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Abstract
Autoregressive Transformers rely on Key-Value
(KV) caching to accelerate inference. However,
the linear growth of the KV cache with context
length leads to excessive memory consumption
and bandwidth constraints. Existing methods drop
distant tokens or compress states in a lossy man-
ner, sacrificing accuracy by discarding vital con-
text or introducing bias.

We propose MorphKV, an inference-time tech-
nique that maintains a constant-sized KV cache
while preserving accuracy. MorphKV balances
long-range dependencies and local coherence dur-
ing text generation. It eliminates early-token bias
while retaining high-fidelity context by adaptively
ranking tokens through correlation-aware selec-
tion. Unlike heuristic retention or lossy com-
pression, MorphKV iteratively refines the KV
cache via lightweight updates guided by atten-
tion patterns of recent tokens. This approach cap-
tures inter-token correlation with greater accuracy,
which is crucial for tasks like content creation and
code generation. Our studies on long-response
tasks show 52.9% memory savings and 18.2%
higher accuracy on average compared to state-of-
the-art prior works, enabling efficient deployment.

1. Introduction
Large Language Models (LLMs) have become indispens-
able for tasks requiring extensive context retention (e.g.,
document summarization) and prolonged text generation
(e.g., code synthesis). As model architectures become so-
phisticated, their ability to process nuanced inputs and pro-
duce coherent, long-form outputs has improved dramatically.
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Figure 1. KV cache sizes for the Llama 3.1 70B and 405B models
across varying sequence lengths with a batch size of 256.
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Figure 2. (a) Despite compression, the state-of-the-art SnapKV
memory footprint increases with response length and exceeds
available HBM capacity even on high-end GPUs. This study
uses the Qwen 2.5 7B model on an NVIDIA H100 and the Long-
Writer benchmark. (b) Even at lower memory capacity, MorphKV
achieves higher accuracy than SnapKV for long-response tasks.

However, this progress is hindered by the memory overhead
of Key-Value (KV) caches. KV caches store the key-value
pairs to enable attention mechanisms for auto-regressive de-
coding during LLM inference. Unfortunately, as shown in
Figure 1, the KV cache size grows with sequence length, of-
ten exceeding the memory capacity of even high-end GPUs.

The distinction between long-context and long-response
tasks lies in the phase where token processing dominates.
Long-context tasks, such as document summarization and
prompt comprehension, primarily process a large volume
of input tokens during the prefill phase, where the model
ingests and encodes the initial prompt. In contrast, long-
response tasks, such as essay writing and code generation,
generate a substantial number of output tokens during the
decode phase, requiring sustained attention over growing
sequences of self-generated tokens.
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(a) Scissorhands (b) StreamingLLM (c) H2O (d) Keyformer (e) SnapKV (f) MorphKV
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Figure 3. Illustrative comparison of KV cache reduction methods as tokens are processed. (a) Scissorhands retains only a window of
recent (shown in green) tokens, (b) StreamingLLM also stores a few initial tokens (old shown in yellow) from the prefill step, and (c)
H2O stores even more old tokens (all prompt tokens) and only relevant recent tokens. (d) Keyformer stores only important old and recent
tokens but remains biased towards the early tokens. (e) SnapKV retains selected old tokens from prefill and all decode (more recent)
tokens (f) MorphKV identifies and stores only those old tokens that correlate with recent tokens.

Numerous approaches have been proposed in the literature
to minimize the impact of growing KV cache sizes. In stud-
ies like FlashAttention (Dao, 2023) and vLLM (Kwon et al.,
2023), the authors propose techniques to either materialize
only partial caches at a time or use paging techniques by
fragmenting KV caches into smaller blocks, thereby avoid-
ing the need to reserve memory for the entire cache at once.
Beyond this, prior works like FastGen (Ge et al., 2023) and
MiKV (Yang et al., 2024) compress KV caches by retaining
only a subset of KV pairs from recent and older tokens, pri-
oritizing those deemed important based on attention scores
and discarding the rest. However, this creates a trade-off :
while memory savings increase as more KVs are discarded,
the accuracy depends on the retained KVs effectively captur-
ing context for future tokens. Consequently, these methods
often sacrifice accuracy for reduced memory usage.

For example, as shown in Figure 3, Scissorhands (Liu et al.,
2024b) retains only the KVs of recent tokens, sacrificing
accuracy by discarding past context. StreamingLLM (Xiao
et al., 2023) improves accuracy slightly by preserving KVs
of a few initial tokens (attention sinks) alongside recent
tokens but struggles when early tokens fail to capture suffi-
cient context. H2O (Zhang et al., 2023) retains KVs from
the entire input prompt and the most attended output tokens,
achieving high performance but reduced memory savings
due to the large number of retained KVs. It also suffers from
selection bias during decoding, preserving unimportant past
KVs, which hinders performance in long-response tasks.

Keyformer (Adnan et al., 2024) selects top old and re-
cent tokens for memory savings and uses Gumbel noise
to reduce selection bias. While somewhat effective, it
cannot entirely eliminate selection bias because Gumbel
noise by itself introduces new forms of biases (Mussmann
et al., 2017), reducing accuracy for long-context and long-
response tasks. SnapKV (Li et al., 2024), the current state-

of-the-art, achieves high accuracy in long-context tasks by
retaining the most attended tokens from the input prompt.
However, as shown in Figure 2(a), it retains all generated
output tokens from the decode phase, causing the KV cache
size to scale with response lengths, making it unsuitable
for long-response tasks. Overcoming these limitations is
crucial for improving LLM performance in applications like
scripting and content creation (long-response tasks).

Our Proposal – MorphKV: MorphKV achieves a constant-
size KV cache by retaining only a limited number of old
and recent tokens. However, to achieve higher accuracy,
MorphKV employs a more dynamic KV selection algorithm
that analyzes the attention patterns of the current token to-
ward retained KVs. Unlike prior methods that independently
identify important tokens, MorphKV retains only those old
tokens that correlate strongly with recent tokens.

To better capture context, MorphKV prioritizes the attention
scores of relevant recent tokens rather than relying on histor-
ically most-attended tokens, addressing bias issues observed
in methods like H2O and Keyformer. As shown in Fig-
ure 2(b), MorphKV achieves better scores than SnapKV: for
Phi4, up to 8% higher for long-context task (VCSum) while
saving 56% on KV cache memory, and for Qwen2.5, up
to 21% higher score for the long-response task (LongGen-
Bench) while saving 83% on KV cache memory. This shows
the impact of retaining a compact set of high-quality KVs
and an improved attention mechanism in MorphKV.

MorphKV improves accuracy by 9.4% and 18.2% on av-
erage compared to SnapKV and H2O while reducing the
KV cache footprint by 88.1% and 52.9% respectively for
long-response tasks.

MorphKV is now open-source, and accessible at https:
//github.com/ghadiaravi13/MorphKV.
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2. Background and Motivation
2.1. Large Language Model Inference

LLM inference begins with the prefill step, where the model
processes the input prompt and generates Key-Value (KV)
pairs for each token in the prompt. Next, in the decode
phase, the model generates output tokens auto-regressively
such that each output token attends to the KV pairs of all
preceding tokens in the sequence while creating its own
KV pair. This attention mechanism enables the LLM to
maintain context and produce coherent responses. The KV
pairs are stored in memory structures known as KV caches.

KV caches scale with the number of tokens processed,
becoming prohibitively large for long-context and long-
response tasks and posing significant challenges in deploy-
ing LLMs. Long-context tasks, such as creating diet plans
from medical histories or summarizing documents like man-
uals, loan agreements, or papers, involve long prompts with
many input tokens. In contrast, long-response tasks such
as crafting lesson plans, providing step-by-step instructions,
or writing scripts generate numerous output tokens from
short inputs. While both types of tasks require large KV
caches, they differ in when the KVs are produced. Long-
context tasks generate most KVs in the prefill step, unlike
long-response tasks that create most KVs during decoding.

2.2. Limitations of KV Cache Compression Methods

KV cache compression addresses their growing memory
footprint through several strategies, such as quantization,
algorithmic optimizations, cross-layer and cross-head ap-
proaches, and pruning. Quantization-based methods store
KV pairs using lower precision (Kang et al., 2024; Zhang
et al., 2024), whereas algorithmic methods modify attention-
layer computations (Chang et al., 2024; Saxena et al., 2024).
Cross-layer optimizations leverage inter-layer similarities,
selectively retaining KVs from layers with significant con-
tributions (Yuan et al., 2024; Saxena et al., 2024; Cai et al.,
2024). Cross-head optimization (Fu et al., 2024; Feng et al.,
2024) reduces the KV cache footprint by retaining KVs
only from the most impactful attention heads, as different
heads contribute unevenly to model performance. Prun-
ing strategies selectively retain a subset of important KV
pairs (Adnan et al., 2024; Xiao et al., 2023; Li et al., 2024;
Zhang et al., 2023; Liu et al., 2024b) and are more effective
than other approaches because they capture task-specific
context more accurately.

However, compressed KV caches are either limited by ac-
curacy or scalability. Constant-sized KV caching methods,
such as Scissorhands, StreamingLLM, and Keyformer, have
limited accuracy. On the other hand, more accurate methods
like SnapKV are not scalable as they fail to address the
growing KV cache size for long-response tasks.

3. MorphKV
This paper proposes MorphKV, a KV compression technique
that reduces the KV cache size without compromising accu-
racy. MorphKV partitions the context into two components:
recent context (R) and distant context (D). The recent con-
textR corresponds to the last R tokens that preserve local
coherence, while the distant context D captures long-range
dependencies. By attending to bothR and a selective subset
of D, MorphKV ensures that the generated text remains
contextually coherent and semantically meaningful.

Figure 4 presents an overview of our proposed design. A
key insight in MorphKV is that tokens in R have already
attended to tokens in D during their generation. Therefore,
rather than retaining all or a subset of older tokens based
on aggregated patterns, MorphKV leverages the attention
profiles of recent tokens to select only the most relevant dis-
tant tokens. In this way, MorphKV constructs a compact yet
accurate KV cache of size C+R, where C is the number of
distant tokens retained and R is the number of recent tokens.
Specifically, MorphKV 1 ranks older tokens based on their
relevance to the recent tokens using a specialized algorithm
that performs element-wise transformations, denoted by
f(x) in Figure 4. As attention scores inherently quantify
how strongly past tokens were attended to during prior gen-
erations, using the attention scores of the recent tokens helps
surface the most contextually relevant older tokens. Next,
MorphKV 2 selectively retains only the most correlated
old tokens in the KV cache, evicting those deemed irrele-
vant. This approach ensures an optimized memory footprint
while preserving essential long-range dependencies.

Rank old tokens using 
attention score of recent tokens 

Identify and retain most-
correlated older tokens

Current 
Token

1 2

Recent 
Tokens

Old 
Tokens

Retained Evicted

𝒇(𝒙)

Figure 4. Overview of MorphKV. (1) MorphKV uses the most
recent window tokens to capture neighboring context and their
attention scores to rank the older tokens. (2) To capture relevant
distant context, MorphKV only retains old tokens maximally cor-
related to the recent window tokens by consulting the attention
scores aggregated using a fusion function f(x).

3.1. Mathematical Formulation

Let Qi, Ki, and Vi be the query, key, and value vectors
for the token being generated at timestep i. Let Gi denote
the KV cache storing (Kj , Vj) pairs for all the previously
generated tokens j < i. The standard attention mecha-
nism (Vaswani et al., 2023) computes the attention weights
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AWi, as shown in Equation (1):

AWi = Softmax
(Qi K

T

√
dh

)
, Oi = AWi · V, (1)

where K = [K1,K2, . . . ,Ki−1] ∈ R(i−1)×dh , V =
[V1, V2, . . . , Vi−1] ∈ R(i−1)×dh , and dh is the hidden di-
mension. The attention output Oi ∈ Rdh encodes the infor-
mation from all the previous tokens.

3.1.1. PROBLEM STATEMENT

Retaining every key-value pair (Kj , Vj) for j < i can in-
crease memory usage as i grows. Let G∗

i be an optimal
reduced cache of size C +R that minimizes the change in
the attention output as denoted in Equation (2):

G∗
i = arg min

G′
i⊆Gi

|G′
i|=C+R

∥∥Oi −O′
i

∥∥
2
, (2)

where O′
i is the attention output, as shown in Equation 1,

computed using only the tokens in G′
i. We want ∥Oi −

O′
i∥2 ≤ ϵ for a small ϵ ≥ 0, ensuring minimal error despite

reducing the KV cache to C +R entries.

3.1.2. APPROXIMATING OPTIMAL KV CACHE

Although solving Equation 2 directly is intractable because
of its combinatorial nature, MorphKV adopts two intuitive
heuristics (H1 and H2):

• Local Coherence (H1): Always retain the last R to-
kens to preserve continuity.

• Distant Relevance (H2): Retain only the C most in-
formative older tokens, as measured by fused attention
scores with respect to the R recent tokens.

Concretely, we define an approximate policy P ′ in Equa-
tion (3) as shown below:

G′
i = P ′(Gi, Fi

)
, where |G′

i| = C +R. (3)

Here, G′
i ⊆ Gi contains (1) the R most recent entries GR

i

and (2) the top-C older entries selected based on an auxiliary
score vector Fi.

3.1.3. DEVELOPING THE AUXILIARY SCORE VECTOR Fi

LetWi = {wi−1, wi−2, . . . , wi−R} denote the window of
R most recent tokens at timestep i. MorphKV inspects
the attention weights of these tokens to build Fi, using
Equation (4). Specifically,

Fi[k] = f
(
AWi−1[k], AWi−2[k], .., AWi−R[k]

)
(4)

where AWr[k] is the attention weight that wr assigned to
the k-th older token, and f(·) is a fusion function. For f(·),

MorphKV proposes two choices, the sum and max fusions,
as shown in Equations (5) and (6) respectively:

Sum Fusion: Fi[k] =

i−R∑
r=i−1

AWr[k] (5)

Max Fusion: Fi[k] =
i−R
max
r=i−1

AWr[k]. (6)

The Sum Fusion prefers tokens consistently attended to
across multiple recent tokens, whereas the Max Fusion
selects tokens strongly attended by at least one recent token.
The intuition is that tokens frequently or strongly attended
to by recent tokens are likely critical for maintaining long-
range coherence. For example, recurring entities, such as
characters in a story, often receive sustained attention across
multiple decoding steps. Algorithm 1 shows the dynamic
token selection process using the auxiliary score vector.

Algorithm 1 MorphKV: Dynamic Token Selection

Input:

• KV cache Gi (keys/values of older tokens)

• Tokens x1:i (sequence generated so far)

• Num of Query-Heads, Key-Heads: {M,M ′}

• Per-head attention weights {AWm}Mm=1

• Window size R, fusion function f , capacity C

Output: Updated cache Gi+1

Wi ← {xi−1, xi−2, . . . , xi−R} ▷ Recent tokens
for wr ∈ Wi do
Sr ←

∑(M/M ′)
m=1 AWm

r ▷ Aggregate scores if GQA
end for
Fi ← f(Si−1, Si−2, . . . , Si−R) ▷ Fuse recent tokens’
scores
Gi+1 ← TopC(Fi) ∪ Wi ▷ Retain top-C distant + R
recent
Return: Gi+1

3.1.4. SELECTION OF KV PAIRS

After computing Fi, we pick the top-C entries (older tokens)
according to Fi and combine them with the R most recent
tokens, as shown in Equation (7):

Gi+1 =
{
TopC(Fi)

}
∪

{
R recent tokens

}
(7)

Hence, Gi+1 contains C + R tokens in total, satisfying
heuristics (H1) and (H2). By updating Gi → Gi+1 at each
timestep, MorphKV prunes the KV cache incrementally,
ensuring that memory usage remains fixed at C +R while
preserving essential local and distant context.
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Figure 5. Illustration of the Key Value (KV) caching mechanism in MorphKV. MorphKV uses the insight that recent tokens naturally
capture some distant context from old tokens due to the auto-regressive nature of token generation. For example, at decoding step T0,
MorphKV consults the Attention Profile of recent tokens weather and The to learn that these tokens have attended considerably more to
the old token today’s than me. MorphKV uses this information and evicts the latter.

3.2. Intuition with A Walk-Through Example

Figure 5 demonstrates the operations in MorphKV with
C = 2 and R = 2, using sum fusion as the fusion function.

At timestep T0: Suppose the recent tokens are [weather,
The], while the old tokens are [me, today’s]. The attention
profiles (AP) of weather and The both strongly point to
today’s (e.g., 0.3 each) and weakly to me (e.g., 0.05 each).
By summing these attention scores, MorphKV deems to-
day’s to be more relevant (score 0.6) than me (score 0.1).
Consequently, it retains today’s in D and evicts me.

At timestep T1: The most recent tokens shift to [perfect,
for], while older tokens include [sun, out]. MorphKV re-
calculates the fused attention scores for sun and out. If out
receives a lower combined score than sun (as illustrated), it
is evicted, preserving only sun in the distant context.

At timestep T2: The most recent tokens are now [for,
bright], and the older tokens still include sun. If sun contin-
ues to receive relatively high attention from the new recent
tokens, it remains in the cache despite being one of the old-
est tokens. This shows how MorphKV can preserve distant
tokens of continued importance (e.g., sun) while evicting
those that have very likely become less relevant over time.

3.3. Handling Multiple Heads

For transformer-based LLMs, attention is performed across
multiple heads, called Multi-Headed Attention (MHA)

(Vaswani et al., 2023). In MHA with M heads, each head
maintains a separate KV cache, resulting in M distinct
caches and significant memory overhead. Modern LLMs
like Llama3.1 (Dubey et al., 2024) use Grouped-Query At-
tention (GQA) (Ainslie et al., 2023) with M ′ grouped-key
heads (M ′ < M ), where every M/M ′ query heads share a
single key/value head, reducing the number of KV caches
to M ′ and cutting memory usage by a factor of M/M ′.

MorphKV is compatible with both MHA and GQA archi-
tectures. For MHA, we independently apply MorphKV to
each of the M heads, pruning their caches in parallel. For
GQA, we first aggregate attention weights from the M/M ′

grouped query heads, then compute fusion scores Fi for
the shared key-value heads. Our experiments show that
MorphKV performs equally well with both approaches. By
default, we choose GQA due to its memory efficiency. This
flexibility distinguishes MorphKV from prior works like
SnapKV (Li et al., 2024) which are only limited to MHA.

4. Evaluation Methodology
Models: We evaluate MorphKV across four state-of-the-art
LLMs chosen based on their complementary strengths:

• Llama-3.1 8B Instruct (Dubey et al., 2024): A model
optimized for long-context tasks (128K token window)
and coherent multi-turn dialogue.

• Mistral-v0.2 7B Instruct (Jiang et al., 2023): A
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lightweight architecture designed for efficient deploy-
ment on consumer hardware.

• Qwen2.5 7B Instruct (Qwen et al., 2025): A model
with multi-lingual English and Chinese proficiency.

• Phi-4 14B (Abdin et al., 2024): A model specialized
in STEM reasoning through high-quality training data
and curriculum learning.

This diversity ensures rigorous validation of MorphKV’s
robustness, scalability, and cross-architectural consistency.

Setup: We run experiments on an NVIDIA Grace Hopper
node with an H200 GPU (96GB HBM3) and Grace CPU
(116GB LPDDR5) interconnected via NVLink. We imple-
ment MorphKV using HuggingFace Transformers (Wolf,
2020) with FlashAttention-2 (Dao, 2023) for hardware-
aware optimization, mirroring the configuration of prior
KV cache works (Adnan et al., 2024; Li et al., 2024; Wang
et al., 2024; Zhang et al., 2023).

Benchmarks:

• Long-Response generation: LongWriter (Bai et al.,
2024) and LongGenBench (Liu et al., 2024a), which
require synthesizing structured outputs (e.g., diaries,
floorplans) based on input prompts.

• Long-Context understanding: LongBench (Bai et al.,
2023), for tasks like code repository navigation and
document summary with 16K-128K token contexts.

Baseline: We compare the performance and memory ef-
ficiency of MorphKV against SnapKV (Li et al., 2024),
H2O (Zhang et al., 2023), and Full-Attention. SnapKV is
the state-of-the-art for KV cache compression, while Full-
Attention provides an upper bound on accuracy. However,
SnapKV does not perform token eviction during the genera-
tion phase, making it less efficient for long-response tasks
where cache management is critical. H2O applies KV cache
pruning and is thus a more meaningful baseline for evaluat-
ing MorphKV in long-response settings. Prior works retain
KV pairs across all attention heads, while MorphKV’s com-
patibility with Grouped-Query Attention (GQA) enables a
more memory-efficient approach as it only retains KV pairs
across grouped-key heads, allowing us to assess trade-offs
between KV cache size and retention of relevant tokens
across different models and benchmarks.

Implementation: We implement MorphKV in Hugging-
Face transformers library (Wolf, 2020), integrat-
ing it into the existing attention mechanism and leveraging
FlashAttention (Dao, 2023) for efficient inference. To ex-
tract attention scores for older tokens, we compute partial
attention weights for window queries within FlashAtten-
tion and store them as a lightweight KV cache extension.
We update this cache during generation by appending new
attention profiles and discarding the oldest ones.

5. Results
5.1. Long-Response: LongWriter Tasks

We evaluate MorphKV on open-ended, long-response text
generation using the LongWriter (en) benchmark. Long-
Writer covers tasks such as writing emails, blog posts, es-
says, and novels, with 60 prompts requesting responses rang-
ing from 100 to 12000 words. For comparison, SnapKV
retains 600 prompt tokens plus all decoded tokens across
all attention heads, while H2O stores 600 decoded tokens
per head. In contrast, MorphKV maintains a recent window
of 30 tokens, a total KV cache capacity of 600 tokens, and
supports two fusion strategies: sum() and max().

5.1.1. PERFORMANCE

Performance is assessed using an LLM-based Judge
(Mistral-Large-123B), with assigned scores across several
criteria aggregated into a final metric. Table 1 shows that
MorphKV outperforms H2O, and SnapKV on Llama, Mis-
tral, and Phi4, while achieving comparable performance
for Qwen. MorphKV consistently excels over H2O in rele-
vance (see Appendix A.4), demonstrating its ability to retain
critical context, even under memory constraints.

Model Llama Mistral Phi4 Qwen

H2O 68.5 80.0 61.5 63.8
SnapKV 67.7 81.1 63.8 68.4

MorphKV 69.5 81.1 64.7 64.9
Full-Attention 66.5 81.3 62.9 66.2

Table 1. LongWriter: Comparison of LLM Judge Scores shows
that MorphKV outperforms other methods by up to 4.5%, retaining
important older tokens at a much smaller memory footprint.

5.1.2. KV CACHE SIZES

Figure 6 shows the normalized KV cache sizes relative to
Full-Attention. On average, MorphKV reduces memory
usage to 0.25× that of Full-Attention, while H2O requires
1× and SnapKV incurs significantly higher usage, up to 4×.
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Figure 6. LongWriter: KV cache usage relative to Full-Attention.
On average, MorphKV requires only 0.25× the KV cache size,
while H2O and SnapKV consume 1× and 4× respectively.
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5.1.3. IMPACT OF INCREASING RESPONSE LENGTH

To evaluate the robustness of MorphKV for long responses,
we compute the LLM Judge Score against increasing re-
sponse lengths, as shown in Figure 7 for Mistral-7B. As
the response length increases, performance declines across
all methods due to the inherent challenges of generating
extremely long text (Bai et al., 2024). However, MorphKV
degrades more gradually: a 4× increase in length reduces
performance by 15%–18% for SnapKV and H2O, whereas
the performance only reduces by 10% for MorphKV. No-
tably, MorphKV maintains a constant KV cache size regard-
less of the response length, contributing to its efficiency and
robustness over extended text generations.

400 600 800 1000 1200 1400 1600
Response Length

3.50
3.75
4.00
4.25
4.50

LL
M

 Ju
dg

e 
Sc

or
e

H2O
SnapKV

Full-Attention
MorphKV

Figure 7. LongWriter: LLM Judge Score versus response lengths.
MorphKV is more robust against increasing response lengths com-
pared to SnapKV or H2O as it uses an adaptive KV selection
algorithm, discarding those KVs which don’t contribute signifi-
cantly to the contextual flow. Notably, MorphKV maintains a fixed
KV cache size regardless of response length.

5.2. Long-Response: LongGenBench Tasks

LongGenBench contains structured long-response tasks for
temporal and spatial categories. The temporal category is
divided into Diary Entry and Menu planning tasks, while
the spatial category includes Skyscraper Design and Urban
Planning. The original dataset has 400 samples (100 from
each sub-category). For a fair comparison under limited
resources, we select 40 samples, with ten from each sub-
category, and use greedy decoding capped at 8K tokens.
SnapKV employs all attention heads with a 32-token win-
dow and a total KV cache capacity of 1K tokens per head,
whereas H2O keeps 4K tokens in the cache, also maintain-
ing all attention heads. In contrast, MorphKV uses a 200-
token recent window and a 4K-token total capacity across
GQA heads, adopting max() fusion due to its consistently
higher performance than sum(). The larger window enables
MorphKV to retain critical distant tokens during generation
(refer to Appendix A.2 for further information).

5.2.1. PERFORMANCE

Table 2 shows the performance of MorphKV over prior
works. LongGenBench uses a rigorous evaluation suite

Model CR (%)
Accuracy (%)

Once Range Periodic Avg.

L
la

m
a H2O 64 45 60 27 44

SnapKV 64 50 55 26 44
MorphKV 64 50 61 24 45

M
is

tr
al H2O 71.2 57 60 32 50

SnapKV 71 55 57 36 49
MorphKV 71.2 57 62 36 52

Q
w

en

H2O 55 46 51 28 42
SnapKV 53 44 46 28 39
MorphKV 51 43 68 30 47

Table 2. LongGenBench: Performance comparison of MorphKV,
against SnapKV, H2O. MorphKV achieves better scores across all
evaluation metrics i.e., Completion Rate (CR), and all grouped
accuracy metrics (Accuracy Once, Range, Periodic, and Average).

to assess response quality. This includes information re-
call about singular instances (Accuracy Once), range of
instances (Accuracy Range), periodic instances (Accuracy
Periodic), and their average (Average Accuracy), while
Completion Rate (CR) quantifies the percentage of tasks
successfully completed. MorphKV generally outperforms
or matches SnapKV, and H2O on all models and metrics.
Notably, SnapKV retains all prompt tokens due to its ample
cache budget. It also keeps track of every decoded token,
effectively replicating Full-Attention for these tasks.

5.2.2. KV CACHE SIZES

Figure 8 shows the KV cache sizes for H2O, SnapKV, and
MorphKV relative to Full-Attention. On average, Mor-
phKV achieves significant memory savings, requiring only
0.55× the memory usage with Full-Attention, while H2O
and SnapKV require 1.22×, and upto 5.01× the cache size
of Full-Attention, respectively.

Llama 3.1 Mistral Qwen
Model

0

2

4

6

No
rm

. K
V 

ca
ch

e 
siz

e 
w.

r.t
Fu

ll 
At

tn
. (

Lo
we

r i
s B

et
te

r)

H2O
SnapKV
MorphKV

Figure 8. LongGenBench: KV cache usage relative to Full-
Attention. SnapKV incurs up to 13× higher due to the extensive
retention of KV pairs, while MorphKV maintains a constant cache.
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Model 2wmqa drdr hpqa mnews mfqaen mfqazh musq nqa pcnt prt qsp qms sams tqa vcs

L
la

m
a SnapKV 16.0 22.0 14.9 25.6 25.4 18.7 10.7 32.2 7.6 98.4 11.7 23.1 42.9 91.7 14.2

MorphKV 14.9 22.5 15.9 26.6 25.7 19.9 10.7 31.9 7.5 97.8 11.9 23.6 42.9 91.5 15.2
Full-Attention 16.5 30.0 16.7 26.8 27.4 20.1 11.4 32.0 6.9 97.7 13.2 23.6 43.7 91.6 16.1

M
is

tr
al SnapKV 26.6 23.7 40.5 26.0 48.8 41.3 18.3 25.6 2.5 88.6 31.0 23.8 41.9 86.3 13.5

MorphKV 26.7 23.9 40.8 26.6 48.4 43.0 16.7 26.7 3.0 85.9 30.9 23.6 42.3 86.3 13.7
Full-Attention 27.1 30.4 43.0 27.1 49.2 48.3 18.8 26.7 2.8 87.0 33.0 24.2 42.8 86.2 15.2

Ph
i4

SnapKV 22.3 24.2 19.5 25.0 38.0 47.2 5.2 20.5 12.6 63.9 32.4 22.1 47.2 90.5 11.4
MorphKV 22.6 24.1 19.3 25.5 38.2 46.4 6.2 21.0 12.6 64.3 31.2 22.4 47.6 90.6 12.3
Full-Attention 22.2 29.0 19.6 25.9 38.2 48.9 6.0 20.7 11.6 63.3 33.3 22.9 48.2 90.4 13.4

Table 3. LongBench: Performance comparison of MorphKV, SnapKV, and full attention across different models. MorphKV achieves
higher accuracy in most micro-benchmarks, as its KV selection algorithm minimizes redundancy and noise in the attention profile.
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Figure 9. LongBench: (a) Llama3.1-8B Instruct KV cache sizes of SnapKV, and MorphKV relative to full attention. On an average,
SnapKV has a KV cache size of 0.42×, whereas MorphKV is 0.15× compared to Full-Attention (b) Average KV cache sizes of SnapKV
and MorphKV relative to full attention across different models. MorphKV yields comparable performance to SnapKV at roughly 50%
lower KV cache budget in a long-context setting, where the prompt is significantly larger than the response.

5.3. Long-Context: LongBench Tasks

Besides being memory-efficient for long-response tasks,
MorphKV also offers competitive performance as the state-
of-the-art prompt KV compression for long-context tasks.
We evaluate MorphKV, SnapKV, and Full-Attention across
benchmarks in LongBench. LongBench is a comprehensive,
bilingual, multitask benchmark suite used to evaluate LLMs
for processing extended contexts. It comprises datasets
across six task categories in English and Chinese, with an
average prompt length of nearly 6K tokens. For MorphKV,
we set the recent window to 32 tokens and fix its total cache
capacity at 2K tokens, and use the sum() fusion. In contrast,
SnapKV preserves 1024 tokens from the prefill phase and
all decoded tokens across all attention heads.

5.3.1. PERFORMANCE

Table 3 shows that MorphKV generally matches or outper-
forms SnapKV across most datasets. Notably, MorphKV
consistently surpasses SnapKV for MultiNews on all models.

Moreover, for tasks like Phi4-2WikiMQA, Phi4-Passage-
Count, and Phi4-TriviaQA, MorphKV even exceeds Full-
Attention performance while using only 20% of the memory
capacity. This suggests that larger models (e.g., Phi4 with
14B parameters) can better leverage the dynamic token se-
lection in MorphKV to capture essential information.

5.3.2. KV CACHE SIZES

Figure 9 compares the average KV cache memory usage of
SnapKV and MorphKV relative to Full-Attention across all
LongBench datasets. MorphKV achieves up to 2× memory
savings over SnapKV and up to 5× over Full-Attention.
Notably, for datasets like MultiNews, SnapKV requires
2× more memory than Full-Attention because it retains
KV pairs across all heads, whereas MorphKV operates at
just 0.4× the memory of Full-Attention, benefiting from
dynamic eviction and GQA compatibility. Designed for
GQA, MorphKV supports 2× more tokens while using only
half the KV cache capacity of SnapKV.
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6. Runtime and System-Level Trade-offs
MorphKV incurs runtime overhead during response-
generation as it introduces additional computation steps that
depend on the attention profile of the recent window tokens,
necessitating additional memory accesses. To minimize this
overhead, the implementation of MorphKV employs dedi-
cated CUDA streams to prefetch the attention profile ahead
of time. By default, MorphKV performs token-eviction at
each generation step to precisely manage KV cache memory
usage, crucial for long-context and long-response tasks.

Table 4 shows that the memory savings with MorphKV
significantly outweigh the runtime overhead, improving the
overall system throughput. Furthermore, this runtime cost
can be amortized by evicting tokens less frequently (see
Appendix A.5), albeit at higher memory usage. These trade-
offs highlight that KV cache compression techniques must
navigate several system-level considerations, and optimizing
for a single metric alone is inadequate for practical adoption.

Metric SnapKV H2O MorphKV

Runtime (lower is better) 1× 1.62× 1.50×
Memory (lower is better) 1× 0.26× 0.14×

Accuracy (higher is better) 1× 0.94× 1.01×
Throughput (higher is better) 1× 2.40× 4.68×

Table 4. LongBench: Despite introducing runtime overhead, Mor-
phKV achieves substantial memory savings, leading to higher
overall system throughput, while maintaining response accuracy

7. Discussion
7.1. Variation with Design Parameters

The design of MorphKV consists of three key design param-
eters, namely, fusion function used to create the attention
profile, recent window size, and total KV cache budget.
These hyperparameters collectively influence the overall
performance. MorphKV shows minimal sensitivity to vari-
ations in its hyperparameters, highlighting its robustness
across various configurations. We refer the reader to Ap-
pendix A.1, A.2, and A.3 for detailed discussions on the sen-
sitivity of MorphKV’s performance to the choice of fusion
function, window sizes, and KV cache budget respectively.

7.2. Outperforming Full Attention

KV cache compression methods, despite relying on a subset
of context tokens, often outperform full attention in prac-
tice (Li et al., 2024; Cai et al., 2024). This stems from their
ability to focus on the most relevant tokens, reducing the
influence of less useful ones. This is especially beneficial
for long-response scenarios, where noise due to irrelevant to-
kens accumulates over time, leading to a noticeable decline

in output quality, or degeneration (Holtzman et al., 2019).
We examine the N-gram repetition rate in responses from the
Llama3.1-8B Instruct model to measure this degeneration
in generated responses. A higher repetition rate indicates
higher degradation in output quality. Table 5 shows that
MorphKV has the lowest repetition rate as it continues to
prune the KV cache during token generation. In contrast,
SnapKV and full attention exhibit greater redundancy as
they retain many more tokens in the KV cache.

Metric MorphKV SnapKV Full-Attention

Repetition Rate (N=10) 68% 89% 89%

Table 5. LongWriter: Degeneration in Llama3.1-8B responses
measured using N-gram (N=10) repetition. MorphKV reduces rep-
etition by dynamically evicting tokens, limiting contextual noise.

8. Future Work
In addition to token selection, prior work has shown that KV
cache can further be optimized across attention layers (Cai
et al., 2024), and attention heads (Fu et al., 2024; Feng et al.,
2024). MorphKV is complementary to these works, and in-
tegrating them would yield further memory savings. While
a detailed evaluation of integrating MorphKV across other
optimization axes is deferred to future work, we present
a preliminary analysis with layer-aware considerations in
Appendix A.6. Furthermore, to minimize the runtime cost
with MorphKV, we plan to integrate MorphKV within the
Flash Attention kernel, improving inference efficiency while
preserving accuracy and memory benefits.

9. Conclusion
The growing memory footprint of KV caches in LLMs poses
a critical bottleneck for long-context and long-response
tasks. In this paper, we propose MorphKV that addresses
this challenge by introducing a dynamic, correlation-aware
token selection mechanism that maintains a constant-sized
KV cache while preserving contextual coherence. Mor-
phKV leverages attention profiles of recent tokens to retain
only the most relevant distant tokens. Our studies on long-
response tasks show 52.9% memory savings and 18.2%
higher accuracy on average compared to state-of-the-art
prior works. Our experiments demonstrate that MorphKV
scales efficiently with response length, degrading only 10%
in performance even as outputs grow to 12K tokens, com-
pared to 15–18% degradation for state-of-the-art prior works.
Furthermore, MorphKV’s compatibility with GQA enables
4× greater memory efficiency than MHA-based approaches,
making it practical for real-world deployment. These ad-
vances position MorphKV as a practical inference-time
solution, balancing accuracy and memory usage without
sacrificing the ability to capture long-range dependencies.
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A. Appendix
A.1. Impact of Fusion Function: sum() Versus max()

MorphKV considers two fusion functions for deriving the final attention profile, namely, Fi: sum() and max(). In this
subsection, we discuss their impact on the performance.

A.1.1. ON LONG-CONTEXT TASKS

We compare both sum() and max() fusion using the LongBench suite on the Llama3.1-8B model, with a recent window
configuration of 32 tokens and KV cache capacity of 1K tokens. Table 6 shows per-dataset performance. On average, max()
fusion outperforms sum() by about 1%, and up to 2.7% on QMSum. Datasets such as 2WikiMQA, MultiNews, Passage
Count, Passage Retrieval (En), QMSum, and TriviaQA often demand sharply focused retrieval or reasoning. A single
strongly attended token in these tasks can suffice to link crucial context, making max() advantageous. In contrast, sum()
tends to retain past tokens which are preferred by majority of the window tokens. Consequently, max() better captures a
small set of pivotal tokens spread over a large distance (longer sequence of tokens).

Llama3.1 2wmqa drdr hpqa lsht mnews mfqaen mfqazh musq nqa pcnt prt qsp qms sams trec tqa vcs

max fused 14.9 21.0 14.9 33.5 25.6 24.2 17.9 9.3 32.0 8.0 97.6 10.0 23.5 42.1 46 91.8 14.5
sum fused 14.6 22.0 15.0 35.5 25.6 25.4 19.2 9.9 32.2 7.9 96.9 10.5 22.9 43.1 49 91.8 14.8

Table 6. LongBench: Llama3.1-8B-Instruct comparison of MorphKV under different fusion functions with the same cache budget.

A.1.2. ON LONG-RESPONSE TASKS

We similarly compare the sensitivity of sum() and max() for LongWriter tasks which contain essay-style long response
prompts. For our studies, we fix the recent window to be 30 tokens, and KV cache capacity to a total of 600 tokens.
As shown in Table 7, sum() fusion tends to be more effective for most models, except Qwen2.5 where max() excels in
certain metrics. LongWriter tasks are typically open-ended, causing max() to emphasize specific tokens that are not always
universally relevant. Conversely, sum() aggregates attention across the recent window, providing a broader (though slightly
noisier) context that suits open-ended generation.

Fusion Relevance Accuracy Coherence Clarity

L
la

m
a max 83.8 81.3 57.1 64.2

sum 89.2 81.7 63.3 71.3

M
is

tr
al max 91.7 86.7 82.9 82.1

sum 92.5 89.2 84.2 85.4

Ph
i4 max 62.9 79.6 68.3 72.1

sum 62.5 80 70.4 75.0

Q
w

en max 83.3 70.8 58.3 60.4
sum 85.4 70.4 58.3 59.1

Table 7. LongWriter: Sensitivity to sum() versus max() fusion across different models. These fusion functions dictate how attention
scores are aggregated to make the final attention profile.

A.2. Impact of Window Size on Long-Response Tasks

We evaluate the impact of window size on MorphKV’s performance. Intuitively, recent-window tokens determine which
tokens to retain from the distant past. Thus, a larger window allows capturing of more diverse information from the past.

Particularly, for LongGenBench, this effect is evident since the prompts contain lot of information which might be needed at
a much later point in the generation. Hence, we run the LongGenBench suite for Llama3.1-8B, Mistral-7B and Qwen2.5
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models for two variants of MorphKV, both using max fusion and a total capacity of 4K tokens. The first configuration uses
a 32-token window, while the second uses a 200-token window.

As shown in Table 8, changing the window size significantly impacts evaluation metrics for all Llama, Mistral, and Qwen
models. This is due to the fact that a very small window does not suffice for capturing extensive amounts of distant
information present in a typical LongGenBench prompt (such as specific details about different floors in a building, specific
Menu items etc.), because very small windows tend to capture local context, while failing to capture more distant context.
Therefore, a larger window is more effective since it allows the model to retain diverse pieces of information even at very
large response sizes. For instance, a window of size 200 lets Llama3.1 recall accurate instructions regarding the 96th floor of
a building, in spite of already generating extensive descriptions of the previous 95 floors. On the other hand, with a window
size of 32 tokens, the model struggles to maintain consistency with the input request, and generates generic responses after
certain number of floors, thereby losing on accuracy.

Note that the Completion Rates for both window sizes are comparable. This is because the Completion Rate measures
the number of times the model was able to generate what it was expected to (for example, how many floors did the model
generate the floor plan for out of the requested 100 floors). This is a relatively simpler task, and a smaller window can
keep track of such information (for instance, by simply retaining the floor number of the last floor it generated the plan for).
Consequently, we do not observe substantial differences in the Completion Rate metric.

Config CR(%)
Accuracy(%)

Once Range Periodic Avg.

L
la

m
a (32, 4K) 64 43 56 27 42

(200, 4K) 64 50 61 24 45

M
is

tr
al (32, 4K) 71 57 60 32 50

(200, 4K) 71 57 62 36 52

Q
w

en (32, 4K) 52 41 43 34 40

(200, 4K) 51 43 68 30 47

Table 8. LongGenBench: Sensitivity of evaluation metrics with window size across different models (CR: Completion Rate). A small
window is insufficient for capturing large-amounts of distant information in long-response tasks, leading to a degradation in model
accuracy for all models. However, Completion rate remains comparable across window sizes as it only measures the model’s ability to
complete the response as expected, without considering the relevance or correctness of the generated output.

A.3. Robustness Against KV Cache Compression

To assess the impact of KV cache compression on MorphKV versus SnapKV, we run ablation studies on a subset of
benchmarks within the LongBench suite. We record the resulting performance across Llama3.1-8B and Mistral-7B models.
For both MorphKV and SnapKV, the KV cache budget is varied from 1% to 7% with respect to full attention KV cache size.
MorphKV uses a window of 32 tokens, with sum() as the fusion function. SnapKV also uses the same window size of 32
tokens, but maintains KV cache across all attention heads. This enables MorphKV to store 4× as many tokens as SnapKV
at the same cache capacity.

Figure 10 shows the mean and individual benchmark scores for both models under varying compression scenarios. At very
low KV cache budgets, we observe a drop of more than 50% on average between MorphKV and SnapKV, for benchmarks
like NarrativeQA, this difference reaches upto 88%. This disparity indicates that MorphKV is significantly more effective
at retaining crucial context information compared to SnapKV under tight memory constraints. Even with larger budgets,
MorphKV consistently outperforms SnapKV, demonstrating the robustness and reliability of its design.

The input prompt for long-response tasks is typically very small, and SnapKV does not evict KV cache during decoding,
hence we exclude a similar analysis for these tasks.
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Figure 10. Comparison of MorphKV versus SnapKV for Llama3.1-8B, and Mistralv0.2-7B. (a)-(d) show results for Llama3.1-8B
on Average, MultifieldQA-en, Musique, and NarrativeQA respectively, while (e)-(h) show results for Mistralv0.2-7B on Average,
NarrativeQA, PassageRetrieval-en, and 2wikimqa respectively. MorphKV consistently beats SnapKV across varying KV cache budgets.

A.4. LongWriter: LLM Judge Scores for Different Models and Metrics

Table 9 provides detailed LLM Judge Scores across various criteria. All configurations use a KV cache capacity of 600
tokens, with a recent window size of 30 tokens for both SnapKV and MorphKV. MorphKV consistently outperforms
H2O on Relevance, highlighting its effectiveness in retaining imporatant tokens. Qwen2.5 differs from other models as it
employs GQA with 7× less heads than the default MHA configuration, potentially introducing partial information loss when
MorphKV operates under fewer heads, explaining why MorphKV performs poorer compared to SnapKV for this model.

Model Relevance Accuracy Coherence Clarity Breadth and Depth Reading Experience Total

L
la

m
a3

.1
-8

B H2O 84.6 81.7 63.3 71.7 54.2 55.4 68.5
SnapKV 85.8 80.4 63.3 73.3 48.8 54.6 67.7
MorphKV 89.2 81.7 63.3 71.2 57.1 54.6 69.5
Full-Attention 86.2 81.7 57.9 71.2 49.2 52.5 66.5

M
is

tr
al

-7
B H2O 91.7 89.6 81.2 83.3 60.4 73.8 80.0

SnapKV 90.4 89.6 84.6 84.2 61.7 76.2 81.1
MorphKV 92.5 89.2 84.2 85.4 60.4 75.0 81.1
Full-Attention 93.8 88.8 85.0 84.6 60.4 75.0 81.2

Ph
i4

H2O 59.2 77.9 63.8 70.8 40.4 57.1 61.5
SnapKV 66.7 78.3 68.3 71.2 42.5 55.8 63.8
MorphKV 62.5 80 70.42 75 41.2 58.75 64.65
Full-Attention 65.0 78.3 63.8 72.9 43.8 53.8 62.9

Q
w

en
2.

5 H2O 85.0 67.1 54.6 56.2 67.1 52.5 63.8
SnapKV 87.7 72.5 60.6 63.6 68.2 57.6 68.4
MorphKV 85.4 70.4 58.3 59.2 63.8 52.5 64.9
Full-Attention 86.4 69.5 59.8 61.0 64.4 56.4 66.2

Table 9. LongWriter: LLM Judge Scores by model across multiple metrics.

A.5. Coarse-Grained Token-Eviction

MorphKV performs a dynamic token eviction at every generation step to maintain a constant-sized KV cache. However, this
fine-grained approach incurs runtime overhead as the algorithm must run at every timestep, necessitating memory accesses
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to load the attention profile. While MorphKV reduces this overhead by employing dedicated CUDA streams to prefetch
the attention profile, further reductions could be achieved by invoking the algorithm at certain time intervals. Table 10
presents the performance impact when the token-selection policy is applied at every 8th generation-step (eg., 8, 16, 32 etc.).
Adopting a coarser token-eviction results in runtime improvement, albeit at reduced accuracy. This trade-off suggests that
the balance between latency, and accuracy can be dynamically tuned to suit task-specific requirements at runtime.

MorphKV Completion Rate Avg. Accuracy Runtime

default 72.1% 47.0% 1×
coarse-grained eviction (step=8) 71.9% 46.1% 0.82×

Table 10. LongGenBench: Performance of MorphKV with different token eviction policies on Mistral-7B. Coarse-grained selection incurs
a slight degradation in long-response generation but yields better runtime compared to default (per-timestep) eviction.

A.6. Selective Layer Retention with MorphKV

MorphKV only preserves those distant tokens which are heavily attended by the recent window tokens. However, KV cache
can also be optimized across attention layers. Prior works (Cai et al., 2024; Wang et al., 2024) have shown that early layers
capture more critical information than later ones. Building on this insight, we perform a preliminary experiment where we
disable MorphKV for the first three layers i.e., the first three layers are retained for all tokens, to emulate a layer-sensitive
strategy. Table 11 shows that this configuration outperforms the default MorphKV configuration, although with an additional
10% memory footprint.

While integrating MorphKV with orthogonal techniques which optimize the KV cache across attention layers (Cai et al.,
2024; Wang et al., 2024), and attention heads (Fu et al., 2024; Feng et al., 2024) can further improve performance, such
integration necessitates a comprehensive understanding of their trade-offs, and careful parameter tuning. We defer this
exploration to future work.

MorphKV) Completion Rate Avg. Accuracy

default 70.51% 44.2%
layer-aware optimization 71.96% 46.1%

Table 11. LongGenBench: Performance of MorphKV improves with selection (first three layers) layer retention on Mistral-7B, although
at an additional 10% memory overhead. Default configuration of MorphKV has a capacity of 2000 tokens.
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