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Abstract

The human-level performance of artificial neural networks (ANNs) in visual pro-
cessing has made them a much-used research subject for understanding how the
visual cortex really works. To assess how well various types of ANNs represent
regions of the visual cortex, the Brain-Score platform provides several standardized
benchmarks. These include the measure of explained variance in ventral stream
regions V1, V2, V4, IT and the object recognition behavior in primates.
The aim of this work is to find a training procedure that maximizes an ANNs
average score in the Brain-Score benchmark. The proposed pipeline combines
a customized version of CutMix, heavy use of image augmentations, adversarial
robust training, fixing the train-test resolution discrepancy, and weight averaging.
Due to its widespread use, memory and computational efficiency, and object recog-
nition performance, the EfficientNet-B1 architecture was used prototypically. The
proposed training methods improve the public object recognition behavior metric
score by 9% and the explained V1 variance by 62%, resulting in the best performing
models in the Brain-Score competition 2022 . This is a strong indicator that finding
the right training strategy might be crucial for developing brain-like ANNs.

1 Introduction

Deep artificial neural networks (ANN) have shown remarkable success in the field of object recogni-
tion and therefore became a popular subject of investigation in the neuroscience community. It was
found that the latent features learned by ANNs after training on large image datasets resemble the
neural responses in primates ventral visual cortices better than any other types of models [1, 2].

There is a large number of papers reporting how well ANNs account for various parts of the ventral
stream such as V1, V2, V4, inferior temporal (IT) cortex or the object recognition behavior [1, 3, 4,
5, 6, 7]. However, many of these findings can hardly be compared across ANN models or different
types of evaluation benchmarks. The Brain-Score platform provides a standardized framework for
these kinds of benchmarks, including an API to (currently) perform 33 neuronal and behavioral
brain-similarity tests on ANNs [8].

Many of the approaches in literature for finding brain-like ANNs focus on the search for beneficial
ANN architectures rather than finding an optimal training and data augmentation strategy [6, 7, 9, 10].
This work is aiming towards finding a training procedure for established ANNs in order to maximize
their average score in the Brain-Score benchmark. The focus of this work has been on training an
ANN performing well on the V1 alignment benchmark by Freeman et al. [11] and the behavioral
alignment benchmark by Rajalingham et al. [5]. Competitive results in the other evaluation categories
V2, V4 and IT fell off with it.
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1.1 Related Work

The positive correlation between adversarial robustness and the ANNs capability to explain brain
V1 variance has been demonstrated in literature [6, 12]. Dapello et. al. show that ANNs trained
on adversarial perturbed images using a projected gradient descent (PGD) increase the ANNs V1
explained variance. Though the authors suggest a dedicated architectural backbone for increasing
V1 explained variance and adversarial robustness of ANNs, the state-of-the-art method for training
robust ANNs remains training on adversarial perturbed images [6, 13].

The behavior benchmark used in Brain-Score is established by Rajalingham et. al. and measures
the ANNs similarity to primates in recognizing objects in different scenarios [5]. For determining
the object recognition behavior, the test subjects are shown images of 3D object models in various
poses on different backgrounds. Subsequently, the subjects are shown two possible objects (one
previously shown and a distractor object) and asked to decide which one was shown in the previous
composition. The benchmark then measures the decision-similarity between the ANN and the test
subjects. To improve an ANNs behavior-similarity, a first intuitive approach would be to reduce the
data distribution gap between an ANNs training data and the behavior test data.

The use of image augmentations in training ANNs, improves their generalization ability and thus
prevent over-fitting the training data [14]. Augmentation techniques used in the proposed training
pipeline include geometric transformations, color space augmentations, random erasing and adding
noise.

For many ImageNet-pretrained vision ANNs, the current best training practice includes random
cropping and resizing at training time, while simply extracting a centered square (center cropping)
at test time [15]. This leads to different object sizes at train and test time, resulting in potentially
wasted object recognition performance due to a distribution shift. The problem can be by increasing
the resizing and cropping resolutions at test time.

Weight averaging (WA) is a well-known generalization technique in deep learning. In its simplest
form, averaging the learned weights of two or more architectural identical ANNs increases the
resulting ANN’s performance. It also leads to wider optima than those found by stochastic gradient
descent during training [16].

2 Methods and Results

The above-mentioned methods combine different concepts to improve an ANNs Brain-Score bench-
marks. They represent a mix of regularization, generalization, data distribution shifts and adversarial
robustness. Despite V1 alignment and adversarial robustness as well as behavioral alignment and
classification accuracy generally don’t correlate very strong, the robustness and accuracy gains from
some techniques do correlate with the corresponding V1 and behavior metrics. Fixing the train-test
resolution discrepancy (FixRes) of EfficientNet-B1 for example changes an ANNs Brain-Score
behavior metric in the same cyclic pattern as observed for the object classification accuracy (see
Figure 1 and [17]). Also, the behavior score gains from weight averaging are comparable to the
image classification accuracy gains from this method. To evaluate the benefit of the proposed training
and evaluation pipeline, an ablation study was conducted. The study is split into behavior metric
ablation and V1 metric ablation, both using different techniques.

An intuitive approach to train ANNs to be not distracted by the background image presented in the
behavioral benchmark [5] would be a adjusted form of the CutMix augmentation [18]. In contrast to
the original CutMix, the proposed method only accounts for the pasted image to be the correct class
(Table 3, "Foreground-CutMix"). This technique will shift the training data towards the data shown
in the behavioral benchmark.

The augmentations used in the ablation study (referred to as "heavy augmentations") include image
shifting, rotation, elastic deformation, brightness and contrast adjustments, motion blurring, cutout,
adding Gaussian and ISO noise [19].

The adversarial robust training used for improving the V1 metric adversely effects the ANNs object
classification performance, and thus the behavior score. To overcome this, the final ANN was first
trained adversarial robust under the optimal parameters (see Table 2). Subsequently the first half of
the ANNs layers were frozen (including Batch Norm statistics), and it was fine-tuned for behavior
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response using the proposed techniques in 1. The layers that explain most of V1 variance are likely
to be found among the first half of all layers. The behavioral response however is read out in the
penultimate layer. The presented ablation studies were conducted without any layer freezing.

Table 1: EfficientNet-B1 fine-tuned for 5 epochs using the ADAM optimizer and an initial learning
rate of 1.5e-4.

Public Behavior (Rajalingham2018-i2n) Heavy Aug CutMix F-CutMix FixRes WA

0.5133

0.5281 ✓

0.5129 ✓

0.5200 ✓

0.5365 ✓ ✓

0.5429 ✓ ✓ ✓

0.5563 ✓ ✓ ✓ ✓

The frozen layer fine-tuning for behavioral response leads to a lower behavior score compared to
all-layer training due to the limited capacity. However, the proposed training techniques boost the
public behavior score from 0.4527 (L∞, ϵ = 8/255 adversarially trained) to 0.5271 (L∞, ϵ = 8/255
adversarially trained and behavior fine-tuned) while keeping the optimized V1 explained variance.

The proposed methods were validated on a ResNet50 [20] to demonstrate their generalizability.
Similar improvements in explained V1 variance and behavioral response can be achieved compared
to the studied EfficientNet-B1 architecture.

Table 2: EfficientNet-B1 trained adversarially robust [21] under different constraints and epsilon
values were evaluated on their V1 explained variance using the Freeman-Ziemba 2013.V1-pls score.
The ANN validated without robust training is the best performing behavior ANN (see Table 1).

.
Constraint Public V1 (Freeman-Ziemba 2013.V1-pls)

w/o robust training 0.2257

L2, ϵ = 3.0 0.3302

L∞, ϵ = 8/255 0.3661
L∞, ϵ = 4/255 0.3401

3 Discussion

The combination of adversarial robust training, layer freezing and behavioral metric aware data
distribution shifting leads to an improved explained V1 variance and a competitive behavioral metric
response. Despite the proposed methods lead to a winning model in the Brain-Score competition
2022 and present a new state-of-the-art performance in the Brain-Score benchmark overall, it still
remains unclear whether they lead towards biologically more plausible ANNs or if they are just ways
to exploit the Brain-Score benchmark. However, the further development of brain-like ANNs should
address the influence of an optimized training pipeline as it might be a way to push a biologically
plausible ANN towards its frontiers of explaining primates visual cortex responses.
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A Appendix

As the images presented in the Rajalingham behavior benchmark are composed of an 3D objects randomly
pasted on different backgrounds, it seemed advantageous to simulate this type of input. An intuitive approach is
simply pasting parts of ImageNet images on top of a background image and assign the pasted image label to the
whole image. This method is called Foreground-CutMix in the present work.

Table 3: Foreground-CutMix assigns the label of a randomly pasted image part to the whole image.
This induces the concept that an object can be anywhere in the image and shifts away from photogra-
phers biases.

Cutmix Foreground-CutMix

Image

Label Dog 0.6
Cat 0.4 Cat 1.0

The train-test resolution discrepancy of ANNs that were trained using random resizing and cropping and tested
using center cropping leads to a decrease in classification accuracy. This can be overcome by manipulating the
final average pooling layer or by simply finding the best performing test resolution. For an EfficientNet-B1
trained on images that are resized to 272x272 pixels and cropped to 240x240 pixels, the behavior-benchmark-
optimal resolution at test time was empirically determined to be 324x324 pixels. A similar effect is observed for
the ImageNet object classification accuracy in [15], though the optimal EfficientNet-B1 resolution is found to be
384x384 pixels for object classification.
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Figure 1: The Brain-Score behavior score is dependent on the input image size for ANNs that
are trained using random crop resizing. A similar pattern is observed for the object classification
performance [15].
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