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Abstract

Safe Reinforcement Learning (RL) is crucial for achieving high performance while
ensuring safety in real-world applications. However, the complex interplay of
multiple uncertainty sources in real environments poses significant challenges
for interpretable risk assessment and robust decision-making. To address these
challenges, we propose Fuz-RL, a fuzzy measure-guided robust framework for
safe RL. Specifically, our framework develops a novel fuzzy Bellman operator
for estimating robust value functions using Choquet integrals. Theoretically, we
prove that solving the Fuz-RL problem (in Constrained Markov Decision Process
(CMDP) form) is equivalent to solving distributionally robust safe RL problems (in
robust CMDP form), effectively reformulating the min-max optimization problem
into a tractable CMDP with Choquet-integrated value functions. Empirical analyses
on safe-control-gym and safety-gymnasium scenarios demonstrate that Fuz-RL
effectively integrates with existing safe RL baselines in a model-free manner,
significantly improving both safety and control performance under various types
of uncertainties in observation, action, and dynamics. The code is available in
https://github.com/waunx/FuzRL.

1 Introduction

While safe reinforcement learning (RL) has achieved remarkable success in safety-crucial decision-
making tasks, deploying safe RL in real-world applications remains challenging due to multiple
sources of uncertainty [5, 8, 42]. Recent methods using Lyapunov functions and reachability analysis
provide theoretical safety guarantees for control tasks [4, 9, 45, 48, 44, 43], but focus primarily on
idealized, deterministic settings. These approaches struggle with the complex, coupled uncertainties
of real-world systems, including sensor noise, actuator delays, and environmental variations.

Existing robust approaches to safe RL face several key limitations for real-world tasks. Traditional
min-max techniques [49, 29, 40] focus on worst-case scenarios, resulting in overly conservative
policies and computational intractability. While distributionally robust methods attempt to model
uncertainty distributions, they typically assume simplified, independent uncertainties through KL-
divergence constraints [39] or Gaussian perturbations [41], and treat different perturbations with equal
importance. Risk-sensitive approaches using probability measures like conditional Value-at-Risk
(VaR) [38], Wang transform [34], and Entropic VaR [31] enable uncertainty quantification through
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coherent risk functionals, require careful parameter tuning and struggle to handle multiple noise
sources effectively.

However, when multiple uncertainties are correlated and converge on a single system component, the
resultant performance degradation often exhibits super-additive behavior. To handle such coupled
uncertainties, fuzzy measure theory has shown promise in various decision-making tasks, from robust
motion planning [7, 53, 18] to adaptive control [27, 16], through its ability to model non-additive
effects and provide clear behavioral interpretations. While these successes demonstrate the potential
of fuzzy measures for uncertainty quantification, extending this approach to constrained Markov
decision process (CMDP) remains challenging, particularly in balancing performance objectives with
safety constraints under uncertainty.

Motivated by this, we propose a novel Fuzzy-guided framework for Safe RL (Fuz-RL) that unifies un-
certainty quantification and enhances current safe RL’s robustness through fuzzy theory. Specifically,
our main contributions are:

(1) We introduce a novel fuzzy Bellman operator that integrates Choquet integrals of fuzzy measure
into value function to achieve robust value estimation under potential perturbations.

(2) We provide robustness equivalence for our Fuz-RL framework by demonstrating that solving
Fuz-RL problem (a CMDP form) is equivalent to distributionally robust safe RL problems (a robust
CMDP form).

(3) By seamlessly integrating the Fuz-RL framework into three safe RL methods, we conduct several
robust assessments involving observation, action, and dynamics uncertainty for safe-control-gym
tasks and safety-gymnasium tasks. As expected, Fuz-RL significantly enhances the robustness of
safe RL algorithms in multi-source uncertainty scenarios.

2 Related Work

Our work builds upon and connects two main research directions: robust approaches in safe RL
and fuzzy-based uncertainty quantification in MDPs. We review relevant work in these areas and
highlight the research gaps our work addresses.

Robust Approaches in Safe RL. Uncertainties within the CMDP framework manifest in various
forms, including state shifts [23], action disturbances [41], and dynamics uncertainty [33]. To
address these challenges, distributionally robust optimization has been employed, where policies
are optimized against worst-case transition kernels within a Wasserstein ambiguity set [39, 28]. An
alternative direction leverages risk-sensitive measures to enhance robustness under safety constraints.
For instance, Conditional Value-at-Risk (CVaR) has been integrated into policy optimization to
explicitly balance expected return and worst-case performance [47], while coherent distortion risk
measures offer formal robustness guarantees in safe RL [34]. Other approaches focus on adversarial
robustness or model-based safety. Some works combine robust model predictive control (MPC) with
tube-based constraints to ensure recursive feasibility under uncertainty [51]. Gaussian Processes
have also been used as safety oracles in model-based RL to probabilistically identify constraints [2].
Adversarially robust methods further address observation perturbations via state-adversarial MDPs
and policy regularization [24, 25, 52].

Fuzzy Measures in MDPs. Fuzzy logic provides an interpretable framework for quantifying
and managing uncertainty in complex systems. Zadeh’s fuzzy sets theory [50] laid the foundation
for uncertainty measures. Building on this, possibility theory [11] emerged as a significant fuzzy
approach to uncertainty quantification, offering an alternative to probabilistic methods. Then, [26]
introduced credibility theory, which combines fuzzy and probability measures to create a self-dual
measure. For RL community, fuzzy Q-learning [13] and possibilistic MDPs [36] incorporate fuzzy
logic into MDPs. Furthermore, [17], [21] and [19] developed various fuzzy RL approaches that
provide enhanced interpretability and effectiveness compared to deep neural network-based RL
methods. [15] introduces m) measure, which combined the possibility measure and necessity
measure to balance optimism and pessimism in decision-making systems, which has shown promise
in chance-constrained programming. Recent advancements have further expanded the application
of fuzzy logic in uncertainty modeling. For instance, [20] developed a fuzzy adaptive sliding mode



control method for robotic systems with uncertainties, [37] conducted a comprehensive review of
uncertainty quantification applications for healthcare.

However, incorporating fuzzy logic for robustness enhancement in safe RL remains unexplored.
Inspired by the fuzzy-guided m ) fuzzy measure[15], we aim to achieve a robust risk-aversion and
reward-pursuitin value estimation through fuzzy logic for safe RL.

3 Preliminaries

3.1 Robust CMDP

We consider formulating the safe RL problem as an infinite-horizon CMDP [3], which is defined
by the tuple (S, A, p,r,¢,v,dy), where S is the finite state space and A is the action space. p :
S x Ax S — [0,1] is the transition model, 7, ¢ : S x A x & — R are the bounded reward function
and cost function defining the objective and constraint, respectively. v € [0, 1) is the discount
factor, and dp : S — [0, 1] is the initial state distribution. A policy 7 : S — A(.A) maps states to
distributions over actions.

To address system uncertainty, we introduce a robust formulation of CMDP. Following the concept of
(s, a)-rectangular uncertainty sets [32], we define the uncertainty set P as:

P=]]P: PICAWS) (1)

where P¢ represents the set of all possible transition probabilities over S for a given state-action pair
(s,a). ForVs € S,a € A, we define:

P¢ ={p(ls,a) - d(p(|s,a), po(-|s, a)) < €} @

where py is the nominal transition model, d(-, -) is a distance metric, and e > 0 defines the uncertainty
radius.

The objective of the robust CMDP is to find a policy 7 that solves the following constrained
optimization problem:

maxminE; x ) [Zytr(st,at)l s.t. max Er(np) [thc(shat) <B 3)

T peP =0 pe =0

where 7 ~ (7, p) denotes trajectories sampled according to sg ~ do, a; ~ 7(:|s;) and sp41 ~
p(-|st, ar), and B > 0 is the safety budget constraint.

For computational tractability, we partition the uncertainty set P¢ into K distinct levels:

K
P =JPiws Poi=A{p(ls,a) : er1 < d(p(]s,a),po(-]s,a)) < e} ©)
k=1
where 0 = ¢y < €1 < ... < ex = € defines a sequence of increasing uncertainty thresholds.

3.2 Fuzzy Measures Fundamentals

Traditional probability measures treat uncertainties in a purely additive manner, assuming independent
effects from different uncertainties. However, in real control systems, as the distance from nominal
dynamics increases, the compound effects of uncertainties often exhibit super-additive behavior.
For example, when considering two uncertainty sources A and B, their joint impact on system
performance may be greater than the sum of their individual effects:

m(AU B) > m(A) + m(B) 5)
Moreover, as the system deviates further from the nominal model, the impact on performance and

safety constraints typically grows non-linearly.

To capture such non-additive effects, we first introduce the concept of fuzzy measure, which provides
an interpretable way to assess the impacts of uncertainty by assigning non-additive weights to
combinations of uncertainty levels. The formal definition is as follows:



Definition 3.1 (Fuzzy Measure [30]). For each state-action pair (s,a), let 7% =
{P;f 1, Pga, .., P i} denote the collection of uncertainty sets. A fuzzy measure m is a set function

m: 255 — [0, 1], satisfying:
(D) m(@) =0, m(Z2) = 1 (boundary conditions),
2)If A C B C T¢, then m(A) < m(B) (monotonicity).

Measuring uncertainty impacts for all possible subset combinations in AP PlonPixt ig compu-
tationally intractable, as it requires an exponential number of samples. To address this computational
challenge while preserving the ability to model super-additive effects, we adopt the A-fuzzy measure,
which offers an efficient parameterization of subset relationships:
Definition 3.2 (A-Fuzzy Measure [10]). A A-fuzzy measure satisfies, for all disjoint subsets A, B C
Z¢ with AN B = O

m(AUB) = m(A) + m(B) + Am(A) m(B), (6)
where A > —1 determines the degree of interaction. When A € (—1, 0), the measure exhibits sub-
additive behavior; when A € (0, 00), it models super-additive effects among different uncertainties.
When A = 0, the A\-fuzzy measure reduces to a normalized additive measure, i.e., a probability
measure.

The connection between A-fuzzy measures and robust optimization is established through the Choquet
integral’s pessimistic characterization:

Lemma 3.3 (Choquet Integral Representation [12]). For any bounded measurable function f :
P2 — R and convex \-fuzzy measure m on L¢ with A > 0:

C dn= min E ,
( ) ,Psaf Pé&core(m) P[f]

where core(m) = {P : P(A) > m(A),VA C I%} is the set of probability measures on P
dominating m.

4 Fuzzy Measure-based Robust Safe RL Framework

4.1 Theoretical Foundation of Fuz-RL

In this section, we connect fuzzy measure with robust CMDP by introducing the Fuzzy Bellman
operator.

Fuzzy Bellman Operator. Leveraging Lemma 3.3, we define the fuzzy Bellman operator that
encodes worst-case scenarios through the Choquet integral in Definition 4.1:

Definition 4.1 (Fuzzy Bellman Operator). Let B(S) denote the space of bounded measurable value
functions V on S. The fuzzy Bellman operator F : B(S) — B(S) is defined as:

V&) = e [r(0.0) 47 (€) [ oy V)] (o)

where m(-) is the convex fuzzy measure.

Furthermore, we demonstrate that the fuzzy Bellman operator maintains fundamental properties of the
standard Bellman operator (y-contraction and convergence) when integrated with value functions as
detailed in Theorem 4.2 and Theorem 4.3. Therefore, the fuzzy Bellman operator can be seamlessly
integrated into value functions, enabling the establishment of robust value estimation with theoretical
guarantees.

Theorem 4.2 (y-contraction of Fuzzy Bellman Operator). For any V1,V € B(S),
[F(V1) = F(V2)lloo <[V = Valos-

Theorem 4.3 (Convergence of Fuzzy Bellman Operator). Let V° € B(S) be an initial value function
and V"t = F(V™). Then V" converges to a unique fixed point V* satisfying V* = F(V*) with
geometric rate ||V — V*|loo <A|[V? = V¥ 0.



Robust Equivalence. Applying Lemma 3.3 shows that the Choquet integral automatically encodes
a robust perspective via the fuzzy measure m. Consequently, we can prove the following Theorem
4.4:

Theorem 4.4 (Equivalent Theorem). Let m be a convex \-fuzzy measure on L2 defined by Definition
3.2 such that: (1) core(m) C P¢ for all (s, a), (2) argminyepa Egpy [V (s")] € core(m) for all
(s,a), (3) argmax,epa Egrnp[Ve(s')] C core(m) for all (s,a). Define the dual fuzzy measure
m'(A) :==1—-m(Z%\ A) forall A C T°.

Then the fuzzy robust safe RL problem (CMDP form):

max J? (1) st J (7)< B @)
where
J7 (m) = (C) /7> Brnmp) lzvtr(st,at)l dm(p) ®)
t=0
J7 (m) = (C) /P Ernim,p) [thc(st,a»} dm’ (p) ©)
t=0

is equivalent to the distributionally robust safe RL problem (robust CMDP form).

The detailed proofs of Theorem 4.2, Theorem 4.3 and Theorem 4.4 are provided in Appendix A.

4.2 Practical Implementation of Fuz-RL

Having established the fuzzy Bellman operator and its theoretical properties, we now describe how to
implement Fuz-RL in practice. The pseudo-code of Fuz-RL is detailed in Appendix B Algorithm 1.

Estimation of Fuzzy Measures. To operationalize the fuzzy Bellman operator, we require an
efficient method for estimating fuzzy measures m(+) that capture uncertainty impacts across different
perturbation subsets. We adopt a neural network-based approach that learns fuzzy measure densities
directly from state representations.

For each state s, we employ a fuzzy network ¢ parameterized as a multi-layer perceptron (MLP) with
two hidden layers. The network takes the state vector as input and outputs fuzzy density parameters
{1y

g = o(MLP,(s)), (10)
where o(-) denotes the softmax activation function applied to the network output. To maintain
numerical stability, we apply clamping to constrain the fuzzy values within [e, 1 — €] where ¢ = 1074,
preventing degenerate solutions while satisfying the mathematical constraints of A\-fuzzy measures.

Given the learned densities g = (g1, - . -, gk ), the interaction parameter \ is determined by solving
the characteristic equation:
K

[T +2g) =1+ (11)

k=1
using a hybrid bisection-Newton method with gradient detachment to ensure numerical stability.
Once A is obtained, the fuzzy measure for any index subset A C {1,..., K'} can be computed via
the A-rule: Lo )

+ —
To simulate the impact of uncertain system state transitions across different uncertainty levels, we
employ a stratified perturbation sampling strategy. For each uncertainty level k € {1,..., K}, we
apply independent isotropic Gaussian perturbations:
gk:5+6k'nk'7 nk‘NN(OaI)a (13)

where ¢, represents the perturbation scale for uncertainty level k, typically set as €, = €pyse - £
to create a hierarchy of perturbation intensities. For each uncertainty level, we generate M = 5
independent samples and compute V' (3)) as the average of the value estimates across these samples
to reduce estimation variance.



Estimation of Choquet Integrals. To approximate the Choquet integrals used in the fuzzy Bellman
operator, we leverage the globally learned fuzzy measures. For the standard Choquet integral
applied to reward value aggregation, we sort the perturbed value estimates in descending order:
V(31)) =2 V(5@2)) = --- > V(3k)), where (i) denotes the index after sorting. The corresponding
fuzzy measures are computed as m; = m({(7), (¢ + 1),..., (K)}), representing the capacity of the
tail sets. Following the discrete Choquet integral formulation, the robust reward value is approximated
as:

(C)/P E [V(s)] dm(p) = ZV@(i))(mi—mm), (14)

’
a S§'~
g P

where mg 1 = 0 by convention. For the dual Choquet integral used in cost value aggregation with
pessimistic estimation, we sort the cost values in ascending order: V(5(1)) < Ve(3(9)) < -+ <
Ve(3(k)), and compute:

K

(©) [ B Vel (5) = D Vel (ms = ). ()
Pg s~P i=1
where m; = m({1,2,...,i}) represents the capacity of the head sets, computed using the same

global fuzzy measure densities g5 but with different subset selection to achieve pessimistic estimation
for costs. The choice of descending order sorting for rewards and ascending order sorting for costs is
theoretically grounded in the dual relationship between m and its dual measure m™*.

Value Network Updates. The value networks are updated through temporal difference learning
with Choquet-integrated targets:

(Vo (s2) = (re + 7 Vo, (5001))) 7],
[ (Vo (se) = (ce+v- Vec(8t+1)))2]=

where %T and %C denote the Choquet-integrated value estimates computed using Equations (14)
and (15), respectively.

(16)

Fuzzy Network Updates. The fuzzy network parameters ¢ are updated at a lower frequency than
the value networks to ensure stable learning of the uncertainty structure. Given the fuzzy density
parameters g(s;4+1) predicted from next states, the network minimizes the discrepancy between
Choquet-integrated predictions and Monte Carlo targets:

L(¢) = ET/[(H +7 - V(st41) — Rt)2 + (Ct + 9 Ve(st41) — Ct)Q], (17

where R;, C; are Monte Carlo returns of reward r; and cost c;.

Policy Network Updates. Given that fuzzy value estimation implicitly addresses robustness through
Choquet integration over multiple perturbations, the robust CMDP problem is solved using a primal-
dual approach:

in Eggr | Vi-(s) — Ax (Ve(s) — B)|, 18
max )I\HIZI}) a [Vi(s) (Ve(s) )] (18)

u s

where V. and V, represent the robust value estimates obtained through Choquet integration. The
policy parameters are optimized to maximize the Lagrangian objective, while the Lagrange multiplier
is adjusted to enforce the safety constraint, with specific update rules determined by the underlying
safe RL algorithm framework.

S Experiments

5.1 Experiments Setup

To fully evaluate the robustness of Fuz-RL in multi-source uncertainties, we conduct experi-
ments on four Safe-Control-Gym [6] tasks: Cartpole-Stab, Cartpole-Track, Quadrotor-Stab,
and Quadrotor-Track, as well as four safety-critical control tasks with larger state-action



spaces from Safety-Gymnasium [22]: Safety-PointGoall-vO, Safety-PointButtonl-vO,
Safety-PointCirclel-v0, and Safety-PointPush1-vO.

Uncertainty Setting. During the test phase, we leverage different perturbations provided by the
Safe-Control-Gym to consider the following settings on observation, action, and dynamics:

(1) Observation uncertainty. We introduce white noise following a normal distribution € - A(0, I)
as observation perturbation, where ¢ is an adjustable parameter used to set different perturbation
intensities. During testing, we vary € from —1 to 1 in increments of 0.1 for Safe-Control-Gym tasks.

(2) Action uncertainty. We simulate action uncertainty through an impulse noise disturbance model.
Specifically, the perturbed action a; is formulated as a; = a; + d;, where d, is defined as:

eM te [tstartv tstart + D]
dy = § eMA e =D) g > by + D (19)
0 otherwise

where € € [—0.1,0.1] is the magnitude coefficient, M = 10 is the amplification factor, tstq+ = 20 is
the start step, D = 80 is the duration, and v = 0.9 is the decay rate.

(3) Dynamics uncertainty. We apply white noise following a normal distribution € - N'(0, I) to
dynamics parameters—such as pole length and quadrotor mass—where the variation of € follows the
same scheme as that used for observation perturbation.

(4) Multi-source uncertainty. To analyze the non-additive nature of uncertainty perturbations, we
simultaneously apply all three uncertainty settings in a coupled configuration during both training and
testing. For Safety-Gymnasium tasks, we apply relatively small environmental perturbations during
training with € = 0.5. For Fuz-series algorithms, we uniformly adopt the training configuration with
€base = 0.1, K = 10, and M = 5.

Since the Safety-Gymnasium benchmarks do not provide built-in uncertainty interfaces, we take
observation uncertainty with € € [0, 0.5] as an example for testing.

Baselines. We adopt three safe RL algorithms as the baseline, including the PPO-Lagrangian (PPOL)
[35], Conservative Update Policy (CUP) [46], and CVaR-Proximal-Policy-Optimization (CPPO) [47].
After integrating the proposed fuzzy-guided framework, we obtain the corresponding Fuz-PPOL, Fuz-
CUP, and Fuz-CPPO algorithms. Besides, the current state-of-the-art, robust safe RL, Risk-Averse
Model Uncertainty (RAMU) [34], has also been migrated to our test tasks. All codes of Fuz-RL are
implemented based on the SpinningUp [1].
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Figure 1: Training Dynamics of PPOLag and Fuz-PPOLag under multi-source uncertainty on
Safety-Gymnasium tasks. The perturbation intensity during training is set to ¢ = 0.5.
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Figure 2: Test Comparison of PPOLag and Fuz-PPOLag under multi-source uncertainty setting
over 5 Episodes and 5 seeds on Safety-Gymnasium tasks. The cost_limit is set to 0.1.

Table 1: Detailed evaluation of Safe RL, Fuz-RL, and RAMU on Safe-Control-Gym tasks with
observation, action, dynamics uncertainty. Each value is reported as mean + standard deviation for 10
episodes and 10 seeds. We shadow the highest AvgRet and lowest AvgRisk for each task.

Observation Uncertainty ‘

Action Uncertainty

Dynamics Uncertainty

Tasks Methods

| AvgRet? | AvgRisk | | AvgRet? | AvgRisk | | AvgRet? | AvgRisk |

PPOL 4528 0.40 £ 0.14 99+ 19 0.27+0.14 87+ 16 0.27 £ 0.09

CUP 32426 0.29+0.11 42418 030 +0.13 50414 030+0.13

CPPO 4119 047 £0.10 76+ 19 036 +0.14 77+ 14 031+0.11

rpol

Cas:ﬁz? | RAMU | 3522 049£016 | 86£10 028007 | 86%13 0.20 £ 0.01
Fuz-PPOL | 472512 034011006 | 102£1713 024+0.12,003 | 93+1316  0.22%0.08 | 0.05
Fuz-CUP | 40+1918 026009003 | 87+17145 0232013007 | 74+13124  025%0.08 | 0.05
Fuz-CPPO | 5925118 032+0.10/0.15 | 98+17122 026+0.13,0.10 | 82£14+5  0.28+0.09 | 0.03

PPOL 70+ 16 035 +0.14 95+ 12 0.18 % 0.10 9112 0.21£0.10

CuP 59412 0.28+0.11 739 0.20%0.10 77 +11 0.18 £ 0.08

CPPO 87+17 0.42%0.11 113+ 16 0.26+0.11 106 + 12 032 +0.09

C"T’r';”c’;(le | RAMU | 67£31 0222013 | 70+34 018010 | 79%31 0.14 %007
FuzPPOL | 91£20121 038+0.1610.03 | 12014125 0.180.09 000 | 11214121 022£0.09 1 0.01
FuzCUP | 613112  024%0.16 004 | 10616133 0.18+0.11,0.02 | 10012723  0.14£0.07 | 0.04
Fuz-CPPO | 93+1016  031+0.10,0.11 | 1071416 021+0.09,0.05 | 10721211  0.23%0.08 | 0.09

PPOL 164 + 18 0.13 +0.06 58455 0.52£0.19 142434 028+0.11

CUP 13947 0.05 +0.02 58428 056 +0.17 117426 0.14+0.10

CPPO 131+ 14 0.09 £ 0.02 54.+50 036+0.11 117+ 36 0.17£0.13

Quadrotor

Sop | RAMU | 146+16 006+004 | 2833 059+020 | 120£39 0.17+0.16
FuzPPOL | 161223 0.07+005]0.06 | 67+5819 043019009 | 156+281 14 0.13%0.09 | 0.15
Fuz-CUP | 142+1513 005002000 | 94%24136 039010, 0.17 | 139£23122  0.14£0.09 | 0.00
Fuz-CPPO | 156+ 11125 0.07+0.03 /002 | 8731133 0330101 0.03 | 130£447 13  0.09:£0.12 | 0.0

PPOL 2188 0.48 +0.04 104 +79 0.81 £0.12 203+24 058 +0.12

CUP 151+ 14 0.04 +0.03 67+50 037+0.13 152+ 13 0.12+0.11

CPPO 152+ 16 0.77 +0.04 76 + 60 0.72+0.11 124433 0.73 +0.08

Quadrotor

T | RAMU | 176+ 12 005£003 | 6150 0534018 | 12348 031020
Fuz-PPOL | 200+6] 18  028+0.05020 | 99675 064017017 | 194169  038=0.15 ] 0.20
FuzCUP | 175£97124  0.04£0.02,000 | 112422145 033009004 | 16813716  0.12%0.10 | 0.00
Fuz-CPPO | 168+ 14716 047+0.05,030 | 795313  0.67+0.0910.05 | 151£23427 0.59%0.12 ] 0.14

5.2 Robustness Assessment in Safe Control Tasks

For Safe-Control-Gym tasks, we trained the three safe RL baseline algorithms along with their
corresponding Fuz-RL and RAMU variants under the same configuration. The specific parameter
settings and more detailed results are presented in Appendix C.2. For Safety-Gymnasium tasks, we
use PPOLag and Fuz-PPOLag as representative examples for experimental evaluation, with training
and testing dynamics shown in Figure 1 and Figure 2, respectively.
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Figure 3: Ablation study of the uncertainty level K.

We evaluate the models from two features “AvgRet” and “AvgRisk”, which represent the average
episodic return and the proportion of constraint violations, respectively, for each task over 10 episodes
across 10 seeds.

Comparison between Safe RL and Fuz-RL. As depicted in Table (1) and Appendix C.3, Fuz-RL
demonstrates superior safety in 94.9% cases and robust performance in 88.9% tasks across various
uncertainty settings. Taking Fuz-CUP as an example, it achieves 61.4% higher AvgRet and 16.7%
lower AvgRisk than CUP in CartPole-Stab task. Moreover, Fuz-RL shows better uncertainty resistance
with slower performance degradation than Safe RL. The variance reduction in AvgRet is 20.7%, 9.9%,
and 8.6%, while in AvgRisk is 13.2%, 7.1%, and 22.6% respectively.

Comparison between Fuz-RL and RAMU. In the 36 Fuz-RL-based experiments listed in Table
(1), Fuz-RL surpasses RAMU in achieving higher AvgRet in 83.3% of the tasks. Furthermore, Fuz-
RL exhibits lower AvgRisk compared to RAMU in 52.8% of them. It is important to highlight that
the lower average episodic risk of RAMU is achieved by compromising average episodic rewards,
especially in cases of actions affected by impulse disturbances, as shown in the “Action Uncertainty”
section of Table (1). Fuz-RL consistently outperforms RAMU in all “Action Uncertainty” tasks.

Ablation Studies of Fuz-RL. We conduct ablation studies to examine how different uncertainty
levels K affect Fuz-RL’s performance. As illustrated in Figure 3, setting uncertainty level (K = 1)
proves insufficient and leads to high episodic risk, while excessive levels (K = 25) complicate
training and reduce rewards. The optimal performance emerges at intermediate levels (K = 5 to
K = 15), where agents achieve higher rewards while maintaining lower and more stable risk across
all three uncertainty types.

6 Conclusion and Future Work

In this paper, we propose Fuz-RL, a novel robustness enhancement framework that seamlessly
integrates fuzzy logic into safe reinforcement learning. We develop a novel fuzzy Bellman operator
incorporating Choquet integrals, enabling robust decision-making without solving computationally
expensive min-max optimization problems. Theoretically, we establish the equivalence between
our fuzzy robust safe RL formulation and distributionally robust safe RL. Extensive experiments
on the safe-control-gym and safety-gymnasium benchmarks demonstrate that Fuz-RL significantly
outperforms state-of-the-art safe and robust RL algorithms across various uncertainty types, achieving
superior performance in both reward optimization and safety constraint satisfaction under diverse
perturbation scenarios.



While Fuz-RL demonstrates promising results, it faces limited scalability in high-dimensional state
spaces. Future work will focus on developing more efficient uncertainty modeling techniques and
extending the framework to handle non-stationary uncertainty distributions through adaptive learning
mechanisms.
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A Appendix / Theorems and Proofs
Theorem A.1 (y-contraction of Fuzzy Bellman Operator). For any Vi, Vs € B(S),

[F(V1) = F(V2)lloo <7[[Vi = Valoo-

Proof. For any two value functions V7 and V», and any state s:

[F(V1)(s) = F(Va)(s)|

= [Eonr |1O) [ BunplVits) - v2<s'>]dm<p>] |
< Eunr |(©) [ oy Vile) - v2<s'>|dm<p>]
< 3B |V = Val(©) | dm<p>]

= ’VHVI - ‘/2||<>0Ea~7r

(©) /P g dm@)]

Here, we use the fact that (C) [5,, dm(p) = 1 for all s and a, as m is a normalized fuzzy measure.
Taking the supremum over all states s yields the result. O

=7[V1 = Valle

Theorem A.2 (Convergence of Fuzzy Bellman Operator). Let VO € B(S) be an initial value function
and V"t = F(V™). Then V" converges to a unique fixed point V* satisfying V* = F(V*) with
geometric rate ||[V"™ — V*|loo <4|V? = V¥ .

Proof. By Theorem 4.2, F is a contraction mapping. The Banach Fixed Point Theorem guarantees
the existence of a unique fixed point V* such that V* = F(V*). Moreover, for any initial V', the
sequence {V"}2° , defined by V"1 = F(V") converges to V*:

V™ =V loo <A"V? = V*|loo — 0asn — oo

This convergence follows directly from the contraction property:

[V =V oo = [IF(VT) = F(V) o
<AV™ =Vl
<AV =V s
<AV =Vl +9" IV = V7l

As n — o0, both terms approach zero due to v < 1, proving the convergence. O

Lemma A.3 (Core Duality of Convex Fuzzy Measures). Let m be a convex fuzzy measure on
I¢ ={P¢1, ..., P i} with dual measure defined by:

m/(A) :=1-m(Z¢\ A), VACIL.

Then the cores satisfy core(m') = core(m), and for any bounded measurable function f : P¢ — R:

(@) fdm'= max Ep[f].
pa Pecore(m)
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Proof. Part 1: Core Equivalence. For any convex fuzzy measure m on Z¢, its dual m’ is concave.
By the duality theorem for balanced fuzzy measures [14], for any probability measure P on P¢:

P € core(m) < P( U P)>m(A), VACT?

PecA
e 1-P( |J P)=1-m(Z¢\ A), VACT!
PeT\A
— P( U P) >m'(A), VAC I¢
PecA

<= P € core(m’).

Part 2: Maximum Representation. For the concave measure m’, the Choquet integral attains its
maximum over the core:

(C’)/fdm’: max Ep[f]= max Ep[f],

Pecore(m’) Pecore(m)
where the last equality follows from core(m’) = core(m). O

Theorem A.4 (Equivalence Theorem). Given a robust CMDP:

o0
. ¢
max glel%ﬂETN(mp) [;7 (st at)]

< B,

s3]
1. E, . ‘(s
S Iglea;,g( T~ (7,p) [;)’7 C(St at)

let m be a convex \-fuzzy measure on L2 such that:
1. core(m) C P¢ forall (s,a),
2. argminpepa gy [V (s')] C core(m) for all (s, a),
3. argmaxpepe By p[Ve(s')] C core(m) for all (s, a).

Define the dual fuzzy measure m'(A) := 1 —m(Z%\ A) forall A C T¢.

Then the Fuz-RL problem:
max J? (7) st J/ (7)< B,

where

JF (7)) = (C) /PETN(W’p) [Z ’ytr(st,at)l dm(p) (20)

t

Il
o

M8

JI () = (C)/PEm(w,p) l

is equivalent to the original robust CMDP.

vie(st, at)] dm/ (p) (21)

t

I
=)

Proof. Step 1: Core Inclusion and Extremal Coverage. By Equation 10 with softmax activation
and clamping to [¢, 1 — ¢] where € = 10~*, the A-fuzzy measure satisfies m({P¢, }) = gx € (0,1)
for each uncertainty level & € {1,..., K} via Equation 12.

Since each uncertainty level P, covers an ej-neighborhood of the nominal dynamics (Equation 4),
and the softmax ensures all levels receive positive weights, extremal perturbations are guaranteed to

belong to core(m). This establishes conditions (2) and (3), ensuring core(m) C P2 and covering
extremal points of P2.
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Step 2: Duality of Fuzzy Measures. For the convex fuzzy measure m, its dual m’ is concave. By
Choquet duality [14]:

© [fam=_int B, (©) [rdm'= swp B,

g€Ecore(m) gEcore(m)

Step 3: Reward Objective Equivalence. For the reward function, by Lemma 3.3:

J7 () = (C)/7>ET~(7T,p) lz ’ytr(st,at)l dm(p)

t=0

(@) min B [Z’y T(S5¢, ar ]

g€Ecore(m)

(®)
- IgggETN(ﬂ'p [z_: rytr(staat)‘| ’

where (a) uses the Choquet integral representation for convex measure m (Lemma 3.3),
and (b) holds because condition (2) ensures that core(m) contains the extremal point

arg mingep B (rp) [Dreo V7 (565 ar)].

Step 4: Cost Constraint Equivalence. For the cost function, by Lemma A.3:

Jf(’fr) = (C)AETw(ﬂ,p) [ZWtC(St,at)‘| dm/(p)

t=0

2 max E‘rw(ﬂ,q) [Z ’th(St7 at)‘|

qEcore(m)

@ maXETN(,Tp [ZW c(st,at) ] ;

where (c) uses the Choquet integral representation for concave measure m’ (Lemma A.3),
and (d) holds because condition (3) ensures that core(m) contains the extremal point

arg maxpep B irp) [P oo v e(se, ar)].

Step 5: Equivalence Conclusion. Combining Steps 3—4, the Fuz-RL problem:

—~

max J7 (1) st J (7)< B
is equivalent to the original robust CMDP:

o0

t
max mlnETN(mp) v'r(se, at)
T peP =0

s.t. maxIETN p) [Z ve(se,ar)| < B,
t=0
as both objectives and constraints encode the same worst-case expectations over P. O

B Appendix/Algorithm

B.1 Optimization Details

For optimal policy optimization based on value estimation, we solve the constrained optimization
problem using the Lagrangian method:

L(m,\) = J] (7) = A(J] (7) — B) (22)
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Algorithm 1 Fuzzy-Guided Robust Framework for Safe RL (Fuz-RL)

1: Imput: actor 0, critics 6,., 6., fuzzy density parameters g, uncertainty levels K, replay buffer D.
2: Initialize: 0,., 6., 0., g, buffer D.
3: for epoch = 1 to MaxEpoch do

4: fort =1to 7 do
5: Sample action a; ~ mg_ (+|s:), observe s;y1 and get 1+, ¢t
6: Foreachi € {1,..., K}, generate perturbed state 5, = s + ¢; - N'(0, I).
7 Store the tuple (s¢, as, ¢, ¢, Se1, {8 }25,) in D.
8: end for
9: for each actor/critic network update step do
10: Sample mini-batch 7 from D.
11: Compute perturbed values {Vj, (5;)} and {Vp,(8;)}
12: Calculate Choquet integrals using Egs. (14)—(15).
13: Update Vy_, Vj,, fuzzy density parameters g using Eq. (16) and Eq. (17).
14: Update 7y using Eq. (18) with specific safe RL algorithm.
15: end for
16: end for

17: Output: Trained parameters 6,.,6,., 6., g.

The optimal policy 7* and the optimal Lagrangian multiplier A* can be obtained by:

(7%, \*) = arg mgxglzlgﬁ(ﬂ, ) (23)

For a given state s, the optimal action selection rule becomes:

" (a|s) = arg meajt{ Qr (s,a) — N\*Q~(s,a) (24)

where the action-value functions are:

Qr(s,a) = r(s,a) + YEgp[V(s")] (25)
Q7 (s,a) = c(s,a) + YEgp[VS(s)] (26)

Here, V' and V" are the unique fixed points guaranteed by Theorems 4.2 and 4.3, representing the
optimal robust value functions for reward and cost, respectively.

In practice, we compute the optimal policy iteratively by initializing a Lagrangian multiplier A(*) and
then alternating between policy updates and multiplier updates. At each iteration k, we compute:

7®) = arg max JZ(m) = B (JF (n) — B) (27)
AFFD = DO (T (™) - BT (28)
where o > 0 is a step size and [x]"™ = max(0, x). This process continues until convergence, yielding

the optimal safe policy 77* that maximizes reward while satisfying the safety constraint.

C Appendix / Experiment Setting and More Results

C.1 Environment description

C.1.1 Double Integrator

The following dynamics describe the double integrator:

-

where a; € [—1,1]. The safety constraints are |z| < 2 and |v| < 2.

The reward function induced to unsafe state is designed as follows:
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r(z,v) =max(4 — (2(z — 1.5)% + 2(v + 1.5)2),0)+
max(5 — (3(z 4 2.2)? + 3(v 4 2.2)?),0)+ 30)
max(5 — (3(z — 2.2)? + 3(v — 2.2)%),0)+
max(4 — (2(z + 1.5)% + 2(v — 1.5)%),0)

C.1.2 Safe Control Gym

The safe-control-gym benchmark comprises three dynamical systems: the Cartpole, and the 1D and
2D Quadrotors, as shown in Figure. 4. In our setting, we use CartPole and 2D QuadRotor as the base
environments.

X = [x, X,@,B]T X = [Z, 2]T X = [xa xy Z, 2599 Q]T

u=F u=T u=[7,7,]"
p-
— >T,/g/9

CartPole 1D Quadrotor 2D Quadrotor

Figure 4: Schematics, state and input vectors of the cart-pole, and the 1D and 2D quadrotor environ-
ments in safe-control-gym.

For the CartPole system, the system state includes position x and velocity v of the cart, angle 6,
and angular velocity w of the pole. The control inputs « € [—1,1] C R and external disturbances
a € [—0.5,0.5] C R are horizontal forces applied on the cart. The safety constraints are |6] < 0.2,
i.e., keeping the pole nearly upright. The constraint function is h(#) = min{6# + 0.2,0.2 — 0}.

For the 2D QuadRotor system, the state of the system is given by s = [z, #, 2, 2,6, 9] T, where (z, z)
and (&, ) are the translation position and velocity of the COM of the quadrotor in the x2-plane,
and 6 and @ are the pitch angle and the pitch angle rate, respectively. The input of the system is the

thrusts a = [T, TQ]T generated by two pairs of motors, one on each side of the body’s y-axis. The
safety constraints are z — 0.5 > 0 and 1.5 — z > 0, i.e., maintaining its vertical position z between
[—0.5, 1.5]. The constraint function is h(z) = min{z — 0.5,1.5 — z}.

For the reward function setup, we utilize a weighted sum of the errors between the current state s,
action a, and their reference values as the reward for each step. The details of the weighting are
provided in Table 2.

Besides, each environment in Safe-Control-Gym supports two control tasks: stabilization and
trajectory tracking. For stabilization, safe-controlgym provides an equilibrium pair for the system,
2™ ™ For trajectory tracking, the benchmark includes a trajectory generation module capable
of generating circular, sinusoidal, lemniscate, or square trajectories. The module returns references
Tref; s Urer; Vi € {0, ..., L}, where L is the number of control steps in an episode.
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C.2 Hyper-parameters

C.2.1 Hyper-parameters of RL

In all the experiments, we have revised the benchmark algorithms and Fuz-RL employing the RL
framework provided by Spinning Up. The complete hyperparameters used in the experiments are
shown in Table 2.

Particularly, for the CPPO and Fuz-CPPO algorithms, the risk threshold S for adverse trajectories is
set to 100. In the case of the PPOL and CUP algorithms, the initial value of the Lagrange coefficient
is set to 0.001, with an upper limit of 0.2 and a learning rate of 0.02. For the RAMU algorithm, the
Wang transform is utilized with 7 = 0.75, which is applied to both the objective and the constraint.

Table 2: Hyperparameter Settings of Fuz-RL Training and Testing

\CartPole—Stab CartPole-Track QuadRotor-Stab  QuadRotor-Track

rollout length 150 150 250 250
training epoch 500 500 1000 1000
batch size 64 64 64 128
cost limit 1 1 10 10

uncertainty level K 10 10 15 15
optimization step 40 40 80 80
actor learning rate 0.0003 0.0003 0.0002 0.0002
critic learning rate 0.001 0.001 0.001 0.001
fuzzy learning rate 0.0003 0.0003 0.0003 0.0003
target KL 0.2 0.2 0.15 0.15
hidden_sizes [64, 64] [64, 64] [256, 128] [256, 128]
rew_act_weight 0.1 0.01 0.1 0.01
. 11 1 0.01 b L 001
rew_state_weight [1 1} [0 01 0 01] 1 1 1 0.01
’ ' 11 0.01 0.01

Table 3: The observation, dynamics and action uncertainty settings of Safe-Control-Gym tasks

Uncertainty Object | Type | Config | System
\ \ \ CartPole | QuadRotor
(z, ) (z, )
Observation white noise std:[-0.1, 0.1] (0, 9) (2,%)
6,6)
Dynamics white noise std:[-0.1, 0.1] pole length quadrotor.mas.s
pole mass quadrotor inertia
Force: [-1, 1]
Action Impulse noise Step o.ffs?t: 20 horizontal forces  motors thrusts
Duration: 80
Decary rate: 0.9

C.3 More experiment results

C.3.1 Comparative Analysis of Fuzzy Operator and Min-Max Operator in Safe
Reinforcement Learning

We first formally define three safety sets: the fundamental safety set S, represents permissible state
constraints, the safe forward invariant set S7 (a subset of S,.) guarantees persistent state containment
within S, under nominal conditions, and the robust safe forward invariant set Sk (a conservative
subset of S7) maintains state invariance under worst-case disturbances.

As shown in Fig. 5(a), Conventional min-max approaches through robust control barrier functions
(RCBFs) strictly confine states within Sk, where Sk (yellow region) occupies only 23.6% of S,
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Figure 5: (a) Hierarchical relationship of safety sets, (b) Cost space and (c) Reward space trajectory
comparisons, with dashed lines indicating safety boundaries.

(gray region). This conservative strategy ensures absolute safety at the cost of exploration capability,
sacrificing access to 41.7% of high-reward regions.

Our proposed fuzzy robust method overcomes this limitation through dynamic weighting on different
uncertainty levels. The training curves in Fig. 6 demonstrate that in the double-integrator environment,
Fuz-RL’s value iteration algorithm achieves 2.17x higher final returns compared to the min-max
approach under Level-15 configuration. The underlying mechanism enables adaptive safety margin
adjustment, permitting safe exploration in S, \ Sg regions during 97.4% of test episodes. Trajectory
heatmaps in Fig. 5(b)-(c) reveal that while conventional methods (black trajectories) remain strictly
confined within Sz, and non-robust approaches (blue trajectories) risk 32.6% boundary violations,
our fuzzy robust method (green trajectories) achieves optimal performance balance with 97% safety
rate through dynamic fuzzy measure.

—— w/o robust fuzzy robust(Level 10)
—— min-max robust —— fuzzy robust(Level 15)
Average Return by Epoch
_ 200+
[
~
5100
04 P
Average Risk by Epoch
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Figure 6: Training curve comparison in double integrator environment, with shaded regions indicating
standard deviation across 5 random seeds.

C.3.2 Comparison between Safe RL and Fuz-RL

Similar to the Quadrotor-Track task, we set different levels of perturbations in the observation, dynam-
ics, and action to evaluate the performance of the CartPole-Stab, CartPole-Track, and Quadrotor-Stab
tasks under the three benchmark safe RL algorithms and the corresponding Fuz-RL, as shown in

Figures 7, 8, and 9. Each point in the figures represents the average metrics from 10 episodes run for
each of 10 different seeds.
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Figure 7: Average episodic rewards and average episodic risk of three safe RL and Fuz-RL under
various uncertainty settings in Cartpole Stab task.

C.3.3 Comparison between Fuz-RL and RAMU

To compare with the current SOTA algorithms in robust safe RL, this section showcases the per-
formance comparison between RAMU and Fuz-RL under uncertainties in observation, action, and
dynamics, as depicted in Figures 11, Figures 12, and Figures 13, respectively.

C.3.4 Validation on Power System Frequency Control Task

The IEEE 39-bus system, a standard power grid benchmark with 10 generators and 46 transmission
lines, was used to validate Fuz-RL’s performance in frequency control tasks. The system state
captures frequency deviations (A f), generator rotor angles (), mechanical power outputs (P,,), and
tie-line power flows (F;). Control actions involve real-time adjustments of generator active power
setpoints (Fr) and discrete load shedding commands (0-100% reduction). The primary objectives are
to maintain frequency within [59.8 Hz, 60.2 Hz] under stochastic load/renewable fluctuations while
minimizing control costs (3 || Pet — Prominat||2) and avoiding safety-critical violations such as line
overloads (>120% capacity).

Robustness tests were conducted under three uncertainty scenarios:

* Observation noise (0 = 0.1 Hz Gaussian noise in frequency measurements),
* Action noise (100ms delay + 5% bias in control signals),

* Dynamics noise (£10% parameter drift in generator inertia/damping).

Table 4: Performance on IEEE 39-Bus Frequency Control (AvgRet / AvgRisk)

Case Method Observation Noise ~ Action Noise = Dynamic Noise

IEEE-39 Bus PPOL -5456.30/0.17 -6357.81/0.16 -7471.96/0.52
IEEE-39 Bus Fuz-PPOL -4822.03/0.14 -5789.19/0.13  -7363.20/ 0.47

Fuz-PPOL demonstrates consistent improvements over PPOL. Under observation noise, Fuz-PPOL
get 11.6% higher returns and 17.6% lower risk. For action noise, the AvgRet metic is improved by
8.9% with 18.8% risk reduction. Under dynamics perturbations, Fuz-PPOL narrows performance
degradation while reducing safety violations by 9.6%.
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Figure 8: Average episodic rewards and average episodic risk of three safe RL and Fuz-RL under
various uncertainty settings in Cartpole Track task.

-~ PPOL —— Fuz-PPOL -+~ CUP —— Fuz-CUP -=- CPPO —— Fuz-CPPO

162 Dynamic Uncertainty

1e2 Observation Uncertainty

X 1e2 Action Uncertainty
2.0

1

e e

e

-0.10 -0.05 0.00 0.05 0.10

- ———y

0.50 \
b .

\J
g =T — g — =

e\
"' .

0.0

"20.10 —0.05 0.00 0.05 0.10
€

'-0.10 —-0.05 0.00 0.05 0.10
€

0.00

-0.10 -0.05 0.00 0.05 0.10
€

Figure 9: Average episodic rewards and average episodic risk of three safe RL and Fuz-RL under
various uncertainty settings in Quadrotor Stab task.
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Figure 10: Average episodic rewards and average episodic risk of three safe RL and Fuz-RL under
various uncertainty settings in Quadrotor Track task.
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Figure 11: Average episodic reward (top) and average episodic risk (bottom) of Fuz-RL and RAMU
in different scales’ observation uncertainty settings. The horizontal axis represents the uncertainty
level.
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Figure 12: Average episodic reward (top) and average episodic risk (bottom) of Fuz-RL and RAMU
in different scales’ action uncertainty settings. The horizontal axis represents the uncertainty level.
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Figure 13: Average episodic reward (top) and average episodic risk (bottom) of Fuz-RL and RAMU
in different scales’ dynamics uncertainty settings. The horizontal axis represents the uncertainty level
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Figure 14: Average episodic reward (top) and average episodic risk (bottom) of Fuz-RL and RAMU
in different scales’ observation, dynamics, and action uncertainty settings. The horizontal axis
represents the uncertainty level.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We clearly indicate the main contributions of our Fuz-RL scope in the abstract
and introduction.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In Section 6, we describe the limitations of the proposed Fuz-RL.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: The assumptions of the theoretical result are clearly stated in the Theorem. 4.3,
Theorem. 4.2 and Theorm. 4.4. Refer to Appendix A for the complete proof.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.

The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide a thorough explanation in Section C.1 of all our experiments’
settings, and the more general setting and detailed results can be found in Appendix C.2.

Guidelines:

The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

27



Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The whole code is provided in the supplemental material with sufficient
instructions in the “README.md” file.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Appendix C.2 clearly states the implementation details.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We evaluate our experimental results across 10 episodes with 10 different
random seeds, reporting standard deviations as error bars in the figures and as variance
metrics in the tables.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We indicate the information of compute resources in appendix C.3.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We strictly adhere to the code of ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: The potential impacts are stated in the Conclusion, see Section 6.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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11.

12.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All codes of Fuz-RL are implemented based on the SpinningUp [1] which is
explicitly mentioned and properly respected in Section 5.

Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: New assets are attached in the supplemental material.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not include crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
* Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.
* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,

or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve any crowdsourcing nor research with human
subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in Fuz-RL does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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