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Abstract

Highly accurate machine translation systems
are very important in societies and countries
where multilinguality is very common, and
where English often does not suffice. The
Indian subcontinent is such a region, with
all the Indic languages currently being under-
represented in the NLP ecosystem. It is es-
sential to advance the state-of-the-art of such
low-resource languages atleast by using what-
ever data is available in open-source, which it-
self is something not very explored in the Indic
ecosystem. In our work, we focus on improv-
ing the performance of very-low-resource Indic
languages, especially of countries in addition
to India. Specifically, we propose how unified
models can be built that can exploit the data
from comparatively resource-rich languages of
the same region. We propose strategies to unify
different types of unexplored scripts, especially
Perso-Arabic scripts and Indic scripts to build
multilingual models for all the Indic languages
despite the script barrier. We also study how
augmentation techniques like back-translation
can be made use-of to build unified models
that achieve state-of-the-art result among open
source models, especially just using openly
available raw data.

1 Introduction

The Indian subcontinent is home to around a quar-
ter of the world’s population, with a total which is
about to hit 2 billion. Despite this, the progress in
natural language processing is significantly lacking.
Especially, machine translation is of core impor-
tance since South Asia is largely a multilingual
society, with more than 20 Indic languages recog-
nized officially! and more than 100s attested and
spoken. Although there are quite a few number of
works which have released datasets for languages
of India (Siripragada et al., 2020) and studied mul-
tilingual models for the same (Philip et al., 2019),
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they are not exhaustively studied. In particular, the
Indic languages of other South Asian countries like
Pakistan, Nepal and Sri Lanka are almost never
studied together with the languages of India and
Bangladesh.

In this work, we aim to study all the available
Indic languages (of Indo-Aryan and Dravidian fam-
ilies) of all the above countries together. Espe-
cially, we propose strategies to unify digraphic
languages like Hindi—Urdu, Sindhi and Punjabi
which are written in Indic scripts in India and Perso-
Arabic scripts in Pakistan. We propose how one
can build a script-agnostic encoder which can gen-
eralize well across different types of translation
models, like code-mixed, roman (social media) and
formal texts. We study for the first time in lit-
erature backtranslation-based NMT for all Indic
languages together, which provides better perfor-
mance than existing open-source models (using
only freely available data), and present a brief sur-
vey of open-source monolingual corpora across
low-resource languages. We finally provide brief
recommendations for researchers working in this
Indic-NMT domain, and finally mention how this
work can be extended and its future scope.

2 Related works

Training multilingual models for neural machine
translation currently the go-to approach for signifi-
cantly improving the performance of low-resource
languages (Ngo et al., 2020). Especially sharing
of sub-word vocabulary among related languages
(of the same or similar families) is of more im-
portance to exploit the inter-relationships between
the languages (Khemchandani et al., 2021), so that
resource sharing from high-resource languages to
low-resource languages is achieved. Recent works
(Ramesh et al., 2021) have explored strategies to
train multilingual NMT for Indic languages, both
with and without shared vocabulary across lan-
guages, demonstrating that vocabulary sharing by
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script unification is significantly beneficial. It is
also common to convert all the text across all lan-
guages to IPA (International Phonetic Alphabet)
or any common script, especially in speech-to-text
(Javed et al., 2021) and text-to-speech (Zhang et al.,
2021) to obtain a universal representation of text
across any language/script. In the case of Indic lan-
guages, it is more convenient to map all scripts to
an Indic script like Devanagari which represents all
phonemes used in the Indic families (Khare et al.,
2021).

3 Background

This section sets provides the background required
for the subsequent sections.

3.1 Datasets

As mentioned earlier, our work only focuses on
open-source datasets inorder to show how state-of-
the-art can be advanced for low-resource languages
just using openly available data. The next sub-
section mentions the list of all aligned datasets used
in this work and further, the appendix mentions the
list of all available monolingual data sources which
we exploit in this work for improving performance.

3.1.1 Parallel datasets

Table 1 shows the list of all parallel datasets used
for training our models. It is to be noted that
the Samanantar (Ramesh et al., 2021) is the ma-
jor source of data, for languages of India. To ex-
plore more languages as well as to study how the
above data is useful for other similar Indic lan-
guages, especially focusing on other related South
Asian countries, we gather more data from different
sources shown in the table.

3.2 Script Unification

As explained earlier, script unification is essential
for sub-word vocabulary sharing between related
languages. It is common to use Devanagari as the
common script unify to all the Indic scripts of India,
although any script (like IPA) can be used as the
pivot. Devanagari is predominantly chosen since
it is used for many languages like Hindi, Marathi,
Nepali, etc. as well as due to the fact that it is
one of the few Indic scripts which supports almost
all phonemes required for both the Indic language
families, not just Indo-Aryan for which the script
is predominantly used. One important aspect of
Devanagari is a diacritic called nuqta, which is

essential a dot mark placed below the main con-
sonants to represent non-native phonemes. Hence,
using Devanagari for all Indic languages as a com-
mon script is preferable, including languages like
Urdu, Sindhi and Kashmiri which are written in
Perso-Arabic scripts. In the subsequent section,
we explain how the latter is achieved, which is an
unexplored track in research.

3.2.1 Mapping Devanagari and Perso-Arabic

The Perso-Arabic script is an abjad, meaning that
it mostly has only consonants, and the same con-
sonants is used to indicate 2 long-vowels. So the
reader generally fills in most of the vowels as they
read based on their knowledge of the language and
context. Devanagari is an abugida, meaning that
it is an alphasyllabary system where the script is
generally expected to be almost phonetic with all
consonants and vowels represented. This makes
a direct mapping of Perso-Arabic consonants to
Devanagari slightly illegible for readers of usual
Devanagari due to lack of any vowels. The table
below shows an example of raw mapping.

Urdu S e din S5 S s 2 o
Raw-Devanagari | Ta 3 IaR %9 UHS & w0 H ST gl
GRerg 71 IR 1 Ubs &b o A ST e

The police caught the thief and put him in jail

Hindi

English

Figure 1: Row-1: Perso-Arabic, Row-2: Devanagari-
transliteration, Row-3: Actual Hindi spelling, Row-4:
Translation

We propose that NMT models are capable of
learning both abjad and abugida forms, with a
deeper understanding of the underlying language.
That is, we directly use the raw mapping of Perso-
Arabic consonants to Devanagari (without any pho-
netic transcription) to train an unified model.

However, there are some consonants in Perso-
Arabic for which, although the phonemes are dif-
ferent, they represent the same phone. Those con-
sonants usually are mapped to a single Devanagari
phoneme. In our work, especially to generate Perso-
Arabic texts, we require lossless mapping of each
character from Perso-Arabic. Hence we propose
to map them uniquely by creating new Devanagari
consonants using nuqta.We also open-source our

transliterator implementation”.

“Redacted link to our Indic-PersoArabic-Script-Converter



Dataset as bn gu hi kn ml mr ne or pa sd si ta te ur

Samanantar | 142 8522 3054 8568 4076 5851 3322 1006 2422 5167 4842
CVIT-PIB2 38 203
Anuvaad? 9 19 21
PMI* 11
OPUS’ 29 2255 117 1892 8530 8689
U.Kathmandu® 21

Charles Univ’ 13
MTurks 20128 34
Total 218 8522 3054 8568 4076 5851 3322 2276 1142 2422 1892 8530 5167 4842 8971

Table 1: Open-source parallel Indic corpora

3.2.2 Mapping Sinhala and Devanagari

Sinhala alphabet is mostly similar (in phonetics)
to most other alphabets of India, except a couple
of minor differences. Sinhala has separate uni-
code points for representing 6 prenasal consonants,
whereas in Devanagari, they are represented as lig-
ature of a nasal consonant with another consonant.
In addition, Sinhala also has short and long forms
of the vowel /&/ which we also map to Devanagari
uniquely.

3.2.3

For all the remaining scripts in this work, the
mapping is mostly straightforward due to the fact
that they follow the ISCII'® encoding scheme in
which equivalent phonemes are mapped at same
offsets in the unicode blocks. We use the Akshara-
Mukha'! tool to perform transliteration between
Indic scripts.

Mapping between Indic scripts

3.3 Romanization of Indic languages

We also experiment with romanized models for all
Indic languages in our work. Generally, there is
no standard way to perform romanization for Indic
languages, since the way one types it colloquially is
very personal. Hence we perform romanization us-
ing multiple ways. This includes machine learning-
based romanization (using Lib-IndicTrans'?), and
rule-based romanization techniques which covers
different possible ways of romanizing, which will
be open-sourced.

Ohttps://en.wikipedia.org/wiki/Indian_
Script_Code_for_Information_Interchange

"https://github.com/virtualvinodh/
aksharamukha

Phttps://github.com/libindic/
indic-trans

4 Indic to English MT

In this section, we explore different models for In-
dic to English translation using datasets mentioned
in section 3.1.1.

4.1 Unified models

First, we build models from English specific to
Indo-Aryan (ia2en) and Dravidian (dr2en) lan-
guages to compare how these models perform with
respect to a model which is later trained for both
the Indic language families (in2en). As explained
in section 3.2, we use Malayalam as the common
script for Dravidian languages and Devanagari for
Indo-Aryan and Indic models.

Table 2 presents the performance across lan-
guages. We see that the Indic model trained on
both the families outperform the scores of family-
specific models. This observation is consistent with
the results for many other languages, where we see
significant gains in accuracy with a shared encoder,
in-cases like many-to-one NMT (Arivazhagan et al.,
2019).

4.2 Script-agnostic model

We generate a romanized version of the parallel
dataset available, which is typically 6x large in size
due to different ways of romanization the same
data, and train a Roman-Indic-to-English model
(rom_in2en). Table 2 shows the performance of
this romanized model. We see that the model is
slightly better than the in2en model. This can be
attributed to the drastic reduction in alphabet size of
then model: Devanagari usually requires more than
80 characters (on average) to represent all Indic
languages; whereas in the roman model, only 26
characters and a bit lossy.
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Model as bn gu hi kn ml mr 1.1e or pa sd si ta te ur
Indic-En
Samanantar - 30.7 33.6 36.0 27.4 304 300 - 28.6 342 - 85 27.7 327 -
ia2en, dr2en 21.4 30.2 32.8 36.1 25.3 27.7 28.9 35.1 28.4 34.2 24.1 12.8 22.5 29.6 24.9
in2en 23.9 31.8 339 36.8 28.1 30.7 30.7 36.2 31.3 35.3 24.1 15.1 27.7 33.0 25.1
rom_in2en 24.1 319 34.0 37.3 28.4 30.9 30.7 36.3 31.5 35.3 24.7 15.3 28.3 33.0 25.8
En-Indic
Samanantar - 173 226 313 16.7 142 147 - 10.1 219 - - 149 204 -
en2ia, en2dr 6.3 174 22.6 314 16.1 14.1 14.8 10.5 10.1 21.7 189 8.8 14.4 20.5 20.2
en2in 6.3 172 219 31.0 16.2 13.7 14.7 104 99 21.5 18.7 89 14.5 20.5 20.1
bt_en2in 9.9 189 23.1 342 18.7 16.2 16.1 17.1 143 23.9 237 14.1 17.2 22.3 22.3
bt_en2ia, bt_en2dr|10.8 19.8 23.7 36.1 20.0 17.3 16.8 17.6 16.7 24.3 24.2 14.1 17.2 22.9 23.6
t_bt_en2dr - - - - 201 175 - - - - - - 18.1 228 -

Table 2: Comparison of BLEU scores of different trained models along with the scores of the existing best open-

source model trained on Samanantar, taken from IndicBART paper (Dabre et al., 2021)

5 English to Indic MT

In this section, we explore one-to-many NMT mod-
els for training English to Indic translator. We
initially train models using the parallel data, then
train a model using synthetic data from monolin-
gual corpora to understand the level of improve-
ment achievable using raw data.

The input sentences to all the models is
prepended with a novel type of language-tag to-
ken, "__langcode__ __script-type__ ", inorder to
explicitly provides cues to the model about what
the target language and script-type is. The possible
script types are: 1. ’a’ to denote Perso-Arabic writ-
ing system; 2. ’i’ to denote Indic writing system:;
3. ’¢ to denote Tamil alphabet, which is a small
subset of the Indic set.

5.1 Models trained only on parallel data

We initially train 3 different models (from English)
just using the parallel data: Dravidian (en2dr), Indo-
Aryan (en2ia) and Indic (en2in). The results are
shown in Table 2. We see that the performance
does not vary much between the family-specific
models and the common model. This observation
is consistent with the results for many other lan-
guages, where we see trivial to almost-no gains
in accuracy with a shared decoder, in-cases like
one-to-many NMT (Arivazhagan et al., 2019). But
due to the fact that we are using more data than the
previous work, our scores improves slightly over
the Al4Bharat-IndicTrans model.

We still continue to experiment in the next sec-
tion to understand if a common model could be

more beneficial than family-specific models when
a huge backtranslated data is augmented with the
(upsampled) original data.

5.2 Models trained on parallel and
back-translated data

Using all the Indic monolingual data listed in Ap-
pendix A.1, we generate English sentences using
the rom_in2en model with a beam-size of 6. We
then train 4 models from English after upsampling
the parallel data and concating with backtranslated
data: 1. bt_en2in: To all Indic languages after 5x
upsampling; 2. bt_en2ia: To Indo-Aryan languages
after 6 x upsamling; 3. bt_en2dr: To Dravidian lan-
guages after 10x upsampling; 4. ¢_bt_en2dr: To
Dravidian languages after 6 X normal upsampling,
and 4 x Tamilized-augmented'* upsampling.

Table 2 shows the performance of all the 4 mod-
els. We surprisingly see that, family-specific mod-
els perform notably better than a common model.
Morever, for the bt_en2dr model, we observe a
significant boost in accuracy for Tamil after the
Tamilized-data is augmented, and a trivial improve-
ment for Malayalam and Kannda.

It is also seen that, our model easily outperforms
models which are fine-tuned from language mod-
els like IndicBART (Dabre et al., 2021). This is
because we use the same entire monolingual data
(Kakwani et al., 2020) which was used to pretrain
IndicBART, but along with supervised translation
signals in the form of backtranslated data.

converting other Dravidian alphabet to Tamil subset



6 Conclusion

We demonstrate in this paper various strategies
to improve the state-of-the-art open-source perfor-
mance of Indic-NMT models. We believe our pre-
sented contributions are more of exploratory na-
ture, and make fundamental proposal like always
building romanized models when the source side is
Indic. We further discuss more about the same in
appendix Appendix D.
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A Datasets

A.1 Monolingual data

Table 3 shows list of all monolingual corpora used
in this work. It is to be noted again that the
Al4Bharat IndicCorp is the major source of data,
for languages of India. For Indic languages of other
South Asian countries, we consolidate most of the
available open-source corpora.
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Dataset as bn gu hi kn ml mr ne or pa pnb sd si ta te ur
AI4B IndicCorp'® [2.38 77.7 46.6 77.3 56.5 67.9 41.6 10.1 353 47.8 60.5
University'® 45 3.2 55
CC100" 0.5 127 22 0.02 14 126 28
Wikipedia 0.3 04 03 12 04 06 1.3
Leipzig'® 0.06 42 0.04 0.06 0.007 0.4 1.1
Crawled!® 2 4.8

Total 3.24 77.7 46.6 122.3 56.5 67.9 41.6 22.5 12.64 353 1.28 1.807 18.4 47.8 60.5 35.9

Table 3: Open-source monolingual Indic corpora

B Model architectures

B.1 Indic to English models

The input sentences to the models is prepended
with the language-tag token, "__langcode__ ", in-
order to explicitly provides cues to the model about
what the source language is. All the models experi-
mented above are transformer-based, with the same
network and hyperparameter configurations as in
transformer-base (Vaswani et al., 2017), which has
6 encoder layers and 6 decoder layers inorder to be
consistent with the scores comparison against the
previous open-source state-of-the-art (Dabre et al.,
2021). For all experiments, we use the sentence-
piece tokenizer (Kudo and Richardson, 2018) to
build our sub-word vocabulary, with vocabulary
sizes for input and output sides respectively 32000
(Indic side) and 16000 (English side).

B.2 English to Indic models

All the models trained on original parallel data
follows the same networ configuration as in pre-
vious sub-section (transformer-base). For models
trained with both backtranslated and original data,
we found that the transformer-base model does not
significantly improve the scores, hence we use the
transformer-big standard with the same hyperpa-
rameters as in (Vaswani et al., 2017) to train those
models. The sub-word vocabulary sizes for input
and output sides respectively 16000 (English side)
and 32000 (Indic side).

C Additional evaluations

C.1 Script-agnostic (romanized) model

In addition, to study how our model performs with
real-world code-mixed data, we attempt the Mi-
crosoft GLUECoS (Khanuja et al., 2020) Machine

Translation task?’. We fine-tune our model on the
training set of the above dataset, and measure a val-
idation BLEU score of 27.36. Unfortuanately, the
leaderboard of the task is not yet out; hence upon
manually checking the validation results, we see
that our model has performed significantly better
despite the fact that the dataset is code-mixed and
romanization styles were somewhat different. We
believe that although this is not a concretely compa-
rable result, this is definitely helpful in advancing
the Indic NMT research.

D Discussions

We demonstrate in this paper various methods to
achieve improvement in performance, especially
across Indic languages which were not previously
explored along with the languages of India. In this
section, we provide suggestions for other research
groups working on NMT for Indic languages. In
general, to train model for any Indic language to
English, we recommend that data from all the
languages is used to train a multilingual model.
Especially, training a romanized model would be
more beneficial, since it would be a script-agnostic
model, and hence easily generalize for code-mixed
and social media texts (obviously any Indic text
present should be romanized).

For training English to any low-resource In-
dic language, it can be preferable to train family-
specific models. Especially for languages of the
countries Pakistan, Bangladesh, Nepal and Sri
Lanka, we highly recommend and encourage them
to exploit the abundantly available from datasets
by researchers of India. For (near-)high-resource
languages (like Hindi), it maybe beneficial to focus
only on unilingual models, or multilingual model
with only very similar languages in the train-set

Pnttps://github.com/microsoft/

GLUECoS#code-mixed-machine-translation—-task
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(like Punjabi, Gujarati).

If possible, it is highly recommended to ex-
ploit the abundant monolingual data and train mod-
els using backtranslated data. We also encour-
age researchers to try multiple rounds of back-
transliteration as in.



