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Abstract

Predicting interactions between biochemical entities is a core challenge in drug dis-
covery and systems biology, often hindered by limited data and poor generalization
to unseen entities. Traditional discriminative models frequently underperform in
such settings. We propose BioCG (Biochemical Constrained Generation), a novel
framework that reformulates interaction prediction as a constrained sequence gener-
ation task. BioCG encodes target entities as unique discrete sequences via Iterative
Residual Vector Quantization (I-RVQ) and trains a generative model to produce the
sequence of an interacting partner given a query entity. A trie-guided constrained
decoding mechanism, built from a catalog of valid target sequences, concentrates
the model’s learning on the critical distinctions between valid biochemical options,
ensuring all outputs correspond to an entity within the pre-defined target catalog.
An information-weighted training objective further focuses learning on the most
critical decision points. BioCG achieves state-of-the-art (SOTA) performance
across diverse tasks, Drug-Target Interaction (DTI), Drug-Drug Interaction (DDI),
and Enzyme-Reaction Prediction, especially in data-scarce and cold-start condi-
tions. On the BioSNAP DTI benchmark, for example, BioCG attains an AUC
of 89.31% on unseen proteins, representing a 14.3 percentage point gain over
prior SOTA. By directly generating interacting partners from a known biochemical
space, BioCG provides a robust and data-efficient solution for in-silico biochemical
discovery.

1 Introduction

Predicting whether two biochemical entities interact—for example, whether a drug will affect its
protein target or if an enzyme will catalyze a given reaction—is pivotal for drug discovery, synthetic
biology, and basic biochemistry [18, 36, 38]. Accurate in-silico models dramatically cut experimental
cost and time while guiding the rational design of new therapeutics and pathways [2, 30, 4]. Most
machine-learning systems cast interaction prediction as binary classification: they embed each entity
independently and train a discriminative head to score compatibility [21, 41, 33, 20]. While this
paradigm performs well with abundant labeled data, it breaks down in the low-data regimes common
in biochemical research. Interaction labels are often scarce due to the high cost of experimental
validation [34, 9]. Moreover, discriminative models typically fail to generalize in cold-start scenarios,
where the interacting entities have not been seen during training [6, 23]. Generative models are often
seen as a promising alternative, capable of achieving strong results by learning complex underlying
data distributions. However, this typically requires large training corpora, and a further significant
challenge is that unconstrained generative approaches tend to produce outputs that violate structural
or chemical rules [8, 19]. Biochemical interaction prediction occupies a unique position where
potential interaction partners are drawn from a finite catalog of valid entities. For instance, predicting
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an enzyme’s function for a novel reaction often involves selecting a known enzyme, which is typically
cataloged by its sequence and classified by an Enzyme Commission (EC) number, from a finite
set such as the human proteome [14, 31]. Crucially, these catalog entries are not simple labels but
rich, structured objects (such as protein sequences or molecular graphs) that can be represented as
token sequences,[26, 39]. Therefore, we propose reframing biochemical interaction prediction as
constrained sequence generation over a finite set of valid, structured entities.

We present BIOCG that exploits this insight by representing every catalog entry as a compact code
sequence obtained via I-RVQ. A trie built over these codes guides the generative model: during
training, it directs learning to focus on distinguishing between legitimate candidates, and during
inference, it ensures only sequences corresponding to entities from the catalog are emitted. A
lightweight meta-calibration model then processes features derived from the generative model’s
process to output final interaction scores.

The contributions of this work are threefold. First, we introduce BIOCG, a novel framework refor-
mulating biochemical interaction prediction as constrained sequence generation over a finite catalog
of valid entities. Second, we develop its core technical innovations: (i) Iterative Residual Vector
Quantization (I-RVQ) to create unique discrete codes for target entities; (ii) a trie-guided constrained
decoding mechanism, active during training and inference; and (iii) an information-weighted training
objective that enhances learning efficiency and generalization. Third, we demonstrate state-of-the-art
performance across key biochemical benchmarks (including DTI, DDI, and Enzyme-Reaction Predic-
tion), with up to 14 percentage points AUC improvement in challenging scenarios. To facilitate full
reproducibility of all experiments, we release our open-source code (GitHub).

2 Related Work

Drug-Target Interaction Prediction. Predicting drug-target interactions (DTI) is crucial for drug
discovery. Deep learning has significantly advanced DTI prediction using diverse architectures, in-
cluding Convolutional Neural Networks (CNNs) [16], Graph Neural Networks (GNNs) for molecular
topology [22], Transformers for biochemical sequences [13], and various multimodal or attention-
based approaches [1, 17, 33, 20]. These methods frame DTI as a discriminative task. BioCG differs by
employing constrained sequence generation over known targets, improving cold-start generalization.

Drug-Drug Interaction Prediction. Predicting drug-drug interactions (DDIs) is crucial for patient
safety. Machine learning models identify DDIs using drug similarities [29] or Graph Neural Networks
(GNNs) on molecular structures [42, 37]. These typically classify pre-defined drug pairs. BioCG’s
framework conceptually differs by generating an interacting drug partner from a known set.

Enzyme-Reaction Prediction Identifying the specific enzyme responsible for catalyzing a given bio-
chemical reaction (often classified by its Enzyme Commission (EC) number) is vital for biochemical
annotation and pathway understanding. The CARE benchmark [41] provides a standard evaluation
setting for this task. Existing methods often use contrastive learning [41, 21] or large language
models [25, 41] to align reaction and enzyme representations, typically followed by classification
or similarity-based identification of the most likely enzyme/EC number. BioCG offers a distinct
approach by directly generating the catalytic enzyme, conditioned on the input reaction.

Constrained Generation. Constrained sequence generation aims for valid outputs. Many approaches
enforce constraints only during inference [11, 3, 12] or require large datasets to learn constraints
implicitly during training [43, 7]. BioCG distinctively applies explicit trie constraints from finite
biochemical catalogs during training and inference. This enables data-efficient learning by focusing
training on the known valid space and guarantees that outputs correspond to valid entities at inference.

3 Methods

We introduce BioCG (Biochemical Constrained Generation), a novel framework designed to predict
biochemical entity-entity interactions by reformulating the task as a constrained, autoregressive
sequence generation problem. The overall framework is depicted in Figure 1. It involves representing
query entities using pre-trained encoders, transforming target entities into unique discrete sequences
via I-RVQ, generating these sequences using a trie-guided constrained decoder, and converting
sequence generation probabilities into interaction scores.
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Figure 1: The BioCG framework. (A) Target entity representation pipeline: Target entities (e.g., proteins) are
encoded using a pre-trained model. I-RVQ iteratively clusters residuals to create unique discrete sequences for
each target. (B1) Trie Construction: A prefix tree (trie) is built from all discretized target sequences. Nodes with
multiple children (orange) represent active decision points where the model must predict the next token among
valid options. (B2) Constrained Decoding Mask: The trie determines valid next tokens at each generation step.
An attention mask allows the decoder only to consider valid continuations (orange cells), effectively pruning
invalid generation paths. (C) Constrained Generation Process: A query entity (e.g., a drug) is encoded. The
autoregressive decoder uses this context and previously generated tokens to predict the next token in the target
sequence, guided by the trie-based mask and incorporating information weighting.

Problem Formulation We reformulate biochemical interaction prediction as a constrained sequence
generation task. Let Ein be the set of input query entities and T = {t1, t2, . . . , tN} be a finite,
known catalog of valid target entities. Given a query e ∈ Ein, our objective is to identify the
interacting target t ∈ T . BioCG achieves this by learning to generate a unique discrete sequence
representation st = (w1, . . . , wM ) corresponding to the target entity t. The core of our model is
to estimate the conditional probability P (st | e) of generating this sequence given the query e.
Crucially, this generation is constrained such that st must always represent a valid entity within
the predefined catalog T . This is achieved by modeling the standard autoregressive probability
P (st | e) =

∏M
k=1 P (wk | e, w1, . . . , wk−1), while ensuring that only sequences st corresponding

to an entity in T can be generated. This constrained sequence generation probability derives the final
interaction likelihood between e and t.

3.1 Model Architecture and Representation

Query Entity Representation. Input query entities are represented using standard biochemical
sequence formats: proteins via FASTA sequences and small molecules or reactions via SMILES
strings. We leverage SOTA pre-trained sequence-based encoders that transform the input query e into
a fixed-size context vector hin. These encoders are kept frozen during BioCG training to preserve
their learned domain knowledge and prevent catastrophic forgetting. Specifically, we utilize ESM
[10] for proteins, Molformer [28] for molecules, and RXNFP [32] for reactions. The impact of
alternative pre-training strategies and models is explored in ablation studies (Section 6).

Target Entity Representation via I-RVQ. While target entities like proteins and molecules possess
inherent discrete sequence representations, BioCG employs a strategy to generate potentially more
effective sequences tailored for the decoder. This involves first obtaining continuous embeddings
for each target entity t ∈ T using an appropriate pre-trained encoder. Subsequently, we introduce
and utilize I-RVQ, our adaptation of RVQ specifically designed to generate unique discrete code
sequences from these embeddings for the entire target set. Our I-RVQ approach leverages the standard
mechanism of RVQ: it iteratively quantizes residual vectors using k-means clustering (K clusters per
layer). In each layer m, an entity’s residual embedding e

(m−1)
i is assigned to the nearest centroid

c
(m)

i
(m)
k

, yielding the code i
(m)
k for that layer, and the new residual e(m)

i is calculated by subtracting the

assigned centroid vector. The key adaptation defining I-RVQ lies not in the per-layer quantization
step but in its overall iterative application and objective. We apply these I-RVQ layers sequentially
(M = 1, 2, . . .) to achieve representation uniqueness across the entire finite target set T . The process
continues, adding layers and thus lengthening the code sequences (i(1)k , . . . , i

(M)
k ), precisely until

every target entity ti ∈ T possesses a distinct code sequence. (See example in Figure 2)
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Figure 2: Simulation of I-RVQ with five target entities, using two k-means clusters per layer. Each panel depicts
a k-means clustering step—where shaded areas represent cluster boundaries and red X’s mark centroids—applied
to the residual vectors from the previous layer. Labels indicate each target’s ID and the progressively forming
code sequence. The iterative process culminates in unique codes for all five targets.

The motivation for generating these learned I-RVQ codes instead of raw sequences is that they can
capture salient features in a structured, often more compact format suitable for the Transformer
decoder, potentially using a more uniform vocabulary and sequence length. This uniqueness-driven
I-RVQ process guarantees the bijective mapping essential for our framework. As validated in
ablation studies (Section 6), these I-RVQ codes prove more effective for the generative decoder than
alternatives such as raw biological sequences, random assignments, or standard sub-word tokenization
techniques like Byte Pair Encoding (BPE).

Decoder Architecture with Trie-Guided Constrained Decoding. BioCG’s generative core, a Trans-
former decoder [35], autoregressively generates the target’s unique code sequence st = (w1, . . . , wM )
conditioned on the query context hin. A key feature is its rigorous output validity, achieved by con-
fining generation (during training and inference) strictly to known valid target sequences in T (Fig.
1C). This constrained approach involves:

1. Trie Construction: A pre-constructed prefix tree (trie) GT , built from all valid target code sequences
in T (Fig. 1B1), defines the valid output space by encapsulating their vocabulary and structure. 2.
Trie-Guided Masking: At each generation step k, the decoder produces raw logits lk (over I-RVQ
vocabulary V) based on hin and preceding tokens (w1, . . . , wk−1). The trie GT , queried with this
partial sequence, provides a binary mask mk ∈ {0, 1}K , where mk[i] = 1 if token i is a valid
continuation (Fig. 1B2). 3. Constraint Application: This mask mk is applied to logits lk (in training
and inference) via: pk = softmax(lk − λ(1 − mk)) where a large λ (e.g., 109) effectively zeros
out probabilities of invalid next tokens. Thus, pk is non-zero only for valid continuations from T ,
focusing learning gradients onto valid pathways.

4. Constrained Training Loss: The training loss uses the constrained probability pk for the ground-
truth token w∗

k. This directs gradients exclusively towards valid transitions, training the model to learn
T ’s structure and make informed choices among legitimate candidates. 5. Information-Weighted
Loss: Standard cross-entropy is suboptimal for steps with varying branching factors (BFk). Steps
with BFk = 1 (single valid option) offer no discriminative learning, while multi-option steps risk
imbalanced loss aggregation. Our Information-Weighted Loss assigns negligible weight to BFk = 1
steps. For multi-branch steps, it applies a weight Winfo(mk) = log(BFk + 1 + ϵ) (where ϵ is a
small constant, e.g., 10−9, for numerical stability). This logarithmic scaling by BFk (number of
valid choices) focuses learning on the most informative and challenging decision points. The overall
training objective minimizes the total information-weighted negative log-likelihood for a ground-truth
target sequence s∗t = (w∗

1 , . . . , w
∗
M ) given query e:

L(s∗t |e) = −
M∑
k=1

Winfo(mk) log pk[w
∗
k]

where pk[w
∗
k] is the constrained probability of the true token w∗

k at step k. The efficacy of BioCG’s
core components, including trie-guided constrained generation and information-weighted loss, is
validated in our ablation studies (Section 6).

Converting Generation Probabilities to Interaction Scores. Once the BioCG generative model is
trained, a method is required to derive an interaction score for a given query entity e and a specific
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target entity t (represented by its ground-truth I-RVQ sequence s∗t ) for evaluation on benchmark
datasets. We first obtain the conditional probability of generating s∗t given e to achieve this. This is
done using a teacher-forcing approach by feeding the query e and the ground-truth target sequence s∗t
through the trained generative model. This process yields the sequence of step-wise probabilities
pk[w

∗
k] for each token in s∗t , along with other potential features from the generation process. From

this information, we employ two primary methods to compute a final interaction score between e and
t:

1. Log Probability Score: A straightforward score is derived from the average log probability of the
ground-truth target sequence s∗t , typically focusing on ’active’ generation steps where the trie-guided
BFk > 1. This score is calculated as: Slogprob = (|{k : BFk > 1}|)−1

∑
k:BFk>1 log pk[w

∗
k]. A

higher score suggests a stronger predicted interaction.

2. Meta-Model Calibration: A lightweight Transformer-based meta-model is utilized for potentially
more nuanced binary classification. This meta-model is trained to take a sequence of features
extracted from the teacher-forced generation of s∗t (the token probability pk[w

∗
k], its rank among

valid alternatives, the branching factor Bk, and entropy at each active step k) and output a single,
calibrated interaction probability for the pair (e, t).

4 Experiments

4.1 Datasets

Drug-Target Interaction (DTI) Prediction. For DTI, we use the BioSNAP dataset [44] (derived
from DrugBank [14]), featuring 13,741 positive interactions between 4,510 drugs and 2,181 proteins,
with randomly sampled negatives. We follow established protocols [33, 13] for three splits. In the
random split, where entities are generally seen during training, BioCG generates a known partner (e.g.,
a protein from Tproteins) for a given query (e.g., a drug), with T comprising all relevant entities from
the training interaction data. For the unseen protein split, proteins absent from training interactions
serve as query entities; BioCG then generates an interacting drug from Tdrugs (all drugs seen in
training). Symmetrically, in the unseen drug split, new drugs (absent from training interactions) are
queries, and BioCG generates an interacting protein from Tproteins (all proteins seen in training). In
these cold-start splits, query entities are novel to the training pairs, while the target catalog T is built
from entities that were part of training interactions.

Drug-Drug Interaction (DDI) Prediction. DDI prediction is evaluated using data from DrugBank
[14], similar to [42], containing 1.95 million interaction pairs among 2,755 unique drugs. To assess
cold-start capabilities, our cold-start drug query split involves test pairs where one drug is "unseen"
(the query, absent from training interactions) and the other is "seen." BioCG’s task is to generate this
"seen" partner drug from the target catalog Tdrugs, which consists of all unique drugs in the dataset (as
they are potentially "seen" partners if not the cold query) when given the unseen query drug.

Enzyme-Reaction Prediction The Enzyme-Reaction Prediction task seeks to identify the enzyme
catalyzing a given biochemical reaction. We use the CARE benchmark [41] for evaluation, which
contains 61,766 reaction-enzyme pairings. Enzymes are often classified by EC numbers, where
each EC number can represent a class of enzymes performing the same function; thus, any enzyme
in that EC class is a correct match. The dataset features 4,960 unique EC numbers, with enzymes
typically represented by their protein sequences. We follow CARE’s unseen reaction query split,
where novel test reactions are input queries. BioCG’s goal is to generate the correct protein sequence
(corresponding to an enzyme/EC number) from the target catalog, TEC_proteins.

4.2 Baselines

To evaluate BioCG’s performance rigorously, we compare it against a range of established and state-
of-the-art baseline methods specific to each of the three prediction tasks. Drug-Target Interaction
(DTI) Baselines: Baselines for DTI prediction on the BioSNAP dataset include classic machine
learning models (Random Forest, SVM) and prominent deep learning architectures. These deep
learning methods encompass Convolutional Neural Networks (CNNs) like DeepConv-DTI [16],
Graph Neural Networks (GNNs) such as GraphDTA [22], Transformer-based models like MolTrans
[13]. Various attention or multimodal fusion approaches including DrugBAN [1], DLM-DTI [17],
Top-DTI [33], and DrugLAMP [20].
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Drug-Drug Interaction (DDI) Baselines: For binary DDI prediction on DrugBank, baselines
include Logistic Regression (LR) and Random Forest (RF) using chemical structural similarity
profiles (SSP). Deep learning comparators are DeepDDI [29], which uses SSPs with a deep neural
network; MR-GNN [40], a multi-resolution graph neural network; SSI-DDI [24], a knowledge-driven
model learning substructure interactions; and DDI-GCN [42], which employs Graph Convolutional
Networks on chemical structures.

Enzyme-Reaction Prediction Baselines: BioCG is compared against several established methods.
These include a Random classification baseline, a DRFP-based reaction similarity baseline [27], an
LLM-based approach (GPT3 [25, 41]), and contrastive learning frameworks designed for this task,
namely CREEP [41] and CLIPZyme [21].

4.3 Implementation Details

Our BioCG framework uses a Transformer architecture. It integrates frozen pre-trained models for
entity representation: ESM2-650M [10] for protein sequences, MoLFormer-XL [28] for molecules,
and RXNFP [32] for reactions. The I-RVQ module utilizes k-means clustering for target discretization.
The main model is trained using the AdamW optimizer with a constant learning rate, employing early
stopping based on validation AUC. A 1-layer Transformer meta-model calibrates generation statistics
into interaction scores via a sigmoid binary classification head. Hyperparameters were optimized
through greedy search with cross-validation to maximize validation AUC; detailed information
is available in Appendix B. Training is conducted on an L40 GPU (64GB), with the main model
requiring approximately 6 hours and the meta-model around 5 minutes. The complete implementation
of BioCG is publicly available at GitHub.

Computational Complexity BioCG’s computational profile has two phases. Offline Preprocessing
involves encoding all target entities in T , running I-RVQ, and constructing the prefix trie GT . This
is a one-time, potentially intensive cost. Online Inference for a query e involves fast encoding of e
and autoregressive generation via the constrained decoder. Trie lookups for masking add negligible
overhead to the Transformer’s per-step complexity. The main memory consideration is the storage of
the trie GT . Its size scales with the total number of nodes, which depends on |T | and the sequence
length M , potentially becoming large for huge target sets. However, for moderately sized biochemical
catalogs (e.g., thousands to tens of thousands of proteins or known drugs), the trie often remains
manageable relative to the size of large pre-trained encoders or the decoder itself. Addressing
scalability to truly massive target sets is an area for future work (Section 6).

4.4 Statistical Analysis

Specific statistical tests were employed to determine the statistical significance of performance
differences between BioCG and baseline methods tailored to the metric type. The Two-Proportion
Z-Test was used for proportion-based metrics (e.g., Accuracy, Sensitivity, Specificity). This test
assesses whether the observed success rates of two models (BioCG and a baseline) are significantly
different under the null hypothesis that their actual success rates are equal. DeLong’s test [5] was
used for AUC comparisons. This non-parametric method is designed to compare the AUCs of ROC
curves when the models are evaluated on the same test set (leading to correlated results). It tests the
null hypothesis that the AUCs of the two models are equal. For all tests, a p-value less than an alpha
level of 0.05 was considered to indicate a statistically significant difference. This supports claims of
BioCG’s superiority, typically assessed using a one-tailed test where the alternative hypothesis is that
BioCG’s performance is greater than the baseline’s.

5 Results

The evaluation of BioCG’s performance across the different tasks utilizes metrics commonly es-
tablished and reported in previous works within each domain, ensuring robust and comparable
assessment. We report the Area Under the AUC, Sensitivity, and Specificity for Drug-Target Inter-
action prediction conducted on a balanced dataset. Due to the imbalanced nature of the Drug-Drug
Interaction dataset, our evaluation includes the AUPR and Accuracy, in addition to AUC, to provide a
comprehensive view of performance. For the Enzyme-Reaction Prediction task, where the goal is
often to identify a single correct enzyme for a given reaction, Top-k Accuracy is the primary metric.
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Table 1: Drug-Target Interaction Prediction performance on the BioSNAP dataset across seen, unseen
protein, and unseen drugs scenarios. Results are reported as AUC, Sensitivity (Sens), and Specificity
(Spec). Performance figures in bold indicate that the result is the best in its respective column and
represents a statistically significant improvement (p < 0.05) over the next best baseline method, with
significance determined as detailed in Section 4.4.

Method Seen Unseen Protein Unseen Drug

AUC Sens Spec AUC Sens Spec AUC Sens Spec

Random Forest 86.01 82.37 78.63 68.71 65.82 62.93 83.51 79.87 76.32
SVM 86.21 71.13 84.17 68.83 56.91 67.34 83.74 69.07 81.64
DeepConv-DTI 88.61 76.07 85.14 69.21 60.81 68.14 85.61 73.72 82.54
GraphDTA 88.73 74.51 85.42 70.43 59.62 68.32 85.82 72.31 82.87
MolTrans 89.52 81.83 83.19 71.42 65.43 66.52 85.63 79.46 80.63
DrugBAN 90.31 82.03 84.72 71.03 65.67 67.83 88.61 80.47 83.01
DLM-DTI 91.42 84.87 84.43 73.04 67.82 67.53 88.73 82.37 81.93
Top-DTI 93.91 86.63 85.73 75.01 69.31 68.67 91.25 84.03 83.17
DrugLAMP 91.73 84.43 85.57 73.23 67.54 68.42 89.06 81.92 82.93

BioCG (Our) 96.61 90.27 92.43 89.31 72.92 93.34 91.21 77.83 89.71

Drug-Target Interaction Prediction As shown in Table 1, BioCG consistently outperforms all
baseline methods across all three BioSNAP dataset splits. In the standard "seen" scenario, BioCG
achieves an AUC of 96.61%, representing a statistically significant improvement of 2.7% over the
previous state-of-the-art method, Top-DTI (93.91%). This improvement is also reflected in the
sensitivity (90.27%) and specificity (92.43%) metrics. The most striking results are observed in the
"unseen" scenarios. For unseen protein, where the model must predict interactions for entirely unseen
protein targets, BioCG achieves an AUC of 89.31%, a substantial 14.3% increase compared to the
best baseline (Top-DTI, 75.01%). This highlights BioCG’s strong generalization capability to novel
protein entities. Similarly, in the unseen drug scenario, BioCG reaches an AUC of 91.21%, surpassing
most baselines, though Top-DTI also performs well here. The performance gains in unseen settings
underscore the advantage of BioCG’s constrained generative approach, which leverages the structured
nature of the target space to make predictions for unseen entities more effectively than discriminative
models reliant on embedding similarity.

Drug-Drug Interaction Prediction In predicting Drug-Drug Interactions on the DrugBank dataset,
BioCG demonstrates superior performance across all evaluated metrics compared to established
baseline methods. The results are detailed in Table 2. BioCG achieves an Accuracy of 77.23%,
which is a notable improvement over the best-performing baseline in this metric, DDI-GCN (74.05%).
This indicates a higher overall correctness in classifying drug pairs as interacting or non-interacting.
For the AUC metric, BioCG scores 84.12%, significantly surpassing the highest baseline score of
80.91% achieved by MR-GNN. This highlights BioCG’s enhanced ability to discriminate between
positive and negative interaction pairs across various thresholds. Furthermore, BioCG obtains an
AUPR of 72.16%, which is also higher than the best baseline AUPR of 69.47% (from MR-GNN),
underscoring its robustness in scenarios with potentially imbalanced class distributions. These
consistent improvements across ACC, AUC, and AUPR suggest that BioCG’s constrained generative
approach, modeling one drug as a query and generating the potential interacting partner from a known
set, effectively captures complex interaction patterns for DDI prediction.

Enzyme-Reaction Prediction For the task of Enzyme-Reaction Prediction from biochemical
reactions, evaluated on the CARE benchmark, BioCG demonstrates strong performance, particularly
in accurately identifying the correct enzyme within the top few predictions. The results are presented
in Table 3.

BioCG achieves a Top@1 accuracy of 67.93%, significantly outperforming the next best baseline,
CREEP, which scored 60.32%. This represents a substantial improvement in correctly identifying
the exact enzyme as the top prediction. The advantage of BioCG extends across other Top-k metrics.
For instance, BioCG achieves a Top@2 accuracy of 82.32% and a Top@3 accuracy of 89.21%,
surpassing CREEP (79.46% Top@2, 87.58% Top@3). While CREEP shows strong performance
at higher k values, BioCG maintains a competitive edge or comparable performance, for example,
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Table 2: Drug-Drug Interaction Prediction performance on
the DrugBank dataset. Results are reported as Accuracy
(ACC), AUC, and AUPR. Performance figures in bold indi-
cate that the result is the best in its respective column and
represents a statistically significant improvement (p < 0.05)
over the next best baseline method, with significance deter-
mined as detailed in Section 4.4.

Method ACC AUC AUPR

LR 51.73 64.57 50.69
RF 60.78 73.42 60.15
DeepDDI [29] 72.24 80.86 69.03
MR-GNN [40] 71.69 80.91 69.47
SSI-DDI [24] 71.08 75.34 68.62
DDI-GCN [42] 74.05 79.82 69.08

BioCG (Ours) 77.23 84.12 72.16

achieving 94.22% at Top@5 and 98.52% at Top@10. By Top@50, both BioCG and CREEP
approach near-perfect prediction accuracy (99.32% and 99.15%, respectively). These results highlight
BioCG’s capability to effectively learn the mapping from reactions to their corresponding enzymes
by generating unique protein representations associated with EC numbers, leading to improved
prediction accuracy, especially at the critical top ranks.

Table 3: Enzyme-Reaction Prediction performance on the CARE benchmark dataset, measured by
Top-k Accuracy. Performance figures in bold indicate that the result is the best in its respective
column and represents a statistically significant improvement (p < 0.05) over the next best baseline
method. Top@k values for k>1 are not reported for the LLM and Random baselines, as these methods
are designed to produce a single best prediction, making a ranked-list comparison methodologically
distinct.

Method Top@1 Top@2 Top@3 Top@4 Top@5 Top@10 Top@50

Random [41] 0.00
DRFP Similarity [27] 59.39 70.01 78.46 80.92 81.98 85.56 93.42
CREEP [41] 60.32 79.46 87.58 90.39 92.10 96.72 99.15
LLM [25] 13.74
CLIPZyme [21] 12.27 21.43 26.73 32.31 35.96 53.70 78.40

BioCG(Our) 67.93 82.32 89.21 90.52 94.22 98.52 99.32

6 Ablations

To validate the contributions of BioCG’s key components and design choices, we conducted compre-
hensive ablation studies. These systematically evaluated the impact of different pre-trained encoders
and their training strategies, various methods for target entity representation, and alternative con-
strained decoding approaches. All ablation experiments were performed on the BioSNAP dataset’s
"unseen protein" split. The findings are summarized in Table 4.

Table 4: Ablation Study Results on BioSNAP Unseen Protein Dataset (AUC). Bold indicates the
optimal configuration or best performing model in a category for BioCG.

Pre-training Model Pre-training Strategy Target Representation Constraint Strategy

ESM (protein) (89.31) Fine-tuned (81.17) Raw (82.06) Unconstrained (75.21)
ProteinBERT (protein) (88.43) Scratch (86.26) Random (79.32) Inference-only (77.43)
GearNet (protein) (87.54) Frozen(BioCG) (89.31) BPE (84.75) Cross-Entropy Loss (86.13)
MolFormer (molecule) (89.31) ————————- I-RVQ-15 (89.31) Full (BioCG) (89.31)
ChemBERTa (molecule) (88.29) Log Prob BioCG (87.73) I-RVQ-25 (88.03)
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Query Entity Encoders and Training Strategy: The encoder integration strategy critically affected
performance. Optimal AUC (up to 89.31%, Table 4) was achieved using frozen high-quality pre-
trained encoders (e.g., ESM, MolFormer), which supply rich, stable features. Conversely, fine-tuning
encoders substantially degraded performance (81.17% AUC). Significantly, training encoders from
scratch still produced a respectable 86.26% AUC. This indicates that while pre-trained models are
beneficial for top results, BioCG’s core framework is robust, performing strongly even without
them—an advantage if suitable pre-trained models are unavailable. Furthermore, the specific choice
among tested pre-trained models (ESM, ProteinBERT, GearNet; MolFormer, ChemBERTa), when
used frozen, exerted a relatively minor influence on AUC scores (ranging 87.54%-89.31%). This
observation reinforces BioCG’s architectural robustness to the precise encoder selection, assuming a
strong foundational representation.

Target Entity Representation: The method for creating discrete sequence representations of target
entities for the decoder is crucial. Our I-RVQ with K = 15 clusters (I-RVQ-15) proved optimal
(89.31% AUC). This significantly outperformed using raw biological sequences (82.06% AUC when
adapted for a comparable baseline) or random sequence assignments (79.32% AUC), highlighting
the need for structured, learned representations. Further comparisons demonstrated the superiority of
I-RVQ-15: it outperformed Byte Pair Encoding (BPE) with 256 tokens (learned from raw sequences
like SMILES or FASTA, yielding 84.75% AUC) and other I-RVQ configurations such as I-RVQ with
K = 25 clusters (I-RVQ-25, which achieved 88.03% AUC).

Constrained Decoding and Training Strategy: BioCG’s approach of integrating constraints directly
into training is vital. The full model with trie-guided decoding and information-weighted loss (Full
(BioCG)) achieved 89.31% AUC. In contrast, unconstrained generation during training (75.21%
AUC) or applying constraints only at inference (77.43% AUC) performed substantially worse,
confirming that the decoder must learn within the valid output space. Using a standard Cross-Entropy
Loss (86.13% AUC) was less effective than our information-weighted loss, which better handles
varying step complexity. Furthermore, the meta-model for calibrating scores (part of "Full (BioCG)")
improved results over using direct log probabilities from the generator ("Log Prob BioCG," 87.73%
AUC).

Conclusion

BioCG redefines biochemical interaction prediction as a constrained sequence generation task. By
representing target entities as unique discrete sequences via I-RVQ and using a trie-guided constrained
decoding mechanism, BioCG ensures valid outputs and focuses learning. An information-weighted
training objective further boosts efficiency. Empirical results show BioCG’s superiority across diverse
tasks like DTI, DDI, and Enzyme-Reaction Prediction, especially in cold-start settings (e.g., a 14.3%
AUC rise on BioSNAP DTI for unseen proteins). This highlights the benefit of generating valid
partners from a known biochemical space, offering a robust, data-efficient alternative to discriminative
models, particularly for novel entities.

Limitations BioCG, despite its advantages, has specific limitations. Firstly, a fundamental con-
straint is the requirement that one side of the interacting pair (the target entity) must be drawn from
a pre-defined, closed set. This means our model is not directly applicable to scenarios where both
interacting entities are novel, such as predicting interactions between two entirely new drugs. Fur-
thermore, BioCG is designed for binary interaction prediction. Extending the framework to generate
richer, quantitative outputs, such as binding affinity or the 3D structure of the binding complex,
remains an important direction for future research. Secondly, the optimal performance of BioCG,
as demonstrated in our ablation studies, is achieved when utilizing pre-trained embeddings. While
the framework can operate with encoders trained from scratch or by using raw sequences for target
representation, its effectiveness may be reduced in scientific domains where high-quality, relevant
pre-trained models are not readily available.

Future Work Future research will focus on extending BioCG’s capabilities and scope. One key
direction is the exploration of alternative discretization techniques for target entities, beyond I-RVQ,
and a thorough investigation of how these different methods affect the model’s predictive performance
and representational efficiency. Another important avenue is to extend the BioCG framework to other
sub-fields within biochemical research and to assess its applicability and potential benefits in entirely
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different scientific disciplines, such as physics or materials science. Furthermore, we aim to adapt and
expand the framework to accommodate more complex interaction types, for example, by enabling the
prediction of interactions involving multiple entities simultaneously.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the problem, introduce BioCG as
a novel framework, outline its key technical components (constrained generation, I-RVQ,
trie-guided decoding), highlight its advantages (data efficiency, cold-start performance),
and summarize the main experimental results. These claims are supported by the results
presented in Section 5 and the discussion of limitations in Section 6.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The paper includes a dedicated subsection titled "Limitations" within the
conclusion (Section 6), where it discusses challenges related to the requirement for a closed
set of target entities, the offline nature of I-RVQ/trie construction for dynamic/large sets,
potential trie memory scaling, and dependence on pre-trained encoder quality.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The paper does not present formal theoretical results or proofs; its contributions
are primarily empirical and methodological.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Section 4 describes the datasets and experimental splits. Section 4.3 and
Appendix B provide detailed information about the model architecture, I-RVQ configuration,
training procedures, and hyperparameters. GitHub link is provided.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The datasets used (BioSNAP, CARE) are publicly available and cited. The
paper states that the complete implementation of BioCG is publicly available at the provided
GitHub URL, which is intended to include instructions for reproducing results.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Section 4 details datasets and data splits. Section 4.3 and Appendix B cover
model architecture, training, optimizer, and hyperparameter selection.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

14



Answer: [Yes]
Justification: The paper assesses statistical significance for performance comparisons using
the Two-Proportion Z-Test for proportion-based metrics and DeLong’s test for AUC com-
parisons (with α = 0.05), as described in Section 4.4. Statistically significant improvements
are indicated in the results tables and discussion.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Section 4.3 specifies the type of GPU used (L40 GPU with 64GB memory) and
the approximate training time required for the main model (∼6 hours) and the meta-model
(∼5 minutes).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The authors have reviewed the NeurIPS Code of Ethics and believe that the
research presented in the paper conforms to its guidelines, without introducing significant
ethical concerns or problems.

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: The work focuses on improving in-silico methods for drug discovery and bio-
chemical research. The primary societal impacts are anticipated to be positive advancements
in these scientific areas. The authors assess that this specific research does not have direct,
significant foreseeable negative societal impacts requiring detailed discussion beyond the
technical limitations.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper’s core contribution is a model for biochemical interaction prediction
using publicly available biological data. The nature of the model and data does not pose a
high or direct risk for broad societal misuse in the manner of general-purpose generative
models or sensitive personal datasets.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The creators of all existing assets used, including datasets (BioSNAP, Drug-
Bank, CARE), pre-trained models (ESM, MolFormer, RXNFP), and libraries, are properly
credited through citations. The authors confirm that the licenses and terms of use for these
assets are understood and respected.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
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Justification: The paper introduces the BioCG model and its implementation. The complete
implementation is stated to be publicly available at a specified GitHub URL. The paper itself
(Sections 3, 4.3, and Appendix B) serves as primary documentation.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The research presented in the paper does not involve crowdsourcing or research
with human subjects.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The research presented in the paper does not involve human subjects; therefore,
IRB approval or equivalent review is not applicable.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: General-purpose Large Language Models (LLMs) are not used as core compo-
nents of the proposed BioCG methodology. Domain-specific pre-trained biological sequence
encoders (like ESM, MolFormer) are utilized, which is a standard and distinct practice in
the field. A general LLM (GPT-3) is included only as a baseline for comparison in one of
the tasks, not as part of BioCG itself.
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A Additional Experiments and Analyses

A.1 Impact of Encoder Scale on Performance

To further clarify the relationship between encoder quality and model performance, we conducted an
additional ablation study using ESM2 models of varying sizes on the BioSNAP unseen protein split.
The results, presented in Table 5, demonstrate a clear, positive correlation: BioCG’s performance
robustly scales with the quality of the feature encoder. Notably, the architectural advantage of
BioCG is so significant that even when trained from scratch (see Table 4), it surpasses the previous
fully-equipped SOTA. This analysis confirms that while better encoders provide better features, a
substantial performance lift comes from BioCG’s novel constrained generative formulation.

Table 5: Performance (AUC) on the BioSNAP unseen protein split with ESM2 encoders of varying
sizes.

Encoder Parameters AUC (unseen protein)
ESM2 (used in paper) 650M 89.31%
ESM2 150M 87.14%
ESM2 35M 80.92%
ESM2 8M 74.33%
Top-DTI (Previous SOTA) N/A 75.01%

A.2 Quantitative Failure Case Analysis

To better understand the model’s failure modes, we performed an analysis of the token index at
which the first prediction error occurs during the generation of an incorrect I-RVQ sequence. In the
RVQ structure, earlier tokens correspond to coarse-grained clusters representing broad biochemical
properties, while later tokens make fine-grained distinctions between highly similar entities. Our
analysis reveals that the majority of errors occur late in the sequence:

• First Quarter of sequence: 12% of errors

• Second Quarter of sequence: 18% of errors

• Third Quarter of sequence: 29% of errors

• Final Quarter of sequence: 41% of errors

This distribution strongly suggests that BioCG correctly identifies the general biochemical "neighbor-
hood" of the target and typically only fails at the final, most difficult step of distinguishing between
very closely related entities. This indicates the model is making meaningful "close misses" rather
than random errors.

A.3 Conceptual Comparison with Contrastive Learning

While contrastive learning has proven effective for many representation learning tasks, its application
to interaction prediction has inherent challenges that BioCG’s generative framework is designed to
overcome. Contrastive learning aims to learn a general similarity metric by pulling positive pairs
closer and pushing negative pairs apart in an embedding space. However, it can struggle with "hard
negatives"—entities that are structurally or biochemically very similar to a true interacting partner
but do not actually interact. The model may incorrectly learn to place these entities close together,
leading to false positives.

BioCG avoids this pitfall by reframing the problem. Instead of learning a global similarity score,
it learns a sequential decision process. The trie-guided training forces the model to make explicit
choices between valid, and often highly similar, candidates at each step of the generation. The
information-weighted loss further sharpens this focus on the most ambiguous and difficult decision
points (i.e., where the branching factor is high). This approach directly trains the model to learn the
fine-grained, discriminative features necessary to distinguish between "close-miss" candidates, a key
reason for its strong performance, especially in cold-start scenarios.
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Figure 3: Conceptual illustration comparing a contrastive learning approach with BioCG’s generative
approach. (Left) Contrastive learning may cluster a "hard negative" close to the positive target in the
embedding space. (Right) BioCG learns a decision path to distinguish the correct target from other
valid but incorrect options within the trie.

A.4 Quantitative Analysis of Constrained Decoding Space

We analyze the structural properties of our trie-based generation space. Active Sequence Length: For
a generation sequence, active positions are those with multiple valid next tokens requiring prediction.
The active sequence length is:

Lactive =
1

|T |
∑
t∈T

|{k : BFk(t) > 1}| (1)

where BFk(t) is the branching factor at position k for sequence t. Mean Branching Factor (Active
Tokens Only): The overall branching complexity for active positions is:

B̄F =
1

|T |
∑
t∈T

1

|{k : BFk(t) > 1}|
∑

k:BFk(t)>1

Bk(t) (2)

where the sum is taken only over positions with multiple valid choices.

Figure 4: Constrained generation space structure analysis: Distribution of active sequence lengths
for molecules and proteins (left), and mean branching factors for molecules and proteins (right).
Active sequence length represents the number of positions requiring actual prediction decisions, while
branching factor indicates the number of valid token choices at each active position.

Each figure below shows the distribution of active sequence lengths (number of positions requiring
actual prediction decisions) and branching factors (number of valid token choices at each active
position)

Figure 5: Active sequence lengths and branching factors for BioSNAP dataset with raw representa-
tions.
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Figure 6: Active sequence lengths and branching factors for DrugBank dataset with raw representa-
tions.

Figure 7: Active sequence lengths and branching factors for DrugBank dataset with quantized
representations.

B Hyperparameter Selection

Model hyperparameters were selected using a greedy search approach. This process involved
iteratively tuning individual hyperparameters based on their performance on the validation set, aiming
to maximize the validation AUC metric. The chosen values for the main model, meta-model, and
training process are detailed below.

B.1 Main Model Hyperparameters

Model hyperparameters were selected using a greedy search approach. This process involved
iteratively tuning individual hyperparameters based on their performance on the validation set,
aiming to maximize the validation AUC metric. The chosen values for the main model, meta-
model, and training process are detailed below. In addition to the parameters listed in the tables, the
main Transformer model utilized a hidden dimension of 512. The encoder outputs were processed
using global average pooling. The I-RVQ module employed the standard k-means algorithm from
scikit-learn [15] with 15 clusters. Both the main model and the meta-model were trained using the
AdamW optimizer. The main model training ran for up to 25,000 steps, with early stopping based on
performance on the validation AUC. The meta-model was trained similarly, with its own validation
criteria (details in Table 8). Training was performed on an L40 GPU with 64GB of memory. The
main model training required approximately 6 hours, and the meta-model training took around 5
minutes.

Table 6: Main Model Hyperparameters
Parameter Selected Value Search
Number of Layers (Decoder) 8 2,4,6,8,12
Number of Attention Heads (Decoder) 8 2,4,8,16
Feedforward Dimension (Decoder) 2048 4 * Hidden Size
Dropout 0.2 0,0.1,0.2,0.3,0.5
Bottleneck Dimension 128 -1,64,128,256,512
Pooling True True,False
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B.2 Main Model Training Hyperparameters

The training process for the main generative model used these hyperparameters, selected based on
validation performance:

Table 7: Main Model Training Hyperparameters
Parameter Selected Value Search/Notes
Learning Rate 1e-4 1e-3,1e-4,1e-5
LR Scheduler Constant Constant,Linear
Batch Size 64 16,64,256,1024

B.3 Meta-Model Hyperparameters

The discriminative meta-model, used for calibrating generation statistics into interaction scores, was
configured with the following hyperparameters:

Table 8: Meta-Model Hyperparameters
Parameter Selected Value Search/Notes
Number of Layers 1 1,2,3,4,5
Hidden Dimensions 128 32,64,128,256
Number of Attention Heads 4 2,4,8
Learning Rate 1e-4 1e-3,1e-4,1e-5
LR Scheduler Constant Constant,Linear
Batch Size 64 16,64,256,1024
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