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Abstract
Grammar-based parsers have achieved high per-001
formance in the cross-domain text-to-SQL pars-002
ing task, but suffer from low decoding effi-003
ciency due to the much larger number of ac-004
tions for grammar selection than that of tokens005
in SQL queries. Meanwhile, how to better align006
SQL clauses and question segments has been a007
key challenge for parsing performance. There-008
fore, this paper proposes clause-level parallel009
decoding and alignment loss to enhance two010
high-performance grammar-based parsers, i.e.,011
RATSQL and LGESQL. Experimental results012
of two parsers show that our method obtains013
consistent improvements both in accuracy and014
decoding speed.015

1 Introduction016

Text-to-SQL parsing aims to automatically trans-017

form natural language (NL) questions into SQL018

queries based on the given databases (DBs) (Tang019

and Mooney, 2001), as depicted at the top of Figure020

1. Recently, several high-quality cross-domain text-021

to-SQL datasets have been released, strongly boost-022

ing the research interest and progress in this task023

(Zhong et al., 2017; Yu et al., 2018b; Wang et al.,024

2020b). Most early works generate SQL queries in025

a token-level seq2seq manner (Zhong et al., 2017;026

Dong and Lapata, 2018), or by filling DB elements027

into SQL slots (Xu et al., 2017; Yu et al., 2018a),028

both of which are known as token-based parsers. In029

contrast, a grammar-based parser incorporates SQL030

grammar into the decoder to guarantee the gram-031

maticality of output SQL queries (Yin and Neubig,032

2018), including RATSQL (Wang et al., 2020a)033

and LGESQL (Cao et al., 2021), both of which034

have achieved state-of-the-art (SOTA) performance035

on complex datasets. They share the same decoder036

with different grammars, and LGESQL further uses037

a new graph encoder to enhance presentations of038

the question words and database schema items.039

Concretely, a grammar-based parser builds a tree040

complying with SQL grammar via a sequence of041

actions, as shown on the left of Figure 1, where 042

the tree’s leaf nodes form the final SQL query. In 043

spite of its high performance, the number of ac- 044

tions is usually much larger than the number of 045

tokens in the SQL query, due to the generation 046

of non-leaf nodes. This makes the decoding pro- 047

cess extremely inefficient. To alleviate the ineffi- 048

ciency issue, DuoRAT (Scholak et al., 2021) uses 049

a transformer-based decoder to replace the parent- 050

feeding LSTM decoder in RATSQL (Wang et al., 051

2020a), which can improve the training efficiency 052

given gold-standard SQL queries. Unfortunately, 053

their method does not influence the testing speed, 054

which is very important in real applications. 055

As discussed by many previous works, one char- 056

acteristic of the text-to-SQL task is that an SQL 057

clause usually depends on a local segment of the 058

input question (Zeng et al., 2020; Yin et al., 2021; 059

Wu et al., 2021). Recent works try to exploit align- 060

ments between SQL clauses and question segments 061

for better handling some specific SQL structures. 062

Zeng et al. (2020) propose a recursive parsing 063

framework that can elegantly generate complicated 064

nested SQL queries. The basic idea is explicitly 065

encouraging the decoder to focus on different ques- 066

tion segments when generating different nested lay- 067

ers. Based on a token-based parser, Yin et al. (2021) 068

incorporate an extra attention loss to capture such 069

alignments, which is proved to be helpful for deal- 070

ing with compositional SQL queries. 071

To handle the above two issues, we propose to 072

enhance grammar-based parsers via clause-level 073

parallel decoding and alignment loss. First, we 074

propose to generate SQL clauses in parallel, that 075

is, clauses are generated independently of each 076

other and simultaneously. Second, we propose a 077

clause-level alignment training loss to encourage 078

the model to focus on only related question seg- 079

ment when generating a clause. We implement 080

these two strategies based on two SOTA grammar- 081

based parsers, RATSQL and LGESQL. Experi- 082

1



CLS for the .. largest horsepower SEP cars_data ..SEP id .. SEP cylinders .. model..

Encoder

SQL Select Where Order

Sequential Decoding

… …

From

Question Columns Tables

agg → = (agg_id, val_unit)

agg_id → 0[None]

val_unit → Column(col_unit)

col_unit → (agg_id, col_id)

agg_id → 0[None]

col_id → 10 [T1.model]

Select → SELECT aggApplyRule:

ApplyRule:

ApplyRule:

ApplyRule:

SelectColumn:

ApplyRule:

ApplyRule:

Select

SELECT agg

agg_id val_unit

0[None] col_unit

agg_id

0[None]

col_id

10[T1.model]

CLS for the .. largest horsepower SEP cars_data ..SEP id .. SEP cylinders .. model..

Encoder

Question Columns Tables

SQL

Select Where Order From

Fo
r

th
e

ca
rs

wi
th

4 cy
lin

de
rs

, wh
ich

m
od

el
ha

s
th

e
lar

ge
st

?

car_names
model

Where

cars_data
cylinders

=
4

Order 

cars_data
horsepower

DESC
LIMIT

1

Select

ho
rs

ep
ow

er

Clause Parallel Decoding

… … …

Segment-clause 
Alignment Matrix

For the cars with 4 cylinders, which model has the largest horsepower? Desired SQL:
SELECT T1.model

FROM car_names AS T1 JOIN cars_data AS T2 ON T1.make_id = T2.id
WHERE T2.cylinders = 4

ORDER BY T2.horsepower DESC LIMIT 1
NL question:

Action
Generation

Figure 1: An overview of our approach. The left side shows the generation process of sequential decoding in
RATSQL grammar-based decoder, and the right side gives our proposed parallel decoding, where all clauses are
generated independently. Meanwhile, according to alignments between SQL clauses and question segments, as
shown by the segment-clause alignment matrix, a clause-level alignment loss is incorporated during training.

mental results on Spider show that our methods083

obtain consistent improvements both in accuracy084

and testing speed. We will release our code at085

https://github.086

2 Our Proposed Model087

2.1 Grammar-based Text-to-SQL Parsing088

As shown on the left side of Figure 1, the de-089

coder generates SQL queries via generating ac-090

tions to select grammar rules in the depth-first091

search order. Specifically, there are three types092

of actions, i.e., ApplyRule, SelectColumn and093

SelectTable. ApplyRule(r) applies an action r to094

expand the focus node, and is used to gradually cre-095

ate a skeleton tree without concrete DB elements.096

SelectColumn(c) and SelectTable(t) are used to fill097

a skeleton tree with concrete values by selecting a098

column name c or a table name t, respectively.099

We take an example in Figure 1 to illustrate100

the process of grammar-based decoder. Suppose101

that the decoder is at the “agg” node (current102

node, denoted as ni) under the “Select” node (fa-103

ther node, denoted as fi), and the next action is104

“ApplyRule(agg → agg_id val_unit)”. The LSTM105

state of the decoder is updated as follows.106

ct+1,ht+1 = LSTM(ct,ht, it)

it = [eat ; eni ; etype(ni); zt;htm(fi)]
(1)107

where ct and ht are the cell state and the output108

vector at step t; en represents the embedding vec-109

tor of the input n; at denotes the previous action; 110

type(.) returns the type of a node1; zt is the con- 111

textual representation vector after attending to the 112

encoder outputs; tm(fi) denotes the timestamp 113

when fi has been just generated. 114

2.2 Clause-level Parallel Decoding 115

During decoding, the grammar-based parser actu- 116

ally generates a SQL query by sequentially creating 117

clauses (seeing Table 1) in a predefined order, as 118

shown on the left side of Figure 1. For instance, 119

after completing the SELECT clause, the parser 120

tries to expand the WHERE clause. If “WHERE 121

→ None” is selected by the decoder, it means that 122

the final SQL query does not include a WHERE 123

clause and the decoder will move on to generate the 124

GROUP clause, and so on. In fact, the generation 125

of different clauses is quite loosely connected. This 126

motivates us that we may generate all SQL clauses 127

independently and in parallel via batch processing, 128

which obviously can improve decoding efficiency. 129

Specifically, major differences between parallel 130

and sequential decoding lie in the initial LSTM 131

state of each clause, reflected in c0, h0, and the 132

previous action a0 in Equation 1. In sequential 133

decoding, the initial status for a subsequent clause 134

is inherited from and thus depends on the previ- 135

ous clause. In contrast, in parallel decoding, each 136

1The parser assigns a type for each node according to its
role in SQL, such as “agg” for aggregations.
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Clauses Production Rules

SELECT SELECT agg | SELECT agg, agg | ...

WHERE WHERE | None

GROUP GROUP_BY | GROUP_BY & HAVING | None

ORDER ORDER_BY | ORDER_BY & LIMIT | None

IEU INTERSECT | EXCEPT | UNION | None

FROM FROM Table1 | FROM Table1, Table2 | ...

Table 1: Six common types of clauses used for parallel
decoding in our work.

clause has the same initial status, which we believe137

is more reasonable considering the loose depen-138

dency between adjacent clauses.139

2.3 Clause-level Alignment Loss140

Figure 1 shows the alignment between question141

segments and SQL clauses. We use this align-142

ment to improve clause generation by introducing143

a clause-level alignment training loss to encourage144

the model to focus on the aligned question segment145

in the clause generation.146

Clause-level Alignment Acquisition. Given a147

question/SQL pair, for each DB element and con-148

dition value in the SQL query, we search for some149

tokens from NL question to align them, so as to150

get a token-level alignment matrix. In this pro-151

cess, we use the string-matching method which is152

commonly used for token-level schema linking in153

recent works (Guo et al., 2019; Wu et al., 2021). As154

shown in the alignment matrix in Figure 1, token-155

level alignments are marked in orange box.156

Then we use a simple heuristic algorithm to ex-157

tract a question segment for each SQL clause from158

existing token-level alignment results. For each159

clause, we take the shortest question segment that160

contains all DB elements and values in the clause as161

its aligned segment. As shown in the alignment ma-162

trix of Figure 1, the question segment for a clause163

is marked by a dashed bounding box. Please note164

that the question segments for different clauses may165

have overlaps. Finally, there are about 23% ques-166

tion/SQL pairs missing segment-clause alignments.167

For these pairs, we align each clause to the whole168

question. We believe that higher-quality alignment169

may lead to higher gains, which we leave as future170

work.171

Clause-level Alignment Loss. After aligning172

SQL clauses with NL question segments, we design173

an extra training loss to inject such clause-level174

alignment into the parsing model. Intuitively, the175

model can be benefited by paying more attention to 176

related aligned segments during clause generation. 177

In our grammar-based parser, a clause is gen- 178

erated by a sequence of actions. For instance, the 179

SELECT clause in Figure 1, i.e., “select T1.model”, 180

which is aligned to “which model”, is generated 181

by six ApplyRule actions and one SelectColumn 182

action. For each ApplyRule(r) action, we define 183

a prior token-wise alignment probability towards 184

its corresponding segment2. Concretely, each to- 185

ken in the segment obtains an averaged probability, 186

whereas tokens outside the segment receive zero. 187

Palign(xi|rj) =
{

0 xi /∈ S
1/len(S) xi ∈ S 188

where rj is the rule in the ApplyRule action, and 189

xi is the i-th token in the sentence, and len(S) is 190

the number of tokens in the aligned segment S. 191

Then, we define an attention probability from 192

the current decoder state to each question token as 193

Patt(xi|rj) = softmax(...,htWmmi, ...) 194

where t is the timestamp when executing 195

ApplyRule(rj); ht is the time t’s hidden state of 196

LSTM decoder; mi is the output vector for xi in 197

encoder outputs; Wm is a learned matrix. 198

Finally, we define the alignment loss as the 199

squared distance between the aligned (prior) and 200

attention (modeling) probabilities. 201

L =
∑
j

∑
i

(Palign(xi|rj)− Patt(xi|rj))2 202

In this way, we hope the model learn to attend 203

to certain related question tokens for the sake of 204

better rule selection. 205

3 Experiments 206

Dataset. We conduct experiments on Spider3, a 207

complex and cross-domain text-to-SQL dataset. 208

We follow the original data splitting and use the 209

exact matching (EM) accuracy as the evaluation 210

metric. In our experiments, we use the corrected 211

development set released on June 7, 2020. 212

Implementation. We implement our proposed 213

strategies on RATSQL and LGESQL. The final 214

loss for the training model is the summation of the 215

2We don’t use alignment loss for other two actions, since
they tend to be closely related with one or two tokens in NL
question. Forcing such action to align with too many tokens in
a segment degrades the performance, which has been proved
by our early-stage preliminary experiments.

3https://yale-lily.github.io/spider
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Models EM
Accuracy

Parsing Speed
(query/second)

DuoRAT + BERT (Duo2021) 69.9 -
RATSQL (Wang2020)

+ BERT 69.7 -
+ GRAPPA 73.4 -

LGESQL(Cao2021)
+ BERT 73.5 -
+ GRAPPA 74.1 -
+ ELECTRA 75.1 -

RATSQL
Orig. + BERT (rerun) 71.1±0.4 7.48
Ours + BERT 72.5±0.1 9.14 (+18.4%)

w/o Align 71.7±0.2 9.21 (+18.9%)
w/o Parallel 72.4±0.1 -

Ours + GRAPPA 74.2±0.4 -
LGESQL

Orig. + ELECTRA (rerun) 75.1±0.7 11.69
Ours + ELECTRA 75.7±0.6 15.81(+35.2%)

w/o Align 75.3±0.6 15.84(+35.5%)
w/o Parallel 75.6±0.4 -

Table 2: EM accuracy and testing speed on Spider dev
set. For our models, we report mean and variance over
three runs.

RATSQL Easy Medium Hard Extra Hard
Orig. + BERT 87.9 72.9 63.2 49.4
Ours + BERT 88.7 74.9 64.9 50.0

Table 3: EM accuracy on different hardness levels.

original loss and our proposed alignment loss. We216

set beam size as 1 to evaluate testing speed, and217

use default values for other parameters.218

Main results. Table 2 shows the main results.219

In the first major row, we select several BERT (De-220

vlin et al., 2019) enhanced grammar-based parsers.221

We report our results in the second and third ma-222

jor rows4. Besides using BERT, we also give223

the results with GRAPPA(Yu et al., 2020), a task-224

specified pre-trained model. For LGESQL, we give225

results with ELECTRA(Clark et al., 2020), which226

achieves SOTA performance. In order to avoid227

the effect of performance vibrations, we run each228

model for 3 times with different random initializa-229

tion seeds, then report the averaged EM accuracy230

and the variance.231

Parallel decoding. The parallel decoding232

achieves an average accuracy improvement of233

0.6% and 0.2% for RATSQL and LGESQL, which234

proves that there is no strong generation depen-235

dency between SQL clauses. Meanwhile, the paral-236

lel decoding improves parsing speed by 18.9% and237

35.5% for two parsers, as shown in the last column238

of Table 2. For LGESQL, the parallel decoding239

achieves a larger improvement in parsing speed, as240

4We have submitted our models for obtaining results on
test set. However, due to some environmental problems and
limited GPU resources, the results have not been returned.

Figure 2: Visualization of RATSQL attention scores.
Red rectangles highlight alignment blocks that obtain
high scores in our model but low scores in baseline.

its grammar is simpler and the action sequence for 241

each clause is much shorter. The parallel decoding 242

is more effective when there is little difference in 243

action sequence length for all clauses. 244

Effect of alignment loss. The clause-level align- 245

ment loss can improve two models by 1.3% and 246

0.5%, although its incorporation slightly decreases 247

the testing speed. Integrating the two strategies 248

bring slight improvements compared with align- 249

ment loss. We suspect that the clause-level align- 250

ment loss has weakened the generation dependency 251

between clauses by encouraging the model to focus 252

on the aligned segments when generating clauses. 253

Hardness analysis. As shown in Table 3, our 254

model outperforms original RATSQL on all hard- 255

ness levels. Yu et al. (2018b) define the SQL hard- 256

ness based on the number of clauses and the num- 257

ber of components in a clause. Our method obtains 258

larger gains on harder examples5, i.e, “Medium” 259

and “Hard”, in which 60% of the SQL queries con- 260

tain no less than three clauses. 261

Case study. In order to verify the impact of 262

clause-level alignments in the attention mechanism, 263

we plot attention weights of original RATSQL and 264

our RATSQL in Figure 2. In our model, each clause 265

has a higher attention weight with tokens in the 266

corresponding aligned segment. Inversely, the base 267

model doesn’t have focus attention scores for some 268

clauses, such as WHERE and GROUP, and it fails 269

to generate the WHERE clause. 270

4 Conclusion 271

We propose clause-level parallel decoding and 272

alignment loss to enhance grammar-based text-to- 273

SQL parsing models. Experimental results show 274

that our approach improves consistently both their 275

efficiency and accuracy. 276

5The SQL query in “Extra Hard” level usually requires
common knowledge and involves logical reasoning. The base
model and our method are still far from resolving these.
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