
Scaling Up Differentially Private LASSO Regularized
Logistic Regression via Faster Frank-Wolfe Iterations

Edward Raff∗
Booz Allen Hamilton

raff_edward@bah.com

Amol Khanna∗
Booz Allen Hamilton

khanna_amol@bah.com

Fred Lu
Booz Allen Hamilton
lu_fred@bah.com

Abstract

To the best of our knowledge, there are no methods today for training differentially
private regression models on sparse input data. To remedy this, we adapt the
Frank-Wolfe algorithm for L1 penalized linear regression to be aware of sparse
inputs and to use them effectively. In doing so, we reduce the training time of
the algorithm from O(TDS + TNS) to O(NS + T

√
D logD + TS2), where

T is the number of iterations and a sparsity rate S of a dataset with N rows and
D features. Our results demonstrate that this procedure can reduce runtime by a
factor of up to 2, 200×, depending on the value of the privacy parameter ϵ and the
sparsity of the dataset.

1 Introduction

Differential Privacy (DP) is currently the most effective tool for machine learning practitioners and
researchers to ensure the privacy of the individual data used in model construction. Given parameters
ϵ and δ, on any two datasets D and D′ differing on one example, an (approximately) differentially
private randomized algorithm A satisfies Pr [A(D) ∈ O] ≤ exp{ϵ}Pr [A(D′) ∈ O] + δ for any
O ⊆ image(A) [1]. Note that lower values of ϵ and δ correspond to stronger privacy.

While DP has had many successes in industry and government, DP-based machine learning methods
have made little progress for sparse high-dimensional problems [2, 3, 4, 5]. We believe that this issue
arises because, to the best of our knowledge, given a dataset with D features and a training algorithm
with T iterations, all current iterative DP regression algorithms require at least O(TD) training
complexity, as shown in Table 1. This makes it impractical to use these algorithms on any dataset
with a large number of features. Our solution to this problem is to take already existing algorithms,
and remove all redundant computations with mathematically equivalent steps. This ensures that, by
construction, we retain all proofs of correctness — but end with a faster version of the same method.

Table 1: A summary of prior methods for solving L1 regularized Logistic Regression, which do not
take advantage of sparsity in the input data.

Method Complexity

Frank-Wolfe Methods [6, 7, 8, 9] O(TND)
ADMM [10] O(TNDM)

Iterative Gradient Hard Thresholding Methods [9, 11, 12] O(TND)
Coordinate Descent [13] O(TND)

Mirror Descent [8] O(TNDM)

∗Co-first authors for equal contribution.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

We are interested in creating a differentialy private machine learning algorithm which scales to sparse
datasets with high values of D, so we look toward the LASSO regularized logistic regression model
[14]. Specifically, given a dataset {x1, . . . ,xN} ∈ RD which can be represented as a design matrix
X ∈ RN×D, {y1, . . . , yN} ∈ {0, 1}, and a maximum L1 norm λ, we wish to solve

ŵ = argmin
w∈RD: ∥w∥1≤λ

1

N

N∑
i=1

L(w · xi) (1)

where L(·) is the loss function. In this paper, we will use the logistic loss to avoid exploiting
any closed-form updates/solutions in the linear case, but our results are still applicable to linear
regression. To do so with DP, we use the Frank-Wolfe algorithm as it is well studied for L1 constrained
optimization and regularly used in DP literature [15, 16]. Frank-Wolfe is also desirable because when
properly initialized, its solutions will have at most T nonzero coefficients for T training iterations.
Though DP noise can reduce accuracy and cause increased density of solutions through suboptimal
updates, when considering problems with more than 1 million features, we are unlikely to perform 1
million iterations, so a benefit is still obtained [17].

We develop the first sparse-dataset friendly Frank-Wolfe algorithm to remediate the problem of no
sparse algorithms for high-dimensional DP regression. Because a sparse-efficient Frank-Wolfe algo-
rithm does not exist today even for non-private problems, our work proceeds in three contributions:

1. We analyze the numerical updates of the Frank-Wolfe algorithm to separate the task into (a)
“queue maintenance” for determining the next coordinate to update and (b) sparse updates of
the solution and intermediate variables. If the average column sparsity of X is Sc < D and
the average row sparsity of X is Sr < N , we show for the first time that Frank-Wolfe can
update its solution in SrSc work per iteration.

2. We show that in the non-private case, the queue to select the next coordinate can be
maintained in O(∥w∥0 logD) time, but is cache-unfriendly.

3. Finally, we develop a new Big-Step Little-Step Sampler for DP Frank-Wolfe that can be
maintained and sampled from in O(

√
D logD) time.

We test our algorithm on high-dimensional problems with up to 8.4 million datapoints and 20 million
features on a single machine and find speedups ranging from 10× to 2, 200× that of the standard DP
Frank-Wolfe method. Critically, our approach is mathematically equivalent, and so retains all prior
proofs of correctness.

The remainder of our work is organized as follows. In section 2 we will review related work in
more detail and discuss the lack of sparse dataset algorithms for Frank-Wolfe and DP. Next, we
develop the nonprivate and DP variants of our sparse-friendly Frank-Wolfe in section 3. In section 4
we demonstrate the empirical correctness of our algorithm, a speedup in runtime for the DP case,
and new state-of-the-art accuracy in high-dimensional logistic regression. Finally, we conclude in
section 5.

2 Related Work

As best as we can find, no works have specifically considered a sparse-dataset efficient Frank-Wolfe
algorithm. Additionally, we find that work studying L1-regularized DP regression has not reached
any high-dimensional problems. Our work is the first to show that Frank-Wolfe iterations can be
done with complexity sub-linear in D for sparse datasets. It also produces a sparse weight vector.

For DP regression, the addition of noise to each variable has limited exploration of sparse datasets.
Most works study only one regression problem with less than 100 dense variables or are entirely
theoretical with no empirical results [11, 10, 6, 18, 19]. To the best of our knowledge, the largest
scale attempt for high-dimensional logistic regression with DP is by Iyengar et al., who introduce
an improved objective perturbation method for maintaining DP with convex optimization [16]. This
required using L-BFGS, which is O(D) complexity for sparse data and produces completely dense
solution vectors w [20]. In addition, Wang & Gu attempted to train an algorithm on the RCV1 dataset
but with worse results and similar big-O complexity to Iyengar et al. [11]. While Jain & Thakurta
claim to tackle the URL dataset with 20M variables, their solution does so by sub-sampling just
0.29% of the data for training and 0.13% of the data for validation, making the results suspect and

2

non-scalable [21]. Lastly, a larger survey by Jayaraman & Evans shows no prior work considering
the sparsity of DP solutions and all other works tackling datasets with less than 5000 features [22]. In
contrast, our work does no sub-sampling and directly takes advantage of dataset sparsity in training
high-dimensional problems. Our use of the Frank-Wolfe algorithm also means our solution is sparse,
with no more than T non-zero coefficients for T iterations.

In addition to no DP regression algorithm handling sparse datasets, we cannot find literature that
improves upon the O(D) dependency of Frank-Wolfe on sparse data. Many prior works have noted
this dependence as a limit to its scalability, and column sub-sampling approaches are one method
that has been used to mitigate that cost [23, 15, 24]. Others have looked at distributed Map-Reduce
implementations [25] or adding momentum terms [26] as a means of scaling the Frank-Wolfe
algorithm. However, our method is the first to address dataset sparsity directly within the Frank-Wolfe
algorithm, and can generally be applied to these prior works with additional derivations for new
steps. Other methods that apply to standard regression, use the L2 penalty [27, 28] would require
modification to use our approach. Similarly, pruning methods [29] may require adaption to account
for the privacy impact.

Of particular note is [30] which tackles sub-linear scaling in the number of rows N when N > D,
but is primarily theoretical. Their work is the first to introduce the idea of “queue maintenance” that
we similarly leverage in this work. Despite a conceptually similar goal of using a priority queue to
accelerate the algorithm, [30] relies on maximum inner product search, where our queues are of a
fundamentally different structure.

To the best of our knowledge, the COPT library is the only Frank-Wolfe implementation that makes
any effort to support sparse datasets but is stillO(D) iteration complexity, so we base our comparison
against its approach [31]. No DP regression library we are aware of supports sparse datasets [32].

3 Methods

Throughout this section, sparsity refers to an algorithm’s awareness and efficiency of handling input
data which contains mostly zero values. We will first review the only current method for using Frank-
Wolfe with sparse data and establish its inefficiency. We will then detail how to produce a generic
framework for a sparse dataset efficient Frank-Wolfe algorithm using a queuing structure to select the
next coordinate update. Having established a sparse friendly framework, we will show how to obtain
O(NSc + T∥w∗∥0 logD + TSrSc) complexity for the non-private Frank-Wolfe algorithm by using
a Fibonacci heap, where w∗ is the solution at convergence. Then we replace the Fibonacci heap with
a sampling structure to create a DP Frank-Wolfe algorithm with O(NSc + T

√
D logD + TSrSc)

complexity.

3.1 Frank-Wolfe Iterations in sub-O(D) Time
Algorithm 1 Standard Sparse-Aware Frank-
Wolfe

1: w0 ← 0
2: ȳ← X⊤y O(NSc)
3: for t = 1 to T − 1 do
4: v̄t ← Xwt O(NSc)
5: q̄t ← ∇L(v̄t) O(N)
6: z̄t ← X⊤q̄t O(NSc)
7: αt ← z̄t − ȳ O(D)
8: j ←

argminj

∣∣∣∣α(j)
t + Lap

(
λL
√

8T log 1
δ

Nϵ

)∣∣∣∣
O(D)

9: dt = −wt O(D)

10: d
(j)
t ← d

(j)
t − λ · sign

(
α
(j)
t

)
O(1)

11: gt = −⟨αt,dt⟩ O(D)
12: ηt =

2
t+2 O(1)

13: wt+1 = wt + ηtdt O(D)
14: end for
15: Output wT

The only work we could find of any sparse-input
aware Frank-Wolfe implementation is the COPT li-
brary, which contains two simple optimizations: it
pre-computes a re-used dense vector (i.e., all values
are non-zero) and it uses a sparse matrix format for
computing the vector-matrix product Xw [31]. The
details are abstracted into Algorithm 1, where each
line has a comment on the algorithmic complexity of
each step. Note to make the algorithm DP, we have

added a +Lap
(

λL
√

8T log(1/δ)

Nϵ

)
to draw noise from

a zero-mean Laplacian distribution with the specified
scale, where λ is the constraint parameter and L is the
L1−Lipschitz constant of the loss function L(·). If
a non-private Frank-Wolfe implementation is desired,
this value can be ignored.

In this and other pseudo-codes, we explicitly write
out all intermediate computations as they are impor-

3

tant for enabling sparse updates. ȳ is an intermediate
variable for the labels in the gradient of a linear problem that is pre-computed once and reused. z̄ is a
temporary variable. q̄ and α are the gradients with respect to each row and column respectively. v̄
is the dot product of each row with the weight vector, and d is the update direction. The iteration
subscript t will be dropped when unnecessary for clarity. The superscript (j) denotes updating the
j’th coordinate of a vector and leaving others unaltered.

While lines 2, 4, and 6 of the algorithm exploit the sparsity of the data, this only reduces the
complexity to O(NSc) plus an additional dense O(D) work for lines 7 through 13 and O(N) work
for line 5. This results in a final complexity of O(TNSC + TD). For high dimensional problems,
especially when N ≪ D, this is problematic in scaling up a Frank-Wolfe based solver.

To derive a Frank-Wolfe algorithm that is more efficient on sparse datasets, we will assume there is
an abstract priority queuing structure Q that returns the next coordinate to update j for each iteration.
We will detail how to design a Q to use this algorithm in non-private and DP cases in the following
two sections.

Sparse wt Updates Algorithm 2 Fast Sparse-Aware Frank-Wolfe
for Linear Models

1: w← 0
2: wm ← 1
3: g̃ ← 0
4: ȳ← X⊤y O(NSc)
5: scale ← LNϵ

2λ
√

8T log(1/δ)

6: Q ← Priority Queue or Sampling Algo-
rithm

7: for t = 1 to T − 1 do
8: if t = 1 then
9: v̄← Xw O(NSc)

10: q̄← ∇L(v̄) O(N)
11: z̄← X⊤q̄ O(NSc)
12: α← z̄− ȳ O(D)
13: Q.add(j, |α(j)| · scale) ∀ j ∈
{1, . . . , D} O(D)

14: end if
15: j ← Q.getNext() Select coordinate

to update
16: d̃← −λ · sign

(
α(j)

)
O(1)

17: gt ← g̃ − d̃ · α(j) O(1)
18: ηt =

2
t+2 O(1)

19: wm ← wm(1− ηt)

20: w(j) ← w(j)ηtd̃/wm

21: g̃ ← g̃(1− ηt) + ηtd̃α
(j)

22: for all rows i of X with feature j do
O(Sr)

23: v̄(i) ← v̄(i) + ηtd̃ ∗X[i, j]/wm O(1)
24: γ ← ∇L(wm · v̄(i))− q̄(j) O(1)
25: q̄(j) ← q̄(j) + γ O(1)
26: α← α+ γ ·X[i, :] O(Sc)
27: g̃ ← g̃ + γ ·X[i, :]⊤w · wm O(Sc)
28: end for
29: Q.update(k, |α(k)| · scale) ∀ k gradi-

ents updated
30: end for
31: Output w

In line 13 of Algorithm 1, if we ignore the change to
coordinate j of dt, we can write wt+1 = wt − ηtwt,
which can be re-written as wt+1 = (1 − ηt)wt. If
we represent the weight wt+1 = w · wm with a
co-associated multiplicative scalar wm, we can alter
wm ← wm · (1− ηt) to have the same effect as alter-
ing all D variables implicitly. Then the jth coordinate
can be updated individually, allowing line 13 of Al-
gorithm 1 to run in O(1) time. We will use the same
trick to represent v̄t = v̄ · wm as it has the same
multiplicative scale.

Sparse α and v̄ Updates

The dot product scores v̄t and column gradients αt

are intrinsically connected in their sparsity patterns.
When the jth value of wt is altered, multiple values of
v̄t change, which propagates changes to the gradients
αt. However, the elements {i} of v̄t that change are
only those where rows {i} in X use feature j. Let d̃j
represent a perturbation to the j’th update direction.
Each row i that uses the j’th feature will then be alter
the variable v̄(i) by −ηtd̃X[i, j]. This lets us handle
line 10 sparsely.

Each row {i} that changes in v̄t propagates to the
values in q̄. We can represent the change in gradient
value between iterations as γ, which can then be used
to sparsely update the α values by noting that X⊤q̄
would change only by the non-zero columns of X[i, :].
So we can compute the update α by γ ·X[i, :]. By
updating α directly, we do not need to account for
the contribution of ȳ after the first iteration.

Sparse gt Updates

The final variable of interest is the Frank-Wolfe con-
vergence gap gt = −α⊤

t dt. Instead of recomputing
this every iteration, we can keep a base value g̃ that
is altered based on both of the prior two insights.
When wm is updated, we re-scale g̃ by (1 − ηt) and add ηtd̃α

(j), the change in the dot product

4

−α⊤
t dt caused by just the jth coordinate update. After the sparse α updates, g̃ is again updated by

γX[i, :]⊤w · wm.

Fast Frank-Wolfe Framework

The final procedure that forms the foundation for our results is given in Algorithm 2. The scale
variable holds the noise parameter required for DP and can be ignored for non-private training. Lines
6, 13, 15, and 30 require an abstract priority queue that is populated with values proportional each
feature’s gradient. This mechanism is different in the non-private and private cases, and we will detail
them in the following two sections.

The first iteration of Algorithm 2 performs the same calculations as Algorithm 1, but for all subsequent
iterations, values will be updated in a sparse fashion.

Lines 16-21 update the multiplicative wm variables and perform the single coordinate updates to w
and g̃, all taking O(1) time to complete. Lines 22-29 handle the updates for α and v̄, which requires
looping over the rows that use feature j, which we expect to haveO(Sr) complexity. Within the loop,
we use one row of the matrix to perform a sparse update which we expect to have O(Sc) complexity.
The gradients α(k) that get updated by this loop are updated in the priority queue Q 2 in O(1) time
per update, so they do not alter the final complexity. The final complexities of our algorithm are now
dependent on the complexity of Q.getNext(), which will differ in the non-private and private cases.

3.2 Algorithmically Efficient Non-Private Frank-Wolfe

We first analyze the complexity of the non-private Frank-Wolfe algorithm, though our ultimate goal
is to make the private case more efficient. The algorithm we detail in the non-private case will be
of superior big-O complexity and perform significantly less FLOPs than the standard Frank-Wolfe
implementation but will not be faster in practice due to constant factor overheads which we will
explain.

Algorithm 3 Fibonacci Heap Frank-Wolfe
Queue Maintenance

1: function GETNEXT()
2: j ← −1 Assume

∣∣α(−1)
∣∣ returns −∞

3: repeat
4: c← Q.pop() O(logD)
5: if

∣∣α(c)
∣∣ > ∣∣α(j)

∣∣ then
6: j ← c
7: end if
8: until

∣∣α(j)
∣∣ > |Q.peekPriority()|

9: Re-insert removed items c··· using prior-
ities

∣∣α(c···)
∣∣

10: Output j
11: end function

12: function UPDATE(i, v)
13: vcur ← Current priority of item i
14: if −vcur > −v then Min-Heap
15: Q.decreaseKey(i, v) O(1)
16: end if
17: end function

The primary insight in building an algorithmically-
faster non-private algorithm is to use a Fibonacci
Heap, which allows for O(logD) removal complex-
ity and amortized O(1) insertion and decreaseKey
operations. We use the negative magnitude as the key
in the min-heap. Our insight is that we can decrease
a key j whenever |α(j)| increases, and ignore cases
where |α(j)| decreases. This means the negative pri-
ority is an upper bound on true gradient magnitude.
This is favorable because the vast majority of updates
to the queue are intrinsically of a magnitude too small
to be selected (hence why the solution is sparse) and
so even with an inflated magnitude are never top of
the queue.

These stale gradients will cause some items to reach
the top of the queue incorrectly, which is easy to
resolve as detailed in Algorithm 3. The current item
c is popped off the queue, and compared against the
current best coordinate j. This loop continues until
the top of the queue has a smaller priority than the
current gradient magnitude α(j). Because the stale
magnitude can only be larger than the true gradient, once we satisfy this condition it must be the case
that no item in the queue can have a higher priority. Thus, the procedure is correct.

The number of items we expect to have to consider must be proportional to the number of non-zero
coefficients in the weight vector. This gives a final complexity of getNextO(∥w∗∥0) for the number
of non-zeros in the final solution, multiplied by the O(log(D)) cost per pop() call, giving a final
complexity of O(NSc + T∥w∗∥0 logD + TSrSc).

2There are multiple ways to implement this, but we find a naïve re-iteration over the loop to update based on
the final values the fastest due to reduced memory overheads.

5

While this is of superior algorithmic complexity compared to the standard Frank-Wolfe implementa-
tion, it has been long known that Fibonacci heaps have high constant-factor overheads that prevent
their practical use [33, 34]. We still find the result useful in being the first to demonstrate a faster
iteration speed, as well as a deterministic case to verify the correctness of our approach. For this
reason we will use Algorithm 3 to show that our method converges at the same rate and with fewer
FLOPs compared to the standard Frank-Wolfe implementation, as it does not suffer from the ran-
domness required for differential privacy3. Our concern about this inefficiency is limited, as many
faster algorithms exist for non-private LASSO regression that are orders of magnitude faster than
using Frank-Wolfe [35, 36, 37], so other tools can suffice. However, no tools for high-dimensional
and sparse DP LASSO regression exist except for the Frank-Wolfe method, which we make more
efficient in the next section.

3.3 Algorithmically Efficient Differentially Private Frank-Wolfe

Algorithm 4 Big-Step Little-Step Exponential Sampler
1: function GETNEXT()
2: j ← 0
3: o← exp(v(j) − zΣ)

4: logTw ← logU(0,1)
expv(i)−zΣ

5: c← 0
6: while c < N do
7: Xw ← logU(0,1)

logTw

8: while exp
(
c(c mod ⌊

√
N⌋) − zΣ

)
−o < Xw do

9: Xw ← Xw−(exp
(
c(c mod ⌊

√
N⌋) − zΣ

)
−o)

10: o← 0
11: c← ⌊

√
N⌋ − c mod ⌊

√
N⌋

12: end while
13: while exp

(
v(c) − zΣ

)
< Xw do

O(
√
N logN)

14: Xw ← Xw − exp
(
v(c) − zΣ

)
15: o← o+ exp

(
v(c) − zΣ

)
16: c← c+ 1
17: end while
18: if c < N then
19: j ← c
20: c← c+ 1
21: tw ← exp

(
exp

(
v(j) − zΣ

))
· logTw

22: logTw ← logU(tw,1)

exp (v(j)−zΣ)

23: if j mod ⌊
√
N⌋ ≠ 0 then

24: o← 0
25: else
26: o← o+ exp

(
v(j) − zΣ

)
27: end if
28: end if
29: end while
30: end function
31: function UPDATE(i, v)
32: vcur ← current priority of item i
33: k ← i mod ⌊

√
N⌋

34: c(k) ← c(k) + log
(
1− evcur−c(k)

+ ev−c(k)
)

35: zΣ ← zΣ + log (1− evcur−zΣ + ev−zΣ)
36: end function

For our DP Frank Wolfe algorithm, we con-
vert from the Laplacian mechanism orig-
inally used by Talwar et al. to the Ex-
ponential Mechanism [38]. Rather than
adding noise to each gradient and selecting
the maximum, in the exponential mecha-
nism each coordinate j is given a weight
∝ exp

(
ϵu(j)
2∆u

)
where u(j) is the score of

the jth item and ∆u is the sensitivity [39].

This poses two challenges:

1. We need to select a weighted ran-
dom sample from D options in
sub-O(D) time to pick the corrdi-
nate j to maintain the DP of the
exponential mechanism.

2. We need to do this while avoiding
the numeric instability of raising a
gradient to an exponential, which
will overflow for relatively small
gradient magnitudes.

We tackle both of these issues by adapting
the A-ExpJ algorithm of [40], and use their
naming conventions to make comparison
easier. This algorithm works on a stream
of items with weights wi, and in O(1)
space can produce a valid weighted sample
from the stream. It does so by computing
a randomized threshold Tw and process-
ing samples until the cumulative weights∑

i wi > Tw, at which the final item in
the sum becomes the new sample. A new
value of Tw is computed, and the process
continues until the stream is empty. This
process requires generating only O(logD)
random thresholds for a stream of D items.

We exploit the fact that we have a known
and fixed set of D items to develop a new
version of this algorithm that can be up-
dated in constant time, is numerically sta-

3We note that there can be mild disagreement on update order caused by numerical differences in brute-force
recalculation of Algorithm 1 and the updates of Algorithm 2, but we observe no issues with this.

6

ble for a wide range of weights, and can draw a new sample in O(
√
D logD) time. The key idea is

to form large groups of variables and keeping track of their collective weight. If the group’s weight
is smaller than Tw, then the entire group can be skipped to perform a “Big-Step”. If the group’s
weight is larger than Tw, then the members of the group must be inspected individually to form
“Little-Steps”. For this reason we term our sampler the “Big-Step Little-Step” sampler, and this
procedure is shown in Algorithm 4.

The scale of gradients can change by four or more orders of magnitude due to the evolution of the
gradient during training and the exponentiation of the Exponential Mechanism. For this reason, all
logic is implemented at log scale, and a total log-sum-weight zΣ is tracked. Every exponentiation of
a log-weight then subtracts this value, performing the log-sum-exp trick to keep the sample weights
in a numerically stable range4

Similarly, each group has a group log-sum weight, and we denote the vector of the group weights as
c. There are

√
D groups so that each group has

√
D members. On lines 34 and 35 of Algorithm 4,

a log-sum-exp update is used to update the group sum c(k) and total sum zΣ (which are already
log-scale since there was no exponentiation on line 30 of Algorithm 2). In both cases we always
expect the group sum to be larger, and so we use c(k) and zΣ as the maximal values to normalize by
in each update. Lines 31 and 32 select the “Big-Step” group to update for the change in weight of the
i’th item.

Lines 8-12 and 13-17 perform the same loop at two different scales. 8-12 perform big steps over
groups, and must handle that the starting position could be in the middle of a group from a previous
iteration, making it a partial group. For this reason, there is a “group offset” o that subtracts the
weight of items already visited in the group. Once a Big-Step is made, on line 11 the position is
incremented by the group size modulo the current position, so that each step starts at the beginning
of the next group regardless of starting position, handling the case of starting from a previous little
step’s location. Then lines 13-17 perform little steps within a group, and it is known that a new item
must be found in the little group, otherwise, lines 8-12 would have repeated due to having a sum
smaller than Tw.

The remainder of lines 2-5 and 18-30 work as the standard A-ExpJ algorithm, except each calculation,
is done at log-scale or exponentiated if an item is needed at a non-log scale, for example on line 215.

Each of the log(D) random variates needed by Algorithm 4 corresponds to the selection of a new
current sample. In the worst cases, each of these samples will belong to a different group, necessitating
exploring O(logD) groups each of size

√
D by construction, giving a total sampling complexity of

O(
√
D logD). Just as with the Fibonacci Heap, the update procedure is O(1) per update, and so the

final DP-FW complexity becomes O(NScT
√
D logD + TSrSc). As we will demonstrate in our

results, this provides significant speedups over the standard Frank-Wolfe for sparse datasets. This is
because, by design, the Algorithm 4 procedure is very cache friendly, performing linear scans over√
D items at a time making pre-fetching very easy, and thus has only O(logD) cache-misses when

performing Little-Step transitions.

4 Results Table 2: Datasets used for evaluation. We focus on
cases that are high-dimensional and sparse.

Dataset N D

RCV1 20,242 47,236
20 Newsgroups.Binary “News20" 19,996 1,355,191
Malicious URLs, “URL" 2,396,130 3,231,961
Webb Spam Corpus, “Web" 350,000 16,609,143
KDD2010 (Algebra), “KDDA" 8,407,752 20,216,830

Having derived a sparsity-aware framework for
implementing Frank-Wolfe iterations in time
proportional to the sparsity of the data, we will
now demonstrate the effectiveness of our results.
Since our goal is to support faster training with
sparse datasets, we focus on high-dimensional
problems listed in Table 2 where D ≥ N . Note that to the best of our knowledge, the RCV1 dataset at

4Very small weights will still underflow, but by definition this happens when their probability to be selected
is several orders of magnitude lower and thus are astronomically unlikely to be chosen anyway. Adding a
small 10−15 value guarantees a chance to be selected and maintains DP via technically adding more noise than
necessary.

5We note that the double exponentiation on this line is correct and numerically stable. The first exponentiation
will produce a value in the range of [0, 1] for the second exponentiation to use per the A-ExpJ algorithm

7

D = 47k is the highest-dimensional dataset any prior work has used to train a DP logistic regression
model [16], and its D is 428× smaller than the largest D we consider.

Our results will first focus on the non-private Frank-Wolfe due to its deterministic behavior and clear
convergence criteria via the Frank-Wolfe gap gt

6. This will allow us to show clearly that we reduce
the total number of floating point operations per second (FLOPs) required, though we note that in
practice the runtime remains similar due to cache inefficiency.

After establishing that Algorithm 2 requires fewer FLOPs, we turn to testing the DP version leveraging
our Big-Step Little-Step Sampler Algorithm 4, showing speedups ranging from 10× to 2, 200× that
of the standard DP Frank-Wolfe algorithm when training a model on sparse datasets.

Due to the computational requirements of running all tests, we fix the total number of iterations
T = 4, 000 and maximum L1 norm for the Lasso constraint to be λ = 50 in all tests across all
datasets. This value produces highly accurate models in all non-private cases, and the goal of our
work is not to perform hyper-parameter tuning but to demonstrate that we have taken an already
known algorithm with established convergence rates and made each iteration more efficient. All
experiments were run on a machine with 12 CPU cores (though only one core was used), and 128GB
of RAM. The total runtime for all experiments took approximately 1 week and exploring larger
datasets was limited purely by insufficient RAM to load larger datasets in memory. Our code was
written in Java due to the need for explicit looping, and implemented using the JSAT library [36].
When comparing Algorithm 1 and our improved Algorithm 2, the latter will be prefixed with “-Fast”
in the legend to denote the difference.

4.1 Non-Private Results

We first begin by looking at the convergence gap gt over each iteration to confirm that we are
converging to the same solution, which is shown in Figure 1. Of note, it is often impossible to
distinguish between the standard and our fast Frank-Wolfe implementations because they take the
exact same steps. Differences that occur are caused by nearly equal gradients between variables and
are observable via inspection of gt. In all cases, the solutions returned achieve identical accuracy on
the test datasets.

100 101 102 103
10−4

10−2

100

102

Iteration

C
on

ve
rg

en
ce

G
ap

g t

Alg. 1

New20 URL RCV1 KDDA

Web

100 101 102 103
10−4

10−2

100

102

Iteration

Alg. 2 + Alg. 3

New20-Fast URL-Fast RCV1-Fast KDDA-Fast

Web-Fast

Figure 1: Convergence gap gt (y-axis, same scale for both plots) as the number of iterations increases
(x-axis), showing that our Algorithm 2 (dotted lines) converges to the same solutions as Algorithm 1,
with minor differences due to numerical floating point changes (i.e., both plots look nearly identical,
the desired behavior). This shows our new approach maintains solution quality.

In Algorithm 2, the updating in differences can cause catastrophic cancellation due to the zig-zag
behavior of Frank-Wolfe iterates (updating the same coordinate j multiple times with differing

6In the DP case gt is especially noisy and hard to leverage meaningfully, often starting lower and increasing.
This makes it a non-informative measure

8

signs on each update), resulting in similar magnitude sign changes that result in slightly different
results numerically compared to re-computing the entire gradient from scratch. Choosing an adaptive
stepsize ηt may alleviate this issue in future work.

100 101 102 103
100

101

102

103

Iteration

FL
O

Ps
(A

lg
1.

)/
FL

O
PS

(A
lg

2
&

3)

New20 URL RCV1 KDDA

Web

Figure 2: The y-axis (larger is better) shows how
many times fewer FLOPs our Alg. 2 + Alg 3 needs
compared to the original Frank-Wolf (Alg. 1). The
x-axis is how many iterations into training have
been performed. Note that in all cases the dif-
ference is difficult to differentiate reaching 1,000
iterations as we reduce the number of FLOPs by
orders of magnitude per iteration.

Next, we empirically validate the O(∥w∗∥0)
number of times we must query the Fibonacci
Heap for selecting the next iterate. The ratio of
the number of times we must pop an item from
the Heap against the value of ∥w∗∥0 is plotted
over training iterations in Appendix Figure 3.
We can see in all cases the ratio is ≤ 3, and so
few calls to the heap are necessary.

Finally, we look at the convergence rate gt as
a function of the number of FLOPs required to
obtain it, as shown in Figure 2. It is clear that we
avoid orders of magnitude more operations than
a naïve implementation of Frank-Wolfe would
normally require, providing the foundation for
our faster DP results in the next section. Unfor-
tunately, the Fibonacci Heap has poor caching
behavior, resulting in no meaningful difference
in runtime for the sparse case.

4.2 Differentially Private Results

Having established that Algorithm 2 avoids
many floating point operations by exploiting
sparseness in the training data, we now turn to
training DP versions of the normal and our faster
Frank-Wolfe algorithms. The total speedup in
the runtime of our Algorithm 2 over Algorithm 1
is shown in Table 3. As can be seen, our results range from a 10× speedup for the URL dataset at the
low end, up to a 2, 200× speedup for the KDDA and URL datasets at ϵ = 0.1. In addition we ablated
using Algorithm 2 with the brute force noisy-max as an ablation, which shows smaller speedups.
This demonstrates that the combination of Algorithms 2 and 4 are necessary to get our results.

Table 3: How many times faster our Algorithm 2+Algorithm 4 over the standard FW implementation.
In addition, just Algorithm 2 using the noisy-max sampling is included as an ablation, showing that
both Alg. 4 & 2 combined are necessary to obtain maximum speed.

ϵ1 ϵ0.1

Dataset Alg. 2+4 Alg. 2 Alg. 2+4 Alg. 2

News20 81.69 17.83 93.51 19.05
URL 9.99 1.02 2451.80 95.58
RCV1 19.44 1.36 20.37 1.82
Web 581.25 21.24 537.65 20.79
KDAA 1239.64 206.50 2245.56 368.96

We note that the speedup of our method is a function of the sparsity of informative and non-informative
features. This is more noticeable on the URL dataset which jumps from a 10× speedup to a 2, 400×
speedup when moving from ϵ = 1 down to ϵ = 0.1. This is because the URL dataset has 200 dense
features that are highly informative, and the remaining features are all sparse. When a feature is dense,
there is no advantage to using Alg. 2 & 4, and so no benefit is obtained. At the lower noise level of
ϵ = 1, the denser (and thus slower) informative features are selected more frequently, resulting in
longer total runtime. As the noise increase with ϵ = 0.1, the sparser non-informative features are
selected more often, which reduces the average amount of work per update. This phenomena occurs
in most datasets as denser features intrinsically have more opportunities to be discriminative, but is
uniquely pronounced on the URL dataset.

9

This is ultimately a desirable property of our method, as large values of ϵ > 10 are effectively not
private, and so faster methods of non-private training should be used instead. Our Algorithm 2 with
the Big-Step-Little-Step Sampler of Algorithm 4 will increase in its effective utility as the desired
amount of privacy increases.

Table 4: Even at high privacy ϵ = 0.1 we obtain non-trivial Accuracy and AUC on most datasets by
using T = 400, 000 iterations. Because the datasets are so high dimensional, we still obtain sparse
solutions (rightmost column).

Dataset Accuracy (%) AUC (%) Sparsity (%)

RCV1 90.53 97.29 5.81
News20 92.37 98.65 75.19
URL 73.23 82.60 89.44
Web 75.42 92.51 99.90
KDDA 85.25 53.31 85.30

As our final test to highlight the utility and importance of our approach, we re-run each dataset using
λ = 5000 with T = 400, 000 iterations at a real-world useful ϵ = 0.1. As shown in Table 4 this
results in non-trivial accuracy and AUC for all datasets but KDDA, and is only possible by performing
hundreds of thousands of training iterations. Iyengar et al. [16] show the best prior results at ϵ = 0.1
for RCV1 64.2% accuracy, and in fact, we trail the non-private accuracy of 93.5% by only 3% points
(note as well that their solution has 0% sparsity). This is made possible by simply performing far
more iterations, which is computationally intractable with prior methods. We also note that we obtain
significant sparsity on the higher dimensional datasets News20, URL, Web, and KDDA due to the fact
that T < D for each of them, and the Frank-Wolfe will by construction have a number of non-zero
coefficients ≤ T .

5 Conclusion

We have developed the first DP training procedure that, for a sparse input dataset, obtains a training
complexity that is sub-linear in the total number of features D at O(NSc + T

√
D logD + TSrSc).

Testing on multiple high-dimensional datasets, we obtain up to 2, 200× speedup, with increasing
efficiency as the value of ϵ decreases. Using this speed efficiency, we show non-trivial accuracy and
privacy at ϵ = 0.1 for 352× more features than ever previously attempted and improve accuracy
compared to prior work by an absolute 26.3%.

References
[1] Cynthia Dwork. Differential privacy. In 33rd International Colloquium on Automata, Languages

and Programming, part II (ICALP 2006), volume 4052 of Lecture Notes in Computer Science,
pages 1–12, July 2006.

[2] Ashwin Machanavajjhala, Daniel Kifer, John Abowd, Johannes Gehrke, and Lars Vilhuber.
Privacy: Theory meets Practice on the Map. In 2008 IEEE 24th International Conference
on Data Engineering, pages 277–286, April 2008. doi: 10.1109/ICDE.2008.4497436. ISSN:
2375-026X.

[3] Ryan Rogers, Subbu Subramaniam, Sean Peng, David Durfee, Seunghyun Lee, Santosh Kumar
Kancha, Shraddha Sahay, and Parvez Ahammad. LinkedIn’s Audience Engagements API: A
Privacy Preserving Data Analytics System at Scale, November 2020. URL http://arxiv.
org/abs/2002.05839. arXiv:2002.05839 [cs].

[4] Úlfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova. RAPPOR: Randomized Aggregatable
Privacy-Preserving Ordinal Response. In Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security, CCS ’14, pages 1054–1067, New York, NY,
USA, November 2014. Association for Computing Machinery. ISBN 978-1-4503-2957-6. doi:
10.1145/2660267.2660348. URL https://doi.org/10.1145/2660267.2660348.

10

http://arxiv.org/abs/2002.05839
http://arxiv.org/abs/2002.05839
https://doi.org/10.1145/2660267.2660348

[5] Amol Khanna, Vincent Schaffer, Gamze Gürsoy, and Mark Gerstein. Privacy-preserving model
training for disease prediction using federated learning with differential privacy. In 2022 44th
Annual International Conference of the IEEE Engineering in Medicine & Biology Society
(EMBC), pages 1358–1361. IEEE, 2022.

[6] Kunal Talwar, Abhradeep Guha Thakurta, and Li Zhang. Nearly optimal private lasso. Advances
in Neural Information Processing Systems, 28, 2015.

[7] Raef Bassily, Cristobal Guzman, and Anupama Nandi. Non-euclidean differentially private
stochastic convex optimization. In Mikhail Belkin and Samory Kpotufe, editors, Proceedings of
Thirty Fourth Conference on Learning Theory, volume 134 of Proceedings of Machine Learning
Research, pages 474–499. PMLR, 15–19 Aug 2021.

[8] Hilal Asi, Vitaly Feldman, Tomer Koren, and Kunal Talwar. Private stochastic convex optimiza-
tion: Optimal rates in 1 geometry. In ICML, 2021. URL https://arxiv.org/abs/2103.
01516.

[9] Lijie Hu, Shuo Ni, Hanshen Xiao, and Di Wang. High dimensional differentially private
stochastic optimization with heavy-tailed data. In Proceedings of the 41st ACM SIGMOD-
SIGACT-SIGAI Symposium on Principles of Database Systems, PODS ’22, page 227–236, New
York, NY, USA, 2022. Association for Computing Machinery. ISBN 9781450392600. doi:
10.1145/3517804.3524144. URL https://doi.org/10.1145/3517804.3524144.

[10] Puyu Wang and Hai Zhang. Differential privacy for sparse classification learning. Neurocomput-
ing, 375:91–101, January 2020. ISSN 0925-2312. doi: 10.1016/j.neucom.2019.09.020. URL
https://www.sciencedirect.com/science/article/pii/S0925231219312822.

[11] Lingxiao Wang and Quanquan Gu. Differentially Private Iterative Gradient Hard Thresholding
for Sparse Learning. pages 3740–3747, 2019. doi: 10.24963/ijcai.2019/519. URL https:
//www.ijcai.org/proceedings/2019/519.

[12] Lingxiao Wang and Quanquan Gu. A knowledge transfer framework for differentially private
sparse learning. Proceedings of the AAAI Conference on Artificial Intelligence, 34(04):6235–
6242, April 2020. doi: 10.1609/aaai.v34i04.6090. URL https://doi.org/10.1609/aaai.
v34i04.6090.

[13] Daniel Kifer, Adam Smith, and Abhradeep Thakurta. Private Convex Empirical Risk Mini-
mization and High-dimensional Regression. In Proceedings of the 25th Annual Conference on
Learning Theory, pages 25.1–25.40. JMLR Workshop and Conference Proceedings, June 2012.
URL https://proceedings.mlr.press/v23/kifer12.html. ISSN: 1938-7228.

[14] Robert Tibshirani. Regression Shrinkage and Selection Via the Lasso. Journal of the Royal
Statistical Society, Series B, 58(1):267–288, 1994.

[15] Immanuel M. Bomze, Francesco Rinaldi, and Damiano Zeffiro. Frank–Wolfe and friends: a
journey into projection-free first-order optimization methods. 4OR, 19(3):313–345, September
2021. ISSN 1614-2411. doi: 10.1007/s10288-021-00493-y. URL https://doi.org/10.
1007/s10288-021-00493-y.

[16] Roger Iyengar, Joseph P. Near, Dawn Song, Om Thakkar, Abhradeep Thakurta, and Lun Wang.
Towards Practical Differentially Private Convex Optimization. In 2019 IEEE Symposium on
Security and Privacy (SP), pages 299–316, May 2019. doi: 10.1109/SP.2019.00001. ISSN:
2375-1207.

[17] Amol Khanna, Fred Lu, and Edward Raff. Sparse private lasso logistic regression. arXiv
preprint arXiv:2304.12429, 2023.

[18] K. S. Sesh Kumar and Marc Peter Deisenroth. Differentially Private Empirical Risk Minimiza-
tion with Sparsity-Inducing Norms, May 2019. URL http://arxiv.org/abs/1905.04873.
arXiv:1905.04873 [cs, stat].

11

https://arxiv.org/abs/2103.01516
https://arxiv.org/abs/2103.01516
https://doi.org/10.1145/3517804.3524144
https://www.sciencedirect.com/science/article/pii/S0925231219312822
https://www.ijcai.org/proceedings/2019/519
https://www.ijcai.org/proceedings/2019/519
https://doi.org/10.1609/aaai.v34i04.6090
https://doi.org/10.1609/aaai.v34i04.6090
https://proceedings.mlr.press/v23/kifer12.html
https://doi.org/10.1007/s10288-021-00493-y
https://doi.org/10.1007/s10288-021-00493-y
http://arxiv.org/abs/1905.04873

[19] Daniel Kifer, Adam Smith, and Abhradeep Thakurta. Private Convex Empirical Risk Mini-
mization and High-dimensional Regression. In Shie Mannor, Nathan Srebro, and Robert C
Williamson, editors, Proceedings of the 25th Annual Conference on Learning Theory, volume 23,
pages 25.1–25.40, Edinburgh, Scotland, 2012. JMLR Workshop and Conference Proceedings.
URL http://proceedings.mlr.press/v23/kifer12.html. Series Title: Proceedings of
Machine Learning Research.

[20] Dong C Liu and Jorge Nocedal. On the limited memory BFGS method for large scale
optimization. Mathematical Programming, 45(1):503–528, 1989. ISSN 1436-4646. doi:
10.1007/BF01589116. URL https://doi.org/10.1007/BF01589116.

[21] Prateek Jain and Abhradeep Guha Thakurta. (Near) Dimension Independent Risk Bounds for
Differentially Private Learning. In Proceedings of the 31st International Conference on Machine
Learning, pages 476–484. PMLR, January 2014. URL https://proceedings.mlr.press/
v32/jain14.html. ISSN: 1938-7228.

[22] Bargav Jayaraman and David Evans. Evaluating Differentially Private Machine Learning in Prac-
tice. In 28th {USENIX} Security Symposium ({USENIX} Security 19), pages 1895–1912, Santa
Clara, CA, August 2019. {USENIX} Association. ISBN 978-1-939133-06-9. URL https:
//www.usenix.org/conference/usenixsecurity19/presentation/jayaraman.

[23] Simon Lacoste-Julien, Martin Jaggi, Mark Schmidt, and Patrick Pletscher. Block-Coordinate
Frank-Wolfe Optimization for Structural SVMs. In Proceedings of the 30th International
Conference on Machine Learning, pages 53–61. PMLR, February 2013. URL https://
proceedings.mlr.press/v28/lacoste-julien13.html. ISSN: 1938-7228.

[24] Thomas Kerdreux, Fabian Pedregosa, and Alexandre d’Aspremont. Frank-Wolfe with Sub-
sampling Oracle. In Proceedings of the 35th International Conference on Machine Learn-
ing, pages 2591–2600. PMLR, July 2018. URL https://proceedings.mlr.press/v80/
kerdreux18a.html. ISSN: 2640-3498.

[25] Armin Moharrer and Stratis Ioannidis. Distributing Frank-Wolfe via Map-Reduce. Proceedings
of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18),
pages 5334–5338, 2018. doi: 10.24963/ijcai.2018/748. URL https://www.ijcai.org/
proceedings/2018/748.

[26] Bingcong Li, Alireza Sadeghi, and Georgios Giannakis. Heavy ball momentum for conditional
gradient. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan,
editors, Advances in Neural Information Processing Systems, volume 34, pages 21244–21255.
Curran Associates, Inc., 2021.

[27] Tyler LeBlond, Joseph Munoz, Fred Lu, Maya Fuchs, Elliott Zaresky-Williams, Edward Raff,
and Brian Testa. Probing the transition to dataset-level privacy in ml models using an output-
specific and data-resolved privacy profile. In Proceedings of the 16th ACM Workshop on
Artificial Intelligence and Security (AISec ’23), 2023.

[28] Fred Lu, Joseph Munoz, Maya Fuchs, Tyler LeBlond, Elliott Zaresky-Williams, Edward Raff,
Francis Ferraro, and Brian Testa. A general framework for auditing differentially private
machine learning. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh,
editors, Advances in Neural Information Processing Systems, volume 35, pages 4165–4176.
Curran Associates, Inc., 2022.

[29] Amol Khanna, Fred Lu, and Edward Raff. The challenge of differentially private screening rules.
In 2nd AdvML Frontiers Workshop at 40th International Conference on Machine Learning,
2023.

[30] Zhaozhuo Xu, Zhao Song, and Anshumali Shrivastava. Breaking the linear iteration cost barrier
for some well-known conditional gradient methods using maxip data-structures. In M. Ranzato,
A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan, editors, Advances in Neural
Information Processing Systems, volume 34, pages 5576–5589. Curran Associates, Inc., 2021.

[31] Fabian Pedregosa and Low Kian Seong. Openopt/Copt: V0.4, June 2018. URL https:
//zenodo.org/record/1283339.

12

http://proceedings.mlr.press/v23/kifer12.html
https://doi.org/10.1007/BF01589116
https://proceedings.mlr.press/v32/jain14.html
https://proceedings.mlr.press/v32/jain14.html
https://www.usenix.org/conference/usenixsecurity19/presentation/jayaraman
https://www.usenix.org/conference/usenixsecurity19/presentation/jayaraman
https://proceedings.mlr.press/v28/lacoste-julien13.html
https://proceedings.mlr.press/v28/lacoste-julien13.html
https://proceedings.mlr.press/v80/kerdreux18a.html
https://proceedings.mlr.press/v80/kerdreux18a.html
https://www.ijcai.org/proceedings/2018/748
https://www.ijcai.org/proceedings/2018/748
https://zenodo.org/record/1283339
https://zenodo.org/record/1283339

[32] Naoise Holohan, Stefano Braghin, Pól Mac Aonghusa, and Killian Levacher. Diffprivlib: The
IBM Differential Privacy Library, July 2019. URL http://arxiv.org/abs/1907.02444.
arXiv:1907.02444 [cs].

[33] Douglas W. Jones. An empirical comparison of priority-queue and event-set implementations.
Communications of the ACM, 29(4):300–311, April 1986. ISSN 0001-0782. doi: 10.1145/5684.
5686. URL https://doi.org/10.1145/5684.5686.

[34] Daniel H. Larkin, Siddhartha Sen, and Robert E. Tarjan. A Back-to-Basics Empirical Study of
Priority Queues. In 2014 Proceedings of the Meeting on Algorithm Engineering and Experi-
ments (ALENEX), Proceedings, pages 61–72. Society for Industrial and Applied Mathematics,
December 2013. doi: 10.1137/1.9781611973198.7. URL https://epubs.siam.org/doi/
abs/10.1137/1.9781611973198.7.

[35] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin. LIBLIN-
EAR: A Library for Large Linear Classification. The Journal of Machine Learning Research, 9:
1871–1874, 2008.

[36] Edward Raff. JSAT: Java Statistical Analysis Tool, a Library for Machine Learning. Journal
of Machine Learning Research, 18(23):1–5, 2017. URL http://jmlr.org/papers/v18/
16-131.html.

[37] Guo-Xun Yuan, Kai-Wei Chang, Cho-Jui Hsieh, and Chih-Jen Lin. A Comparison of Optimiza-
tion Methods and Software for Large-scale L1-regularized Linear Classification. The Journal of
Machine Learning Research, 11:3183–3234, 2010.

[38] Kunal Talwar, Abhradeep Guha Thakurta, and Li Zhang. Nearly Optimal Private
LASSO. In Advances in Neural Information Processing Systems, volume 28. Curran
Associates, Inc., 2015. URL https://proceedings.neurips.cc/paper/2015/hash/
52d080a3e172c33fd6886a37e7288491-Abstract.html.

[39] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating Noise to Sensi-
tivity in Private Data Analysis. In Shai Halevi and Tal Rabin, editors, Theory of Cryptography,
Lecture Notes in Computer Science, pages 265–284, Berlin, Heidelberg, 2006. Springer. ISBN
978-3-540-32732-5. doi: 10.1007/11681878_14.

[40] Pavlos S. Efraimidis and Paul G. Spirakis. Weighted random sampling with a reser-
voir. Information Processing Letters, 97(5):181–185, March 2006. ISSN 00200190. doi:
10.1016/j.ipl.2005.11.003. URL https://linkinghub.elsevier.com/retrieve/pii/
S002001900500298X.

[41] Martin Jaggi. Revisiting frank-wolfe: Projection-free sparse convex optimization. In Interna-
tional Conference on Machine Learning, pages 427–435, 2013.

[42] Shai Shalev-Shwartz. Online learning and online convex optimization. Foundations and Trends
in Machine Learning, 4(2):107–194, 2012.

[43] Raghav Bhaskar, Srivatsan Laxman, Adam Smith, and Abhradeep Thakurta. Discovering
frequent patterns in sensitive data. In Proceedings of the 16th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’10, page 503–512, New York,
NY, USA, 2010. Association for Computing Machinery. ISBN 9781450300551. doi: 10.1145/
1835804.1835869.

13

http://arxiv.org/abs/1907.02444
https://doi.org/10.1145/5684.5686
https://epubs.siam.org/doi/abs/10.1137/1.9781611973198.7
https://epubs.siam.org/doi/abs/10.1137/1.9781611973198.7
http://jmlr.org/papers/v18/16-131.html
http://jmlr.org/papers/v18/16-131.html
https://proceedings.neurips.cc/paper/2015/hash/52d080a3e172c33fd6886a37e7288491-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/52d080a3e172c33fd6886a37e7288491-Abstract.html
https://linkinghub.elsevier.com/retrieve/pii/S002001900500298X
https://linkinghub.elsevier.com/retrieve/pii/S002001900500298X

A Additional Results

100 101 102 103

0

0.5

1

1.5

2

2.5

3

Iteration

Q
ue

ue
Po

ps
/∥

w
∗ ∥

0

New20-Fast URL-Fast RCV1-Fast KDDA-Fast

Web-Fast

Figure 3: The ratio of items popped from a Fibonacci Heap over the non-zeros in the final solution
(y-axis) over the number of iterations (x-axis) empirically demonstrates that Algorithm 3 does not
need to consider all D possible features to select the correct iterate.

109 1011 1013 1015 1017
10−4

10−2

100

102

FLOPS

C
on

ve
rg

en
ce

g t

New20 URL RCV1 KDDA

Web New20-Fast URL-Fast RCV1-Fast

KDDA-Fast Web-Fast

Figure 4: The number of floating point operations (x-axis) against the convergence gap gt (y-axis),
showing that Algorithm 2 (solid lines) reduces the required numerical steps by multiple orders of
magnitude over the original Frank-Wolfe Algorithm 1 (dashed lines).

B Proofs of Correctness

Because our method is a direct translation of Frank-Wolfe to equivalent mathematical steps, all prior
proofs apply to our version of the algorithm. We repeat/sketch the proofs here for further confidence
in the correctness of the method.

14

B.1 Utility/Error Bounds

We provide a proof sketch that our algorithm’s utility is near-optimal below which follows that of
[38].

Let L be defined as in the paper: the Lipschitz constant of the loss function with respect to the L1

norm. Let S be the number of vertices of the constraint region, which we denote C. Let λ be the
scaling factor of the L1 ball to achieve the constraint region C. Then for a loss with upper bound ΓL

on the curvature constant as defined in [41], running Algorithm 2 for T =
Γ
2/3
L (nϵ)2/3

(Lλ)2/3
iterations, we

have

E[L(wpriv;D)]−min
w∈C
L(w;D) = O

(
Γ
1/3
L (Lλ)2/3 log(n|S|)

√
log(1/δ)

(nϵ)2/3

)
.

To prove this statement, we use Lemma 5 and Theorem 1 from [41]. Lemma 5 states that at each
step of the Frank-Wolfe algorithm, an inexact gradient can be used so long as its score is within κ
to that of the true minimum vertex. [38] computed the value of κ and showed that with probability
1 − ξ, this occurs over all steps. Then Theorem 1 in [41] stated that if Lemma 5 holds, an exact
bound on the overall loss holds. Thus it follows that with probability 1 − ξ, this statement holds.
Finally, [38] used standard learning theory arguments to convert the bound in probability to one in
expectation. Plugging in the desired value of T finishes the proof. Note that this proof is not affected
by our sparse-aware framework. Indeed, the algorithm presented in [38] is simply algorithm [41] in
our paper with dense calculations. (Lines 7-13 of our Algorithm 2 calculate scores for the exponential
mechanism, like line 3 in Algorithm 2 of [38]. Line 15 in our algorithm corresponds to line 4 of
Algorithm 2 in [38]. Lines 16-21 of our algorithm correspond to line 5 of Algorithm 2 in [38].) For
that reason, at every iteration, as our updates are equivalent to that of [38].

Note that ΓL can be upper bounded for logistic regression. See [17] for details.

Finally, using a fingerprinting codes argument, Theorem 3.1 of [38] showed that under weak condi-
tions, an optimal DP-learning algorithm A has

E[L(A(D);D)−min
w∈C
L(w;D)] = Ω̃

(
1

n2/3

)
.

For this reason, the utility bound provided above is nearly-optimal.

B.2 Privacy Accounting

Here we prove that our algorithm is (ϵ, δ)-DP. First, note that the sensitivity of each update step is
Lλ
n , where L is the Lipschitz constant of the loss function with respect to the L1 norm and λ is the

scaling factor of the L1 ball to achieve the constraint region C. This is done using Lemma 2.6 from
[42], in which we directly bound

|⟨s,∇L(w;D)⟩ − ⟨s,∇L(w;D′)⟩|

where s is any vertex of the C. Now that we know the sensitivity, we can use the advanced com-
position theorem for pure differential privacy to find that ϵ = 2ϵ′

√
2T log(1/δ). Rearranging,

ϵ′ = ϵ√
8T log(1/δ)

. Thus, composing T exponential mechanisms with privacy ϵ′ produces a final

result which is (ϵ, δ)-DP. In our algorithm, we use the Laplace distribution to implement the report
noisy maximum version of the exponential mechanism at every iteration [43]. Thus our algorithm is
(ϵ, δ)-DP.

15

	Introduction
	Related Work
	Methods
	Frank-Wolfe Iterations in sub-O(D) Time
	Algorithmically Efficient Non-Private Frank-Wolfe
	Algorithmically Efficient Differentially Private Frank-Wolfe

	Results
	Non-Private Results
	Differentially Private Results

	Conclusion
	Additional Results
	Proofs of Correctness
	Utility/Error Bounds
	Privacy Accounting

