
Published in Transactions on Machine Learning Research (09/2024)

MaskMA: Towards Zero-Shot Multi-Agent Decision Making
with Mask-Based Collaborative Learning

Jie Liu∗1,3, Yinmin Zhang∗2,3, Chuming Li2,3, Zhiyuan You1, Zhanhui Zhou3, Chao Yang3, Yaodong Yang†4,
Yu Liu5, Wanli Ouyang1,3
∗ Equal contribution, † Corresponding author. Contact: jieliu@link.cuhk.edu.hk, yaodong.yang@pku.edu.cn
1 Multimedia Laboratory, The Chinese University of Hong Kong.
2 The University of Sydney.
3 Shanghai Artificial Intelligence Laboratory.
4 Institute for AI, Peking University.
5 SenseTime Research.

Reviewed on OpenReview: https://openreview.net/ forum?id=Susy8EAff9

Abstract

Building a single generalist agent with strong zero-shot capability has recently sparked significant
advancements. However, extending this capability to multi-agent decision making scenarios presents
challenges. Most current works struggle with zero-shot transfer, due to two challenges particular to
the multi-agent settings: (a) a mismatch between centralized training and decentralized execution;
and (b) difficulties in creating generalizable representations across diverse tasks due to varying agent
numbers and action spaces. To overcome these challenges, we propose a Mask-Based collaborative
learning framework for Multi-Agent decision making (MaskMA). Firstly, we randomly mask part
of the units and collaboratively learn the policies of unmasked units to handle the mismatch. In
addition, MaskMA integrates a generalizable action representation by dividing the action space into
intrinsic actions solely related to the unit itself and interactive actions involving interactions with
other units. This flexibility allows MaskMA to tackle tasks with varying agent numbers and thus
different action spaces. Extensive experiments in SMAC reveal MaskMA, with a single model trained
on 11 training maps, can achieve an impressive 77.8% average zero-shot win rate on 60 unseen test
maps by decentralized execution, while also performing effectively on other types of downstream
tasks (e.g., varied policies collaboration, ally malfunction, and ad hoc team play).

1 Introduction

The powerful transformer-based (Vaswani et al., 2017) generalist models (Ouyang et al., 2022; Touvron et al., 2023;
Brown et al., 2020; Ramesh et al., 2022) have brought artificial intelligence techniques to the daily life of people.
The reinforcement learning community has also witnessed a growing amount of successes in transformer-based
models (Chen et al., 2021; Carroll et al., 2022; Liu et al., 2022; Janner et al., 2022; Meng et al., 2023). However, most
of these existing generalist models either fail to complete unseen tasks effectively or fail to incorporate the multi-agent
reality of decision-making. A natural follow-up question is: how can one build a generalist model for multi-agent
decision-making that is capable of zero-shot transfer to new tasks (e.g., different maps and varying numbers of agents
in SMAC (Samvelyan et al., 2019)).

Compared to single-agent scenarios, directly utilizing transformers for centralized training in multi-agent settings
encounters two primary challenges. (a) A mismatch between centralized training and decentralized execution. Multi-
agent decision-making typically follows centralized training with a decentralized execution (Gronauer & Diepold,
2022) approach. Most existing methods (Wen et al., 2022b; Tseng et al., 2022b) treat multi-agent decision-making
as a sequence modeling problem and directly employ transformer architectures. However, the centralized training
phase of transformers utilizing all units as inputs mismatches with the decentralized execution phase where each
agent’s perception is limited to only nearby units. This mismatch significantly reduces performance. (b) Generalization

1

https://openreview.net/forum?id=Susy8EAff9

Published in Transactions on Machine Learning Research (09/2024)

3s
5z

1c
3s

5z

3s
5z

-3s
6z

5m
-6m
8m

-9m
MMM2

2c
-64

zg

co
rrid

or
6h

-8z

ba
ne

-ba
ne
2s

-1z
3z

-3s1c
2s
4z

-3s 4m1c
3s

5m
-4m 5m2s

3z

1s
4z

-1m
a4

m

3s
2z

-2s
3z

2s
3z

-1m
a2

m2m
e

2s
3z

-1m
a3

m1m
e

1c
3s

1z
-1m

a4
m

1s
4z

-2m
a3

m

1c
3s

1z
-2s

3z

2s
3z

-1h
4z

g

3s
2z

-2h
3z

g

1c
4z

-2s
3z

2m
a3

m-2m
a2

m1m
e

2s
3z

-1b
1h

3z
g

1s
4z

-5z

1c
1s

3z
-1c

4z 6m

1s
3z

-5b
5z

g
8z

-6h2s
5z

1c
3s

1z
-1b

1h
8z

g

1c
3s

1z
-1h

9z
g

2c
1s

2z
-1h

9z
g

3m
a6

m1m
e-3

h2
zg

3s
2z

-1b
1h

8z
g

5m
a4

m1m
e-1

b3
h1

zg

4m
a5

m1m
e-5

zg

1s
5z

-4m
a6

m

4m
a7

m-2s
3z

2m
a9

m-3s
2z

5s
2z

-2m
a8

m

2s
5z

-9m
1m

e

1c
3s

-3h
10

zg

3s
7z

-5m
a2

m3m
e

1c
3s

6z

2c
2s

6z
-1c

3s
6z

1c
2s

7z

1c
4s

5z
-5m

a3
m2m

e

10
s1

z-1
b2

h7
zg

10
m-11

m

1b
10

zg

2b
10

zg

1c
-32

zg

32
zg

-1c

1b
20

zg

2b
20

zg

3b
20

zg

16
z-6

h2
4z

g

5b
20

zg

64
zg

-2c

1c
8z

-64
zg

1c
8z

-2b
64

zg

1c
8z

-5b
64

zg

Map Name

0

25

50

75

100

W
in

 R
at

e

Training Maps Testing Maps

MaskMA
MADT

Figure 1: Win rate on training and testing maps. The blue line separates the 11 training maps on the left from the 60 testing maps
on the right, where the performance on the testing maps is the zero-shot performance. The orange line demonstrates the substantial
performance advantage of MaskMA over MADT (Multi-Agent Decision Transformer (Meng et al., 2023)).

problems caused by varying numbers of agents and actions. Downstream tasks have different numbers of agents,
resulting in varying action spaces. Meng et al. (2023) takes a large action space and mutes the unavailable actions using
an action mask to handle the variable action spaces. However, this method suffers from poor generalization because the
same component of the action vector represents different physical meanings in tasks with different numbers of agents.

To address these challenges, we propose introduce two scalable techniques: a Mask-based Training Strategy (MTS) and
a Generalizable Action Representation (GAR). The two techniques form the basis of a new mask-based collaborative
learning framework for multi-agent decision-making, named MaskMA. To address the mismatch challenge, we
incorporate random masking into the attention matrix of the transformer, effectively reconciling the discrepancy between
centralized training and partial observations in decentralized execution, thus bolstering the model’s generalization
capabilities. To handle the generalization challenge, MaskMA integrates GAR by categorizing actions into two types:
intrinsic actions, which are solely related to the unit itself, and interactive actions, which involve interactions with other
units. GAR predicts one unit’s interactive action from its own features together with other units’ features, instead of
only relying on its own features, allowing MaskMA to generalize to diverse tasks with varying agent numbers and
action spaces.

We evaluate MaskMA’s performance using the StarCraft Multi-Agent Challenge (SMAC) benchmark. To validate the
zero-shot performance, we evaluate the win rate in a challenging setting, using only 11 maps for training and 60 unseen
maps for testing. Extensive experiments demonstrate that our model significantly outperforms the previous state-of-
the-art methods in zero-shot scenarios. We also introduce various downstream tasks to further verify the strong robust
generalization ability of MaskMA, including varied policies collaboration, ally malfunction, and ad hoc team play.
MaskMA is the first approach that achieves strong notable zero-shot capability for multi-agent decision-making (e.g.,
78% win rate in SMAC). We hope this work lays the groundwork for further advancements in multi-agent fundamental
models, with potential applications across a wide range of domains. Our main contributions are summarized as three
folds:

• We introduce a novel mask-based collaborative learning framework, MaskMA, for multi-agent decision-making. This
framework pretrains a transformer architecture with a Mask-based Training Strategy (MTS) and a Generalizable
Action Representation (GAR).

• We set up a challenging zero-shot setting for general models in multi-agent scenarios based on the SMAC, i.e.,
training on only 11 maps and testing on 60 different maps and three downstream tasks including varied policies
collaboration, ally malfunction, and ad hoc team play.

• To our best knowledge, MaskMA is the first general model for multi-agent decision-making with notable zero-shot
performance. With only 11 training maps, our MaskMA has achieved an impressive average zero-shot win rate of
77.8% on 60 unseen test maps, representing a 78% improvement relative to the baseline method.

2

Published in Transactions on Machine Learning Research (09/2024)

2 Related Work

Masked Training in Single-agent Decision Making. DT (Chen et al., 2021) casts the reinforcement learning as a
sequence modeling problem conditioned on return-to-go, using a transformer to generate optimal action. MaskDP (Liu
et al., 2022) utilizes autoencoders on state-action trajectories, learning the environment’s dynamics by masking and
reconstructing states and actions. Uni[MASK] (Carroll et al., 2022) expresses various tasks as distinct masking schemes
in sequence modeling, using a single model trained with randomly sampled maskings. In this paper, we explore the
design of sequences in multi-agent decision making and how it can be made compatible with the mask-based training
strategy.

Multi-agent Decision Making as Sequence Modeling. MADT (Meng et al., 2023) introduces Decision Trans-
former (Chen et al., 2021) into multi-agent reinforcement learning, significantly improving sample efficiency and
achieving strong performance in SMAC. MAT (Wen et al., 2022a) leverages an encoder-decoder architecture, incorpo-
rating the multi-agent advantage decomposition theorem to reduce the joint policy search problem into a sequential
decision-making process. Tseng et al. (2022a) utilize the Transformer architecture and propose a method that identifies
and recombines optimal behaviors through a teacher policy. ODIS (Zhang et al., 2023) trains a state encoder and
an action decoder to extract task-invariant coordination skills from offline multi-task data. In contrast, our proposed
MaskMA adapts the Transformer architecture to multi-agent decision making by designing a sequence of inputs and
outputs for a generalizable action representation. This approach offers broad generalizability across varying actions and
various downstream tasks.

Action Representation. Recent works have explored semantic action in decision-making, especially in multi-agent
environments. ASN (Wang et al., 2020) focuses on modeling the effects of actions by encoding the semantics of actions
to understand the consequences of agent actions and improve coordination among agents. UPDeT (Hu et al., 2021)
employs a policy decoupling mechanism that separates the learning of local policies for individual agents from the
coordination among agents using transformers. Yang et al. (2023) proposes a graph network to handle variable action
spaces, applying reinforcement learning to improve finite element (Brenner, 2008) methods. Our MaskMA emphasizes
sequence modeling, masking strategies, and generalizable action representation, which is similar to Yang et al. (2023),
to train a generalist model in the multi-agent field. This model can be applied to unseen maps and a wide range of
downstream tasks, involving varied policy collaboration, ally malfunction, and ad hoc team play.

3 Method

In this section, we introduce our proposed mask-based collaborative learning framework. We start by providing a
formulation of the multi-agent decision-making problem. Then, we introduce the Mask-based Training Strategy (MTS)
and the Generalizable Action Representation (GAR).

3.1 Formulation

3.1.1 Multi-Agent Preliminaries

In multi-agent scenarios, states are only partially observable, i.e., each agent has only limited sight and can only observe
part of other units (e.g., enemies). Therefore, a cooperative multi-agent task is generally defined as a decentralized
partially observable Markov decision process (Oliehoek & Amato, 2015), denoted as G =< S, U, A, P, O, r, γ >.
Here S is the global state space, and U ≜ {ui}N

i=1 is the set of N units, where the first M units are controllable
and the rest N − M units are uncontrollable, often subsumed as part of the environment. A =

∏M
i=1 Ai is the

action space for controllable units. At time step t, each agent ui ∈ {ui}M
i=1 selects an action ai ∈ Ai, forming a

joint action a ∈ A. The joint action a at state s ∈ S triggers a transition of G, subject to the transition function
P (s′ | s, a) : S × A × S → [0, 1]. Meanwhile, a shared reward function r (s, a) : S × A → R is employed, with
γ ∈ [0, 1] denoting the discount factor.

The global state at the t-th time step is defined as st = (st
1, st

2, ..., st
N), where each st

i exclusively represents the state of
unit ui, and does not include any information about other units. The local observation ot

i for each unit ui is composed
of the states of all units visible to it at the t-th step, expressed as ot

i = {st
i | i ∈ pt

i}, where pt
i indicates the indexes of

3

Published in Transactions on Machine Learning Research (09/2024)

Module

Input

Action

Hidden Unit

Network Flow

Concatenation

Training

Varied Policies
Collaboration

Teammate Malfunction
Ad hoc Team Play

Zero-shot

TestingMaskMA

… … Mask-based Training Strategy

ℎ𝑖,𝑁
𝑡

ℎ𝑖,𝑀+1
𝑡

ℎ𝑖,𝑀
𝑡

Generalizable Action Representation

…

ℎ1
𝑡

…
ℎ𝑖,1
𝑡

…

…

FC

So
ftm

ax

𝑎𝑖
𝑡

FC

ℎ𝑖
𝑡

ℎ𝑀
𝑡

ℎ𝑀+1
𝑡

ℎ𝑁
𝑡

Transformer

GAR

Controllable
Entity

Uncontrollable
Entity

ℎ1
𝑡 ℎ𝑁

𝑡ℎ𝑀+1
𝑡ℎ𝑀

𝑡

𝑎1
𝑡 𝑎𝑀

𝑡

… … …… 𝑠𝑀
𝑡 𝑠𝑀+1

𝑡𝑠1
𝑡 𝑠𝑁

𝑡

Figure 2: MaskMA employs the transformer architecture combined with generalizable action representation and then trained through
a mask-based training strategy. It effectively generalizes skills and knowledge from training maps into various downstream tasks,
including unseen maps, varied policies collaboration, ally malfunction, and ad hoc team play.

units within ui’s observation range. Actions are categorized into two types: intrinsic actions, which are solely related to
the unit itself, and interactive actions, which involve interactions with other units.

3.1.2 Multi-Task Imitation Learning

Since agents have to learn from a broad range of tasks before they can show good transfer to new tasks, we formulate the
problem as multi-task imitation learning. Formally, we assume access to a dataset of passively logged expert trajectories
D = {τi = {(st, at)}T

t=1} from some training tasks: T ∼ p(T), where p(T) is the task distribution. After imitating
the expert demonstrations through supervised learning from D, we then test the agents’ performance on new tasks
drawn from p(T). However, vanilla-supervised learning fails to produce good transfer in the multi-agent settings due to
the mismatch between centralized pretraining and decentralized execution as well as the fact that the varying number of
agents may lead to completely new observation and action space that agents have never seen before. Then, we present
our strategy to solve these issues.

3.2 Mask-Based Training Strategy

To handle the mismatch between centralized training and decentralized execution, we propose to randomly mask some
parts of the units in the environment and collaboratively learn the execution policies of other unmasked units.

We utilize a standard causal transformer with only encoder layers as our model backbone, with the context length equal
to L. At the t′-th timestep, the input comprises the recent L global states of N agents, expressed as (st′−L+1, · · · , st′),
resulting in total L × N tokens, including all agents in the entire sequence, both controllable and uncontrollable. Then
we harness the capabilities of the attention matrix to realize mask-based collaborative learning. The shape of these
mask matrices is (LN × LN), corresponding to L × N input tokens. During the training phase, we meticulously
craft the attention matrix m1 to exhibit a causal structure along the timestep dimension, while maintaining a non-
causal configuration within each discrete timestep. This design is illustrated in the left part of Figure 3. Based on a
predetermined mask ratio, we then generate the final attention matrix m2 for training (as depicted in the right part of
Figure 3) through a process of random sampling, wherein specific elements are set to zero.

For evaluation, we can efficiently shift between centralized and decentralized execution by adjusting the attention mask
matrix. For decentralized execution, we modify the attention matrix to ensure that each agent focuses solely on the
surrounding agents during the self-attention process. In contrast, for centralized execution, we simply set the attention
matrix to be equivalent to m1.

3.3 Generalizable Action Representation

As agents involve interactive actions among other units in most multi-agent tasks (e.g., the healing allies and attacking
enemies in SMAC), their action space grows with the number of units. To address the challenge posed by variable
numbers of agents, we introduce the concept of Generalizable Action Representation (GAR), which is similar to Yang
et al. (2023). Figure 2 illustrates the process through which the final action at

i of a specific agent is determined by GAR.

4

Published in Transactions on Machine Learning Research (09/2024)

𝑁 = 4

𝐿 = 3

Random
Mask

Figure 3: Visualization of the attention matrix in MTS. Left: The attention matrix displays a causal structure along the timestep
dimension, complemented by a non-causal configuration within each discrete timestep. Right: The final attention matrix used for
training is obtained by randomly masking elements of the left attention matrix.

Consider an interaction between the executor unit ui and the receiver unit uj , we define the embedding of this interaction
as ht

i,j = ht
i ⊕ ht

j , where ht
i and ht

j are the output embedding of ui and uj from the transformer encoder respectively,

and ⊕ denotes the concatenation operation. For interactive actions, we compute the logits as
{

FC(ht
i,j)

}N

j=1, where
the fully connected layer FC has an output shape of one. In contrast, the logits for intrinsic actions are obtained using
FC(ht

i), with the output shape of FC corresponding to the number of intrinsic actions. These logits, encompassing
both interactive and intrinsic actions, are then combined and input into a softmax function to determine the final action.
Please refer to the pseudocode in the Appendix A.4 for the practical implementation.

3.4 Loss Function

With Mask-Based Training Strategy (MTS) and Generalizable Action Representation (GAR), our objective is to
minimize multi-agent supervised learning loss. This objective is calculated using the cross-entropy loss between
predicted actions and the ground truth actions. Our loss function for an action sequence is defined as:

LCE = − 1
L

1
M

L∑
i=1

M∑
j=1

CE(Ai
j , Pi

j),

where CE(a, p) is the cross-entropy between the ground truth action and the predicted action probability distribution.
Here, M is the number of controllable agents, and L represents the context length. Note that for all agents in an entire
input L × N , we only consider the loss for the M controllable agents.

4 Experiments

In this section, we design experiments to evaluate the following features of MaskMA. (1) Zero-shot Ability. We conduct
experiments on SMAC using only 11 maps for training and up to 60 maps for testing, assessing the model’s ability
to generalize to unseen scenarios. In SMAC tasks, agents must adeptly execute a set of skills such as alternating fire,
kiting, focus fire, and positioning to secure victory. These attributes make zero-shot transfer profoundly challenging.
(2) Effectiveness of MTS and GAR for different multi-agent tasks. We conduct ablation studies to figure out (3)
Generalization of MaskMA to downstream tasks. We evaluate the model’s performance on various downstream tasks,
such as varied policies collaboration, ally malfunction, and ad hoc team play. This helps us understand how the learned
skills and strategies can be effectively adapted to different situations.

Setup. In SMAC (Samvelyan et al., 2019), players control ally units in StarCraft using cooperative micro-tricks to
defeat enemy units with built-in rules, and the state of unit si includes unit type, position, health, shield, and so on.
Our approach differs from existing methods that only consider grouped scenarios, such as Easy, Hard, and Super-Hard
maps. Instead, we extend the multi-agent decision-making tasks by combining different units with varying numbers.
We include three races: Protoss (colossus, zealot, stalker), Terran (marauder, marine, and medivac), and Zerg (baneling,
zergling, and hydralisk). Note that since StarCraft II does not allow units from different races to be on the same team,
we have designed our experiments within this constraint. Firstly, we collect expert trajectories as offline datasets from

5

Published in Transactions on Machine Learning Research (09/2024)

Table 1: Win rate on training maps. Offline datasets consist of 10k or 50k expert trajectories per map collected by specific expert
policies. With the mask-based training strategy, MaskMA consistently exhibits high performance in both Centralized Execution and
Decentralized Execution. Its generalizable action representation enables seamless adaptation and convergence on maps with diverse
characteristics. In contrast, MADT struggles with different action spaces, achieving a win rate of only 51.78% even after extensive
training.

Map Name # Episode Return Distribution
Centralized Execution Decentralized Execution

MaskMA (Ours) MADT MaskMA (Ours)

3s_vs_5z 50k 19.40 ± 1.89 85.94 ± 3.49 73.44 ± 3.49 82.81 ± 7.81
3s5z 10k 18.83 ± 2.48 98.44 ± 1.56 15.62 ± 6.99 99.22 ± 1.35

1c3s5z 10k 19.51 ± 1.40 94.53 ± 4.06 54.69 ± 8.41 95.31 ± 1.56
3s5z_vs_3s6z 10k 19.69 ±1.27 85.94 ± 6.44 14.84 ± 9.97 85.16 ± 5.58

5m_vs_6m 10k 18.37 ± 3.69 86.72 ± 1.35 85.94 ± 5.18 84.38 ± 4.94
8m_vs_9m 10k 19.12 ± 2.57 88.28 ± 6.00 87.50 ± 2.21 86.72 ± 4.06

MMM2 50k 18.68 ± 3.42 92.97 ± 2.59 62.50 ± 11.69 86.72 ± 4.62
2c_vs_64zg 10k 19.87 ± 0.48 99.22 ± 1.35 34.38 ± 9.11 92.97 ± 2.59

corridor 10k 19.44 ± 1.61 96.88 ± 3.83 21.88 ± 11.48 94.53 ± 2.59
6h_vs_8z 10k 18.72 ± 2.33 75.00 ± 5.85 27.34 ± 6.77 76.56 ± 6.44

bane_vs_bane 10k 19.61 ± 1.26 96.09 ± 2.59 91.41 ± 4.62 98.44 ± 1.56

Average ∼ 19.20 ± 2.04 90.91 ± 3.56 51.78 ± 7.27 89.35 ± 3.92

the 11 training maps by utilizing the expert policies trained with a strong RL method named ACE (Li et al., 2022).
This yields 11 offline datasets, most of which contain 10k episodes with an average return exceeding 18. Then, we
employ different methods to pretrain on the offline dataset and evaluate their zero-shot capabilities on 60 generated test
maps. As shown in Table 1, we run 32 test episodes to obtain the win rate and report the average win rate as well as the
standard deviation across 4 seeds.

Baseline We take the MADT (Meng et al., 2023) as our baseline for comparison which utilizes a causal transformer
to consider the history of local observation and action for an agent. MADT transforms multi-agent pretraining data into
single-agent pretraining data and trains each agent’s policy independently, therefore adopting a decentralized training
and decentralized execution setting. Specifically, the input to each agent’s policy is its own observation. Such an
independent learning pipeline leads to an increase in computational complexity of O

(
N3)

w.r.t. agent numbers N . Our
experiments of MaskMA and baseline MADT utilize the same hyperparameters which are detailed in the Appendix.

4.1 Performance on Training Maps

Performance on the training domain is the most basic ability of one model, thus we first assess MaskMA and the
baseline method on datasets including 11 training maps. As shown in Table 1, MaskMA achieves a 90.91% average
win rate in 11 maps for Centralized Execution setting, while MADT can not be applied in this setting. Moreover,
MaskMA surpasses MADT by a significant margin on Decentralized Execution setting (89.35% v.s. 51.78%). In some
challenging maps like 3s5z_vs_3s6z, the advantage of our MaskMA is even much larger (85.16% v.s. 14.84%). One key
observation is that MaskMA consistently performs well in both Centralized Training & Centralized Execution (CTCE)
and Centralized Training & Decentralized Execution (CTDE) settings, highlighting its flexibility and adaptability in
various execution paradigms. Figure 5a represents the curve of the average training win rate of MaskMA and the
baseline method in 11 training maps on the Decentralized Execution setting. MaskMA significantly outperforms the
baseline and achieves more than 80% win rate in most maps within 0.5M training steps, showing the robustness and
efficiency of MaskMA.

4.2 MaskMA as Excellent Zero-shot Learners

Zero-shot generalization ability is the core motivation of our design, so we also evaluate the model’s ability to generalize
to extensive unseen scenarios without any retraining. Specifically, we evaluate our MaskMA and MADT on the 60
unseen testing maps. Table 2 shows that MaskMA outperforms MADT in zero-shot scenarios by a large margin in

6

Published in Transactions on Machine Learning Research (09/2024)

Decentralized Execution setting (77.75% v.s. 43.72%), successfully transferring knowledge to new tasks without
requiring any additional fine-tuning. In Centralized Execution setting, the performance of our MaskMA is even
better with 79.71% win rate. These indicate that MaskMA’s mask-based training strategy and generalizable action
representation effectively address the challenges of partial observation, varying agent numbers, and different action
spaces in multi-agent environments.

Furthermore, MaskMA consistently performs well across varying levels of environment complexity, as demonstrated by
the win rates in different entity groups. In contrast, MADT’s performance is obviously dropped in high-complexity
environments (i.e., # Entity > 20). This highlights the ability of MaskMA to generalize and adapt to diverse scenarios,
which is a key feature of a robust multi-agent decision, making it a versatile and reliable choice for multi-agent tasks.

Table 2: Zero-shot win rate on 60 unseen test maps after training only on 11 training maps. “# Entity” denotes the number of
entities present in each individual map, while “# Map” represents the number of maps fulfilling the entity condition. Our MaskMA
outperforms MADT by a large margin in the zero-shot setting.

Entity # Map
Centralized Execution Decentralized Execution

MaskMA(Ours) MADT MaskMA(Ours)

≤ 10 23 76.26 ± 3.30 43.55 ± 3.94 74.38 ± 3.57
10 ∼ 20 22 83.81 ± 2.85 46.77 ± 3.67 80.08 ± 2.98

> 20 15 79.01 ± 5.02 39.53 ± 3.61 79.48 ± 3.84

All 60 79.71 ± 3.56 43.72 ± 3.76 77.75 ± 3.42

4.3 Performance on Downstream Tasks

Evaluating MaskMA’s generalization ability to downstream tasks can help us understand whether the learned skills and
strategies could be effectively adapted to different situations. In this section, we provide various downstream tasks to
assess MaskMA’s robust generalization, including varied policies of collaboration, ally malfunction, and ad hoc team
play.

Varied Policies Collaboration. In this task, some agents are controlled by our trained policy (i.e., controllable
agents), while others are controlled by an external baseline policy (i.e., uncontrollable agents). This task requires our
trained policy to have excellent collaborative ability to cooperate with external policies. We conducted simulations
in the 8m_vs_9m map, where our team controlled 8 marines to defeat 9 enemy marines. The uncontrollable agents
are controlled by an external baseline policy with an average win rate of 41.41%. As shown in Table 3, MaskMA
exhibits seamless collaboration with uncontrollable agents under different scenarios. MaskMA dynamically adapts to
the strategies of other players and effectively coordinates actions. Specially, with only 50% controllable agents, the win
rate has been improved significantly by nearly two times (79.69% v.s. 41.41%).

Table 3: Win rate on varied policies collaboration task with 8m_vs_9m map. The uncontrollable agents are controlled by a
policy with 41.41% average win rate (i.e., the win rate with 0% controllable agents). MaskMA demonstrates excellent collaborative
performance in diverse scenarios with varying proportion of uncontrollable agents.

Proportion of Our Controllable Agents 0% 25% 50% 75% 100%

Win Rate 41.41 ± 6.00 62.50 ± 7.33 79.69 ± 5.18 89.84 ± 2.59 86.72 ± 4.06

Ally Malfunction. In this task, one ally marine may become disabled or die due to external factors during execution.
The time of ally marine malfunction is a changeable parameter. MaskMA is requested to handle such situations
gracefully by redistributing tasks among the remaining agents while maintaining overall performance. Simulations
are conducted in the 8m_vs_9m map, where we control 8 marines against 9 enemy marines. The average win rate
without ally malfunction is 86.72%. As given in Table 4, MaskMA exhibits robustness and adaptability in the face of
unexpected ally malfunction.

7

Published in Transactions on Machine Learning Research (09/2024)

Table 4: Win rate on ally malfunction task with 8m_vs_9m map. “Marine Malfunction Time" indicates the time of a marine
malfunction during an episode. For instance, 0.2 means that one ally marine begins to exhibit a stationary behavior at 1/5th of the
episode. “None” signifies the original 8m_vs_9m configuration without any marine malfunctions.

Ally Marine Malfunction Time None 0.2 0.4 0.6 0.8

Win Rate 86.72 ± 4.06 1.56 ± 1.56 37.5 ± 6.99 71.09 ± 6.77 86.72 ± 2.59

Ad Hoc Team Play. In this task, agents need to quickly form a team with one new ally agent during the execution of
the task. The challenge lies in the ability of the model to incorporate this new agent into the team and allow them to
contribute effectively without disrupting the ongoing strategy. Simulations are conducted in the 7m_vs_9m map (i.e.,
our 7 marines to defeat 9 enemy marines), and the average win rate without extra ally marine is 0%. As shown in Table 5,
MaskMA demonstrates excellent performance in ad hoc team play scenarios, adjusting its strategy to accommodate new
agents and ensuring a cohesive team performance. We provide visualizations of MaskMA’s behavior on ad hoc team
play in Figure 4. More results are presented in the Appendix.

Table 5: Win rate on ad hoc team play task with 7m_vs_9m map. “Marine Inclusion Time" indicates the time of adding an extra
ally marine during an episode. For example, 0.2 represents adding one ally marine at 1/5th of the episode. “None” signifies the
original 7m_vs_9m setup without any extra ally marine.

Ally Marine Inclusion Time None 0.2 0.4 0.6 0.8

Win Rate 0 ± 0 80.47 ± 7.12 78.12 ± 2.21 50.00 ± 8.84 10.94 ± 6.81

(a) (b) (c) (d)

Figure 4: Visualization of Ad Hoc Team Play on 7m_vs_9m with Marine Inclusion Time = 0.8. This experiment demonstrates that
when new Marines are added near the end of an episode, MaskMA still can quickly incorporate them into the team and enable them
to contribute effectively. (a) Initial distribution of agents’ positions. (b) Prior to the addition of the new Marine, our team is left
with only three severely wounded agents, on the brink of defeat. (c) The new agent (indicated by the red arrow) joins our team and
immediately engages the enemy. (d) With the assistance of the newly added agent, our team successfully defeats the enemy.

4.4 Ablation Study

We perform extensive ablation studies to verify the effectiveness of proposed components and hyper-parameter choices.

Generalizable Action Representation (GAR). We compare GAR module to an alternative action representation
method, i.e., aligning the maximum action length with a specific action mask for each task. As shown in Table 6,
removing GAR leads to significant performance degradation (#2 v.s. #4) on the testing maps, emphasizing its importance
in improving the model’s generalization capabilities.

Mask-based Training Strategy (MTS). The ablation results are shown in Table 6. The alternative method of MTS
is centralized training without masking, which naturally excels in the Centralized Execution setting (#3). However,
the model without MTS struggles to generalize to Decentralized Execution setting, exhibiting significant performance
degradation (#3 v.s. #4). The MTS employed in MaskMA, while posing a challenging training task, helps the model
learn permanent representations stable representations across different scenarios and observation range. Intuitively, the
random mask ratio aligns with the inference process, where the number of enemies and allies gradually increases in an
agent’s local observation due to cooperative micro-operations, e.g., positioning, kiting, and focusing fire.

8

Published in Transactions on Machine Learning Research (09/2024)

0.0 0.5 1.0 1.5 2.0
0

20

40

60

80

100

Training Iterations (M)

W
in

 R
at

e
%

MaskMA
MADT

(a)

0.0 0.5 1.0 1.5 2.0
0

20

40

60

80

100

Training Iterations (M)

W
in

 R
at

e
%

Timestep = 1
Timestep = 10
Timestep = 30

(b)

2 5 8 11
0

20

40

60

80

Map Numbers

W
in

 R
at

e
%

(c)

Figure 5: (a) Comparison of learning curve with the win rate on training maps in Decentralized Execution setting. MaskMA
consistently outperforms MADT on average win rate. (b) Ablation on timestep with the win rate on training maps in the
Decentralized Execution setting. MaskMA performs better with a longer timestep. (c) Ablation on the number of training maps
with the win rate on unseen maps in the Decentralized Execution setting. With the increasing of training maps (especially from 5 to
8), the model’s performance on various unseen maps improves, indicating better generalization ability.

Table 6: Ablation over mask-based training strategy (MTS) and generalizable action representation (GAR). The results are the
performance on training maps. The baseline is a naive transformer. Each row adds a new component to the baseline, showcasing how
each modification affects the performance.

#
Module Setting

MTS GAR Cent. Exe. Decent. Exe.

1 44.67 ± 3.35 8.03 ± 1.44
2 ✓ 39.49 ± 3.05 39.91 ± 3.97
3 ✓ 91.26 ± 4.21 41.55 ± 4.38
4 ✓ ✓ 90.91 ± 3.56 89.35 ± 3.92

Mask Ratio in MTS. We explore different types of masks for training, including a set of fixed mask ratios, local mask,
and random mask ratios chosen from [0, 1] for units at each time step. We provide mask ratio analysis in Table 7. The
results show that as the masking ratio increases, the performance on the training maps increases in the Decentralized
Execution setting while decreasing in the Centralized Execution setting. This suggests that an appropriate masking ratio
helps strike a balance between learning useful representations and maintaining adaptability to dynamic scenarios in the
agent’s local observation. In conclusion, a random mask ratio with the range of [0, 1] is a simple yet effective way to
balance the two settings, which could combine the advantages of various ratio masks. This approach allows MaskMA
to demonstrate strong performance in both centralized and decentralized settings while maintaining the adaptability and
generalization necessary for complex multi-agent tasks.

Timestep Length. We conduct experiments with different timestep length to study the access to previous states.
As shown in Figure 5b, MaskMA’s performance is better when using a longer timestep length. One hypothesis is
that the POMDP property of the SMAC environment necessitates that policies in SMAC take into account sufficient
historical information to make informed decisions. Considering the balance between performance and efficiency, we
select timestep K as 10 as our default hyper-parameter. This choice allows MaskMA to leverage enough historical
information to make well-informed decisions while maintaining a reasonable level of computational complexity.

Number of Training Maps. Figure 5c demonstrates the influences of the number of training maps. As the number of
training maps increases, the win rate on the testing maps also improves, indicating that the model is better equipped
to tackle new situations. A marked uptick in win rate is observed when the map count rises from 5 to 8, underlining
the value of training the model across varied settings. This trend in MaskMA offers exciting prospects for multi-agent
decision-making. It implies that by augmenting the count of training maps or integrating richer, more intricate training
scenarios, the model can bolster its adaptability and generalization skills.

9

Published in Transactions on Machine Learning Research (09/2024)

Table 7: Ablation study of mask ratio for training. “Local Mask” represents using the local visibility of the agent as the mask.

Setting Local Mask
Mask Ratio

0 0.2 0.5 0.8 Random [0, 1]

Centralized Execution 55.97 ± 4.67 91.26 ± 4.21 89.70 ± 3.81 88.21 ± 3.78 82.81 ± 4.83 90.91 ± 3.56

Decentralized Execution 83.59 ± 8.08 41.55 ± 4.38 58.03 ± 5.70 71.52 ± 4.23 82.03 ± 5.01 89.35 ± 3.92

Training Cost and Parameter Count. MaskMA processes the inputs of all agents concurrently, achieving a notable
degree of parallelism superior to MADT, which transforms multi-agent training data into single-agent data. Conse-
quently, MaskMA is considerably more time-efficient than MADT when trained over identical epochs. Specifically,
training 2M iterations on one A100 GPU with the same model architecture and the same 190K training data, MaskMA
needs only 31 hours, whereas MADT requires 70 hours. Also, the parameter counts for both models are nearly identical
since they share the same transformer architecture and the only difference lies in the final fully connected (FC) layer for
action output.

5 Discussion

We have introduced MaskMA, a mask-based collaborative learning framework for multi-agent decision-making, to tackle
the challenges of zero-shot generalization in the multi-agent decision-making field. MaskMA consists of a transformer
architecture, a mask-based training strategy, and a generalizable action representation. Extensive experiments on SMAC
dataset demonstrate the effectiveness of our MaskMA in terms of zero-shot performance and adaptability to various
downstream tasks, such as varied policies collaboration, ally malfunction, and ad hoc team play.

Limitations & Future Work Our current study primarily relies on expert datasets. Exploring how to utilize low-
quality demonstration datasets to develop a generalist agent with robust zero-shot capabilities presents a promising
research direction. Furthermore, extending the maskMA approach to create a single generalist agent capable of
generalizing across different types of environments, such as entirely different games, is also a promising avenue for
future research.

Acknowledgment

This work was supported by the JC STEM Lab of AI for Science and Engineering, funded by The Hong Kong Jockey
Club Charities Trust.

References

Susanne C Brenner. The mathematical theory of finite element methods. Springer, 2008.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan,
Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners. Advances in neural
information processing systems, 33:1877–1901, 2020.

Micah Carroll, Orr Paradise, Jessy Lin, Raluca Georgescu, Mingfei Sun, David Bignell, Stephanie Milani, Katja
Hofmann, Matthew Hausknecht, Anca Dragan, et al. Uni [mask]: Unified inference in sequential decision problems.
Advances in neural information processing systems, 35:35365–35378, 2022.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel, Aravind Srinivas,
and Igor Mordatch. Decision transformer: Reinforcement learning via sequence modeling. Advances in neural
information processing systems, 34:15084–15097, 2021.

DI engine Contributors. DI-engine: OpenDILab decision intelligence engine. https://github.com/opendilab/DI-engine,
2021.

10

https://github.com/opendilab/DI-engine

Published in Transactions on Machine Learning Research (09/2024)

Sven Gronauer and Klaus Diepold. Multi-agent deep reinforcement learning: a survey. Artificial Intelligence Review,
pp. 1–49, 2022.

Siyi Hu, Fengda Zhu, Xiaojun Chang, and Xiaodan Liang. Updet: Universal multi-agent rl via policy decoupling with
transformers. In International Conference on Learning Representations, 2021.

Michael Janner, Yilun Du, Joshua Tenenbaum, and Sergey Levine. Planning with diffusion for flexible behavior
synthesis. In International Conference on Machine Learning, pp. 9902–9915. PMLR, 2022.

Chuming Li, Jie Liu, Yinmin Zhang, Yuhong Wei, Yazhe Niu, Yaodong Yang, Yu Liu, and Wanli Ouyang. Ace:
Cooperative multi-agent q-learning with bidirectional action-dependency. In Proceedings of the AAAI conference
on artificial intelligence, 2022.

Fangchen Liu, Hao Liu, Aditya Grover, and Pieter Abbeel. Masked autoencoding for scalable and generalizable decision
making. Advances in Neural Information Processing Systems, 35:12608–12618, 2022.

Linghui Meng, Muning Wen, Chenyang Le, Xiyun Li, Dengpeng Xing, Weinan Zhang, Ying Wen, Haifeng Zhang,
Jun Wang, Yaodong Yang, and Bo Xu. Offline pre-trained multi-agent decision transformer. Machine Intelligence
Research, 20(2):233–248, 2023. ISSN 2731-538X. doi: 10.1007/s11633-022-1383-7. URL https://www.mi-research.
net/en/article/doi/10.1007/s11633-022-1383-7.

Frans A Oliehoek and Christopher Amato. A concise introduction to decentralized pomdps, 2015.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang, Sandhini
Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow instructions with human feedback.
Advances in Neural Information Processing Systems, 35:27730–27744, 2022.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-performance deep learning library.
Advances in neural information processing systems, 32:8026–8037, 2019.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-conditional image
generation with clip latents. arXiv preprint arXiv:2204.06125, 2022.

Mikayel Samvelyan, Tabish Rashid, Christian Schroeder de Witt, Gregory Farquhar, Nantas Nardelli, Tim GJ Rudner,
Chia-Man Hung, Philip HS Torr, Jakob Foerster, and Shimon Whiteson. The starcraft multi-agent challenge. In
Proceedings of the 18th International Conference on Autonomous Agents and MultiAgent Systems, pp. 2186–2188,
2019.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste
Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, and
Guillaume Lample. Llama: Open and efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Wei-Cheng Tseng, Tsun-Hsuan Johnson Wang, Yen-Chen Lin, and Phillip Isola. Offline multi-agent reinforcement
learning with knowledge distillation. Advances in Neural Information Processing Systems, 35:226–237, 2022a.

Wei-Cheng Tseng, Tsun-Hsuan Johnson Wang, Yen-Chen Lin, and Phillip Isola. Offline multi-agent reinforcement
learning with knowledge distillation. Advances in Neural Information Processing Systems, 35:226–237, 2022b.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. Advances in neural information processing systems, 30, 2017.

Weixun Wang, Tianpei Yang, Yong Liu, Jianye Hao, Xiaotian Hao, Yujing Hu, Yingfeng Chen, Changjie Fan, and
Yang Gao. Action semantics network: Considering the effects of actions in multiagent systems. In International
Conference on Learning Representations, 2020.

Muning Wen, Jakub Kuba, Runji Lin, Weinan Zhang, Ying Wen, Jun Wang, and Yaodong Yang. Multi-agent
reinforcement learning is a sequence modeling problem. Advances in Neural Information Processing Systems, 35:
16509–16521, 2022a.

11

https://www.mi-research.net/en/article/doi/10.1007/s11633-022-1383-7
https://www.mi-research.net/en/article/doi/10.1007/s11633-022-1383-7

Published in Transactions on Machine Learning Research (09/2024)

Muning Wen, Jakub Kuba, Runji Lin, Weinan Zhang, Ying Wen, Jun Wang, and Yaodong Yang. Multi-agent
reinforcement learning is a sequence modeling problem. Advances in Neural Information Processing Systems, 35:
16509–16521, 2022b.

Jiachen Yang, Tarik Dzanic, Brenden Petersen, Jun Kudo, Ketan Mittal, Vladimir Tomov, Jean-Sylvain Camier, Tuo
Zhao, Hongyuan Zha, Tzanio Kolev, et al. Reinforcement learning for adaptive mesh refinement. In International
Conference on Artificial Intelligence and Statistics, pp. 5997–6014. PMLR, 2023.

Fuxiang Zhang, Chengxing Jia, Yi-Chen Li, Lei Yuan, Yang Yu, and Zongzhang Zhang. Discovering generalizable
multi-agent coordination skills from multi-task offline data. In The Eleventh International Conference on Learning
Representations, 2023.

12

Published in Transactions on Machine Learning Research (09/2024)

In this Supplementary Material, we provide more elaboration on the implementation details and experiment results.
Specifically, we present the implementation details of the model training in Section A and additional results and
visualization in Section B.

A Additional Implementation Details

In this section, we provide a detailed description of the required environment, hyperparameters.

A.1 Environment.

We use the following software versions:

• CentOS 7.9, Python 3.8.5, Pytorch 2.0.0 (Paszke et al., 2019)

• StarCraft II 4.10 (Samvelyan et al., 2019), DI-engine 0.2.0 (engine Contributors, 2021)

We conduct all experiments with a single A100 GPU.

A.2 Hyperparameters

As shown in Table 8, our experiments of MaskMA and baseline MADT (Meng et al., 2023) utilize the same hyperpa-
rameters.

Table 8: Hyperparameters of MaskMA and MADT. It should be noted that both models utilize the exact same set of hyperparameters.

Hyperparameter Value

Training

Optimizer RMSProp
Learning rate 1e-4

Batch size 256
Weight decay 1e-5

Architecture

Number of blocks 6
Hidden dim 128

Number of heads 8
Timestep length 10

A.3 Differences between the training and testing maps

We list some differences between the training and testing maps in Table 9.

Difference Testing Maps Most Similar Training Maps

Number of agents 10m_vs_11m 5m_vs_6m

Different race matchups Protoss vs. Terran Protoss vs. Protoss, Terran vs. Terran

Reversed ally and enemy 64zg_vs_2c 2c_vs_64zg

Table 9: Comparison of testing maps and training maps

A.4 Pseudocode

The Pytorch-style implementation of the MaskMA is shown below:

13

Published in Transactions on Machine Learning Research (09/2024)

c: controllable, uc: uncontrollable
Input: state_embeddings for c_entity [s_1, ..., s_M] and uc_entity [s_M+1, ..., s_N]
Initial: func: GenerateMask

Enhance state_embeddings with information of timestep and controllable
state_embedding_c = state_embedding_c + timestep_embedding + controllable_embedding
state_embedding_uc = state_embedding_uc + timestep_embedding + uncontrollable_embedding

Mask-based Training Strategy
Generate random mask
mask = GenerateMask(mask_ratio, state_embedding_c, state_embedding_uc)
Apply masks and process through the transformer
hidden_state_c, hidden_state_uc = transformer(state_embedding_c,

state_embedding_uc, mask)

actions = GAR(hidden_state_c, hidden_state_uc)

Input: hidden_state_c [B, T, M, D], hidden_state_uc [B, T, N-M, D]
Initial: FC layers: fc_interactive, fc_intrinsic
def GAR(hidden_state_c, hidden_state_uc):

Interactive actions
hidden_state = torch.cat([hidden_state_c, hidden_state_uc], dim=-2)
Concatenate and repeat embeddings of hidden state for prediction
hidden_state_c_repeat = hidden_state_c.unsqueeze(3).repeat(1, 1, 1, N, 1)
hidden_state_repeat = hidden_state.unsqueeze(2).repeat(1, 1, M, 1, 1)
interactive_action_embedding = torch.cat([hidden_state_c_repeat,

hidden_state_repeat], dim=-1)

Process result through attack_action network
interactive_logits = fc_interactive(interactive_action_embedding)

Intrinsic actions
intrinsic_action_embedding = hidden_state_c
Compute intrinsic logits using action queries
intrinsic_logits = fc_intrinsic(intrinsic_action_embedding)

Final actions
Concatenate logits to form action predictions
action_preds = torch.cat([interactive_logits, intrinsic_logits], dim=-1)
Determine final actions by selecting the maximum valid logits
actions = action_preds.max(-1).indices
return actions

A.5 State of units

In the original StarCraft II Multi-Agent Challenge (SMAC) setting, the length of the observation feature fluctuates
in accordance with the number of agents. To enhance generalization, MaskMA directly utilizes each unit’s state as
input to the transformer architecture. As depicted in Table 10, within the SMAC context, each unit’s state comprises 42
elements, constructed from nine distinct sections. Specifically, the unit type section, with a length of 10, represents the
nine unit types along with an additional reserved type.

B Additional Results and Analysis

B.1 Win rate of all maps

As shown in Table 11, we present the win rate of MaskMA and MADT on 11 training maps and 60 testing maps.

14

Published in Transactions on Machine Learning Research (09/2024)

Table 10: The composition of the state.

State name dim

ally or enemy 1
unit type 10

pos.x and y 2
health 1
shield 2

cooldown 1
last action 7

path 9
height 9

B.2 Comparition of pretraining dataset size

The scale of the pretraining dataset significantly impacts the eventual performance. In the multi-agent StarCraft II
environment, SMAC, we investigated the optimal size for the pretraining dataset. We take the 3s_vs_5z map as an
example and solely use the pretraining dataset of this map to train MaskMA, and then test it on the same map. As
illustrated in Figure 6, a dataset encompassing 1k episodes was found insufficient, leading to a progressive decline in
win rates. In contrast, a dataset comprising 50k episodes demonstrated exceptional performance. Specifically, for the
3s_vs_5z and MMM2 maps, a pretraining dataset containing 50k episodes proved appropriate. For the remaining nine
maps, a dataset consisting of 10k episodes was found to be suitable.

0.0 0.5 1.0 1.5 2.0
0

20

40

60

80

100

Training Iterations (M)

W
in

 R
at

e
%

Episode Number = 50k
Episode Number = 10k

Figure 6: Performance comparison across different sizes of the pretraining dataset on the 3s_vs_5z Map.

B.3 Visualization

In this section, we provide visualizations of MaskMA’s behaviors on additional two downstream tasks: varied policies
collaboration, and teammate malfunction. Figure 7, 8 evaluate the strong generalization of MaskMA. Additionally, we
offer replay videos for a more comprehensive understanding of MaskMA’s behavior and strategies.

15

Published in Transactions on Machine Learning Research (09/2024)

(a) (b)

Figure 7: Varied Policies Collaboration on 8m_vs_9m with 4 Agents with different policies. The agents within the green box
are controlled by other policies (replaced with a network trained with a 41% win rate), while the agents within the red circle are
controlled by MaskMA. (a): Initial distribution of agents’ positions. (b): MaskMA dynamically adapts to the strategies of players by
different policies and effectively coordinates actions, resulting in a victorious outcome.

(a) (b)

Figure 8: Teammate Malfunction on 8m_vs_9m with Marine Malfunction Time = 0.6. The agent within the red circle suddenly
malfunctions in the middle of the episode, remaining stationary and taking no actions. (a): The agent within the red circle starts
malfunctioning. (b): Despite the malfunctioning teammate, other agents continue to collaborate effectively and eventually succeed in
eliminating the enemy.

16

Published in Transactions on Machine Learning Research (09/2024)

Table 11: Win rate of MaskMA and MADT on 11 training maps and 60 testing maps.

Map Ours MADT

Centralized Execution Decentralized Execution Decentralized Execution

3s_vs_5z 85.94 ±3.49 82.81 ±7.81 73.44 ±3.49
3s5z 98.44 ±1.56 99.22 ±1.35 15.62 ±6.99

1c3s5z 94.53 ±4.06 95.31 ±1.56 54.69 ±8.41
3s5z_vs_3s6z 85.94 ±6.44 85.16 ±5.58 14.84 ±9.97

5m_vs_6m 86.72 ±1.35 84.38 ±4.94 85.94 ±5.18
8m_vs_9m 88.28 ±6.00 86.72 ±4.06 87.50 ±2.21

MMM2 92.97 ±2.59 86.72 ±4.62 62.50 ±11.69
2c_vs_64zg 99.22 ±1.35 92.97 ±2.59 34.38 ±9.11

corridor 96.88 ±3.83 94.53 ±2.59 21.88 ±11.48
6h_vs_8z 75.00 ±5.85 76.56 ±6.44 27.34 ±6.77

bane_vs_bane 96.09 ±2.59 98.44 ±1.56 91.41 ±4.62

2s_vs_1z 100.00±0.00 100.00±0.00 70.31 ±10.00
3z_vs_3s 71.88 ±3.83 53.91 ±9.47 0.00 ±0.00

1c2s 44.53 ±5.58 41.41 ±6.39 2.34 ±2.59
4z_vs_3s 99.22 ±1.35 97.66 ±1.35 4.69 ±2.71

4m 99.22 ±1.35 100.00±0.00 28.91 ±6.00
1c3s 54.69 ±3.49 48.44 ±4.69 17.19 ±4.69

5m_vs_4m 100.00±0.00 100.00±0.00 100.00±0.00
5m 100.00±0.00 100.00±0.00 98.44 ±1.56

2s3z 10.94 ±5.18 8.59 ±2.59 0.00 ±0.00
1s4z_vs_1ma4m 91.41 ±4.62 88.59 ±3.41 35.16 ±3.41

3s2z_vs_2s3z 9.38 ±5.85 11.72 ±2.59 0.00 ±0.00
2s3z_vs_1ma2m2me 92.97 ±4.06 82.03 ±14.04 35.16 ±9.73
2s3z_vs_1ma3m1me 90.62 ±3.12 93.75 ±3.83 37.50 ±7.97
1c3s1z_vs_1ma4m 100.00±0.00 99.22 ±1.35 98.44 ±1.56
1s4z_vs_2ma3m 83.59 ±7.12 77.66 ±3.41 73.44 ±6.44
1c3s1z_vs_2s3z 100.00±0.00 100.00±0.00 78.12 ±5.85
2s3z_vs_1h4zg 96.88 ±3.12 96.09 ±3.41 71.88 ±7.16
3s2z_vs_2h3zg 95.31 ±5.18 93.75 ±4.42 75.00 ±3.83
1c4z_vs_2s3z 100.00±0.00 100.00±0.00 71.88 ±6.63

2ma3m_vs_2ma2m1me 46.09 ±12.57 39.06 ±9.24 0.00 ±0.00
2s3z_vs_1b1h3zg 100.00±0.00 96.88 ±2.21 67.19 ±4.06

1s4z_vs_5z 3.12 ±2.21 5.47 ±4.06 0.00 ±0.00
1c1s3z_vs_1c4z 64.06 ±7.16 76.56 ±5.63 35.94 ±6.44

6m 97.66 ±2.59 99.22 ±1.35 47.66 ±5.12
1s3z_vs_5b5zg 93.75 ±3.83 87.50 ±2.21 58.59 ±1.35

8z_vs_6h 93.75 ±2.21 98.44 ±1.56 38.28 ±4.06
2s5z 17.97 ±4.06 7.03 ±3.41 0.78 ±1.35

1c3s1z_vs_1b1h8zg 100.00±0.00 100.00±0.00 57.81 ±0.00
1c3s1z_vs_1h9zg 100.00±0.00 100.00±0.00 60.94 ±0.00
2c1s2z_vs_1h9zg 100.00±0.00 100.00±0.00 49.22 ±0.00

3ma6m1me_vs_3h2zg 100.00±0.00 100.00±0.00 23.44 ±0.00
3s2z_vs_1b1h8zg 97.66 ±1.35 85.94 ±4.69 52.34 ±2.59

5ma4m1me_vs_1b3h1zg 100.00±0.00 100.00±0.00 98.44 ±2.71
4ma5m1me_vs_5zg 100.00±0.00 100.00±0.00 85.94 ±8.12

1s5z_vs_4ma6m 39.06 ±10.00 16.41 ±3.41 4.69 ±4.69
4ma7m_vs_2s3z 98.44 ±1.56 100.00±0.00 35.16 ±13.07
2ma9m_vs_3s2z 89.06 ±2.71 80.47 ±6.00 51.56 ±9.50
5s2z_vs_2ma8m 48.44 ±9.24 29.69 ±11.16 8.59 ±4.06
2s5z_vs_9m1me 99.22 ±1.35 99.22 ±1.35 46.09 ±4.94
1c3s_vs_3h10zg 85.94 ±5.63 89.84 ±5.58 43.75 ±4.94

3s7z_vs_5ma2m3me 99.22 ±1.35 96.88 ±3.83 60.94 ±2.59
1c3s6z 58.59 ±7.12 61.72 ±7.77 14.84 ±6.77

2c2s6z_vs_1c3s6z 100.00±0.00 100.00±0.00 97.66 ±1.35
1c2s7z 25.00 ±9.63 25.78 ±5.12 7.81 ±3.49

1c4s5z_vs_5ma3m2me 100.00±0.00 83.59 ±8.08 84.38 ±0.00
10s1z_vs_1b2h7zg 96.09 ±4.06 96.88 ±2.21 68.75 ±1.56

10m_vs_11m 79.69 ±6.44 78.91 ±7.45 0.00 ±0.00
1b10zg 85.16 ±5.58 89.06 ±7.16 60.16 ±5.12
2b10zg 92.19 ±4.69 98.44 ±1.56 30.47 ±5.58

1c_vs_32zg 59.38 ±9.38 55.47 ±7.77 1.56 ±2.71
32zg_vs_1c 92.97 ±3.41 94.53 ±3.41 53.91 ±3.12

1b20zg 74.22 ±10.91 82.81 ±2.71 66.41 ±7.45
2b20zg 100.00±0.00 97.66 ±1.35 71.09 ±4.94
3b20zg 96.09 ±3.41 88.28 ±4.62 85.94 ±4.69

16z_vs_6h24zg 97.66 ±2.59 97.66 ±2.59 71.09 ±4.06
5b20zg 99.22 ±1.35 100.00±0.00 32.03 ±2.59

64zg_vs_2c 55.47 ±6.39 56.25 ±2.21 48.44 ±8.41
1c8z_vs_64zg 89.06 ±7.16 85.94 ±5.18 2.34 ±2.59

1c8z_vs_2b64zg 61.72 ±7.77 65.62 ±5.85 0.00 ±0.00
1c8z_vs_5b64zg 6.25 ±2.21 4.69 ±3.49 0.78 ±1.35

17

	Introduction
	Related Work
	Method
	Formulation
	Multi-Agent Preliminaries
	Multi-Task Imitation Learning

	Mask-Based Training Strategy
	Generalizable Action Representation
	Loss Function

	Experiments
	Performance on Training Maps
	MaskMA as Excellent Zero-shot Learners
	Performance on Downstream Tasks
	Ablation Study

	Discussion

	Additional Implementation Details
	Environment.
	Hyperparameters
	Differences between the training and testing maps
	Pseudocode
	State of units

	Additional Results and Analysis
	Win rate of all maps
	Comparition of pretraining dataset size
	Visualization

