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ABSTRACT

Information-rich relational graphs have shown great potential in designing ef-
fective representations of code for program-understanding tasks. However, the
wealth of structural and semantic information in such graphs can overwhelm mod-
els, because of their limited input size. A promising approach for overcoming this
challenge is to gather presumed-relevant but smaller context from a larger graph,
and random walks over graphs was one of the first such approaches discovered.
We propose a deep-learning approach that improves upon random walks by learn-
ing task-specific walk policies that guide the traversal of the graph towards the
most relevant context. In the setting of relational graphs representing programs
and their semantic properties, we observe that models that employ learned poli-
cies for guiding walks are 6-36% points more accurate than models that employ
uniform random walks, and 0.2-3.5% points more accurate than models that em-
ploy expert knowledge for guiding the walks.

1 INTRODUCTION

Deep learning techniques have made great strides in solving a wide range of program understand-
ing tasks (Lu et al., 2021). The effectiveness of these techniques on a task depends heavily on the
program representation. An effective program representation requires the knowledge of rich struc-
tural and semantic information in source code (Allamanis et al., 2018; Hellendoorn et al., 2020;
Pashakhanloo et al., 2022). Program representation techniques benefit greatly from the abundance
of information, but also pose a fundamental challenge. It is difficult to determine which kinds of pro-
gram information are most relevant for a given task. There have been efforts in crafting features for
programs. These approaches, however, require a lot of engineering and domain knowledge. AST-
or control-flow-based models (Alon et al., 2019; Allamanis et al., 2018) require domain experts to
select what information to include and how to incorporate it.

A recent approach (Pashakhanloo et al., 2022) alleviates this issue by modeling programs as rela-
tional graphs that uniformly store all available structural and semantic information. CodeTrek out-
performs the state-of-the-art by representing programs as biased walks over rich relational graphs,
thereby selecting some of the available information via the walk policy. This technique, however,
does not provide an automated approach to discovering bias; a domain expert must determine which
kinds of information (e.g., statements, successors) are more relevant for a given task. CodeTrek is
limited by its reliance on domain knowledge when tackling a new task. Also, using uniform random
walks (such as in Perozzi et al. (2014)) does not help because, given a limited budget, as the space
of possible random walks increases, it becomes more difficult to select suitable random walks to fit
the needs of a given task.

In this paper, we propose a deep learning approach to learn walk policies to address challenges
that stem from the abundance of available program information in relational graphs. Our proposed
policy-learning mechanism selects relevant relations in a task-specific manner by sampling a set of
graph walks over the relations. It uses the properties of relational graphs (relation names, tuples, and
key-foreign key relationships) to learn policies that guide the random-walk generation. In particular,
it aggregates the attention weights that are computed while the model learns to embed each walk, to
rank relations by their relevance to the task. Relations that are ranked higher are of higher relevance,
and are more likely to be visited during random traversal. We call the mapping from relation names
to their scores the walk policy.
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Figure 1: Illustration of (a) the schema of a relational database, (b) tables that correspond to relations
that are defined in the schema, and (c) an example of a link in the relational graph.

We evaluate our proposed walk policy learning mechanism on various program-understanding tasks.
We observe that the policies learned in this manner yield superior accuracy to even those hand-picked
by a human expert.

In summary, this paper makes the following contributions:

1. We present a mechanism to learn walk policies that prunes large relational graphs by ranking the
relations based on their relevance in a task-specific manner.

2. We evaluate our approach and show the effectiveness of the proposed mechanism on accuracy.
3. We discuss the limitations of the policy and identify future directions.

2 OVERVIEW

2.1 RELATIONAL GRAPHS

In a relational database, information is uniformly stored as relations according to a schema. A
schema defines a set of relations containing information in the form of tuples with multiple columns
representing different kinds of program elements, and the relationships between them in the form of
key-foreign-key (KFK) relationships. Each KFK relationship has the form R.A → S.B and states
that column A is a foreign key of referencing relation R, and B is a key of referenced relation S.
For example, in Figure 1(a), R1 and R2 are two relations defined in the schema. The relationship
between these relations is established by a FOREIGN KEY entry: R1 references R2.D through
foreign key B.

A relational graph is the abstraction of a relational database. Every tuple of a relation named R
is mapped to a node whose type is R and its values are any value in the tuple other than primary
and foreign keys. For example, in Figure 1(b), tuples are R1(a1, b1, ...) and R2(d1, e1, ...). The
values a1, b1, d1, and e1 correspond to attributes R1.A, R1.B, R2.D, and R2.E, respectively. So,
as illustrated in blue boxes in Figure 1(c), a tuple R1(a1, b1) whose relation name is R1 is translated
to a node whose type is R1 and b1 is its value. For each KFK relationship R.A → S.B, an edge
type R.A S.B is defined, connecting the tuples of the two relations with the same value on the edge
attributes R.A and S.B. For example, in Figure 1(c), assuming that b1 = d1, the KFK relationship
R1.B → R2.D is mapped to an edge with type R1.B R2.D between the two nodes.

2.2 LEARNING A WALK POLICY

Representing programs by walking relational graphs of code is challenging because the space of
possible walks is combinatorially large. If done randomly, there will be many unrelated walks
among the sampled walks that not only do not contribute to improving the program representation,
but make it noisier. On the other hand, if walks are guided by a domain expert, the exploration space
and noise decreases for the given task at the cost of human engineering effort; moreover, some signal
in large graphs may not be obvious to a human expert, which might lead to a loss of opportunity to
discover relevant and powerful relations. Learning policies to guide the walks removes this cost.
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A natural way to automate walks is to learn another neural network policy that recommends the next
node to visit based on the walk history. However, this presents another set of challenges. First, the
space is discrete and combinatorial, thus no direct gradient update to the walk policy is available.
It is possible to use reinforcement learning for this challenge, but the samples are complex, making
training difficult. Regardless of how we approach the above challenges, it may still be difficult to
interpret the learned walk policy.

The challenges of walk learning arise from the fact that walks are latent—they are unobserved and
lack supervision. However, a learned policy has the potential to improve the overall predictive
performance of the model, and thus walk learning can be viewed as an expectation-maximization
algorithm (E-M). The E-step is to estimate the walk policy based on the current model, and the M-
step is to improve the current model based on the estimated walk policy. The walk policy must now
be designed in such a way that it can be estimated by using the current transformer model.

To design a walk policy, we can use some properties of relational graphs such as relation names,
tuples, and KFK relationships to learn walk policies. The policy gives each relation name a score
which is proportionate to the relevance of the relation to a specific task. These scores specify the
next step in a random walk. For example, when the score of the stmt relation is 0.04 and the score
of the expr relation is 0.02, it is twice as likely to step to a node of type stmt than a node of type
expr, when there is a choice between the two at the next step of a walk. The policy is learned before
training the actual model that solves the task. The policy learner updates the policy based on the
aggregated relevance of relations in previous iterations of training.

Note that, although we present our work on learning walk policies in the context of relational graphs,
there is nothing in our approach that makes it inapplicable to other graphs (e.g., data-flow and
control-flow graphs constructed out of syntax trees, such as those used by Allamanis et al. (2018), or
even basic-block graphs such as those used by Vasudevan et al. (2021)). Our approach works under
the following conditions:

• A walk policy can be expressed in terms of bias over vertex types.
• The program-representation model architecture that uses the walks computes some notion

of vertex importance, such as attention scores, that can be used to learn an aggregate mea-
sure of importance about vertex types.

We present our results in the context of CodeTrek, but it would be applicable to other architec-
tures such as Transformer-based systems (e.g., Hellendoorn et al. (2020)), or graph-attention net-
works (Veličković et al., 2018).

3 LEARNING AND INFERENCE

3.1 WALK POLICY LEARNING

We define a walk policy over a relational graph as a mapping from every relation name to a score,
indicating the relevance of a relation to the task for which the neural network is being trained. These
scores are computed prior to training a model for the task. They are then used—while training a
model for the given task—to guide sampling a set of walks W over a relational graph.

We revisit here the model architecture from Pashakhanloo et al. (2022). Consider a sequence of
node type embeddings ē(n) = [e

(n)
1 , ..., e

(n)
N ], edge type embeddings ē(e) = [e

(e)
1 , ..., e

(e)
N−1], and

node value embeddings ē(v) = [e
(v)
1 , ..., e

(v)
N ] that correspond to a walk w with a maximum of N

nodes and N − 1 edges, sampled from a relational graph G. The walk embedding xw is computed
as follows:

ew = ē(n) ∥ ē(e) ∥ ē(v) ∈ R(3N−1)×d

where ∥ is the concatenation operator. We elaborate on the details of the embedding in subsec-
tion 3.2. We compute the self-attention weights for ew as follows (Vaswani et al., 2017):

Self-Attention(ew) = Attention(ewWQ, ewW
K , ewW

V )

where WQ, WK , and WV are learned matrices, and Attention(Q,K, V ) = Softmax
(
QKT /

√
d
)
V .

Intuitively, these weights are the results of comparing each element (node type, edge type, or value)
in the walk to all the other elements in it.
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For our approach, we compute scores for relation names as follows. We discard all but the first N
rows of Self-Attention(ew) that correspond to the node types in walk w. We refer to this tensor
as A

(n)
w ∈ RN×d. We then expand each A

(n)
w to a tensor with dimension R (the total number of

relation names) so that the weights that correspond to each relation name have their own column, by
aggregating the attention weights of all nodes with the same relation name. We then compute a raw
score vector S:

S = Softmax
( ∑
w∈W

A(n)
w

)
∈ RR

Each row in S corresponds to a relation name. At each training step, we update the scores:

S ← γS + (1− γ)Sprevious

where γ ∈ [0, 1] is a hyperparameter. Updates are repeated until the node types reach a fixed relative
ranking. S is the list of scores that we use for guiding the random walks during the training process
of a model for a given task. For example, if S[’stmt’] is 0.06 and S[’expr’] is 0.03, the learned walk
policy enforces that the neighbors with node type stmt are 2x more likely to be visited by the random
walk generator than neighbors with node type expr.

Stability of Ranking. We empirically observe that the relative rankings converge to a fixed point for
all our tasks. Also, the rankings do not change across different training instances of the same task.

3.2 EMBEDDING GRAPHS

To represent program graphs, we follow the neural representation proposed by Pashakhanloo et al.
(2022). It was shown to outperform GGNN, CuBERT, GREAT, and Code2Seq on bug-finding
tasks. We embed each walk by treating it as a token sequence of relation names of its nodes,
the edge types traversed, and their attribute values, in the order of traversal. Given each walk
w = [n0, e0, e1, . . . , nN−1] consisting of N nodes and N − 1 edges, we produce an initial em-
bedding Xw:

Xw = X(n)
w ∥X(e)

w ∥X(v)
w ∈ R(3N−1)×d

where d is the embedding dimension and ∥ represents concatenation, using three corresponding
learnable embedding matrices En, Ee, Ev . The first segment, X(n)

w , represents the N node types
(relation names), using an embedding lookup in En ∈ RR×d, where R is the number of relations.
The second segment, X(e)

w , represents the N − 1 edge types, using an embedding lookup in Ee ∈
RI×d, where I is the number of KFK relationships in the database. Finally, the last segment, X(v)

w ,
represents the attribute values of the N nodes; we subtokenize attribute values (using a V -sized
WordPiece vocabulary for attribute values), embed each subtoken using Ev ∈ RV×d, and pool
the subtoken embeddings into each node’s attribute embedding. A sinusoidal positional encoding is
computed for every segment of Xw. All encodings are concatenated to create the positional encoding
of walk w:

Pw = P(n)
w ∥ P(e)

w ∥ P(v)
w ∈ R(3N−1)×d

Similar to Pashakhanloo et al. (2022), we use a Transformer encoder Vaswani et al. (2017) to encode
walk w as follows:

Zw = Transformer(Xw + Pw)

Over all the 3N − 1 elements of the walk on the last layer of Transformer, we perform attention
pooling f : R(3N−1)×d 7→ Rd to obtain a d-dimensional walk embedding tensor ew.

3.3 TRAINING

We train two models for each task. The first model takes a set of labeled graphs, each of which
are represented as a set of uniform random walks and a label, (W, y). It learns a task-specific walk
policy while learning to embed walks (see subsection 3.1). The second model takes a set of labeled
graph, each of which are represented as a set of walks that are sampled using the learned walk policy,
and a label. The hidden layers of the second model are similar to the first model, with an additional
fully-connected network to train for predicting labels. Both models also embed each graph as set
of walk embeddings {ew}w∈W using a permutation-invariant operation (CodeTrek uses DeepSet
Zaheer et al. (2017)). We use the same cross entropy loss function for both models and optimize
using the Adam optimizer.
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Task Input Description Type
VARMISUSE Function and a Variable Access Is the variable used correctly in the function? Binary
VARMISUSE⋆ Function Are all the variables used correctly? Binary

VARSHADOW Module
Is any of the global variables shadowed
by any of local variables?

Binary

DEFUSE Function and a Variable Definition Is the variable definition used in the function? Binary

DEFUSE⋆ Function
Are all the variables defined in the
function used after their definitions?

Binary

EXCEPTION Module and a Masked Exception Type
What is the exception that the except statement
should catch?

Multiclass

EXCEPTION⋆ Function and a Masked Exception Type
What is the exception that the except statement
should catch?

Multiclass

OPMISUSE Function Are all the binary operators used correctly? Binary

Table 1: Bug-finding Task Descriptions. The variation of each task is marked by “⋆”.

4 EVALUATION

4.1 RELATIONAL SCHEMA

We use the relational schema defined for Python by Semmle to construct a database for each pro-
gram, and extract the tuples of each relation. Semmle is a code analysis platform which is adapted
by GitHub and uses logic queries to help find bugs in codebases. This platform constructs databases
from source code and uses CodeQL to query them. To better understand CodeQL, we explain its
main componenets: 1) CodeQL databases and 2) CodeQL queries.

CodeQL Database. A CodeQL database stores all the program information including but not limited
to AST, def-use, call-graph, and more. Similar to any relational database, CodeQL databases have
key-foreign-key relationships, are optimized for program data, and can be queried using a SQL-like
query language. Each programming language requires its own extractor because it can be different
in terms of the capabilities and paradigm from other languages. For the same reasons, each pro-
gramming language has its own schema for the database. The Python schema, for instance, specifies
control-flow information, dataflow-information, AST, and some meta-information. In contrast, the
underlying query evaluater that carries out the analyses is language-agnostic.

CodeQL Queries. The Semmle platform uses CodeQL as its query language. These queries can
be used to perform code analysis. There is a pool of CodeQL queries that are used for analyzing
programs, and, in our work, to construct feature-rich program graphs.

4.2 EXPERIMENTAL SETUP

We evaluate the proposed approach to learn walk policies using five bug-finding tasks and their vari-
ants: VARMISUSE, VARSHADOW, DEFUSE, EXCEPTION, and OPMISUSE. We use the program
graphs generated by Pashakhanloo et al. (2022) for training the first four tasks, and ETH Py150
Open for the OPMISUSE task. The number of programs that are used to train, validation, and test
these tasks are reported in Table 2. The description of the tasks and their variants are summarized
in Table 1. We use accuracy to measure the performance of all the tasks other than DEFUSE. We
measure the performance of DEFUSE using AUC score to account for its imbalanced dataset.

4.3 EFFECT OF LEARNING WALK POLICY

We compare the effectiveness of learned walk policy on performance by training three models with
the same neural architecture but a different approach to scoring relations. In the first scenario, all
relations are equally likely to be visited. In the second scenario, a human expert identifies a few
relations as the most relevant relations to the task. Particularly, nodes with types stmt, expr, and
variable are biased to be visited five times more often than others. In addition, in the EXCEPTION
task, the score assigned to type module is 0 to avoid traveling from one function to another through
their common module node. As a result, the walks will only go to other functions by taking the call
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Task # Training # Validation # Testing
VARMISUSE 700,683 75,468 378,401
VARMISUSE⋆ 700,683 75,468 378,401
VARSHADOW 70,183 21,794 39,845
DEFUSE 217,591 52,598 104,111
DEFUSE⋆ 33,182 8,149 16,296
EXCEPTION 18,456 2,086 10,334
EXCEPTION⋆ 18,456 2,086 10,334
OPMISUSE 457,400 49,800 251,531

Table 2: The number of samples used for training, validation, and testing.

γ 0.0 0.2 0.4 0.5 0.6 0.8 1.0
Accuracy 0.52 0.60 0.61 0.65 0.57 0.56 0.36

Table 3: Sensitivity to γ variations.

graph edges between them. In the final scenario, we use the proposed policy learning mechanism
to obtain the relevance of relations without prior knowledge. The results of the models trained
under these scenarios are reported in Figure 2. Models with learned policies consistently outperform
models without policies by 6% to 36%. Interestingly, in all the tasks, models that use learned policies
outperform the models for which a human expert scored the relations, by 0.2–3.5% points.

The improved performance of models can be explained by considering the space of possible walks
in each scenario. Choosing scores for walks reduces the space by prioritizing relations that are
more relevant to solving a specific task, thus reducing the noise caused by irrelevant relations. To
illustrate the usefulness of learning walk policies, consider the example in Listing 1. In this example,
the model predicts the type of exception to catch on line 247. It must consider the exceptions raised
by the summarize method on an instance of class DiskQueue. Hence, the definition of summarize
(line 2) must be considered. In line 3, it calls get disk cap which raises an exception. This chain of
function calls can be made explicit via a call graph, making it possible to walk along them.

Despite this, the walk space is still too large to be traversed at random. For instance, in Listing 1,
there are millions of walks that start from the node that corresponds to the except statement. It is
difficult to find walks that connect the except node to raise node under a purely random scenario.
We can reduce the exploration space by limiting the exploration to walks that connect the two nodes
through the body of the body of the try block since the statements before and after that do not affect
the caught exception. The challenge, however, is that only a domain expert can tune relation scores
for a new task. Learning such scores eliminates the need for a domain expert for tuning. In Listing 1,
the learned policy guides the walk generator to use the except successor relation that connects the
statements in a try block (e.g., line 245) to their corresponding except statement (e.g., line 247) more
frequently. Having the walks visit except successor during the traversal, reduces the number of 16-
hop walks by over 95% compared to the unbiased case. Interestingly, this relation was overlooked
by the human expert who scored the relations for the EXCEPTION task, justifying why learning the
policy results in performing 2% points better than that of the human expert.

4.4 EFFECT OF SCORE UPDATE PARAMETER γ

We examine the effect of changing γ during walk learning on the accuracy of the models that are
trained to understand code. As described in subsection 3.1, this value represents the influence of the
newly computed versus the previously computed scores during walk learning. We learn the walk
policy for the EXCEPTION task using varying values of γ and use them to train different models for
the same task. As Table 3 shows, with γ set to 1, the model achieves the same accuracy as with
uniform random walks. This outcome is expected because γ = 1 results in completely discarding
the score values computed in the previous training iteration. At the other extreme, γ = 0 assigns
an initially random but fixed score vector to relations throughout the policy learning. Regardless,
it performs better than uniform random walks. Based on the empirical results, 0.5 is a reasonable
value for γ in our selected tasks.
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Listing 1: Example EXCEPTION task.
1: class DiskQueue:
2: def summarize(self):
3: dc = self.get_disk_cap()
4: ...

5: def get_disk_cap(self):
6: raise NotImplementedError

...

240: class DiskQueueTest(QueueTest):
241: chunksize = 100000
242: self.q = DiskQueue()

243: def test(self):
244: try:
245: self.queue.summarize()
246: self.q.push('a')
247: except [MASK]:
248: ...

VarMisuse

VarMisuseFun
Exception

ExceptionFun
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DefUse
DefUseFun

VarShadow
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Figure 2: The effect of scoring relations on performance.

4.5 INTERPRETING LEARNED POLICIES

In this section, we take a closer look at the relations that have high scores. We qualitatively analyze
some of the relations that are found relevant during the walk policy learning. The top-4 relations
with the highest scores are summarized in Table 4 for each task.

For DEFUSE, we compare the relations with the highest learned scores with a CodeQL query crafted
for the same purpose. flow bb node, successor, and ssa use are the highest-ranking relations for
this task, and all three are crucial for the CodeQL query. The first two relations establish control-
flow relationships between basic blocks and statements, and the third relation computes dataflow
information. VARSHADOW is another example–a global task which requires inspecting inner scopes
(possibly multiple classes) for variables that shadow global variables. Interestingly, the learned
policy detects that class is one of the relations with the highest scores.

5 DISCUSSION

One could argue that a walk policy that only scores relations might not be sufficient for some tasks.
Consider the following example. In a code database schema, there are KFK relationships between
func and both of flow bb node and call relations. This means that there is an edge between a node of
type func and a node of type flow bb node. There is also an edge between a node of type func and
a node of type call. Traversing the call-func edges can be interpreted as visiting other functions that
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Task Most Relevant Relations
VARMISUSE,
VARMISUSE⋆

stmt, scope, expr context, expr

VARSHADOW location, scope, variable, class
DEFUSE,
DEFUSE⋆

flow bb node, ssa use, successor, scope

EXCEPTION,
EXCEPTION⋆

stmt, expr, variable, except successor

OPMISUSE expr, cmpop list, unnary op, str

Table 4: Relations with the highest learned scores.

a function calls. The flow bb node-func edges, on the other hand, connect function nodes to the root
nodes of control-flow graphs of functions’ bodies. Depending on whether the task requires inter-
procedural (global) or intra-procedural (local) analysis, the relevance of the func relation varies. For
such scenarios, we conjecture that scores for edge types should be learned rather than relations types.
In future work, we plan to incorporate other factors such as edge names, values, and the length of
walks into the learned walk policy. The current mechanism for learning walk policies also lacks
memory, which might hinder its ability to capture complex patterns.

Another piece of information that should be specified by an expert is the anchor node. In a practical
approach, every walk could start from the root (i.e., the top-level node in the program graph such as
a module node) and learn better anchor points from there. There are also open questions regarding
anchors; how many nodes should be selected as anchors? Should all the anchor nodes for a particular
task have the same relation name?

6 RELATED WORK

Sampling large graphs. Large graphs have been examined in several studies. Some of them per-
form various sampling schemas such as mini-batching (Zeng et al., 2019; Kipf & Welling, 2016;
Hamilton et al., 2017; Chen et al., 2018) or attention mechanism (Velickovic et al., 2017) to enable
training on giant graphs. Various efforts have also been made to improve the efficiency of manag-
ing and training large graphs, including (Xie et al., 2021; Gandhi & Iyer, 2021; Zhu et al., 2019;
Chiang et al., 2019). While these approaches are typically used for recommendation tasks that in-
volve one huge graph, our technique takes into account many program graphs when tackling code
understanding problems.

Walk-based embedding. A number of representation learning techniques on graphs use random
walks to learn node embeddings. DeepWalk (Perozzi et al., 2014) uses simple unbiased random
walks to measure node similarity. node2vec (Grover & Leskovec, 2016) builds on DeepWalk by in-
troducing two hyperparameters to control the tendency for random walks to traverse more depth or
breadth. Further extensions include Walklets (Perozzi et al., 2017), which skip over steps in random
walks to allow short walks to capture multiple levels of relationships, as well as neural embedding
approaches that employ hyperbolic rather than Euclidean spaces to define node similarities (Cham-
berlain et al., 2017). Unlike these approaches, our proposed technique aims to learn and guide
traversal of graphs, rather than depending on simple unbiased random walks.

7 CONCLUSION

We proposed a deep learning approach for learning walk policies over relational graphs. We showed
that sampling walks using a learned walk policy can result in models with better performance than
that of a policy designed by a human expert. Among the opportunities for future research are: 1)
incorporating edge types, values, and other characteristics of walks into the learning of walk policies,
2) expanding the application of the proposed policy learning mechanism beyond code understanding,
and 3) providing walk policies with memory (state) to capture more complex patterns.
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