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Abstract

Grammar-based parsers have achieved high per-
formance in the cross-domain text-to-SQL pars-
ing task, but suffer from low decoding effi-
ciency due to the much larger number of ac-
tions for grammar selection than that of tokens
in SQL queries. Meanwhile, how to better align
SQL clauses and question segments has been a
key challenge for parsing performance. There-
fore, this paper proposes clause-level parallel
decoding and alignment loss to enhance two
high-performance grammar-based parsers, i.e.,
RATSQL and LGESQL. Experimental results
of two parsers show that our method obtains
consistent improvements both in accuracy and
decoding speed.

1 Introduction

Text-to-SQL parsing aims to automatically trans-
form natural language (NL) questions into SQL
queries based on the given databases (DBs) (Tang
and Mooney, 2001), as depicted at the top of Figure
1. Recently, several high-quality cross-domain text-
to-SQL datasets have been released, strongly boost-
ing the research interest and progress in this task
(Zhong et al., 2017; Yu et al., 2018b; Wang et al.,
2020b). Most early works generate SQL queries in
a token-level seq2seq manner (Zhong et al., 2017;
Dong and Lapata, 2018), or by filling DB elements
into SQL slots (Xu et al., 2017; Yu et al., 2018a),
both of which are known as token-based parsers. In
contrast, a grammar-based parser incorporates SQL
grammar into the decoder to guarantee the gram-
maticality of output SQL queries (Yin and Neubig,
2018), including RATSQL (Wang et al., 2020a)
and LGESQL (Cao et al., 2021), both of which
have achieved state-of-the-art (SOTA) performance
on complex datasets. They share the same decoder
with different grammars, and LGESQL further uses
a new graph encoder to enhance presentations of
the question words and database schema items.
Concretely, a grammar-based parser builds a tree
complying with SQL grammar via a sequence of

actions, as shown on the left of Figure 1, where
the tree’s leaf nodes form the final SQL query. In
spite of its high performance, the number of ac-
tions is usually much larger than the number of
tokens in the SQL query, due to the generation
of non-leaf nodes. This makes the decoding pro-
cess extremely inefficient. To alleviate the ineffi-
ciency issue, DuoRAT (Scholak et al., 2021) uses
a transformer-based decoder to replace the parent-
feeding LSTM decoder in RATSQL (Wang et al.,
2020a), which can improve the training efficiency
given gold-standard SQL queries. Unfortunately,
their method does not influence the testing speed,
which is very important in real applications.

As discussed by many previous works, one char-
acteristic of the text-to-SQL task is that an SQL
clause usually depends on a local segment of the
input question (Zeng et al., 2020; Yin et al., 2021;
Wau et al., 2021). Recent works try to exploit align-
ments between SQL clauses and question segments
for better handling some specific SQL structures.
Zeng et al. (2020) propose a recursive parsing
framework that can elegantly generate complicated
nested SQL queries. The basic idea is explicitly
encouraging the decoder to focus on different ques-
tion segments when generating different nested lay-
ers. Based on a token-based parser, Yin et al. (2021)
incorporate an extra attention loss to capture such
alignments, which is proved to be helpful for deal-
ing with compositional SQL queries.

To handle the above two issues, we propose to
enhance grammar-based parsers via clause-level
parallel decoding and alignment loss. First, we
propose to generate SQL clauses in parallel, that
is, clauses are generated independently of each
other and simultaneously. Second, we propose a
clause-level alignment training loss to encourage
the model to focus on only related question seg-
ment when generating a clause. We implement
these two strategies based on two SOTA grammar-
based parsers, RATSQL and LGESQL. Experi-



NL question: For the cars with 4 cylinders, which model has the largest horsepower?
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Figure 1: An overview of our approach. The left side shows the generation process of sequential decoding in
RATSQL grammar-based decoder, and the right side gives our proposed parallel decoding, where all clauses are
generated independently. Meanwhile, according to alignments between SQL clauses and question segments, as
shown by the segment-clause alignment matrix, a clause-level alignment loss is incorporated during training.

mental results on Spider show that our methods
obtain consistent improvements both in accuracy
and testing speed. We will release our code at
https://github.

2 Our Proposed Model

2.1 Grammar-based Text-to-SQL Parsing

As shown on the left side of Figure 1, the de-
coder generates SQL queries via generating ac-
tions to select grammar rules in the depth-first
search order. Specifically, there are three types
of actions, i.e., ApplyRule, SelectColumn and
SelectTable. ApplyRule(r) applies an action r to
expand the focus node, and is used to gradually cre-
ate a skeleton tree without concrete DB elements.
SelectColumn(c) and SelectTable(t) are used to fill
a skeleton tree with concrete values by selecting a
column name c or a table name ¢, respectively.

We take an example in Figure 1 to illustrate
the process of grammar-based decoder. Suppose
that the decoder is at the “agg” node (current
node, denoted as n;) under the “Select” node (fa-
ther node, denoted as f;), and the next action is
“ApplyRule(agg — agg_id val_unit)”. The LSTM
state of the decoder is updated as follows.

Cti1, b1 = LSTM(ct, hy, i) 1
iy = [eaz§ €n;; Ctype(n;)s Zt; htm(fi)]
where c; and h; are the cell state and the output
vector at step t; e,, represents the embedding vec-

tor of the input n; a; denotes the previous action;
type(.) returns the type of a node'; z; is the con-
textual representation vector after attending to the
encoder outputs; tm(f;) denotes the timestamp
when f; has been just generated.

2.2 Clause-level Parallel Decoding

During decoding, the grammar-based parser actu-
ally generates a SQL query by sequentially creating
clauses (seeing Table 1) in a predefined order, as
shown on the left side of Figure 1. For instance,
after completing the SELECT clause, the parser
tries to expand the WHERE clause. If “WHERE
— None” is selected by the decoder, it means that
the final SQL query does not include a WHERE
clause and the decoder will move on to generate the
GROUP clause, and so on. In fact, the generation
of different clauses is quite loosely connected. This
motivates us that we may generate all SQL clauses
independently and in parallel via batch processing,
which obviously can improve decoding efficiency.

Specifically, major differences between parallel
and sequential decoding lie in the initial LSTM
state of each clause, reflected in cg, hg, and the
previous action ag in Equation 1. In sequential
decoding, the initial status for a subsequent clause
is inherited from and thus depends on the previ-
ous clause. In contrast, in parallel decoding, each

!"The parser assigns a type for each node according to its
role in SQL, such as “agg” for aggregations.
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Clauses Production Rules

SELECT SELECT agg | SELECT agg, agg | ...

WHERE WHERE | None

GROUP GROUP_BY | GROUP_BY & HAVING | None
ORDER ORDER_BY | ORDER_BY & LIMIT | None
IEU INTERSECT | EXCEPT | UNION | None

FROM  FROM Tablel | FROM Tablel, Table2 | ...

Table 1: Six common types of clauses used for parallel
decoding in our work.

clause has the same initial status, which we believe
is more reasonable considering the loose depen-
dency between adjacent clauses.

2.3 Clause-level Alignment Loss

Figure 1 shows the alignment between question
segments and SQL clauses. We use this align-
ment to improve clause generation by introducing
a clause-level alignment training loss to encourage
the model to focus on the aligned question segment
in the clause generation.

Clause-level Alignment Acquisition. Given a
question/SQL pair, for each DB element and con-
dition value in the SQL query, we search for some
tokens from NL question to align them, so as to
get a token-level alignment matrix. In this pro-
cess, we use the string-matching method which is
commonly used for token-level schema linking in
recent works (Guo et al., 2019; Wu et al., 2021). As
shown in the alignment matrix in Figure 1, token-
level alignments are marked in orange box.

Then we use a simple heuristic algorithm to ex-
tract a question segment for each SQL clause from
existing token-level alignment results. For each
clause, we take the shortest question segment that
contains all DB elements and values in the clause as
its aligned segment. As shown in the alignment ma-
trix of Figure 1, the question segment for a clause
is marked by a dashed bounding box. Please note
that the question segments for different clauses may
have overlaps. Finally, there are about 23% ques-
tion/SQL pairs missing segment-clause alignments.
For these pairs, we align each clause to the whole
question. We believe that higher-quality alignment
may lead to higher gains, which we leave as future
work.

Clause-level Alignment Loss. After aligning
SQL clauses with NL question segments, we design
an extra training loss to inject such clause-level
alignment into the parsing model. Intuitively, the

model can be benefited by paying more attention to
related aligned segments during clause generation.
In our grammar-based parser, a clause is gen-
erated by a sequence of actions. For instance, the
SELECT clause in Figure 1, i.e., “select T1.model”,
which is aligned to “which model”, is generated
by six ApplyRule actions and one SelectColumn
action. For each ApplyRule(r) action, we define
a prior token-wise alignment probability towards
its corresponding segment’. Concretely, each to-
ken in the segment obtains an averaged probability,
whereas tokens outside the segment receive zero.

0
Palign(xi“ﬂj) = { 1/1len(S) zi €5

where r; is the rule in the ApplyRule action, and
x; is the i-th token in the sentence, and 1en(S) is
the number of tokens in the aligned segment S.
Then, we define an attention probability from
the current decoder state to each question token as

Patt (ﬂfi|7"j) = softmax(..., hthmi, )

where ¢ is the timestamp when executing
ApplyRule(r;); h¢ is the time #’s hidden state of
LSTM decoder; m; is the output vector for z; in
encoder outputs; W, is a learned matrix.

Finally, we define the alignment loss as the
squared distance between the aligned (prior) and
attention (modeling) probabilities.

D= 3 S Pusionlailry) — Pace i)

In this way, we hope the model learn to attend
to certain related question tokens for the sake of
better rule selection.

3 Experiments

Dataset. We conduct experiments on Spider’, a
complex and cross-domain text-to-SQL dataset.
We follow the original data splitting and use the
exact matching (EM) accuracy as the evaluation
metric. In our experiments, we use the corrected
development set released on June 7, 2020.
Implementation. We implement our proposed
strategies on RATSQL and LGESQL. The final
loss for the training model is the summation of the

“We don’t use alignment loss for other two actions, since
they tend to be closely related with one or two tokens in NL
question. Forcing such action to align with too many tokens in
a segment degrades the performance, which has been proved
by our early-stage preliminary experiments.

‘https://yale-lily.github.io/spider
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EM Parsing Speed
Models Accuracy | (query/second)
DuoRAT + BERT (Duo2021) | 69.9 -
RATSQL (Wang2020)
+ BERT 69.7 -
+ GRAPPA 73.4 -
LGESQL(Ca02021)
+ BERT 73.5 -
+ GRAPPA 74.1 -
+ ELECTRA 75.1 -
RATSQL
Orig. + BERT (rerun) Tl1.140.4 7.48
Ours + BERT 725401 9.14 (+18.4%)
w/o Align T1.740.2 9.21 (+18.9%)
w/o Parallel 7244101 -
Ours + GRAPPA T4.240.4 -
LGESQL
Orig. + ELECTRA (rerun) 75.1+0.7 11.69
Ours + ELECTRA 75.7+0.6 15.81(+35.2%)
w/o Align 75.340.6 15.84(+35.5%)
w/o Parallel 75.6+0.4 -

Table 2: EM accuracy and testing speed on Spider dev
set. For our models, we report mean and variance over
three runs.

RATSQL Easy | Medium | Hard | Extra Hard
Orig. + BERT | 879 72.9 63.2 494
Ours + BERT | 88.7 74.9 64.9 50.0

Table 3: EM accuracy on different hardness levels.

original loss and our proposed alignment loss. We
set beam size as 1 to evaluate testing speed, and
use default values for other parameters.

Main results. Table 2 shows the main results.
In the first major row, we select several BERT (De-
vlin et al., 2019) enhanced grammar-based parsers.
We report our results in the second and third ma-
jor rows*. Besides using BERT, we also give
the results with GRAPPA(Yu et al., 2020), a task-
specified pre-trained model. For LGESQL, we give
results with ELECTRA(Clark et al., 2020), which
achieves SOTA performance. In order to avoid
the effect of performance vibrations, we run each
model for 3 times with different random initializa-
tion seeds, then report the averaged EM accuracy
and the variance.

Parallel decoding. The parallel decoding
achieves an average accuracy improvement of
0.6% and 0.2% for RATSQL and LGESQL, which
proves that there is no strong generation depen-
dency between SQL clauses. Meanwhile, the paral-
lel decoding improves parsing speed by 18.9% and
35.5% for two parsers, as shown in the last column
of Table 2. For LGESQL, the parallel decoding
achieves a larger improvement in parsing speed, as

“We have submitted our models for obtaining results on
test set. However, due to some environmental problems and
limited GPU resources, the results have not been returned.
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Figure 2: Visualization of RATSQL attention scores.
Red rectangles highlight alignment blocks that obtain
high scores in our model but low scores in baseline.

its grammar is simpler and the action sequence for
each clause is much shorter. The parallel decoding
is more effective when there is little difference in
action sequence length for all clauses.

Effect of alignment loss. The clause-level align-
ment loss can improve two models by 1.3% and
0.5%, although its incorporation slightly decreases
the testing speed. Integrating the two strategies
bring slight improvements compared with align-
ment loss. We suspect that the clause-level align-
ment loss has weakened the generation dependency
between clauses by encouraging the model to focus
on the aligned segments when generating clauses.

Hardness analysis. As shown in Table 3, our
model outperforms original RATSQL on all hard-
ness levels. Yu et al. (2018b) define the SQL hard-
ness based on the number of clauses and the num-
ber of components in a clause. Our method obtains
larger gains on harder examples, i.e, “Medium”
and “Hard”, in which 60% of the SQL queries con-
tain no less than three clauses.

Case study. In order to verify the impact of
clause-level alignments in the attention mechanism,
we plot attention weights of original RATSQL and
our RATSQL in Figure 2. In our model, each clause
has a higher attention weight with tokens in the
corresponding aligned segment. Inversely, the base
model doesn’t have focus attention scores for some
clauses, such as WHERE and GROUP, and it fails
to generate the WHERE clause.

4 Conclusion

We propose clause-level parallel decoding and
alignment loss to enhance grammar-based text-to-
SQL parsing models. Experimental results show
that our approach improves consistently both their
efficiency and accuracy.

>The SQL query in “Extra Hard” level usually requires
common knowledge and involves logical reasoning. The base
model and our method are still far from resolving these.
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