using the dialogue
summarization dataset as an experimental corpus,
and rarely provide new human judgments data.
Bhandari et al. (2020) used pyramid (Nenkova

and Passonneau, 2004), a widely used human eval-
uation method on several conventional summa-
rization datasets to obtain relevance scores for
some of the system outputs and re-evaluated the
metrics in 6 categories. Similarly, Fabbri et al.
(2021b) used CNN/DailyMail dataset (Hermann
et al., 2015) and the output of some models for hu-
man evaluation covering four facets of relevance,
consistency, fluency, and coherence, and then re-
evaluated the metrics in 14 categories. None of
these involved dialogue summarization datasets.
Pagnoni et al. (2021) made a careful categoriza-
tion of factual errors and benchmarked factuality
metrics using human annotations they collected on
CNN/DailyMail and XSum dataset (Narayan et al.,
2018). Notably, Gabriel et al. (2021) is one of
the few current studies using the dialogue summa-
rization dataset SAMSum (Gliwa et al., 2019) for
meta-evaluation, but it focuses on factual consis-
tency and selects a small number of metrics.

Analysis and Evaluation for Dialogue Sum-
marization Models Tang et al. (2021) and Chen
and Yang (2020) sampled the output of models
on SAMSum and analyzes the error types when
proposing a new model. Due to the different man-
ual evaluation protocols and the small number of
models included, it is difficult to comprehensively
compare the strengths and weaknesses of differ-
ent models. Khalifa et al. (2021) designed sev-
eral tricks to address the special challenges in dia-
logue summarization and analysized their effects,
such as using name substitution to cope with the
presence of multiple speakers in dialogues. Zhang



et al. (2021) focused on the problem of lengthy
input and relevant information location in long di-
alogue summarization, and compared the perfor-
mance of some models and strategies. No manual
evaluation was involved in these studies.

3 Preliminaries

In this section, we introduce the involved dataset,
metrics and models.

3.1 Dataset

SAMSum (Gliwa et al., 2019) is the first man-
ually annotated, high-quality chat summarization
dataset, containing over 16k dialogues. We use
it in this study as it is most widely used and has
greatly promoted the research in the field of dia-
logue summarization, and we are able to collect
the outputs of various models on this dataset.

3.2 Evaluation Metrics

We selected a number of evaluation metrics that
are frequently used on summarization or other nat-
ural language generation tasks. Some are for over-
all quality; others are specific to a particular aspect.
Some require reference summaries or source doc-
uments; some only need the summary itself. Here
is a brief categorization and description.

Metrics based on n-gram overlap include:
ROUGE (Lin, 2004) is the most widely used

automatic evaluation metric in summarization. Re-
searchers mainly adopt ROUGE-1, ROUGE-2 and
ROUGE-L, which measure the unigram-overlap,
bigram-overlap and longest common sequence be-
tween two texts respectively. 2

BLEU (Papineni et al., 2002) is the primary
evaluation metric for machine translation. It calcu-
lates n-gram overlap between texts using precision
scores and includes a brevity penalty. 3

METEOR (Banerjee and Lavie, 2005) com-
putes an alignment by mapping unigrams in two
texts, based on surface forms, stemmed forms, and
meanings.

CHRF (Popović, 2015) computes character
based n-gram overlap between two texts. 4

2https://github.com/Diego999/py-rouge
3Used code at https://github.com/Maluuba/

nlg-eval, the same for Embedding average, Vector ex-
trema, Greedy matching and METEOR, provided by (Sharma
et al., 2017)

4https://github.com/m-popovic/chrF

Metrics based on pre-trained language models
include:

BERTScore (Zhang* et al., 2020) measures the
soft-overlap between two texts at token level using
contextual embeddings from BERT. 5

MoverScore (Zhao et al., 2019) applies the se-
mantic distance between two texts at n-gram level
using n-gram embeddings pooled from BERT. 6

BARTScore (Yuan et al., 2021) treats evalua-
tion as a nature language generation task and as-
sumes that when the quality of generated text is
better, the conditional language model has a higher
probability of generating it from the source text
or the reference, or is more likely to generate the
reference from it. It can be flexibly applied to
evaluation of text from different perspectives us-
ing BART. 7

BLANC (Vasilyev et al., 2020) is a reference-
less metric. It hypothesizes that a good summary
is beneficial for a pre-trained language model
to conduct language understanding tasks on the
source document. Specifically, it measures the per-
formance boost of the masked language modeling
for BERT utilizing the summary in two different
ways. 8

PPL, namely perplexity, is often used to evalu-
ate the quality of a language model or the fluency
of an utterance. We adopt GPT-2 (Radford et al.,
2019) as the language model for computing the
perplexity for the whole summary. 9

Metrics based on word embeddings include:
SMS (Clark et al., 2019), namely Sentence

Mover Similarity, extends Word Movers Distance
(Kusner et al., 2015) to measure the distance be-
tween two texts which are represented as a bag of
sentence embeddings. 10

Embedding average (Landauer and Dumais,
1997) is an embedding based metric computing
the cosine similarity between the embeddings of
two texts. A sentence-level embedding is repre-
sented by averaging the embeddings of the words
composing the sentence.

Vector extrema (Forgues et al., 2014) is also an
embedding based metric similar to Embedding av-

5https://github.com/Tiiiger/bert_score
6https://github.com/AIPHES/

emnlp19-moverscore
7https://github.com/neulab/BARTScore
8https://github.com/PrimerAI/blanc
9https://huggingface.co/docs/

transformers/perplexity
10https://github.com/eaclark07/sms
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https://github.com/Tiiiger/bert_score
https://github.com/AIPHES/emnlp19-moverscore
https://github.com/AIPHES/emnlp19-moverscore
https://github.com/neulab/BARTScore
https://github.com/PrimerAI/blanc
https://huggingface.co/docs/transformers/perplexity
https://huggingface.co/docs/transformers/perplexity
https://github.com/eaclark07/sms


erage. The metric computes a sentence-level em-
bedding by taking the most extreme value of the
embeddings of the words composing the sentence
for each dimension of the embedding.

Greedy matching (Rus and Lintean, 2012)
is another embedding based metric. The metric
does not compute a sentence-level embedding. It
directly compares the embeddings of words in the
two sentences using a greedy matching algorithm
to calculate similarity.

Metrics based on question-answering include:
FEQA (Durmus et al., 2020) employs a BERT-

based question-answering model to answer ques-
tions using source document. Questions are gener-
ated by a fine-tuned BART model using generated
summaries with masked named entities as inputs.
The metric reports F1 scores against the gold an-
swer, which are often regarded as a measure of
factual consistency. 11

SummaQA (Scialom et al., 2019) is also a QA-
based metric. Unlike FEQA, it generates questions
from source documents instead of summaries to
be evaluated and then uses summaries to answer
them. The F1 overlap score and QA-model confi-
dence are reported. 12

QuestEval (Scialom et al., 2021) is another a
QA-based metric. This metric can be considered
as a combination of FEQA and SummaQA. It
takes into account the scores obtained from both
styles. For comparison purposes, We use the
reference-less mode.13

Metrics based on entailment classification in-
clude:

FactCC (Kryscinski et al., 2020) is a metric
based on entailment classification. We follow the
way Pagnoni et al. (2021) used it. Each sentence of
the summary is fed into the classifier together with
the document to determine whether the facts are
consistent, and the proportion of consistent sen-
tences is used to indicate how consistent the sum-
mary is. 14

DAE (Goyal and Durrett, 2020; Goyal and Dur-
rett, 2021) is an entailment classification metric
based on dependencies. We use it in a similar way

11https://github.com/esdurmus/feqa
12https://github.com/ThomasScialom/

summa-qa
13https://github.com/ThomasScialom/

QuestEval
14https://github.com/salesforce/factCC

to FactCC. When a sentence cannot be parsed by
the metric, we default it factually inconsistent. 15

3.3 Summarization Models
We select some representative models and get the
outputs of them on the test set of SAMSum. We
choose LEAD-3 and LONGEST-3 as representa-
tives of the simple extractive approaches. PGN
(See et al., 2017) and Transformer (Vaswani et al.,
2017) are selected as representatives of the earlier
neural summarization models. For generic pre-
trained generative models, we use BART (Lewis
et al., 2020), PEGASUS (Zhang et al., 2020) and
UniLM (Dong et al., 2019). We retrain these mod-
els above to obtain the outputs and the automatic
evaluation results are close to Gliwa et al. (2019)
and Wu et al. (2021) in default settings. For mod-
els specifically designed for dialogue summariza-
tion, we choose CODS (Wu et al., 2021), Con-
voSumm (Fabbri et al., 2021a), MV-BART (Chen
and Yang, 2020), PLM-BART (Feng et al., 2021c),
Ctrl-DiaSumm (Liu and Chen, 2021), S-BART
(Chen and Yang, 2021) and the outputs are all pro-
vided by their authors. We also regard the refer-
ence summary as a kind of model output.

4 Data Annotation

4.1 Annotation Setup
Since human evaluation is expensive and time-
consuming, we decide to randomly sample 100 di-
alogues from the test set of SAMSum and evaluate
the summaries generated by all models on these di-
alogues. To comprehensively evaluate each metric
and model, we perform human evaluation in four
aspects, as in Kryscinski et al. (2019):

Coherence measures the quality of all sen-
tences in the summary as a whole. It focuses on
whether the summary is coherent and natural.

Consistency measures how well the summary
aligns with the dialogue in facts. It focuses on
whether the summary contains factual errors.

Fluency measures the quality of individual sen-
tences in the summary compared to Coherence. It
focuses on whether the sentences are well-written
and grammatically correct.

Relevance measures how well the summary
captures the key points of the dialogue. It focuses
on whether all and only the important aspects are
contained in the summary.

15https://github.com/tagoyal/
factuality-datasets
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To ensure the quality of the annotation, we tried
to annotate some of the data ourselves at the be-
ginning to judge the difficulty of the task and the
approximate time spent.

4.2 Annotation Process

We initially tried to annotate the data using crowd-
sourcing platforms. We published the annotation
task on Amazon Mechanical Turk 16. The in-
terface contained instructions and definitions of
the four aspects. A dialogue and a correspond-
ing summary were included in the interface, and
the summaries of different models on the same di-
alogue were presented to the annotators in a se-
quence to facilitate comparison. For each dimen-
sion/aspect, annotators were asked to rate the sum-
mary on a Likert scale from 1 to 5. Each sum-
mary was evaluated by 5 different annotators, and
For each dimension we would receive a total of
100× 14× 5 = 7000 human annotations. The an-
notation was done quickly in one day, but the qual-
ity was not satisfactory. We calculated the average
score of each model in each aspect based on these
annotation data and found that the scores of the
models are close in each dimension, which is not
in the accordance with the reality. For example, in
terms of consistency, the reference summary and
the extractive approaches should have had a defi-
nite advantage, but this failed to be reflected from
the data. The result is shown in Table 5. For relia-
bility reasons, we do not use these annotations for
our analysis.

Then, we decided to recruit annotators from the
school forum who are required to be capable of
reading daily conversations and articles in English
fluently. We recruited three annotators, using a
similar annotation interface and approach as in
the crowd-sourcing platforms. These annotators
were college students and they are fluent in En-
glish. The differences with the crowd-sourcing
platform annotation are as follows: 1) For a stu-
dent who wanted to participate in the annotation,
we would ask him to annotate all models on the
first 10 conversations (10×14 = 140 annotations),
and let her/him continue the annotation only when
these annotation results were checked by us to con-
firm that the annotator had understood the task
correctly and could finish the annotation respon-
sibly. Otherwise, we paid the annotator directly
for this part and terminated his annotation task. 2)

16https://www.mturk.com

We required each annotator to annotate all data
(100 × 14 = 1400 annotations) to ensure the con-
sistency within the annotator. 3) During the anno-
tation process, we kept in touch with the annota-
tors via email or instant messaging app to answer
their questions at any time.

It took around 10 days to finish the annotation.
We received 100 × 14 × 3 = 4200 annotations
for each perspective. For each aspect of each sum-
mary, if two scores were the same and the other
was different from them, we considered the differ-
ent one as noise. For each dimension, we removed
the noise separately and calculated the the Krip-
pendorff’s alpha coefficient (Krippendorff, 2011).
We found the inter-annotator interval metric to
be within an acceptable range - from 0.5621 to
0.7564, as detailed in Table 2. The raw anno-
tated data will be released and we use the cleaned
data for analysis. At last, we use the average of
the cleaned data to represent the human evaluation
score of an summary on a dimension.

5 Metric Evaluation

In this section, we will introduce several defini-
tions in meta-evaluation and re-evaluate the met-
rics mentioned in Section 3.2.

5.1 Task Formulation

As mentioned by Bhandari et al. (2020), there are
two common ways to measure the correlation of
automatic evaluation metrics to manual evaluation:
system-level and summary-level.

Assuming there are N dialogues, the i-th dia-
logue is represented as di. For a dialogue di, there
are J summaries generated by J models, and we
denote each of them as sij , j = 1 · · · J . There
are K evaluation metrics (or human evaluation)
in total, and mk refers to an automatic evaluation
metric or human evaluation of a certain dimension.
mk(sij) means the score of k-th metric towards
a pair of dialogue and summary (di, sij). We use
R(mi,mj) to denote the correlation coefficient be-
tween two metrics mi and mj .

System-level correlation is defined as follows.
The corresponding p-value which indicates statis-
tical significance can be obtained:

https://www.mturk.com


Coherence Consistency Fluency Relevance
cleaned 3161 3360 3050 3439
total 4200 4200 4200 4200
Krippendorff’s alpha 0.7564 0.6709 0.6782 0.5621

Table 2: The inter-annotator agreement for each dimension.

Rsys(mp,mq) = R(

[
1

N

N∑
i=1

mp(si1), · · · ,
1

N

N∑
i=1

mp(siJ)],

[
1

N

N∑
i=1

mq(si1), · · · ,
1

N

N∑
i=1

mq(siJ)])

Summary-level correlation is defined as follows,
and the p-value cannot be derived here because the
Summary-level correlation is an average value:

Rsum(mp,mq) =
1

N

N∑
i=1

R(

[mp(si1), · · · ,mp(siJ)],

[mq(si1), · · · ,mq(siJ)])

5.2 Discussion

Comparing the performance of various metrics re-
veals some trends in Table 3. In each dimension,
metrics which are strongly correlated with human
judgments exist, but few metrics show significant
strengths in all four dimensions. Of all the met-
rics, QuestEval has the most comprehensive ca-
pabilities at the system level. Generally metrics
that perform better on coherence and fluency per-
form worse on consistency and relevance, and vice
versa. This can be attributed to the definition of the
dimensions, i.e. there is some correlation between
the four dimensions themselves, which is shown
in Figure 4. In all dimensions, automatic evalu-
ation metrics based on pre-trained language mod-
els generally outperform metrics based on n-gram
overlap and context-independent word embedding.
Among them, the recently proposed BARTScore
and the increasingly popular QA-based metrics
perform the best. This suggests that both direc-
tions have the potential to be explored in terms of

evaluation for dialogue summarization. Across di-
mensions, almost all metrics correlate better with
human judgments at the system level than at the
summary level, and both showed good agreement
with each other. This indicates that the summary-
level correlations are also worth referring to when
enough data are not available for system-level
analysis. In addition, metrics such as BLEU and
CHRF, which are frequently used in other natural
language generation tasks (e.g., machine transla-
tion, dialogue, etc.), do not show advantages on
dialogue summarization.

The characteristics presented by the automatic
evaluation metrics on the dialogue summarization
differ from those of the conventional summariza-
tion tasks. For ROUGE, we find that increasing
the size of n in ROUGE-n is not better in almost all
dimensions, which is different from the findings
of Rankel et al. (2013) and Fabbri et al. (2021b).
The ability of ROUGE to reflect content selec-
tion, i.e., relevance, as we usually believe, is also
questionable. Compared to the results of Fabbri
et al. (2021b), metrics based on n-gram overlap
such as ROUGE and CHRF perform worse on dia-
logue summarization, while some metrics that use
source documents such as BLANC perform better.
We need to focus on the limitations of ROUGE
and the role of the source dialogues in evaluating
dialogue summaries.

We have also observed some interesting phe-
nomena. Entailment classification metrics such
as FactCC and DAE outperform many metrics
in terms of consistency, but not as well as
BARTScore and QA-based metrics. This may be
due to the large gap between the corpus used in
training and dialogues, and the need to slice the
summaries by sentence when using them. FEQA,
which is designed for factual consistency, however,
performs best in coherence and fluency, and rather
poorly in consistency and relevance. Comparing
its performance with QuestEval and SummaQA,
generating questions from the original dialogue
may be more reliable in measuring consistency,
which corroborates with the points of Gabriel et al.



Coherence Consistency Fluency Relevance
Metrics sys sum sys sum sys sum sys sum
ROUGE-1 0.59∗ 0.30 0.42 0.33 0.58∗ 0.27 0.40 0.30
ROUGE-2 0.47 0.26 0.41 0.32 0.43 0.22 0.41 0.30
ROUGE-3 0.39 0.22 0.39 0.30 0.33 0.17 0.40 0.30
ROUGE-4 0.33 0.20 0.37 0.27 0.27 0.14 0.38 0.28
ROUGE-L 0.57∗ 0.32 0.39 0.30 0.54∗ 0.27 0.37 0.27
BERTScore-p 0.57∗ 0.37 0.11 0.10 0.50 0.31 0.08 0.06
BERTScore-r 0.43 0.21 0.45 0.38 0.42 0.20 0.46 0.39
BERTScore-f1 0.53 0.31 0.28 0.24 0.48 0.27 0.27 0.22
MoverScore 0.50 0.28 0.39 0.32 0.46 0.25 0.38 0.31
SMS 0.33 0.18 0.38 0.28 0.27 0.14 0.40 0.29
BARTScore-s-h + 0.09 0.08 0.62∗ 0.44 0.24 0.15 0.60∗ 0.42
BARTScore-h - 0.08 0.05 -0.09 -0.09 0.16 0.13 -0.18 -0.12
BARTScore-h-r 0.50 0.21 0.55∗ 0.46 0.51 0.21 0.56∗ 0.46
BARTScore-r-h 0.67∗∗ 0.42 0.31 0.23 0.67∗∗ 0.40 0.26 0.17
BLANC-help + -0.32 -0.21 0.54 0.45 -0.13 -0.08 0.60∗ 0.50
BLANC-tune + -0.37 -0.23 0.50 0.38 -0.18 -0.10 0.56∗ 0.43
FEQA + 0.82∗∗ 0.27 0.32 0.16 0.84∗∗ 0.26 0.25 0.10
QuestEval + 0.50 0.15 0.85∗∗ 0.39 0.75∗∗ 0.20 0.83∗∗ 0.37
SummaQA-conf + -0.08 -0.03 0.64∗ 0.39 0.03 -0.01 0.67∗∗ 0.39
SummaQA-fscore + -0.26 -0.11 0.58∗ 0.26 -0.06 -0.06 0.62∗ 0.29
PPL - -0.13 -0.01 -0.49 -0.30 -0.34 -0.15 -0.43 -0.30
CHRF 0.42 0.20 0.46 0.38 0.41 0.20 0.47 0.39
BLEU-1 0.35 0.15 0.34 0.29 0.30 0.13 0.36 0.30
BLEU-2 0.31 0.16 0.35 0.29 0.25 0.12 0.37 0.30
BLEU-3 0.28 0.15 0.33 0.27 0.21 0.11 0.36 0.28
BLEU-4 0.25 0.14 0.33 0.25 0.17 0.09 0.36 0.28
METEOR 0.37 0.19 0.42 0.35 0.33 0.17 0.43 0.35
Embedding average 0.43 0.17 0.17 0.20 0.52 0.22 0.15 0.19
Vector extrema 0.47 0.22 0.35 0.28 0.43 0.21 0.35 0.26
Greedy matching 0.43 0.21 0.35 0.31 0.43 0.21 0.36 0.30
FactCC + -0.29 -0.09 0.46 0.19 -0.23 -0.09 0.49 0.19
DAE + -0.24 -0.07 0.50 0.29 -0.15 -0.02 0.54∗ 0.29

Table 3: The correlation (Pearson’s r) of annotations computed on system level and summary level along four
quality dimensions between automatic metrics and human judgments. For evaluation, all metrics require at least
the summaries to be evaluated as input. Metrics with + indicate that the source dialogues are used, metrics with -
means no other input are required, others need to use the reference summaries. The five most-correlated metrics
in each column are bolded (For system level, **=significant for p ≤ 0.01, *=significant for p ≤ 0.05). We add
suffixes to distinguish the different variants of metrics. For BARTScore, h, r and s are abbreviations of hypothesises,
references and source dialogues respectively. BARTScore-s-h measure the probability to generate hypothesises
using source dialogues as inputs, while BARTScore-h measures the probability to generate hypothesises without
other inputs, and so on. For BLANC, BLANC-tune refers to the way of fine-tuning on a generated summary
and then conducting nature language understanding tasks on source dialogues, while BLANC-help refers to the
way of inferring with a generated summary concatenated together. For SummaQA, SummaQA-fscore measures the
average overlap between predictions and ground truth answers, and SummaQA-conf corresponds to the confidence
of the predictions.



Models Coherence Consistency Fluency Relevance R-1 R-2 R-L
reference summary 4.500 4.370 4.560 4.210 1.000 1.000 1.000
LONGEST-3 3.230 4.393 4.100 4.363 0.304 0.099 0.267
LEAD-3 4.370 4.093 4.200 3.843 0.309 0.092 0.296
PGN 3.568 2.103 3.657 2.293 0.356 0.126 0.357
Tranformer 3.403 1.573 3.673 1.650 0.329 0.098 0.319
BART 4.480 3.667 4.667 3.500 0.533 0.299 0.520
PEGASUS 4.590 3.730 4.640 3.417 0.508 0.254 0.476
UniLM 4.303 3.320 4.523 3.290 0.489 0.232 0.470
CODS 4.268 3.637 4.567 3.397 0.523 0.278 0.509
ConvoSumm 4.507 3.743 4.643 3.437 0.532 0.268 0.498
MV-BART 4.320 3.937 4.660 3.747 0.539 0.290 0.513
PLM-BART 4.360 3.717 4.680 3.500 0.533 0.284 0.507
Ctrl-DiaSumm 4.320 3.893 4.650 3.670 0.564 0.312 0.549
S-BART 4.227 3.307 4.520 3.337 0.497 0.244 0.472

Table 4: Human ratings of summaries along four evaluation dimensions using cleaned annotations from campus
recruitment. Scores are averaged over annotators for a summary, and scores are averaged over all summaries for a
model. The table is broken down by the approximate classification in Section 3.3. For comparison, ROUGE values
calculated using our sampling data are also shown. Please note that this may differ from the results in the original
literature. The two highest-rated models in each column are in bold.

(2021). It is surprising that metrics based on the
language model such as PPL, BARTScore-h per-
forms poorly in measuring both coherence and flu-
ency. The exact reasons for this need further inves-
tigation.

6 Model Evaluation

In each dimension, we evaluate each model men-
tioned in Section 3.3 using the average of the hu-
man evaluation scores of all summaries. Analyz-
ing Table 4, we conclude the following.

The reference summaries in SAMSum are not
perfect, and the annotators felt that they also con-
tained some factual inconsistencies compared to
the source dialogues, as well as important ele-
ments of the dialogues that were not all captured
by them. However, comparing the human evalua-
tion scores of the reference summaries in CNNDM
(Fabbri et al., 2021b), the quality is already supe-
rior.

Extractive models produce summaries that dif-
fer in style from abstractive models, and many
conversations contain ungrammatical utterances,
which can affect the reading experience and im-
pair their fluency and coherence. In particular,
LONGEST-3, which extracts some potentially dis-
continuous sentences from dialogues, has low co-
herence. However, since they do not modify the
content, they still perform well in terms of con-

sistency. Since the average length of dialogues
in SAMSum is small, extracting a few sentences
from it can generally include important contents,
so the relevance is also high. The evaluation of the
extractive models raises a qustion: what kind of
summaries do readers actually want?

The early neural summrization models repre-
sented by PGN and Transformer perform rela-
tively poorly in all dimensions compared to the
reference summaries, especially consistency and
relevance. This is to be expected because of the
high difficulty of dialogue summarization and the
small size of SAMSum dataset.

An important finding is that the generic pre-
trained language models represented by BART,
PEGASUS and UniLM, and various recently pro-
posed models specifically designed on the dia-
logue summarization task do not have significant
differences in each dimension. They are already
comparable, and in some cases better, in terms
of coherence and fluency compared to the refer-
ence summaries. They have improved dramati-
cally compared to earlier neural summarization
models with respect to consistency and relevance,
but there is still some room for enhancement. On
the one hand, this finding affirms the capability of
these models; On the other hand, it urges us to re-
flect on how much these recently proposed com-
plex models or fancy techniques are an improve-
ment over the generic pre-trained language mod-



els.

7 Conclusion

We point out the problems with the evaluation
in the dialogue summarization and introduce Di-
alSummEval, a multi-faceted dataset containing
the output of various models and the correspond-
ing human judgments. Based on this dataset, we
provide a comprehensive re-evaluation and analy-
sis of the performance of widely used automatic
evaluation metrics and each model. There are
three important findings: 1) Few metrics are excel-
lent in all dimensions, and the recently proposed
BARTScore and QA-based metrics are compara-
tively outstanding and worth exploring. 2) The
automatic evaluation metrics and their variants
present some trends that differ from conventional
summarization. 3) A variety of models specif-
ically designed for dialogue summarization per-
form comparably to reference summaries in terms
of coherence and fluency, but still have shortcom-
ings in consistency and relevance. We hope that re-
searchers in the field recognize the importance of
evaluation in current research, choose some other
metrics in addition to ROUGE when evaluating
models, propose automatic evaluation metrics that
can be better adapted to the field of dialogue sum-
marization based on our work.

8 Ethical Considerations

Whether recruiting annotators through Amazon
Mechanical Turk or campus, we paid them 15 dol-
lars per hour, more than the local average mini-
mum wage. We removed all content in the dataset
that might contain personal information about the
annotators.
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A Annotation Interface

Figure 1 and Figure 2 show the instructions for an-
notation and definition of each aspect. They were
read by all annotators. Figure 3 shows a source
dialogue and a summary to be evaluated.

B Correlation between different
dimensions

Figure 4 shows the system-level correlation be-
tween coherence, consistency, fluency and rele-
vance. Consistency is strongly correlated with rel-
evance.

C Correlation between different metrics

Figure 5 shows the system-level correlation be-
tween different metrics.
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D Reasons for discarding data from
Amazon Mechanical Turk

Table 5 shows the result of model evaluation us-
ing annotations from Amazon Mechanical Turk.
The performance of the models is indistinguish-
able, which is not consistent with our observation.

E The evaluation results for the models
we reproduced

Table 6 shows the value of ROUGE-1, ROUGE-
2 and ROUGE-L on the test set of SAMSum for
the models we reproduced. The results is close to
those in Gliwa et al. (2019) and Wu et al. (2021).



Figure 1: Instruction for annotators in data collection interface.

Figure 2: Definition for annotators in data collection interface.



Figure 3: Annotation example in data collection interface.

Models Coherence Consistency Fluency Relevance
reference summary 3.308 3.300 3.396 3.380
LONGEST-3 3.220 3.230 3.286 3.306
LEAD-3 3.256 3.228 3.312 3.334
PGN 3.260 3.206 3.336 3.280
Tranformer 3.240 3.248 3.294 3.320
BART 3.286 3.298 3.410 3.358
PEGASUS 3.354 3.360 3.356 3.302
UniLM 3.288 3.342 3.390 3.364
CODS 3.346 3.328 3.384 3.396
ConvoSumm 3.368 3.334 3.420 3.426
MV-BART 3.232 3.260 3.366 3.344
PLM-BART 3.302 3.284 3.360 3.432
Ctrl-DiaSumm 3.232 3.300 3.360 3.348
S-BART 3.358 3.400 3.354 3.380

Table 5: Human ratings of summaries along four evaluation dimensions using data from Amazon Mechanical Turk.
Scores are averaged over five annotators, broken down by the approximate classification in Section 3.3.

Models ROUGE-1 ROUGE-2 ROUGE-L
LONGEST-3 30.60 9.61 27.96
LEAD-3 30.89 8.97 29.86
PGN 37.53 14.43 37.60
Tranformer 34.30 9.85 32.70
BART 52.59 28.43 50.16
PEGASUS 51.05 26.97 48.89
UniLM 49.43 24.26 47.21

Table 6: The results of automatic evaluation on the test set of SAMSum.
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Figure 4: The correlation (Pearson’s r) between different dimensions of human judgments on system level.
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Figure 5: The correlation (Pearson’s r) between different automatic evaluation metrics on system level.
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