
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

BOTH LOCAL VALIDITY AND GLOBAL EFFECTIVE-
NESS MATTER: DECOUPLED CREDIT ASSIGNMENT
FOR LONG-HORIZON AGENTIC LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

The natural-language action space of Large Language Model (LLM) agents cre-
ates a real risk of invalid outputs (e.g., API rejections, parsing errors). Conse-
quently, in Reinforcement Learning (RL) for long-horizon LLM agents, learning
to generate a locally valid action in each turn is as crucial as selecting a globally
effective one. However, this requirement was overlooked by the prevailing ad-
ditive paradigm for credit assignment in agentic RL. Specifically, it computes an
action’s credit by summing an estimated local score and the trajectory-level score.
This paradigm assigns a “contribution” score to all actions regardless of their va-
lidity, allowing invalid actions to be assigned positive credit, especially in positive
trajectories. To address this, we propose Multiplicative Gated Rewards (MGR),
which decouples local action-level validity from global effectiveness. MGR uses
a fact-based validity signal, derived from direct environment feedback and syn-
tactic validity, to determine the action-level score (e.g., ±1). This score is then
multiplied by the magnitude of the trajectory-level score. This ensures the ac-
tion’s validity strictly governs the reward’s polarity, preventing credit misassign-
ment. Experiments demonstrate that our method improves training stability and
achieves SOTA performance on long-horizon LLM agent benchmarks. Code of
MGR has been uploaded in the Supplementary Material.

1 INTRODUCTION

Figure 1: Illustration of Different Credit Assign-
ment Paradigms in a Successful Trajectory.

A key frontier for Large Language Model
(LLM) agents lies in their ability to solve long-
horizon tasks (Yao et al., 2022), often requiring
a long chain of interactions to navigate com-
plex environments (e.g., over 10 interactions).
Reinforcement Learning (RL) has emerged as
a standard for training these agents, enabling
them to learn from environmental feedback.
Unlike traditional RL agents with discrete ac-
tion sets, language-based agents face a unique
challenge in their vast, language-based action
space. They generate actions as text sequences
(e.g., code, API calls), creating a fundamental
dual requirement for every action: it must be
both locally valid (e.g., syntactically correct)
to be executable, and globally effective to con-
tribute to the final task goal. As emphasized by
(Zhao et al., 2025), the validity of each turn’s
action is crucial for long-horizon agents.

However, we observe that this essential require-
ment for local action validity has been largely overlooked by the prevailing credit assignment meth-
ods in agentic RL, which we term the additive paradigm (as illustrated in Fig. 1). Whether through
learned progress estimators (Wu et al., 2025), reward decomposition (Zheng et al., 2025), or sub-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

trajectory (Feng et al., 2025) comparisons, this paradigm computes an action’s credit by summing
an estimated local score with the global score of its parent trajectory. This design is blind to intrinsic
validity, and its core flaw is assigning a “contribution” score to all actions regardless of whether they
are executable or not. This leads to severe credit misassignment: an unequivocally invalid action
may receive a positive reward simply by appearing in a successful trajectory (shown in the second
row of Figure 1). Such flawed signals fundamentally destabilize the learning process, forcing the
agent to expend valuable samples learning basic syntax from ambiguous feedback, a problem that
contributes to training inefficiencies.

To address this, we propose Multiplicative Gated Rewards (MGR), a novel credit assignment
framework that decouples the reward signal into two orthogonal components. The first is an Action-
Level Sign Provider, which determines the atomic, factual correctness (a positive/negative sign)
of an action. This sign is derived from direct environmental feedback and refined with heuristics
that model temporal dynamics (e.g., error correction) and penalize unproductive behaviors (e.g.,
repetition). The second is a Trajectory-Level Magnitude Provider, which employs group-relative
methods to evaluate the quality of an entire trajectory, providing the trajectory-level scores.

These two components are fused via a multiplicative gating mechanism, where the final reward is
the product of the local signal and the global magnitude. This design ensures that an action’s fac-
tual validity strictly governs the reward’s polarity. It guarantees that invalid actions receive negative
rewards even in highly successful trajectories, while valid actions within failed trajectories are se-
lectively preserved as positive learning samples via a dynamic gate. Crucially, this mechanism also
gives rise to an implicit curriculum: early in training, the agent is primarily rewarded for mastering
foundational skills (i.e., producing valid actions); as it matures, the learning objective implicitly
transitions to demanding the strategic composition of these actions to achieve high-quality trajec-
tories. This multiplicative gating mechanism corrects the core flaw of the additive paradigm: an
action’s factual invalidity can no longer be masked by overall trajectory success. This eliminates a
critical vector of credit misassignment by design.

Our contributions are threefold:

• We identify the dual challenge in agentic learning: achieving both local action validity and
global strategic effectiveness.

• We propose Multiplicative Gated Rewards (MGR), a new framework that uses a fact-based,
action-level signal to gate the credit flowing from a trajectory’s global outcome.

• We demonstrate empirically that MGR leads to significant gains in training stability and
sample efficiency, achieving SOTA performance on standard agentic benchmarks.

2 RELATED WORK

The task of training multi-turn LLM agents has recently seen a surge of interest, with Reinforcement
Learning (RL) emerging as a powerful paradigm for enhancing long-horizon decision-making. Our
work builds upon and diverges from several key research threads in this area.

2.1 TRAJECTORY-LEVEL REINFORCEMENT LEARNING

Initial applications of RL to LLMs often operated at the trajectory level. Methods like Proximal
Policy Optimization (PPO) (Schulman et al., 2017) and its variants, including Group-Relative Pol-
icy Optimization (GRPO) (Shao et al., 2024), treat an entire sequence of actions as a single data
point. The agent receives a sparse reward signal only upon task completion, and this signal is uni-
formly attributed to all actions within the trajectory. While effective for global policy alignment, this
approach suffers from severe credit misassignment noise; it invariably rewards erroneous or subopti-
mal actions within a successful trajectory and penalizes correct exploratory steps within a failed one.
The work by (Shi et al., 2025) systematically identified this issue, noting that without fine-grained,
reasoning-oriented feedback, agents can fall into “echo traps” and fail to develop robust, multi-step
reasoning.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2.2 LEARNED PROCESS REWARD MODELS

Another significant line of work attempts to learn a model to predict turn-level rewards. These are
often referred to as Process Reward Models (PRMs) (Gao et al., 2025). For instance, SPA-RL (Chen
et al., 2025b) trains a ”progress estimator” to redistribute the final task reward back to intermediate
steps. Similarly, CAPO (Xie et al., 2025) utilizes a powerful teacher LLM as a generative PRM to
produce token-level feedback. These methods replace the sparse reward problem with a new, poten-
tially complex estimation problem. The learned reward, which is a proxy for strategic contribution,
is then typically added to the environment’s reward stream. This still risks rewarding invalid actions
if the estimator model incorrectly infers a positive contribution. Furthermore, they introduce sig-
nificant computational overhead and a dependency on the quality and potential biases of the reward
model itself.

2.3 FINE-GRAINED ADVANTAGE ESTIMATION

A third category of methods refines the advantage calculation at a sub-trajectory level, but remains
within the foundational additive framework of the Bellman equation. GiGPO (Feng et al., 2025)
extends the group-relative concept to the step level by comparing actions from different trajectories
at aligned “anchor states.” ARPO (Dong et al., 2025) uses model uncertainty (entropy) as a heuris-
tic to identify critical steps and attribute credit accordingly. SPO (Huang et al., 2025) proposes a
segment-level advantage estimation as a compromise between turn-level and trajectory-level granu-
larity. While these methods offer more sophisticated estimation techniques, they are still fundamen-
tally estimating a single, conflated score for each step that is implicitly added to form the trajectory’s
total value. They do not possess a mechanism to strictly enforce the binary validity of an action.

Reinforcement Learning for LLM agents is fundamentally a credit assignment problem. Prevailing
methods, which we classify under an additive paradigm, often conflate an action’s intrinsic validity
with its long-term strategic contribution. This leads to credit misassignment, where invalid actions
in successful trajectories can erroneously receive positive rewards. To address this, we propose a
novel multiplicative framework centered on the principle of signal decoupling. Instead of learning a
single, entangled turn-level advantage, we decompose the learning signal into two orthogonal com-
ponents: a turn-level sign representing factual validity and a trajectory-level magnitude representing
strategic quality.

3 METHOD

To decouple reward signals into local and global components, we introduce MGR (Multiplicative
Gated Rewards), a multiplicative framework that separates the reward into an action-level signal
judging local validity and a trajectory-level magnitude evaluating global strategic contribution. The
final reward, Raction, is conceptualized as:

Raction = G(Rlocal)︸ ︷︷ ︸
Validity Signal

× Rglobal︸ ︷︷ ︸
Effectiveness Magnitude

(1)

where Rlocal is the action-level signal, Rglobal is the trajectory-level score. And G is a multiplica-
tive gated module, which fuses the two signals before. This design ensures that credit is assigned
correctly: all invalid actions are consistently penalized, while valid actions within failed trajectories
can be selectively rewarded to facilitate learning. The algorithm is detailed in Alg. 1.

3.1 TRAJECTORY SEGMENTATION AND REINFORCEMENT LEARNING

Our training process begins with collecting a set of m trajectories, {τ1, τ2, . . . , τm}, for each
given task. A single trajectory τi of length T is a sequence of states and actions: τi =
(s1, a1, s2, a2, . . . , sT , aT). To form a training batch for our language model-based policy πθ,
we segment each trajectory into action-level samples. Each sample (p′t, at) consists of the ac-
tion at and its corresponding prompt p′t, which comprises the entire history up to that point, i.e.,

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 2: Example of MGR (Multiplicative Gated Rewards) calculation in a successful Trajectory.
The example in the failure trajectory can be seen in App. A.2.

p′t = (s1, a1, . . . , st). This segmentation process can be visualized as follows:

τ = [s1, a1, . . . , sT , aT] −→

{ (prompt: s1, response: a1)→ r1
(prompt: [s1, a1, s2], response: a2)→ r2
...

...
(prompt: [s1, a1, . . . , sT], response: aT)→ rT

}

where each action-level reward rt is computed by our MGR framework.

Based on MGR’s rewards, we then update the policy parameters θ using the Proximal Policy Op-
timization (PPO) algorithm. Following prior work (Chen et al., 2025a) that suggests removing
the KL-divergence term can be beneficial for agentic learning, we optimize the following objective
function:

LPPO(θ) = Et

[
min

(
ρt(θ)Ât, clip(ρt(θ), 1− ϵ, 1 + ϵ)Ât

)]
(2)

where ρt(θ) =
πθ(at|s′t)
πθold (at|s′t)

is the probability ratio, and Ât denotes the token-level advantage in PPO,
which is estimated from the MGR rewards rt via GAE and PPO’s critic model. The subsequent
sections will provide an exposition of the MGR.

3.2 REWARD SIGNAL DECOUPLING

The core principle of MGR is the decomposition of the complex credit assignment problem into two
simpler, orthogonal sub-problems, addressed by two distinct signal providers.

3.2.1 ACTION-LEVEL SIGN PROVIDER (RLOCAL)

This component is responsible for determining the local, factual validity of an action at. It generates
a signal Rlocal,t, that evaluates the atomic correctness of an agent’s action at each turn. The process
involves two stages:

(1) Fundamental Validity Signal (vt): We first establish a binary signal, vt ∈ {−1,+1}, which
serves as a hard constraint on action executability. Let ot+1 denote the environment execution
feedback following action at. We define vt as:

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

vt =

{
−1 if at /∈ Ωsyntax ∨ ∃e ∈ Eruntime,match(ot+1, e)

+1 otherwise
(3)

where Ωsyntax denotes the set of actions satisfying predefined structural and formatting constraints
(e.g., correct code encapsulation), and Eruntime represents a set of universal error patterns inherent
to the execution environment (e.g., SyntaxError, TimeOut, or empty responses). The func-
tion match(·) detects if the feedback contains any error pattern e. Crucially, this design leverages
the standardized Input/Output nature of the most prominent LLM agent domains, such as coding,
OS operation, and API interaction. Since these environments universally communicate execution
failures via standard protocols (e.g., interpreter stderr, HTTP error codes), our validity check is
inherently generalizable across these high-value settings without requiring task-specific state engi-
neering.

(2) Heuristic Adjustments (ht): The base signal is then refined with heuristic bonuses and penal-
ties, ht, to capture more nuanced behaviors. Specifically:

• Heuristic Bonus: We model the relationship between consecutive turns to encourage re-
covery from errors: htemporal

t = β if vt > 0 and vt−1 < 0. Conversely, it receives a penalty
for failing immediately after a success: htemporal

t = −β if vt < 0 and vt−1 > 0.
• Repetition Penalty: To prevent reward hacking (e.g., repeatedly using same valid actions)

and model stagnation, we apply a penalty for excessive repetition of the same action. This
penalty, hrepeat

t , is only applied to locally valid actions (vt > 0). Let N(at, τ) be the
occurrence count of a specific action at among all valid actions within the trajectory τ up
to the current turn. The penalty is activated when N(at, τ) exceeds threshold q:

hrepeat
t =

{
−α · (N(at, τ)− q) if vt > 0 and N(at, τ) > q

0 otherwise
(4)

This ensures that once an action is deemed repetitive, each subsequent repetition receives
an incrementally larger penalty.

The magnitudes of these heuristic adjustments are controlled by hyperparameters β and α. Final
heuristic adjustments ht = htemporal

t + hrepeat
t . The final action-level signal of at is given by:
Rlocal,t = vt + ht (5)

3.2.2 TRAJECTORY-LEVEL MAGNITUDE PROVIDER (RGLOBAL)

This component evaluates the global, strategic quality of an entire trajectory τi. For a given task
τ , we compare all m collected trajectories. First, each trajectory is assigned a binary score S(τi)
based on task completion signal. Following recent advancements in training agents for long-horizon
tasks (Chen et al., 2025a), we utilize the Eqn. (6) to transform these absolute scores into a normal-
ized, zero-sum advantage scores. This provides a more stable learning signal by focusing on relative
performance. The global magnitude for trajectory τi is calculated as:

Rglobal(τi) =
m

m− 1

S(τi)−
1

m

m∑
j=1

S(τj)

 (6)

3.3 REWARD FUSION

The fusion of the local signal Rlocal,t and the global magnitude Rglobal is performed via a conditional
multiplicative process. The core idea is that the final reward’s sign should primarily be dictated by
the action’s local validity (Rlocal), while its magnitude should be scaled by the trajectory’s overall
effectiveness (Rglobal). The logic is partitioned into three distinct scenarios based on the alignment
of the signals’ signs:

1. Concordant signals (sign(Rlocal) = sign(Rglobal)): When an action’s validity aligns with
the trajectory’s result (e.g., both the action and the trajectory are either correct or incorrect.),
the credit assignment is straightforward multiplication.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

2. Successful trajectory, invalid action (Rglobal > 0, Rlocal < 0): The action must be pe-
nalized to discourage it, but the penalty is dampened. This is achieved by multiplying the
signals and applying a scaling coefficient.

3. Failed trajectory, valid action (Rglobal < 0, Rlocal > 0): This is the most crucial and
ambiguous case. We introduce a stochastic gating operator, gt, which determines the sign
of the final reward.

This fusion logic is formally captured in the following Equation. Let τ(t) denote the trajectory
containing the action at turn t. The final reward Rfinal,t is defined as (more detail in Alg. 1):

Rfinal,t =


Rlocal,t · |Rglobal(τ(t))| if sign(Rlocal,t) = sign(Rglobal(τ(t)))

γ ·Rlocal,t ·Rglobal(τ(t)) if Rglobal(τ(t)) > 0 and Rlocal,t < 0

γ · gt ·Rlocal,t · |Rglobal(τ(t))| if Rglobal(τ(t)) < 0 and Rlocal,t > 0

(7)

where γ ∈ (0, 1] is scaling coefficients that reduce the reward magnitude in cases of sign conflict.
The key component is the gating operator gt ∈ {−1, 1}, which is sampled based on the agent’s
overall performance (i.e., task success rate and action accuracy rate). The function of this gate is to
dynamically control the balance of positive and negative training samples for locally correct actions,
preventing the model from being rewarded for valid but strategically poor choices, especially in later
stages of training. The mechanism of gt is detailed in the next section.

3.4 DYNAMIC SAMPLE BALANCING VIA GATED SIGN FLIPPING

As the training progresses, the model rapidly masters the local validity of actions. We observe
a shift in the distribution of action-level samples: the ratio of valid to invalid actions transitions
from a balanced state (e.g., 40% vs 60%) to a severe imbalance (e.g., 90% vs 10%), even within
unsuccessful trajectories.

Without dynamic regulation, this imbalance leads to a critical degradation in the Signal-to-Noise
Ratio (SNR) of the reward signal. The overwhelming volume of positive rewards for valid actions
begins to mask the penalty for the trajectory-level failure, causing the agent to stagnate in local
optima (e.g., same valid actions) rather than improving global strategy.

The fundamental issue lies in the intrinsic ambiguity of valid actions within failed trajectories. They
possess a dual nature depending on the training stage:

• Early Stage (Signal): When the agent is weak, these samples are critical positive signals
for learning basic syntax, preventing policy collapse.

• Late Stage (Noise): As validity saturates, these samples become false positive noise rel-
ative to the strategic objective. High retention of such noise dilutes the gradient direction
towards task completion.

To address this, we introduce the gating operator gt to function as an implicit curriculum that
manages this SNR transition. By probabilistically flipping the sign of these ambiguous samples, gt
effectively restores the balance between positive and negative samples.

For any given failed trajectory τ , a single probabilistic decision is made: either all locally valid
actions within τ retain their positive sign, or they are all flipped to negative. This approach treats
the trajectory’s outcome as a holistic strategic failure, ensuring that all contributing actions receive
a coherent learning signal.

pretain = fschedule(Cbatch, Vbatch) =


1 if Vbatch < θV or Cbatch < θC1

1− δ · Cbatch if θC1 ≤ Cbatch < θC2

pmin otherwise
(8)

where Cbatch is the mean task completion rate, Vbatch is the mean action validity rate for the current
batch, and θ means the transformation threshold of pretain. The probability of retaining a positive
sign, pretain, is governed by the schedule function fschedule(Cbatch, Vbatch) shown in Eqn. (8). The

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

primary objective of fschedule(Cbatch, Vbatch) is to guide the sample ratio towards a healthier state as
training progresses. The hyperparameters within are set to achieve this functional goal; any function
that successfully balances the sample distribution in later training stages would be suitable.This
dynamic sample balancing naturally gives rise to an implicit two-stage curriculum:

• Stage 1: Learning Action Validity. In early training, when agent performance is low,
pretain is high. This allows the model to learn fundamental, locally valid actions from a
sufficient pool of positive examples.

• Stage 2: Learning Strategic Composition. As the agent’s proficiency increases, pretain
decreases. This forces the agent to focus on learning the correct sequencing and strategic
use of those valid actions to achieve global success.

4 EXPERIMENT

4.1 ENVIRONMENTS

To comprehensively evaluate the effectiveness of our MGR, we conduct experiments on two chal-
lenging benchmarks designed for multi-turn LLM agents: ALFWorld and AppWorld.

ALFWorld (Shridhar et al., 2020) is a benchmark that requires agents to perform complex, long-
horizon tasks in a simulated text-based household environment. We report performance on three
difficulty splits: L0, L1, and L2. Other settings are detailed in App. A.5.

AppWorld (Trivedi et al., 2024) is a recently proposed benchmark that evaluates agents on their
ability to perform realistic, day-to-day digital tasks by interacting with a suite of simulated appli-
cations. We evaluate on its three official difficulty settings: Easy, Medium, and Difficult. Other
settings are detailed in App. A.5.

Table 1: Performance comparison across ALFWorld and AppWorld benchmarks. T/A means the
reward signal comes from task completion and the action correction signal.

Model Method Reward Reward ALFWorld AppWorld
Level Signal L0 L1 L2 Easy Medi Diff

GPT-4o - - - 57.3 66.0 68.8 73.7 32.1 20.1
DS-R1 - - - 68.8 70.2 67.3 85.6 51.2 29.3
Qwen2.5-7B ReAct - - 23.1 28.5 27.0 20.2 6.1 0.0

SFT - - 63.3 57.0 37.5 28.7 9.1 0.0
GRPO traj Task 79.3 77.3 52.3 54.1 10.1 6.2
GiGPO action Task 89.5 90.2 67.2 - - -
Loop token Task - - - 59.6 14.3 6.1
MGR action T/A 90.4 89.7 85.6 76.1 19.6 9.4

Qwen3-8B ReAct - - 28.1 32.5 29.2 35.1 8.4 0.0
SFT - - 62.6 56.2 39.6 36.7 11.8 0.0
GRPO traj Task 80.2 72.6 60.7 45.6 12.1 6.6
GiGPO action Task 88.7 91.2 68.7 - - -
Loop token Task - - - 63.2 18.3 8.7
MGR action T/A 91.6 90.8 82.6 75.4 22.8 10.2

4.2 MODELS AND BASELINES

All finetuning experiments are conducted on two powerful open-source models, Qwen2.5-7B (Qwen
et al., 2025) and Qwen3-8B (Yang et al., 2025), to serve as the agent’s backbone. To situate our
results within the broader landscape, we also include performance metrics from the proprietary GPT-
4o model and a previously reported strong system, DS-R1 (DeepSeek-AI et al., 2025), as reference
points for the SOTA. Our core comparisons are against a suite of finetuning baselines applied to the
same models. We compare against several methods applied to the same base models for a fair and
direct comparison: ReAct(Yao et al., 2022), SFT, GRPO (Shao et al., 2024), GiGPO (Feng et al.,
2025), Loop (Chen et al., 2025a), detailed in App. A.3.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

4.3 IMPLEMENTATION DETAILS

We employ the AdamW optimizer with a constant learning rate of 5e-7. The specific hyperparam-
eters for our Multiplicative Gated Rewards (MGR) framework are set as described in the Method
section. We set the heuristic adjustment: β = 0.1 for temporal dynamics, α = 0.5 with a thresh-
old q = 2 for the repetition penalty. For the schedule function fschedule(Cbatch, Vbatch) shown in
Eqn. (8), we set the hyperparameters to maintain a 1:1 ratio of positive to negative samples, detailed
in App. A.5. Other settings are also provided in App. A.5.

4.4 RESULTS AND ANALYSIS

As presented in Table 1, our proposed method consistently achieves SOTA performance across all
evaluated settings on both the ALFWorld and AppWorld benchmarks. This demonstrates the effec-
tiveness and robustness of our MGR reward framework in training capable LLM agents for complex,
multi-step interaction tasks.

On the ALFWorld benchmark, while some strong baselines perform well on simpler tasks, their
effectiveness noticeably drops on the more challenging L2 split. This is because L2 tasks demand
longer interaction trajectories, where the correctness of each action is critical. In contrast, MGR
remains robust across all difficulty levels and improves substantially on L2, indicating that early
reinforcement of syntactically valid, executable actions fosters deeper and more generalizable com-
petence.

These advantages are decisive on AppWorld. Fine-grained credit-assignment methods such as
GiGPO depend on structured per-turn state descriptions to compute granular advantages. App-
World’s complex, interactive interface does not expose such a well-parsed state, making these meth-
ods directly inapplicable and highlighting a broader challenge in agentic RL: reward designs fre-
quently lack generality across realistic environments. MGR, by contrast, is broadly applicable.
Its action-level validity signal (Rlocal) is derived from generic, universally available feedback (e.g.,
execution errors or None responses) and lightweight syntactic checks, requiring no environment-
specific state parsing. As a result, MGR can be applied seamlessly in unstructured environments
like AppWorld, where it sets a new performance bar and significantly outperforms all baselines.

In summary, our empirical results strongly validate our central hypothesis: by strategically decou-
pling the reward signal into local validity and global effectiveness, MGR not only achieves superior
and more generalizable performance but also offers a robust and universally applicable framework.

4.5 ANALYSIS OF TRAINING DYNAMICS

To understand MGR’s effectiveness, we analyze training dynamics by comparing MGR, GRPO, and
Loop baselines on the AppWorld benchmark, tracking both action success rate and task success rate.
Figure 3 illustrates these learning curves, highlighting MGR’s superior efficiency and stability.

The top plot of Figure 3 depicts the task success rate. MGR (red curve) exhibits a stable and consis-
tent upward trend, achieving a much higher final success rate. This stability stems from the agent’s
early mastery of valid actions, providing a robust foundation for strategic learning. Conversely, Loop
(blue) and GRPO (purple) show high volatility and inconsistent progress throughout training. This
instability is a direct consequence of credit misassignment, where the conflated reward signals lead
to contradictory policy updates. MGR’s design effectively mitigates this, resulting in more reliable
and efficient learning of task-level objectives. The bottom plot of Figure 3 shows the action success
rate. MGR (orange curve) demonstrates rapid and significant improvement, quickly reaching over
80% validity. This reflects the efficacy of our explicit action-level validity signal (Rlocal), which en-
ables efficient learning of correct action syntax. In contrast, Loop (green) and GRPO (brown) show
minimal improvement, largely stagnating around 40%. Their reliance on a noisy, trajectory-level
reward makes it difficult to learn basic action correctness.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 3: Training dynamics on AppWorld. Top plot: Task Success Rate. Bottom plot: Action
Success Rate. MGR (red/orange) consistently outperforms Loop (blue/green) and GRPO (pur-
ple/brown) in both metrics, showing faster learning and greater stability.

4.6 ABLATION STUDIES

To dissect the contribution of each key component within our MGR framework, we conduct a se-
ries of ablation studies on the AppWorld using the Qwen3-8B model. The results are presented in
Table 2.

Table 2: Ablation study of MGR on the AppWorld benchmark. Each row represents the removal of
a specific component from our full model.

Method Easy Medium Difficult Avg.
MGR (Full Model) 75.4 22.8 10.2 36.1
- w/o Gating Mechanism (gt) 60.1 10.3 5.2 25.2
- w/o Critic (GRPO-style Update) 71.1 19.6 8.9 33.2
- w/o Repetition Penalty 15.2 0.0 0.0 5.1
- w/ KL Divergence 72.6 19.3 10.1 34.0

Effect of the Gating Mechanism. In the first ablation, we remove the stochastic gating operator
gt from our reward fusion logic (Eqn. 7). This variant, labeled ”- w/o Gating Mechanism”, treats
all valid actions in failed trajectories as positive learning samples (gt is fixed to +1). As observed
in Table 2, this leads to a significant performance drop. This result validates our hypothesis from
Section 1: without the gate, the model is overwhelmed by a massive imbalance of positive rewards
for actions that are locally correct but strategically poor. The gating mechanism, which forms the
basis of our implicit curriculum, is crucial for compelling the agent to transition from learning syntax
to learning strategy.

Effect of the Critic Model. Next, we assess the role of the critic and its token-level advantage
estimation in PPO. We replace our update with a GRPO-style rule in which the advantage for every
token in an action is set to the final action-level reward Rfinal,t (i.e., no critic model). The resulting
performance degradation underscores the value of the critic in reducing the variance of policy gra-
dients. The critic provides a more nuanced, token-level signal that stabilizes training, a benefit that
is especially pronounced in the complex, high-variance environment of language-based agents.

Effect of the Repetition Penalty. Removing the repetition penalty results in a catastrophic perfor-
mance collapse. Without the penalty, the agent quickly learns to exploit a flaw in its local optimiza-
tion objective. It discovers that it can reliably accumulate positive rewards by repeatedly issuing
a single, known-valid action, regardless of its strategic relevance, which lets the agent become a

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

repeating machine. This failure becomes absolute on Medium and Difficult tasks, as they require
longer and more diverse interaction sequences.

Effect of KL Divergence. Our method, following prior work (Chen et al., 2025a), omits the KL
divergence term commonly found in the PPO objective function. To verify this design choice, we
reintroduce it in the ”- w/ KL Divergence” variant. The results show a noticeable decline in perfor-
mance. This suggests that the KL penalty, which constrains the policy from moving too far from the
reference policy, can be overly restrictive for agentic finetuning. The complex exploration required
in these tasks benefits from the greater freedom afforded by removing this constraint, allowing the
policy to more aggressively adapt based on MGR’s high-quality reward signals.

Table 3: Ablation on the temporal
bonus hyperparameter β, measured by
average success rate on AppWorld.

Value of β Success Rate (%)
0.0 32.6
0.1 36.2
0.3 36.0
0.5 34.6

Ablation on Hyperparameter Sensitivity

Sensitivity on Temporal Bonus (β) To determine the
optimal value for the temporal bonus hyperparameter, β,
which is designed to encourage error recovery, we con-
ducted a targeted ablation study on AppWorld. As demon-
strated in Table 3, our approach is sensitive to this value.
Removing the bonus entirely (β = 0) results in the low-
est performance, confirming that an explicit incentive for
self-correction is beneficial. A modest bonus of β = 0.1
achieves the peak success rate of 36.2%, striking an ef-
fective balance. However, we observed that larger bonus
values (β ≥ 0.3) lead to a slight performance degradation.
This suggests that an overly strong local incentive might
create a distracting signal, preventing the agent from focusing on the more crucial global strategic
objective. This study empirically validates our choice of β = 0.1 for all main experiments, as it
provides a useful learning signal for local error recovery while preserving the integrity of the global
reward.

More experiment can be seen in App. A.6

5 CONCLUSION

We introduced Multiplicative Gated Rewards (MGR), a credit assignment framework that considers
local action validity and global effectiveness and fuses them multiplicatively to prevent reward-
ing invalid actions. A fact-based local sign gates a group-relative global magnitude, yielding an
implicit curriculum that first rewards producing valid actions and then prioritizes strategic composi-
tion. MGR delivers SOTA performance and markedly improved stability and sample efficiency on
ALFWorld and AppWorld.

6 ETHICS STATEMENT

All authors have read and adhere to the ICLR Code of Ethics. Our study does not involve human
subjects, private data, or potentially harmful applications; we foresee no ethical concerns beyond
standard academic practices.

7 REPRODUCIBILITY STATEMENT

We provide anonymized source code, complete proofs, and detailed data-processing descriptions in
the supplementary material to ensure full reproducibility. Hyper-parameters are listed in App. A.5.

REFERENCES

Kevin Chen, Marco Cusumano-Towner, Brody Huval, Aleksei Petrenko, Jackson Hamburger,
Vladlen Koltun, and Philipp Krähenbühl. Reinforcement learning for long-horizon interactive
llm agents. arXiv preprint arXiv:2502.01600, 2025a.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Yao Chen, Zhaofeng He, Geyu Lin, Zhidong Zhang, Hong-Ning L. Dai, Dong Li, and Wei Lo.
Spa-rl: Reinforcing llm agents via stepwise progress attribution, 2025b.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai
Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang,
Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang,
Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang,
Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang,
R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng
Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing
Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen
Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong
Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu,
Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xi-
aosha Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia
Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng
Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong
Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong,
Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou,
Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying
Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda
Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu,
Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu
Zhang, and Zhen Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforce-
ment learning, 2025. URL https://arxiv.org/abs/2501.12948.

Guanting Dong, Hangyu Mao, Kai Ma, Licheng Bao, Yifei Chen, Zhongyuan Wang, Zhongxia
Chen, Jiazhen Du, Huiyang Wang, Fuzheng Zhang, et al. Agentic reinforced policy optimization.
arXiv preprint arXiv:2507.19849, 2025.

Lang Feng, Zhenghai Xue, Tingcong Liu, and Bo An. Group-in-group policy optimization for llm
agent training. arXiv preprint arXiv:2505.10978, 2025.

Tianle Gao, Jiatong Sun, Zishuai Geng, Wen-Ding Li, Xipeng Qiu, Yitao Liu, and Weizhe Yuan.
Process reward models for llm agents: Practical framework and directions, 2025.

Jing-Cheng Huang, Tian-Shuo Li, Shiming Chen, Weijun Li, Pin-Yu Chen, and Chin-Yew Lin.
Segment policy optimization: Effective segment-level credit assignment in rl for large language
models, 2025.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,
Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025.
URL https://arxiv.org/abs/2412.15115.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms, 2017. URL https://arxiv.org/abs/1707.06347.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathe-
matical reasoning in open language models, 2024. URL https://arxiv.org/abs/2402.
03300.

11

https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Le Shi, Sijia Liu, Bowei He, Zhipeng Lucas Wu, Yuandong Tian, and Xiangjue Dong. Ragen:
Understanding self-evolution in llm agents via multi-turn reinforcement learning, 2025.

Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Côté, Yonatan Bisk, Adam Trischler, and Matthew
Hausknecht. Alfworld: Aligning text and embodied environments for interactive learning. arXiv
preprint arXiv:2010.03768, 2020.

Harsh Trivedi, Tushar Khot, Mareike Hartmann, Ruskin Manku, Vinty Dong, Edward Li, Shashank
Gupta, Ashish Sabharwal, and Niranjan Balasubramanian. Appworld: A controllable world of
apps and people for benchmarking interactive coding agents. In Proceedings of the 62nd Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 16022–
16076, 2024.

Zheyuan Wu, Zherui Li, Ziyi Lou, Chen Zhan, Xian-Ling Chen, and Chunyan Miao. SPA-RL:
Reinforcing LLM agents via stepwise progress attribution. arXiv preprint arXiv:2505.20732,
2025.

Guofu Xie, Yunsheng Shi, Hongtao Tian, Ting Yao, and Xiao Zhang. Capo: Towards enhancing llm
reasoning through generative credit assignment, 2025. URL https://arxiv.org/abs/
2508.02298.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Tushar Avin, Jimmy Ba, and Quoc V Le. React:
Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629, 2022.

Weize Zhao, Zeqi Liu, Zihan Wu, Shuyuan Xu, Yile Sun, Kai Zheng, and Yue Dong. RAGEN:
Understanding self-evolution in LLM agents via multi-turn reinforcement learning. arXiv preprint
arXiv:2504.20073, 2025.

Han Zheng, Weize Chiang, Zeqi Liu, Zihan Wu, Kai Zheng, and Yue Dong. Reinforcing multi-turn
reasoning in llm agents via turn-level credit assignment. arXiv preprint arXiv:2505.11821, 2025.

A APPENDIX

A.1 LLM USAGE DECLARATION

Authors prepared complete drafts of the manuscript independently. The large language model was
employed solely for language polishing and stylistic refinement; no content generation, data analy-
sis, or interpretation was performed by the LLM.

A.2 MGR CALCULATION IN A FAILURE TRAJECTORY

To provide a comprehensive understanding of the MGR framework, we present an illustrative exam-
ple of its reward calculation process within a failed trajectory, as depicted in Figure 4. This scenario
serves as a direct contrast to the successful trajectory shown in Figure 2 of the main paper, highlight-
ing MGR’s core mechanism for preventing credit misassignment for actions that are locally valid
but strategically ineffective.

This example demonstrates how MGR’s multiplicative gating and implicit curriculum work in syn-
ergy. The mechanism ensures that in early stages, the agent is not discouraged from exploring and
learning correct syntax. However, as it matures, the learning objective implicitly shifts, forcing the
agent to move beyond mere syntactic correctness and master the strategic composition of actions
required for long-horizon success. This prevents the model from reinforcing “echo traps” of valid
but useless actions.

12

https://arxiv.org/abs/2508.02298
https://arxiv.org/abs/2508.02298

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Figure 4: Example of MGR Reward Calculation in a Failure Trajectory. (Top row of final
rewards) In early training, gt is likely +1, preserving a small positive reward to encourage learning
syntax. (Bottom row) In late training, gt is likely −1, assigning a negative reward to penalize
strategically poor actions and enforce learning of the correct task flow.

A.3 BASELINES

We select the following baselines:

• ReAct: A zero-shot prompting baseline using the popular Reason-Act framework (Yao
et al., 2022), demonstrating the base model’s intrinsic agent capabilities without any pa-
rameter updates.

• SFT (Supervised Fine-Tuning): Standard behavioral cloning where the model is finetuned
on expert trajectories.

• GRPO (Shao et al., 2024): The standard Group-Relative Policy Optimization algorithm,
which applies a uniform positive or negative reward to all actions within a trajectory. This
serves as our primary trajectory-level RL baseline.

• GiGPO (Feng et al., 2025): A SOTA RL method that improves upon GRPO by incorpo-
rating an additive turn-level advantage estimation. This is our primary competitor repre-
senting the prevailing paradigm of credit assignment.

• Loop (Chen et al., 2025a): A specialized agent method reported for the AppWorld bench-
mark, included as a strong contemporary baseline for that environment.

A.4 ALGORITHM PSEUDOCODE

To formalize the training procedure, we present the MGR algorithm in pseudocode (Algorithm 1).
This algorithm details the end-to-end process, from trajectory collection to the final policy update,
emphasizing the crucial steps of our framework.

The key aspects highlighted in the pseudocode are:

• Trajectory Segmentation (Lines 10–12): Before reward calculation, each trajectory τi
is segmented into a set of prompt-action pairs (p′t, at), where the prompt p′t comprises
the entire history up to that point. This step correctly formats the data for training an
autoregressive language model policy.

• Decoupled Reward Calculation (Lines 14–15 & 19–22): The algorithm computes re-
wards in a decoupled manner. The global, trajectory-level magnitude Rglobal is computed

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

first (Line 15). Then, for each segmented sample, the local, action-level sign Rlocal,t is
derived from the environmental feedback contained in the subsequent state st+1 (Line 20).

• Conditional Multiplicative Fusion (Lines 24–29): The core multiplicative gating logic
is shown. The final reward Rfinal,t is determined by the alignment of the local and global
signals, with the stochastic gate gt being the key component for the implicit curriculum.

• Dynamic Gating (Lines 17–18 & 28): The probability pretain for the stochastic gate is dy-
namically calculated based on the agent’s batch-level performance (Cbatch, Vbatch), ensuring
the reward strategy adapts as the agent improves.

Algorithm 1 Multiplicative Gated Rewards (MGR) Training Loop
Require: Initial policy πθ, Environment Env
Require: Hyperparameters: batch size m, learning rate η, scaling coeff. γ
Require: MGR Hyperparameters: β, α, q for heuristics; θv, θC1, θC2, αdecay, pmin for curriculum

1: Initialize policy parameters θ
2: for each training iteration do
3: Initialize a raw trajectory buffer Braw ← ∅
4: # — Phase 1: Trajectory Collection —
5: for i = 1 to m do
6: Collect trajectory τi = (s1, a1, s2, . . . , sTi , aTi) by executing πθ in Env
7: Store (τi, S(τi)) in Braw, where S(τi) ∈ {0, 1} is the task success signal

8: # — Phase 2: Segmentation and Reward Calculation —
9: Initialize a training batch buffer Dbatch ← ∅

10: # Step 2a: Segment trajectories into (prompt, action) samples
11: Compute Cbatch (task completion rate) and Vbatch (action validity rate) from Braw
12: Compute positive sign retention probability pretain ← fschedule(Cbatch, Vbatch) ▷ Equation 7
13: for each trajectory τi ∈ Braw do
14: Compute trajectory-level magnitude Rglobal(τi)← m

m−1

(
S(τi)− 1

m

∑m
j=1 S(τj)

)
▷

Equation 5
15: for t = 1 to Ti do
16: Define prompt p′t ← (s1, a1, . . . , st) and action at from τi
17: Get next state st+1 from τi (or final state if t = Ti)
18: # Step 2b: Compute action-level signals and fuse for final reward
19: vt ← ComputeFundamentalValidity(at, st+1) ▷ Feedback is in st+1

20: ht ← ComputeHeuristicAdjustments(a1..t, v1..t, α, β, q) ▷ Temporal & Repetition
21: Rlocal,t ← vt + ht ▷ Equation 4

22: # Multiplicative Gating Fusion Logic
23: if sgn(Rlocal,t) = sgn(Rglobal(τi)) then
24: Rfinal,t ← Rlocal,t · |Rglobal(τi)|
25: else if Rglobal(τi) > 0 and Rlocal,t < 0 then ▷ Successful traj, invalid action
26: Rfinal,t ← γ ·Rlocal,t · |Rglobal(τi)| ▷ Dampened penalty
27: else ▷ Failed traj, valid action
28: gt ∼ GatedSign(pretain) ▷ Sample gate: gt ∈ {+1,−1}
29: Rfinal,t ← gt · γ ·Rlocal,t · |Rglobal(τi)|
30: Add (p′t, at, Rfinal,t) to training batch Dbatch

31: # — Phase 3: Policy Update —
32: Compute advantages Ât for all samples in Dbatch using GAE on rewards Rfinal,t

33: Update policy parameters θ ← θ − η∇θLPPO(θ) using samples from Dbatch ▷ Equation 2

A.5 IMPLEMENTATION DETAILS

Environment setting We utilize the ALFWorld benchmark (Shridhar et al., 2020), a text-based
environment for long-horizon, embodied tasks. It is based on the ALFRED dataset and tests an

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

agent’s ability to reason, plan, and ground language in a sequence of actions to achieve high-level
goals (e.g., “put a warm apple in the microwave”). We report performance on three difficulty splits—
L0, L1, and L2:

• L0 : Pick and Look.

• L1 : Clean and Heat.

• L2 : Cool and Pick2.

For ALFworld, we follow the setting of GiGPO (Feng et al., 2025), we use a group size of 8 and
sample 16 different groups per rollout, resulting in a total of 16×8 = 128 environments. The rollout
temperature is set to 1.0, the maximum response length is 512 tokens. Each episode allows up to 50
environment steps.

For AppWorld, we follow the setting of Loop (Chen et al., 2025a). We train on a subset of the
AppWorld train set, excluding difficulty 3 tasks. This subset consists of 24 scenarios, with 3 minor
variations (tasks) per scenario, which contain 72 tasks. Each iteration starts with the generation of K
= 6 rollouts with temperature 1.0 for 40 randomly sampled tasks, for a total of 240 rollouts. We use
only difficulty-1 and difficulty-2 tasks for training. The maximum response length is 2048 tokens.
Each episode allows up to 35 environment steps. The task IDs we use are as follows:

07b42fd 229360a 27e1026 287e338 692c77d 82e2fac

aa8502b b7a9ee9 c901732 ccb4494 ce359b5 e7a10f8

e85d92a e3d6c94 d0b1f43 2a163ab 60d0b5b 6ea6792

29caf6f cf6abd2 771d8fc 7d7fbf6 76f2c72 302c169

Action Validity Signal (Rlocal) Determination The core of our Multiplicative Gated Rewards
(MGR) framework is the ability to decouple local action validity from global trajectory success.
This is primarily achieved through the action-level signal, Rlocal, which begins with a Fundamental
Validity Signal (vt ∈ {−1,+1}). This signal provides an immediate, fact-based judgment on the
correctness of each action at. An action is considered invalid (vt is set to -1) if it fails any of the
checks detailed below for each environment. Otherwise, it is considered valid (vt is set to +1).

AppWorld In the AppWorld benchmark, agent actions consist of Python code designed to interact
with a suite of simulated applications. An action is determined to be invalid if it meets one or more
of the following criteria, categorized into environment feedback analysis and action format checks.

1. Environment Feedback Analysis: A negative validity signal (vt = −1) is assigned if the
environment’s execution feedback contains any of the following error-indicating substrings.
These keywords typically signify crashes, syntax errors, or execution timeouts:

• "Execution failed"

• "Traceback:"

• "SyntaxError"

• "Exception"

• "Error:"

• "Maximum number of executions"

• "timed out after"

• "No code available to execute"

2. Action Format and Syntax Analysis: Additionally, the raw action generated by the agent
is preemptively checked for structural integrity. The action is considered invalid (vt = −1)
if it fails any of these checks:

• Invalid Formatting: The generated code is not correctly encapsulated within a
‘‘‘python ... ‘‘‘ markdown block, making it unexecutable by the environ-
ment parser.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

• Absence of API Call: The executable code, once extracted, does not contain the
.api substring. This rule is crucial to prevent the agent from receiving rewards
for syntactically correct but strategically useless code (e.g., print("thinking"))
that does not contribute to task progression.

• Excessive Reasoning: The content within the <think> but without </think> tags
is determined to be excessively long. This heuristic helps penalize instances where
the model may be ”stuck” or hallucinating, rather than producing a concise, relevant
reasoning step.

ALFWorld In the text-based ALFWorld environment, agent actions are natural language com-
mands. The validity of these commands is assessed based on the environment’s textual response and
the agent’s output format.

1. Environment Feedback Analysis: An action is deemed invalid (vt = −1) if the textual
feedback from the ALFWorld environment matches any of the following regular expres-
sion patterns. These patterns capture a wide range of common failure scenarios, such as
interacting with non-existent objects or attempting illogical actions:

• r"ˆnothing happens\.?$"‘ (The most common feedback for an ineffectual
action)

• r"you don’t see that" (Object is not present)
• r"you can’t see that" (Object is out of sight)
• r"that command is not understood" (Command is not recognized by the

game parser)
• r"you haven’t got" (Agent is not holding the required item)
• r"you are not" (Agent is in the wrong location)
• r"you need to" (A prerequisite condition is not met)
• r"you must" / r"you have to" (A required condition is not fulfilled)
• r"that’s not" / r"not a valid" / r"not valid" (Command is syntac-

tically or logically invalid)
• r"you cannot" / r"you can not" (The attempted action is impossible)
• r"not available" (The target object or feature cannot be used)

2. Action Format Analysis: A strict format is enforced on the agent’s output to ensure clear
separation between reasoning and action. The generated output is marked as invalid (vt =
−1) if it does not precisely follow the required structure, which mandates that the reasoning
and the action are respectively and completely enclosed within <think>...</think>
and <action>...</action> tags.

Implicit Curriculum Hyperparameters For the schedule function fschedule(Cbatch, Vbatch) shown
in Equation 8, the hyperparameters are set to θV = 0.4, θC1 = 0.1, θC2 = 0.6, the decay factor
α = 1.5, and the minimum retention probability pmin = 0.1. This specific configuration is designed
to counteract the inherent data imbalance in agentic learning, guiding the training process towards a
healthier, near 1:1 ratio of positive to negative signals for strategically ambiguous actions.

A.6 HYPERPARAMETER SENSITIVITY ANALYSIS

Table 4: Sensitivity analysis of the scal-
ing coefficient γ, measured by average
success rate on AppWorld.

Value of γ Success Rate (%)
0.8 35.4
1.0 36.1
1.2 35.9
1.4 35.2

Sensitivity on Scaling Coefficient (γ) We further inves-
tigated the robustness of the scaling coefficient, γ, which
is used to dampen the penalty for invalid actions within
successful trajectories (Scenario 2). As shown in Table 4,
our method exhibits high robustness to variations in this
parameter. Varying γ within the range of [0.8, 1.4] results
in less than a 1% fluctuation in the final success rate com-
pared to our default setting of γ = 1.0. This stability
indicates that the precise magnitude of the penalty is less
critical than the structural logic of the sign alignment. As
long as the mechanism correctly identifies and penalizes

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

invalid actions (preserving the negative sign), the agent
effectively learns to avoid them without being overly sen-
sitive to the specific scale of the penalty.

Table 5: Impact of the repetition
penalty hyperparameter α on App-
World success rates.

Value of α Success Rate (%)
0.0 5.1
0.5 36.1
1.0 34.2
2.0 34.5

Ablation on Repetition Penalty (α) To assess the ne-
cessity of explicit constraints against reward hacking, we
evaluated the impact of the repetition penalty coefficient
α. Table 5 reveals a critical insight: removing the penalty
entirely (α = 0) leads to a catastrophic collapse in per-
formance (5.1%), as the agent degenerates into repeating
a single locally valid action to exploit the reward signal.
However, once the penalty is enabled (α ≥ 0.5), the per-
formance stabilizes at a high level. While larger penalties
(e.g., α = 2.0) cause a minor drop by discouraging legit-
imate retries, the method remains effective across a wide
range of non-zero values. This confirms that the presence
of the penalty mechanism is a fundamental requirement for stability, but the framework is not brittle
regarding its specific hyperparameter tuning.

17

	Introduction
	Related Work
	Trajectory-Level Reinforcement Learning
	Learned Process Reward Models
	Fine-Grained Advantage Estimation

	Method
	Trajectory Segmentation and Reinforcement Learning
	Reward Signal Decoupling
	Action-Level Sign Provider (Rlocal)
	Trajectory-Level Magnitude Provider (Rglobal)

	Reward Fusion
	Dynamic Sample Balancing via Gated Sign Flipping

	Experiment
	Environments
	Models and Baselines
	Implementation Details
	Results and Analysis
	Analysis of Training Dynamics
	Ablation Studies

	Conclusion
	Ethics Statement
	Reproducibility Statement
	Appendix
	LLM Usage Declaration
	MGR calculation in a failure Trajectory
	Baselines
	Algorithm Pseudocode
	Implementation Details
	Hyperparameter Sensitivity Analysis

