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Abstract

End-to-end image/video codecs are getting competitive compared to traditional compression
techniques that have been developed through decades of manual engineering efforts. These
trainable codecs have many advantages over traditional techniques such as an easy adapta-
tion on perceptual distortion metrics and high performance on specific domains thanks to
their learning ability. However, current state-of-the-art neural codecs do not fully exploit
the benefits of vector quantization and the existence of the gradient of entropy in the de-
coding device. In this research, we propose leveraging these two properties to improve the
performance of off-the-shelf codecs. Firstly, we demonstrate that using non-uniform scalar
quantization cannot improve performance over uniform quantization. Thus, we suggest us-
ing a predefined optimal uniform vector quantization to improve performance. Secondly,
we show that the gradient of entropy available at the decoder side is correlated with the
gradient of the reconstruction error, which is not available at the decoder side. Thus, we
utilize the former as a proxy to enhance compression performance. Our experimental results
show that these approaches can save between 2-4% of the rate for the same quality across
various pre-trained methods.

1 Introduction

Lossy Image and video compression is a fundamental task in image processing which has become crucial
in the time of the pandemic and the increasing volume of video streaming. Thanks to the community’s
decades long efforts, traditional methods (e.g. VVC) have reached current state of the art rate-distortion
(RD) performance and dominate the current codecs market. Recently, end-to-end trainable deep models
have emerged with promising RD performances by learning the informative latents and modeling the latent
distribution. Even though deep learning based models clearly exceed many traditional techniques and sur-
pass human capability for some general computer vision tasks, they are only slightly better than the best
traditional codecs on single image compression according to our knowledge.

End-to-end deep compression methods typically refer to rate-distortion autoencoders (Habibian et al., 2019),
in which the latents are generated by jointly optimizing the encoder, decoder, and entropy model with a
rate-distortion loss function. For perceptual friendly compression, distortion based on a perceptual metric
can also be used in the loss function (Blau & Michaeli, 2019). These methods can be seen as a special case of
Variational Autoencoder (VAE) models as described in (Kingma & Welling, 2013), where the approximate
posterior distribution is a uniform distribution centered on the encoder’s outputs (latents) at training time
and has a fixed variance output distribution and trainable priors (Theis et al., 2017; Ballé et al., 2017). It
was shown that minimizing the evidence lower bound (ELBO) of this special VAE is equivalent to jointly
minimizing the mean square error (MSE) of the reconstruction and the entropy of the latents w.r.t the priors
(Ballé et al., 2018). All of the proposed models mainly differ in the way they model priors: using either
fully-factorized (Ballé et al., 2017), zero-mean Gaussian (Ballé et al., 2018), Gaussian (Minnen et al., 2018;
Minnen & Singh, 2020) or a mixture of Gaussian (Cheng et al., 2020), where some methods predict the
priors using an autoregressive schema (Minnen et al., 2018; Minnen & Singh, 2020; Cheng et al., 2020; Xie
et al., 2021; He et al., 2021) and some improve the priors through global and local context modeling (Qian
et al., 2021; Kim et al., 2022). These neural image codecs were extended to the video compression domain
by using two VAEs, one for encoding motion information and another one for encoding residual information
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in end-to-end video compression (Lu et al., 2019; Agustsson et al., 2020; Ladune & Philippe, 2022; Yılmaz
& Tekalp, 2021; Pourreza & Cohen, 2021; Li et al., 2021; 2022)

An important step in building a neural codec is the quantization of the latents before the entropy coding.
Nearly all of the mentioned prior state of the art models use a fixed bin-width uniform Scalar Quantization
(SQ). Although Vector Quantization (VQ) is theoretically better (Gersho & Gray, 2012), there have been
very few attempts to use VQ in neural codecs such as in (Agustsson et al., 2017; Zhu et al., 2022). However,
these attempts did not show improvement over SQ, which can be attributed to several reasons. Firstly, VQ
introduces extra trainable parameters for learning codeword centroids. Learning these parameters jointly
with all model parameters can introduce additional complexity at training time. Secondly, since quantization
is non-differentiable, a relaxation strategy (Bengio et al., 2013; Agustsson et al., 2017; Zhu et al., 2022) is
needed during training time, and the continuous relaxation of VQ is less efficient than that of SQ.

One of the main principle in general compression is to exploit all available information at the decoder to
reconstruct the data. Surprisingly, even though the gradients of the entropy w.r.t latents are available
at the decoder side, this information remains unused so far in the literature. Some similar works in the
literature attempted to improve the performance of the codec during encoding, for example by using specific
parameterization (Balcilar et al., 2022), or computationally heavy finetuning solutions (Yang et al., 2020;
Guo et al., 2021), either partially (Campos et al., 2019; Lu et al., 2020) or entirely (van Rozendaal et al.,
2021). However, all of these methods disregard the existence of the gradient of the entropy in decoding.

In this paper, we present two novel contributions aimed at leveraging the properties of learned latent repre-
sentations for compression. Firstly, we demonstrate that any kind of non-uniform scalar quantization cannot
improve performance compare to uniform scalar quantization, if the neural model is enough expressive. Thus,
we eliminate scalar quantization and propose to use uniform vector quantization over the latents. Since the
optimal uniform VQ map is known up to some certain dimensions, learning partitioning is not needed. This
contribution can be applied even without re-training the model if the original model is trained for uniform
SQ, which is often the case for neural codecs.

Secondly, we apply the Karush–Kuhn–Tucker (KKT) conditions on the neural codec which has not been done
to the best of our knowledge. These conditions reveal a connection between the gradient of the reconstruction
error (unavailable at the decoder side) and the gradient of the entropy (available at the decoder side). This
finding motivated us to test correlations between these two gradients. Since we find strong correlation
between two gradients for various neural codecs, we use the available one as a proxy for the unavailable
one to improve the performance of neural codecs without requiring re-training. Our two contributions are
generic enough (not depending on the encoder-decoder architecture) to achieve a rate saving of 2-4% at the
same quality for several neural codec architectures.

2 Problem statement and State of the Art

As shown in Figure 1, given an input color image x ∈ Rn×n×3 to be compressed (the image can be considered
square without any loss of generality), the neural codec learns a non-linear encoder ga(x; ϕ), parameterized
by the weights ϕ. The output of the encoder, y ∈ Rm×m×o, is called the main embeddings (or main latents)
of the image. The latent representation is then quantized as ỹ = Q(y) to obtain the main codes of the image.
The dequantization block ŷ = Q−1(ỹ) is used to obtain reconstructed main latents ŷ at the decoding side
1. The decompressed image x̂ ∈ Rn×n×3 is obtained by the learned deep decoder with x̂ = gs(ŷ; θ). The
neural codec is learned to minimize two objectives simultaneously, namely the distortion between x and x̂,
and the length of the bitstream needed to encode ỹ. The codes are losslessly encoded into a bitstream using
an entropy encoder such as range asymmetric numeral systems (RANS) Duda (2009). RANS requires the
probability mass function (PMF) of each code, and which is also learned at training time. Since RANS is
asymptotically optimal, the lower bound of bitlength according to Shanon’s entropy theorem can be used
instead of experimental bitlength from RANS in order to make the bitlength objective differentiable. Thus,

1The dequantization stage is sometimes skipped in practice since it can be done inside the first linear operation of the
decoder.
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neural codecs use the entropy model to learn the PMF of each codes under determined quantization, which
allows us to determine the lower bound of the bitlength.

Figure 1: Block diagram of the state-of-the art neu-
ral codecs. Five dark green blocks are the trainable
blocks implemented by neural networks, while bi-
nary patterns show the quantization and entropy en-
coding/decoding process driven by certain entropy
model’s PMFs on main and side latents.

Current state of the art neural codecs use a hyper-
prior entropy model, where the side embedding (or
side latents) z ∈ Rt×t×s is learned by another deep
neural network by z = ha(y; Φ). The side embed-
dings are quantized as z̃ = Q(z) to obtain side codes
z̃ followed by dequantization ẑ = Q−1(z̃) to obtain
the reconstructed side latents ẑ. The main motivation
of side information is to remove any image structure
that would be left in the main latent representation
y. The hyperprior entropy model assumes that the
probability density function (PDF) of each scalar la-
tent follows a Gaussian distribution, where the param-
eters are obtained by another deep network such as
µ, σ = hs(ẑ; Θ)) 2. Thus, the hyperprior model’s pre-
diction can be defined by pŷijk

(.) := N (.|µijk, σijk).
The PMF of latent code P (ỹijk) can be written under
determined quantization as a function of pŷijk

(.). Us-
ing this PMFs, the lower bound of the main codes’
bitlength can be defined by − log(ph(ŷ; ẑ, Θ)) :=
−
∑

ijk log(P (ỹijk)). The factorized entropy model
learns the PDF for each t × t slice of latent defined
as pẑ:,:,s

(.). This PDF is enough to have the PMF
of side codes P (ẑijk) under determined quantization.
Thus, the lower bound of side codes’ bitlength can be
defined by − log(pf (ẑ; Ψ)) := −

∑
ijk log(P (z̃ijk)).

In this setting, the deep encoder (ga(.; ϕ)), the deep decoder (gs(.; θ)), the hyperprior entropy model ph(.; ẑ, Θ)
(composed of the deep hyperprior encoder (ha(.; Φ)), the deep hyperprior decoder (hs(.; Θ)), and the fac-
torized entropy model pf (.; Ψ)) are the trainable blocks implemented by neural networks. Each block with
its trainable parameter, input and output are depicted in Figure 1. The optimal values of the parameters
ϕ, θ, Φ, Θ and Ψ are found by minimizing the following loss function using the training sample x.

L = E
x∼px

[− log(pf (ẑ; Ψ))− log(ph(ŷ; ẑ, Θ)) + λd(x, x̂)] , (1)

where d(., .) is a distortion measure between the original and the reconstructed image (for example the
mean square error). The rate term is the sum of the lower bound of bitlength of the side information
(− log(pf (ẑ; Ψ))) and the main information (− log(ph(ŷ; ẑ, Θ))). Hyperparameter λ controls the trade-off
between the rate (r) and distortion (d) terms.

Both the quantization step Q(.) and its counterpart dequantization Q−1(.) need to be applied for the main
and side information. In addition, both the factorized and hyperprior entropy models should know the
determined quantization technique to have the PMF. To the best of our knowledge, most of the current
methods implement quantization as a 1-bin width uniform Scalar Quantization (SQ), with few exceptions
(Agustsson et al., 2017; Agustsson & Theis, 2020; Guo et al., 2021). This quantization step is implemented
by element-wise nearest integer rounding Q(x) = round(x) and its dequantization Q−1(x) = x. Thus, the
PMF of ỹijk ∈ R can be calculated by P (ỹijk) =

∫ ŷijk+0.5
ŷijk−0.5 pŷijk

(x)dx where pŷijk
(.) is the PDF of latent

ŷijk learnt by entropy model 3. Since the nearest integer rounding operation has non-informative gradients,

2In autoregressive prediction, they are predicted step by step using the previous main latents in a sense of being previous
part of the local neighborhood by µi, σi = hs(ẑ, ŷ<i; Θ)

3Entropy model can alternatively learn cumulative distribution function CDF, σŷijk
(x) instead of PDF and calculate PMF

by P (ỹijk) = σŷijk
(ŷijk + 0.5)− σŷijk

(ŷijk − 0.5)
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(a) (b) (c)

Figure 2: a) f : y → z transforms non-uniform quantization map (grid borders b0, . . . bn and grid centers
c1, . . . cn) to uniform map (centers are located on integer where borders are at the middle of two consecutive
centers). b) Uniform SQ grids on 2D c) Optimal uniform VQ grids on 2D.

a continuous relaxation must be applied at training as Q(x) = x + ϵ, where ϵ is randomly sampled from the
uniform distribution ϵ ∼ U(−0.5, 0.5).

However, for the Vector Quantization (VQ) case, latents can be packed into a v-dimensional vector u ∈ Rv

and each u is assigned to a single code. The quantization centers Cj ∈ Rv, j = 1 . . . M are learned by the
entropy model. Thus, the quantization step finds the index of the nearest center as Q(x) = arg mini ||x− Ci||,
while dequantization returns the quanta center as Q−1(i) = Ci where i ∈ {1 . . . M}. In this case, there are
M different quantization centers, and M unique codes. Since the argmin operator applies hard assignment,
it has non-informative gradients and continuous relaxation must also be applied during training. This is
generally achieved by softmax operator that assigns all codes to the latent vector with different probabilities,
depending on the distances to the centers. These probabilities are used by the entropy model to learn the
PMF of each quanta center (codes), and also for dequantization which is the expectation of quanta centers
under these probabilities during training.

3 Uniform Vector Quantization

Uniform SQ which is widely used in neural codecs is not the optimal quantizer among all SQs. In fact, it is
known that the optimal quantizer should have smaller grid sizes in regions of higher probability and larger
grid sizes in regions of lower probability (Farvardin & Modestino, 1984). Thus, a non-uniform SQ which is
aware of source distributions can have lower quantization error than uniform SQ. However, we state in the
following theorem that uniform SQ is sufficient among all SQs in the neural codecs.
Theorem 1. If a neural codec has an encoder block ga : Rn×n×3 → Rm×m×o, an decoder block gs :
Rm×m×o → Rn×n×3 and it needs a non-uniform SQ map for the optimal rate-distortion performance, there
exists another neural codec that gives the same rate-distortion performance with 1-bin width uniform SQ
(nearest integer rounding quantization) whose encoder block is f ◦ ga and decoder block is gs ◦ f−1 where
f : Rm×m×o → Rm×m×o is an invertible transformation.

The proof can be found in Appendix A and is based on modelling the one-dimensional quantizer using a
memoryless monotonically increasing nonlinearity followed by a uniform fixed-point quantizer as in (Bennett,
1948). We show that an invertible function that can be implemented by neural networks can transform the
borders and grid centers of a non-uniform quantization map to a uniform quantization map. A simple
illustration of this is shown in Figure 2(a). According to Theorem 1 neural codecs with nearest integer
rounding quantization is sufficient among all scalar quantizations as long as it is enough expressive, that its
encoder has invertible layers at the bottom of the encoder block and also the inverse of this layers should be
at the beginning of the decoder block. Most of the neural codecs do not have invertible blocks, but since the
decoder is almost the inverse of the encoder (in a sense that it is able to revert back image with negligible
distortion) and usually they are deep enough with millions of parameters, we can assume that they are
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(a) (b) (c)

Figure 3: RD performances of different volume uniform SQ, regular hexagon Hex-Quant and truncated
octahedron Oct-Quant grid. a) Uniform source is sampled from U(−4, 4) and zoom-in where the grid
volume is unitary. b) Different Gaussian sources. c) RD plot of unitary volume grids for Gaussian sources.

enough expressive. The advantage of using invertible layers between less powerful encoder and decoder block
was experimentally found recently in (Shukor et al., 2022). Also, the sufficiency of uniform quantization in
neural codecs was discussed in (Ballé et al., 2021). Our theorem verifies these two prior contributions.

By the result of Theorem 1, using non-uniform SQ in neural codec is meaningless. One straight-forward
selection for lower quantization error is VQ. Even though VQ is theoretically optimal than SQ even if the
dimensions are i.i.d (Gersho, 1982), so far it could not perform significantly better than uniform SQ in
neural codecs. The reasons could be that (i) VQ learns non-uniform partitioning where the convergence
of these centers might encounter training difficulties and can take longer training time whereas in uniform
quantization, the quantization centers are predefined and fixed and (ii) since the dequantization of VQ
averages these variable quantization centers during training phase, the reconstructed latents in training
phase may be far away from their hard assignment values (in test phase). This mismatch can be higher than
mismatch between nearest integer rounding and its continuous relaxation by additive uniform noise. On the
other hand, uniform VQ can solve above mentioned problems by using predefined uniform partitioning.

3.1 Space tessellation grids

In this research, we propose to use uniform vector quantization that is based on space tessellation. This
method involves using a predefined high dimensional grid to cover the entire high-dimensional space. Thus,
the quantization grids are fixed instead of learning it. The nearest integer quantization grid in 1D is equivalent
to a unit square grid in 2D, as shown in Figure 2(b) for a zero-mean Gaussian source, however it might not
be the best partition of the space with uniform grids, thus using nearest integer quantization (i.e square grids
in 2D) directly in the neural codec might not yield better RD performance. Following remark shows the
existence of entropy constrained optimal space tesellation and can be used for uniform vector quantization.
Remark 1. VQ constraints with a uniform grid produces the optimal space tessellation which refers to a
pattern of v-dimensional shapes that fit perfectly together without any gaps and have minimum inertia. The
optimal shapes are regular hexagon for 2D and truncated octohedron for 3D case. (Gersho, 1979).

The above remark shows that instead of learning the grids centre and optimal partition, we can use the
optimal space tessellation grids at the corresponding dimensions. In this paper our proposal for 2D space is
to use a regular hexagon grid that has unitary volume as shown in Figure 2(c). Theoretical advantage of
space tessellation grids compared to the nearest integer quantization is shown in Appendix B for a uniform
distribution. We also showcase the simulation results under uniform and Gaussian sources in Figure 3a-b. For
these simulations, we generate random numbers under a uniform distribution U(−4, 4) for Figure 3a, and four
different zero-mean Gaussian distributions with specified scales for Figure 3b. We quantize these numbers
using three different methods: uniform SQ (SQ), regular hexagonal grid (Hex-Quant), and truncated
octahedron grid (Oct-Quant), with varying grid sizes. The left side of the x-axis represents higher rates
where the grid size is small, while the right side represents smaller rates where the grid size is big. In Figure 3a,
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we zoom in on the rate where the grid size is unitary. The MSE of the three different quantization grids is
very close to their theoretically known MSE, which are 0.0833, 0.0801, and 0.0785, as shown in Appendix
B. For Figure 3c, we generate random numbers from a zero-mean Gaussian distribution with different scales
in the range of [0.5, 2], with a 0.1 interval between scales. We quantize each source using a unitary volume
grid of the three quantization maps mentioned above. The left side of the x-axis represents low rates when a
source from smaller scale Gaussian distributions is used, while the right side represents higher rates when a
source generated by larger scale Gaussian distributions is used. For all three methods, the same source does
not necessarily have the same rate under a unitary grid size. Thus, the vertical dashed lines representing the
four different distributions are not aligned well. This simulation is particularly important,because the main
information in modern neural codec is zero mean Gaussian distribution with different scale and is quantized
with unitary grids. Our simulation demonstrates that, for the same bitrate, the uniform vector quantization
(VQ) grid has lower mean squared error (MSE) than SQ. This simulation emphasizes the importance of
using uniform VQ as a more effective method for quantization in neural codecs. Now we show that how our
uniform vector quantization can be applied in the off-the-shelf neural codec without re-training.

3.2 Uniform VQ with off-the-self neural codec

Let y ∈ Rm×m×o be the latents of the deep encoder, v be the dimension where the optimal space tessellation
is performed, c(i) ∈ Rv, i = 1 . . . M be the M grid centers of the v-dimensional shape and c(i)

j ∈ R is the
scalar value on j-th dimension of the center c(i). In order to quantize the latents, we reshape the latents y
into pseudo v-dimensional latents such that y ∈ Rm×m×o → y̌ ∈ Rb×v, where b = m.m.o

v . The quantization
is performed by assigning the nearest neighbours grid centers, as ỹj = Q(y̌j) = arg mini ||y̌j − c(i)||, where
ỹj ∈ {1 . . . M}, j = 1 . . . b are the codes to be encoded into a bitstream. In practice, instead of reshaping all
latents together into v dimension, we can reshape the latents whose learned PDFs are the same (i.e coming
from the same distribution). This approach does not have significantly different results, only needs smaller
PMF table to be kept in decoding device.

To encode the codes (ỹ) into a bit-stream, we cannot use the off-the-shelf neural codec’s 1D entropy model’s
PMF calculation, as our latents are v-dimensional latents and domain is different. To this end, we propose
to create the PMF by integrating the pseudo-v dimensional PDF (

∏v
j=1 pc(i)

j

(uj)) inside the grid G whose

center is located on c(i):

P (c(i)) =
∫

G+c(i)

 v∏
j=1

pc(i)
j

(uj)

 du (2)

Here P (c(i)) is the PMF of i-th symbol in the dictionary and pc(i)
j

: R→ R is PDF of corresponding latent,
learned by entropy model in the baseline model. Since there is no closed form solution for the integral
of multi dimensional Gaussian distribution over a hexagonal and truncated octahedron domain (Savaux &
Le Magoarou, 2020), we use numeric solvers to approximate the solution of equation 2. We can reach numeric
solution for main codes PMFs where pc(i)

j

(.) is the Gaussian distribution and also non-parametric pc(i)
j

(.) for
side code’s PMF. In Appendix E, we show how to calculate equation 2 for the hexagonal domain. Another
way to calculate those integral is by monte-carlo simulation for known PDFs pc(i)

j

(.) before deployment,
which we use for the truncated octahedron domain.

4 Forgotten Information: Gradient of Entropy

Receiver can compute the gradients of the main/side entropy w.r.t the main/side latents after decoding the
main/side latents. Since these gradients are only available after decoding the latent codes, they may not
seem useful at the first sight. This could be the reason why so far these gradients are never used in the
testing phase. Here, we propose to use these gradients through the analysis of the Karush-Kuhn-Tucker
conditions, and we experimentally find that they can be correlated with other useful gradients.
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Figure 4: Correlation between gra-
dients of the entropy and the recon-
struction error w.r.t the main latents.

We can see the neural codec’s loss function in equation 1 as an uncon-
strained multi-objective optimization problem. The optimal solution
of such a problem is called Pareto Optimal which is a solution where
no objective can be made better off without making at least one objec-
tive worse off (Miettinen, 2012). The following remark shows a useful
property of a solution of unconstrained multi-objective optimization.
Remark 2. Karush–Kuhn–Tucker (KKT) conditions: If the
problem is w∗ = arg minw(

∑
i αi.Li(w)); where αi ≥ 0,

∑
αi = 1

and Li is the i-th objective to be minimized, the solution w∗ is pareto
optimal if and only if it satisfies

∑
i αi∇wLi(w∗)) = 0. (Désidéri,

2012).

This remark is also valid for end-to-end compression models. Follow-
ing theorem shows how to leverage KKT conditions for the end-to-end
image compression models.
Theorem 2. If an end-to-end compression model is Pareto Optimal,
it satisfies following conditions.

Ex∼px [∇Φ log(pf (ẑ; Ψ)) +∇Φ log(ph(ŷ; ẑ, Θ))] = 0. (3)

Ex∼px (∇ϕ [− log(pf (ẑ; Ψ))− log(ph(ŷ; ẑ, Θ))] + λ∇ϕd(x, gs(ŷ; θ))) = 0 (4)

The proof is in Appendix C.1. Following corollary shows it’s usefulness under a certain assumption.
Corollary 2.1. If we assume that equation 3 and 4 are valid for every single input x independently, then
an optimal end-to-end compression model satisfies the following conditions.

∇ẑ log(pf (ẑ; Ψ)) = −∇ẑ log(ph(ŷ; ẑ, Θ)) (5)

∇ŷ [− log(pf (ẑ; Ψ))− log(ph(ŷ; ẑ, Θ))] = −λ∇ŷd(x, gs(ŷ; θ)) (6)

The proof can be found in Appendix C.2.Under this assumption, it implies that the gradient of the main
and the side information’s entropy w.r.t side latent show opposite directions in equation 5.Additionally, the
gradient of the weighted reconstruction error and the gradient of the total entropy w.r.t main latent also show
opposite directions in equation 6. Hence, under this assumption, we can claim that these pair of gradients
have correlation coefficient of −1 and one can be used instead of another by simply changing the direction.

The presence of correlation has been validated for different neural codecs using different test sets, as presented
in Appendix D and section 5. The scatter plot in Figure 4 illustrates the correlation between the gradient
of the main entropy and the gradient of the reconstruction error w.r.t main latents for a specific image
sample where the gradients were calculated on a neural codec described in Minnen et al. (2018). Based on
our tests on various widely-used neural codecs, we have observed relatively strong correlations between the
gradients in equation 64 (ranging from -0.1 to -0.5) and weaker correlations (ranging from -0.15 to 0.1) for the
gradients in equation 5. Although, the discovered correlations are far from −1, they still hold significance.
This discrepancy can be attributed to the fact that the assumption does not hold strongly.

Latent Shift wrt Gradients. By definition of gradient based optimization, ẑ needs to take a step in
negative direction of ∇ẑ(− log(ph(ŷ; ẑ, Θ))) in order to decrease main information bitlength − log(ph(ŷ; ẑ, Θ).
However ∇ẑ(− log(ph(ŷ; ẑ, Θ))) is not available before decoding ŷ in the decoding device, but at least the
correlated gradient ∇ẑ(− log(pf (ẑ; Ψ))) is known after decoding ẑ. We claim that there is a real number
step size ρ∗

f that decrease the bitlength of main information such that;

− log(ph(ŷ; ẑ, Θ) ≥ − log(ph(ŷ; ẑ + ρ∗
f∇ẑ(− log(pf (ẑ; Ψ)))), Θ).

ρ∗
f can be obtained through a search among candidates or by applying an optimization method such that;

ρ∗
f = arg min

ρf

(− log(ph(ŷ; ẑ + ρf∇ẑ(− log(pf (ẑ; Ψ)))), Θ)). (7)

4Since we find equivalent correlation, we use it as ∇ŷ [− log(ph(ŷ; ẑ, Θ))] = −λ∇ŷd(x, gs(ŷ; θ))
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For the second condition, ŷ needs to take a step in negative direction of∇ŷ(d(x, gs(ŷ; θ))) in order to decrease
reconstruction error d(x, gs(ŷ; θ)). ∇ŷ(d(x, gs(ŷ; θ))) is never available in the decoding device, but at least
the correlated gradient ∇ŷ(− log(pf (ẑ; Ψ)) − log(ph(ŷ; ẑ, Θ))) is known after decoding ŷ and ẑ. We claim
that there is a real number step size ρ∗

h that decrease the reconstruction error such that;

d(x, gs(ŷ; θ)) ≥ d(x, gs(ŷ + ρ∗
h∇ŷ(− log(pf (ẑ; Ψ))− log(ph(ŷ; ẑ, Θ))); θ)).

ρ∗
h can be found by searching out of handful candidates or any optimization method such that;

ρ∗
h = arg min

ρh

(d(x, gs(ŷ + ρh∇ŷ(− log(pf (ẑ; Ψ))− log(ph(ŷ; ẑ, Θ))); θ))). (8)

Our proposal can be seen as shifting the side latent by ẑ← ẑ + ρ∗
f∇ẑ(− log(pf (ẑ; Ψ))) after decoding ẑ and

shifting the main latent by ŷ ← ŷ + ρ∗
h∇ŷ(− log(pf (ẑ; Ψ)) − log(ph(ŷ; ẑ, Θ)))5 after decoding ŷ while the

best step sizes ρ∗
f , ρ∗

h ∈ R are to be found at encoding time and added to the bitstream with fixed bitlength.

5 Experimental Results

In this section, we show the main results, the complexity analysis and some important ablation studies.

5.1 Main Results

We used the CompressAI library (Bégaint et al., 2020) to test our contributions on 4 pre-trained neural image
codecs named bmshj2018-factorized in Ballé et al. (2017), mbt2018-mean and mbt2018 in Minnen et al.
(2018), cheng2020-attn in Cheng et al. (2020), and 2 additional pre-trained codec named invcompress
in Xie et al. (2021) and DCVC-intra in Li et al. (2022) with all intra mode and two neural video codec
named SSF in Agustsson et al. (2020) and DCVC in Li et al. (2022). For the evaluation, we used the Kodak
dataset (Kodak) and Clic-2021 Challenge’s Professional dataset (CLI). The codecs are taken off the shelf
and are not retrained. The rate was calculated from the final length of the compressed data and RGB PSNR
is used for distortion. To evaluate performance, we utilize the bd-rate metric (Bjontegaard, 2001), which
measures the bitrate savings achieved for an overlapped range of distortion level (Karczewicz & Ye, 2022).
We conduct our evaluation on 6 to 8 pre-trained models provided by compressAI and the authors official
implementation, whose bitrates range from 0.1bpp to 1.6bpp for image codecs and 0.03bpp to 0.35bpp for
video codecs. We report our uniform VQ proposals under the name of Hex-Quant for regular hexagonal.
We denote our gradient based improvement by Latent Shift and the results using both methods as Join.

Table 1: Average BD-Rate gains of our proposals for different baseline image codecs on 2 image datasets.
Kodak Test Set Clic-2021 Test Set

Baseline Codec Hex-Quant. Latent Shift Join Hex-Quant. Latent Shift Join

bmshj2018-factorized -0.62% -0.49% -1.08% -1.78% -0.69% -2.26%
mbt2018-mean -0.88% -1.27% -2.24% -0.76% -1.21% -2.03%
mbt2018 -0.55% -1.44% -1.98% -0.66% -1.71% -2.33%
cheng2020-attn -0.16% -0.46% -0.73% -0.32% -0.72% -1.15%
InvCompress -0.21% -0.55% -0.82% -0.52% -0.63% -1.12%
DCVC-intra mode -0.97% -0.30% -1.28% -1.22% -0.11% -1.44%

Results on Image Codecs: In Table 1, we present the results obtained by our methods on different
datasets and codecs. Since our two proposals are orthogonal to each other, the gain of the Join method is
almost the sum of the two. However, after uniform VQ, the reconstructed latents change compare to uniform
SQ, thus, gradients wrt this latents change as well. This variation creates slightly different results compared
to Latent Shift only, thus Join results are not the exact sum. Since uniform VQ’s reconstructed latent
is much more closer to the latents before quantization, nearly in all cases, Latent Shift with uniform VQ
gives better contribution than only Latent Shift.

5Since we do not find significantly different correlation between the gradient of the main information’s entropy and the
gradient of the reconstruction error, we apply it by ŷ← ŷ + ρ∗

h∇ŷ(− log(ph(ŷ; ẑ, Θ))) in our tests.
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Figure 5a presents the bd-rate (gain in %) compared to mbt2018-mean for different quality levels on the
Kodak dataset. Even though our proposal has a 2.24% gain, the gain on lower quality (thus lower rate)
is bigger (3.5%). More detailed results regarding the gain w.r.t. to reconstruction quality are provided in
Appendix G. According to our tests, since the side latent’s correlation’s is weaker, the most important gain
of Latent Shift comes from the gradient of the main latent. The analysis of the source of the gain of
Latent Shift and its performance against some alternatives are provided in 5.3.

Table 2: Average BD-Rate of our proposals for SSF and DCVC video codecs on UVG dataset and Bunny
video in low-delay configuration. Join refers using Oct-Quant and Latent Shift.

SSF DCVC
Video Hex-Quant. Oct-Quant. Latent Shift Join Hex-Quant. Oct-Quant. Latent Shift Join
Beauty -1.31% -1.60% -0.13% -1.76% -1.92% -1.97% -0.10% -2.02%
Bosphorus -1.88% -2.29% -0.70% -3.23% -1.23% -1.48% -0.62% -2.05%
Honeybee -1.75% -1.10% -0.88% -2.00% -1.80% -2.13% -0.56% -2.65%
Jockey -1.04% -1.48% -0.06% -1.57% -1.42% -1.32% -0.11% -1.51%
ReadySteadGo -1.03% -2.00% -1.52% -3.74% -1.29% -1.30% -1.08% -2.35%
ShakeNDry -1.38% -2.83% -0.35% -3.25% -1.55% -1.65% -0.23% -1.92%
YatchRide -1.03% -1.67% -0.14% -1.87% -1.42% -1.61% -0.18% -1.83%
UVG Average -1.31% -1.99% -0.60% -2.70% -1.52% -1.64% -0.41% -2.05%
Bunny -1.12% -1.87% -1.31% -3.24% -0.90% -1.02% -1.21% -2.25%

Results on Video Codec: In Table 2, we show the results of the SSF and DCVC video codecs for
different sequences. The SSF (Agustsson et al., 2020) was proposed for low-delay mode: frames are coded
sequentially using the previously reconstructed frame and an intra frame is inserted every 8 frames (UVG
videos are divided into 75 Intra periods). I frame encoding uses the same VAE method, so our implementation
on I frame is the same as the one described above. However, each P frame consists of motion information
and residual information encoded by two different VAE models. Since the motion information represents
only a fraction of the total bitrate (3− 4%), we apply our proposal only on the residual coding only. When
we apply Oct-Quant and Latent Shift together, it yields a bitrate gain of 2 − 2.7% for the same quality
on UVG dataset, on average. Again, the gain at lower rate is larger (more than 4%) as demonstrated in
Figure 5b. More analysis on quantization effects can be found in Appendix D.

(a) (b) (c)

Figure 5: BD-Rates of our proposals from baseline codecs for different quality. a) mbt2018mean image
codec on Kodak test set b) SSF video codec on UVG test set. c) Correlation between improvement on
reconstruction quality and correlation of gradients on Clic and Kodak datasets.

Gradients correlation: The Latent Shift’s gain depends on how the gradients are correlated. To assess
this correlation, we show the scatter plot of the individual gains in dB achieved by Latent Shift and the
actual correlation coefficient between gradients for all test images and for all quality level in Figure 5c.
We observed a strong negative correlation of −0.76 where this correlation is independent of the datasets,
reconstruction quality or model. Since the neural video codec was optimized for the loss of all frames in a
GOP, the gradients’ sum in equation 3 and equation 4 are zero in expectation for both the frames in the
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GOP and over the datasets. This smooths the sum of gradients even further and decrease the correlations
compare to the image codecs. It explains why the the correlation of the gradients are lower and also why
Latent Shift’s individual gain is lower in video codecs.

5.2 Complexity Analysis

Since the time complexity without parallelization is a good proxy of energy consumption, we performed
the test on a single core CPU with preventing multi-thread operations. We measured the computational
time of cheng2020_attn, mbt2018-mean on Kodak dataset and SSF on bunny dataset. The results
in Table 3 demonstrate the relative encoding/decoding time of our proposed models, namely Hex-Quant,
Oct-Quant, and Latent Shift, compared to the baseline models.

Model Encoding Decoding
Hex Quant Oct Quant Latent Shift Hex Quant Oct Quant Latent Shift

mbt2018-mean +3.0% +5.0% x10.1 +1.8% +1.8% +0.70%
cheng2020-attn +0.7% +1.1% x5.3 +0.1% +0.1% +0.06%
SSF +2.4% +3.2% x6.0 +1.9% +1.9% +0.07%

Table 3: Encoding and decoding runtime complexity of our proposed methods compare to the baselines.

The main source of additional encoding complexity for Hex-Quant and Oct-Quant is finding the closest
codebook. Naive search can result in up to 20% overhead complexity for a 3-dimensional VQ. However, there
exists algorithms that can efficiently find the nearest quanta center for hexagonal and truncated octahedron
grids as defined in (Agrell et al., 2002; Conway & Sloane, 1982). We adapted this solution to our model,
reducing the additional encoding time to 3-5% for the mbt2018-mean model. Although cheng2020-attn
and mbt2018-mean have similar absolute extra computation costs, the relative extra cost of cheng2020-
attn is lower (1.1-0.7%) due to the high complexity of the baseline model. For SSF, we neglected the
I-frame compression runtime (since it is the same as mbt2018-mean) but measured the average runtime
for encoding and decoding of P-frames, which are done by two VAEs: one for motion information and
another for residual information. The results of the relative encoding/decoding time for our Hex-Quant,
Oct-Quant, and Latent Shift compared to the baseline models can be seen in Table 3. Given that the
differences in the dimensions of VQ are only reflected in the reshaping of tensors and the number of indices
to be retrieved from the dictionary during decoding, the extra decoding complexity between Hex-Quant
and Oct-Quant is negligible. This is almost the same for all three models, as shown in Table 3.

The extra complexity in decoding introduced by the Latent Shift operation is due to the calculation of the
gradient of entropy with respect to the latents and the shifting operation. Nonetheless, this extra complexity
is negligible, accounting for less than 1% of the total decoding time, as shown in Table 3. In contrast, the
encoding complexity of Latent Shift is much higher, ranging from 5 to 10 orders of magnitude higher than
the baseline encoding time. This is because of the search for the best step size out of 8 candidates during
encoding, which could be eliminated by using a single universal step size for all images. This solution has
been implemented in the Latent Shift extension to traditional codecs, as described in Section 5.4.

5.3 Latent Shift versus Alternatives

In order to show how the proposed Latent Shift is better than alternatives, we shift the latent in a random
direction at encoding time such that ŷ ← ŷ + ϵ(ρh), where ϵ(ρh) ∈ Rm×m×o ∼ N (0, 1) and ρh is a random
seed to be signalled to the decoder. The best random seed and gradients, in terms of PSNR improvement,
should be found at encoding time. We generate 1024 random gradient and encode the best random seed with
10 bits as an extra information. Even though this approach is costly in terms of computational complexity
in encoding time, (it needs 1024 times forward pass), we think this is a natural baseline to our proposal, and
we refer to it as Random Shift. Another alternative would be to use a constant gradient for all latents in
a given image. Thus, at encoding time we need to test a large set of values and assume all latents should be
shifted by this amount such that ŷ← ŷ + ρh where ρh ∈ R. The best value of ρh should be signaled to the
decoder with 10 bit extra cost. We refer to this as Scalar Shift approach.
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Our final alternative does not utilize the true gradient with respect to entropy directly, but instead relies on
an approximation. Specifically, we make the assumption that the rate of change of any latent is independent
and increases linearly by the distance from the center as R(ŷ) = a|ŷ − µ| + b where a, b ∈ R+. Under
this assumption, the magnitude of the gradient will be constant, but the direction will always point in
the opposite direction to the center. Thus, this approach shifts the latent in the opposite direction of the
distribution’s center such that ŷ← ŷ− ρh sign(ŷ−µ). In hyperprior entropy models, the latent is assumed
to follow a Gaussian distribution, thus the latent’s entropy gets smaller if it moves towards the center of
the distribution. By shifting the latent in the opposite of this direction, the entropy increases. Since the
factorized entropy model does not use Gaussian distribution, we shift the latent to the opposite direction of
zero center means assuming µ = 0 in the factorized entropy. The best value of ρh should be signaled to the
decoder with 10 bit extra cost. We refer to this approach as Sign Shift.

Table 4: Average BD-PSNR of Latent Shift and some alternatives.
Baseline Codec Random Shift Scalar Shift Sign Shift Latent Shift

bmshj2018-factorized 0.0002 dB 0.0036 dB 0.0151 dB 0.0297 dB
mbt2018-mean 0.0006 dB 0.0007 dB 0.0339 dB 0.0705 dB

In Table 4, we present the results for bmshj2018-factorized (lowest correlation between gradients) and
mbt2018-mean (highest correlation between gradients). Since all our alternatives need extra 10 bits sig-
naling cost, we neglect it and assume that the bitlengths are the same as the baselines, and we report the
BD-PSNR defined in Bjontegaard (2001). These results show that our proposal is significantly better than
all our alternatives. The closest one, Sign Shift, reaches half the performance of Latent Shift. The ran-
dom alternative could not improve the baseline significantly, even though their encoder is almost 1000 times
computational demanding.

5.4 Enhancing Traditional Codecs with Latent Shift

Despite traditional codecs do not use gradient-based optimization methods and instead rely on discrete
search algorithms within a restricted search space to minimize RD cost, we can still argue that the KKT
condition exists. This is because the discrete search algorithms used by traditional codecs find the optimum
transform coefficient of residuals (known as latent variables in neural compression literature) for both rate
and distortion objectives.

In order to implement Latent Shift on the current traditional Sota codec ECM.8.0 described in Coban
et al. (2023), we need an entropy model to calculate its gradient with respect to the transform coefficients.
However, since ECM.8.0 uses a bit-level adaptive entropy model (CABAC), it is not possible to obtain
a closed-form solution for the gradient. This may introduce additional complexity if we try to obtain the
gradient by using finite difference methods. To avoid this complexity, we use a very simple approximation
of the entropy model where the assumption is that the rate linearly increases with the absolute value of the
coefficient. This enables us to express the gradient of the rate as Sign Shift, defined in 5.3. To avoid adding
complexity to the encoder in Latent Shift, we set a universal step size, which we fine-tuned on the training
set. This step size is then hard-coded into both the encoder and decoder devices in advance.

Sequences All Intra (Image compression) Random Access (Video Compression)
Y U V EncT DecT Y U V EncT DecT

Class A1 -0.11% -0.11% -0.11% 100% 100% -0.07% -0.04% -0.16% 100% 100%
Class A2 -0.07% -0.10% -0.04% 100% 100% -0.04% -0.35% -0.05% 100% 100%
Class B -0.10% -0.10% -0.14% 100% 100% -0.07% -0.20% -0.15% 100% 100%
Class C -0.07% -0.16% -0.29% 100% 100% -0.07% -0.29% -0.22% 100% 100%
Class E -0.09% -0.14% -0.08% 100% 100%
Overall -0.08% -0.12% -0.13% 100% 100% -0.06% -0.22% -0.35% 100% 100%

Table 5: Bd-rate of Latent Shift method for Y, U and V channel and relative encoding and decoding time
percentage compare to ECM-8.0 on All Intra and Random Access mode under Common Test Conditions.
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The results presented in Table 5 were obtained under the Common Test Conditions (CTC) (Karczewicz &
Ye, 2022). According to the results, Latent Shift managed to save less than 0.1% on the Luma channel and
more than 0.1% on the chroma channels in all intra mode settings where each frame is encoded separately.
In Random Access mode, which is the most effective video compression setting, the results were similar.
Thanks to the universal step size and the approximation of the gradient, our proposal has no impact on the
encoding and decoding times, as reported in the Table 5.

5.5 Latent Shift after Finetuning Solutions

To demonstrate the orthogonality between Latent Shift and an encoder-side fine-tuning solution proposed
in Campos et al. (2019), we conducted tests on two baseline models: one with and one without fine-tuning. In
the fine-tuning approach, the latents are fine-tuned for 1000 iterations during encoding time, this incurs 1000
forward passes and 1000 backward gradient calculations, resulting in around 4000 times more complexity
without parallelization. In contrast, our Latent Shift incurs negligible extra encoding time compared to fine-
tuning solutions where the complexity can be found in Table 6. An important result can be observed when
applying Latent Shift after fine-tuning solutions, as shown in Table 6. Fine-tuning solutions minimize
the loss without averaging images in the train set, which strengthens the KKT conditions and increases
correlations between gradients. For instance, the average gradients correlation for the Kodak dataset becomes
−0.2212 after fine-tuning, compared to −0.1805 in the mbt2018-mean codec. The improved correlations
lead to improved performance, as shown by the fact that the fine-tuning solution only achieves a rate saving
of −5.77%, while combining it with Latent Shift increases the saving to −7.47% for the Kodak dataset.

Table 6: Latent Shift performance over Finetuning solutions
Model EncT DecT Bd-Rate (Kodak) Corr. (Kodak) Bd-Rate (Clic) Corr. (Clic)

bmshj2018 baseline x1 +0.0% 0.0% 0.0%
Only Latent Shift x12 +0.7% -0.49% -0.108 -0.69% -0.0952
Only FineTuning x4800 +0.0% -6.52% -6.73%
FineTuning + Latent Shift x4812 +0.7% -7.88% -0.165 -8.06% -0.1578

mbt2018-mean baseline x1 +0.0% 0.0% 0.0%
Only Latent Shift x10.1 +0.7% -1.27% -0.1805 -1.21% -0.1465
Only FineTuning x4380 +0.0% -5.77% -5.53%
FineTuning + Latent Shift x4390 +0.7% -7.47% -0.2212 -7.16% -0.1796

6 Conclusion

In this work, we have proposed two orthogonal methods to improve further the latent representation of
generic compressive variational auto-encoders (VAE). Firstly, we exploit further the remaining redundancy
in the latent during the quantization stage. To do so, we demonstrated that a uniform VQ method improves
a VAE trained using uniform scalar quantization. Secondly, we exploit the correlation between the gradient
of the entropy and the reconstruction error to improve the latent representation. The combination of these
two methods improve the latent representation, and bring significant gains on top of several state-of-the-art
compressive auto-encoders, without any need of retraining. From these results, several improvements can
be foreseen. First, the correlation of the gradients depends on the training set according to the definition
of the KKT conditions. However, even though different models use the same training set and training
procedure, their gradients’ correlation coefficient may be different. Thus, it might be interesting to explore
the connection of certain type of model architectures with the correlation of the gradients. Secondly, the
uniform VQ process was applied without retraining. Even though VQ quantization error is lower on average,
the maximum quantization error can be higher. Since the decoder block cannot see these individual high
errors during the training, the model becomes sub-optimal. This can be solved by re-training the decoder
block or the entire model using a continuous relaxation of the uniform VQ grid.
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A Proof of Theorem 1

Proof. Scalar quantization map can be see as n+1 border values with b0 < b1 < · · · < bn and n quantization
center with c1 < c2 < · · · < cn. Any latent y with bi−1 ≤ y < bi should be quantized to the point ci.
Quantization map can be represented by an ordered set consisting of all borders and centers such as M =
{b0 < c1 < b1 < c2 < b2 < · · · < cn < bn} where |M| = 2n + 1. When the quantization map is non-uniform,
the difference between consecutive elements in the set are not necessarily equal, i.e. ∃(i, j),Mi −Mi−1 ̸=
Mj −Mj−1. Nearest integer quantization map can be denoted as M(u) = {0.5, 1, 1.5, 2, 2.5, . . . n, n + 0.5} or
simply M(u)

i = 0.5i thus,∀i,M(u)
i −M(u)

i−1 = 0.5. Let’s assume than any arbitrary M is the optimal scalar
quantization map of a neural codec’s latent y obtained by y = ga(x). Since M and M(u) are both monotonic
increasing set, there exists a bijective function f(.) that maps ∀i,Mi to M(u)

i , and f−1(.) maps M
(u)
i to Mi,

∀i. According to universality theorem Hornik et al. (1989), the function f(.) can be implemented by a multi
layer neural network.

Two codecs’ performances are equal if and only if entropy of their latents are equal and their reconstructions
are the same. First, we start by showing that their entropy’s are the same by showing that the corresponding
center’s PMF are equal in both space, i.e. ∀i, P (i) = P (u)(i). We can write the i-th quantization center’s
PMF as P (i) =

∫ bi

bi−1
p(y)dy where y is a point in ga’s output space. Any point y can be transformed to a new

space by z = f(y). We can write the i-th quantization center’s PMF as P (u)(i) =
∫ i+0.5

i−0.5 p(z)dz in this space.

We can rewrite it as P (u)(i) =
∫ f−1(i+0.5)

f−1(i−0.5) p(f−1(z))df−1(z). Since f−1(i + 0.5) = bi, f−1(i − 0.5) = bi−1

and f−1(z) = y, we can write ∀i, P (u)(i) =
∫ bi

bi−1
p(y)dy = P (i).

The output of a deep decoder is gs(ci) if the latent y = ga(x) meets bi−1 ≤ y < bi. Any latent bi−1 ≤ y < bi

is mapped to f(bi−1) ≤ f(y) < f(bi) thus i − 0.5 ≤ z < i + 0.5. The latent z which lies between i − 0.5 to
i + 0.5, can be quantized to i in the new space. Since the decoder applies gs(f−1(z)), its output should be
gs(f−1(i)). Since f−1(i) = ci, it gives gs(ci).

B Advantage of Space Tessellation Grid on Quantization

When the source has a uniform distribution, quantization using a truncated octahedron gives better RD
performance compared to regular hexagonal grids, and regular hexagonal grid gives better RD performance
than uniform SQ grids (nearest integer rounding). In order to show the superiority of a method over another
in terms of RD performance, it is enough to compare the reconstruction error at equal bit-rate. Since the
equal volume grids have the same probability under uniform distribution, the rate is equal for the three
cases. Since the distributions are identical, we just need to compute the mean square error for each types of
grid at some position, for example the origin for 1D, 2D and 3D cases respectively.

MSE of uniform SQ grid can be written as the integral of square error normalized by the grid size:

MSE(s)(u) = 1
u

∫ u/2

−u/2
x2dx. (9)

It gives MSE(s)(u) = u2/12 ≈ 0.0833u2.

Hexagonal grid case: For hexagonal grid, we need to double integrate over the hexagonal domain. Figure
6a shows an hexagon with a side a length a located at the origin. We also show each side’s functions in 2D
space. We divide the hexagon into two parts for positive and negative y and calculate the analytic integral
for these two region separately. We then normalize the sum of squares by area of the area of the hexagon,
which is 3

√
3a2/2.

MSE(h)(a) = 2
3
√

3a2

(∫ a
√

3
2

0

∫ a− y√
3

−a+ y√
3

x2 + y2

2 dxdy +
∫ 0

−a
√

3
2

∫ a+ y√
3

−a− y√
3

x2 + y2

2 dxdy

)
. (10)
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(a) (b)

Figure 6: a) Regular hexagon and b) Truncated octahedron located at origin.

When we first integrate the positive part of integral over x between −a + y√
3 and a − y√

3 , followed by
the integral over y between 0 and a

√
3

2 . The integral for the positive region is is then 5
√

3a4

32 . The same
can be done for the negative region, but since the distribution is uniform, it gives the exact same result,
thus we conclude that MSE(h)(a) = 5a2

24 . In order to obtain the same volume for the grid, hexagon’s area
should be u2. Since the hexagon’s area is 3

√
3a2/2 for a side length if a, we find that a =

√
2u√

3
√

3
. Thus

MSE(h)(u) = 5
√

3u2

108 ≈ 0.0801u2.

Truncated octahedron case: For the MSE of the truncated octahedron grid, we need to integrate the
mean square error of each 3 dimension over the truncated octahedron domain. In figure 6b, a truncated
octahedron with a side length of a is shown. The solution can be obtained by integrating one octant, multiply
it by 8 and normalize by its volume which is 8

√
2a3 as follows:

MSE(o)(a)= 8
8

√
2a3

∫ √
2a

0

∫ min(
√

2a,3
√

2a/2−x)

0

∫ min(
√

2a,3
√

2a/2−x−y)

0

(
x2+y2+z2

3

)
dzdydx (11)

First, we integrate over z, y and then x, which gives the solution MSE(o)(a) = 19
48 a2. To compare with the

same grid volume, the truncated octahedron should have a volume of u3. Since the volume is 8
√

2a3 when
one side length is a, we can find that a = u

(8
√

2)1/3 , thus MSE(o)(u) = 19
48(8

√
2)2/3 u2 ≈ 0.0785u2.

As a result, MSE(s) ≈ 0.0833u2, MSE(h) ≈ 0.0801u2 and MSE(o) ≈ 0.0785u2, where the volume of the
grid is u. We can thus conclude that ∀u ∈ R+, MSE(o)(u) < MSE(h)(u) < MSE(s)(u).

C Proof of Theorem 2 and Corollary 2.1

In this section, we show the proofs of Theorem 2 and Corollary 2.1.

C.1 Theorem 2

Proof. Since ẑ is a function of ϕ, Φ and x, we can define a function for the first objective of equation 1 by
L1(x, ϕ, Φ, Ψ) := − log(pf (ẑ; Ψ)), and ŷ is a function of ϕ and x we can define a function for the second
objective of equation 1 by L2(x, ϕ, Φ, Θ) := − log(ph(ŷ; ẑ, Θ)). For the third objective of equation 1, we
can define a function by L3(x, ϕ, θ) := d(x, gs(ŷ; θ)). When considering the coefficient of the objectives are
defined by α1 := 1/(2 + λ), α2 := 1/(2 + λ), and α3 := λ/(2 + λ), we can write equation 1 as follows.
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ϕ∗, θ∗, Φ∗, Θ∗Ψ∗ = arg min
ϕ,θ,Φ,Θ,Ψ

(Ex∼px [α1L1(x, ϕ, Φ, Ψ) + α2L2(x, ϕ, Φ, Θ) + α3L3(x, ϕ, θ)]) (12)

Since λ > 0,∀i, αi > 0 and
∑

i αi = 1, the set of αis corresponds to coefficients set and Li(.)s corresponds
to objectives, equation 12 shows an unconstrained multi-objective optimization problem. This problem has
five set of variables to be optimized and gradients w.r.t each variable set should meet KKT conditions. Since
L3(x, ϕ, θ) does not depends on Φ, thus, ∇ΦL3(x, ϕ, θ) = 0, we can write KKT conditions w.r.t Φ as follows.

Ex∼px
[α1∇ΦL1(x, ϕ, Φ, Ψ) + α2∇ΦL2(x, ϕ, Φ, Θ))] = 0.

Since α1 = α2, we obtain the first condition in equation 3 by simply replacing L1(.) and L2(.) with their
definitions. Similarly, we can write KKT conditions w.r.t ϕ as follows.

Ex∼px
[α1∇ϕL1(x, ϕ, Φ, Ψ) + α2∇ϕL2(x, ϕ, Φ, Θ)) + α3∇ϕL3(x, ϕ, θ)] = 0.

This is equivalent to the equation 4 when αis and Li(.)s are replaced with their definitions.

C.2 Corollary 2.1

Proof. When we remove the expectation term from equation 3, we get followings.

∇Φ log(pf (ẑ; Ψ)) = −∇Φ log(ph(ŷ; ẑ, Θ)).

Since ẑ and Φ have dependency (ẑ = Q(ha(y; Φ)) partial derivations are not zero. Thus, if we multiply both
side with jacobian matrix J(Φ,ẑ) where J(Φ,ẑ)

i,j = ∂Φj

∂ẑi
, we change the gradient variable from Φ to ẑ and reach

equation 5.

We can repeat the same steps for equation 6. When we remove the expectation term from equation 4, we
get followings.

∇ϕ [− log(pf (ẑ; Ψ))− log(ph(ŷ; ẑ, Θ))] = −λ∇ϕd(x, gs(ŷ; θ))

Since ŷ and ϕ have dependency (ŷ = Q(ga(x; ϕ)) partial derivations are not zero. Thus, if we multiply both
side with jacobian matrix J(ϕ,ŷ) where J(ϕ,ŷ)

i,j = ∂ϕj

∂ŷi
, we change the gradient variable from ϕ to ŷ and reach

equation 6.

D Ablation Studies

In this section, we present several ablation studies for uniform VQ and latent shifting.

D.1 Gain Analysis of Latent Shift

Table 7: Upper limits of the gradient based latent shifting on mbt2018-mean codec.
Only Side Shift Only Main Shift Only Main Shift Main & Side Shift

(BD-Rate) (BD-Psnr) (BD-Rate) (BD-Rate)

True Gradients -1.011% 1.3972 dB -25.139% -26.150%
Latent Shift -0.031% 0.0705 dB -1.270% -1.301%
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Figure 7: Histogram of correlation between gradients
wrt main latents. The data is taken with mbt2018-
mean image codec on Kodak and Clic dataset.

To understand the upper limits of gradient based
latent shifting, we use the true gradients instead
of proxy one and measure the performance. Sim-
ply, we shift the side latents by ẑ ← ẑ +
ρ∗

f∇ẑ(−log(ph(ŷ; ẑ, Θ))) after decoding ẑ. Later, we
shift the main latent by ŷ← ŷ+ρ∗

h∇ŷ(d(x, gs(ŷ; θ)))
after decoding ŷ. We can see this hypothetical case
as if the correlations are −1. This case is men-
tioned by True Gradients in the results on Table 7
while our proposal is Latent Shift. The results are
taken with mbt2018-mean image codec on Kodak
dataset.

According to this results, we can see that even if
the side latent’s gradients were perfectly correlated,
our maximum gain would be around 1%. Since the
correlation of gradients wrt the side latent is weak
( r2 ≈ −0.07), our gain is negligible. As a con-
sequence, in practice, shifting side latent may not be neglected. On the other hand, main latents true
gradients increase PSNR by 1.40dB in average which is equivalent of saving around 25% of the bitstream.
Our proposal could increase the PSNR by 0.07dB in average which is equivalent to saving 1.27% of the bit-
stream for the same quality thanks to the existing correlation between gradients wrt main latents as shown
in Figure 7. The gain is of course smaller than the upper limit, but significant still. Since keeping these
gradients are costly (nearly the same cost of saving image itself), searching more effective way of using those
gradient is meaningful.

D.2 Truncated Octahedron versus Hexagon

Concerning uniform VQ quantizations, either hexagonal grid quantization Hex-Quant or truncated oc-
tahedron grid quantization Hex-Quant give different results. Better quantization leads to the smaller
quantization error on latent and better reconstruction. However, bigger symbol dictionary is needed (square
of SQ’s dictionary size in hexagonal grid). Since the arithmetic encoder has a fixed bit resolution, it has
representation limitations (for 16-bit resolution, the minimum probability is 1/65536). Thus, in practice, we
can assign 1/65536 probability to the symbol whose probability is lower than 1/65536, what makes encod-
ing less efficient and increase the rate. Another alternative is to remove those symbols, what increases the
quantization error of latents but decreases the rate. In practice, we have chosen to remove the symbol if its
probability is less than 10−7, and we found out that it always gives better RD performance.

In this ablation study, we analyse further the quantization effects on reconstruction error (PSNR), as well
as the impact of latent quantization error in terms of Signal Noise Ration (SNR) w.r.t. the rate (under the
assumption that arithmetic encoder has infinite bit resolution). To this end, we do not encode the symbols
into bitstream, but calculate the lower bound of bitlength according to Shanon’s entropy theorem without
limits of integer resolution that dictates some certain probabilities on symbols. We calculate SNR of latents
by SNR = −10log10(d(ŷ, y)) where y is latent, ŷ is reconstructed latent by certain quantization techniques
and d(., .) measures MSE error between two inputs.

We use mbt2018-mean neural codec in Minnen et al. (2018) on Kodak dataset. Results are presented
in Table 8 and show that Oct-Quant gives lower reconstruction error (higher PSNR improvement) and
lower quantization error over latent (higher SNR improvement) than Hex-Quant for the same rate. In
addition, Oct-Quant saves more bitlength than Hex-Quant for the same reconstruction quality. Figure 8
compares the performances of Oct-Quant and Hex-Quant to the uniform SQ baseline, for different rate
and reconstruction quality.
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Table 8: Performance of Hex-Quant and Oct-Quant compare to uniform SQ.
Quantization BD-PSNR BD-SNR BD-Rate

Hex-Quant 0.0374 dB 0.0600 dB -0.748%
Oct-Quant 0.0480 dB 0.0736 dB -0.957%

(a) (b) (c)

Figure 8: BD-Psnr, BD-Snr and -Bd-Rate performance of Hex-Quant and Oct-Quant compare to the uniform
SQ. In all perspective, Oct-Quant is the best, while Hex-Quant comes for the second.

E Numeric PMF Calculation for Hexagonal Domain

In this section, we give some implementation details.

The closed form solution for the integrals of multidimensional known densities over any domain has very
specific solutions, and generally no tractable form (Savaux & Le Magoarou, 2020). That holds even for
Gaussian distribution of dimension 2 on the regular hexagon domain. Thus, there is no closed form solution of
equation 2, where the probabilities are independent Gaussian on the domain of regular hexagonal. However,
we find the solution using the combination of both analytic and numerical integration as detailed below.

The integral centred around (Gx, Gy) of hexagonal domain G for the independent Gaussian distribution is
given by

P (Gx, Gy) =
∫

G

N(x, µ1, σ1).N(y, µ2, σ2).dx.dy. (13)

For sake of simplicity, let our grid is located on the center (Gx, Gy) = (0, 0) and a be the one side length of
the hexagonal. Then, the integral is defined as

P (0, 0) =
∫ a

√
3

2

0

∫ a− y√
3

−a+ y√
3

N(x, µ1, σ1).N(y, µ2, σ2).dx.dy+

∫ 0

−a
√

3
2

∫ a+ y√
3

−a− y√
3

N(x, µ1, σ1).N(y, µ2, σ2).dx.dy, (14)

where the hexagon is divided into lower and upper half parts, and we sum the two integrals. It is noted
that the integral does not admit a closed form solution, but the inner integral has the closed form and outer
integral does not have the analytic solution. The solution of the inner integral in the first part is given by

∫ a− y√
3

−a+ y√
3

N(x, µ1, σ1).dx = 1
2erf

(√
2(−µ1 + x)

2σ1

) ∣∣∣∣x=a− y√
3

x=−a− y√
3

(15)
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by substituting into equation 14, we obtain:

∫ a
√

3
2

0

∫ a− y√
3

−a+ y√
3

N(x, µ1, σ1).N(y, µ2, σ2).dx.dy

=
∫ a

√
3

2

0

1
2erf

(√
2(−µ1 + x)

2σ1

) ∣∣∣∣x=a− y√
3

x=−a− y√
3

N(y, µ2, σ2).dy (16)

This is finally solved by the numerical integration6. Similarly, we can also obtain the integral of the second
part.

F Complexity Analysis

Here we describe the computational complexity of proposed method and provide detailed analysis of source
of the additional computational costs of the proposals. The complexity of our proposed method includes
encoding and decoding complexity of uniform VQ, and encoding and decoding complexity of Latent shift,
and they are detailed below.

F.1 Encoding complexity of uniform VQ

First, we should define our grid centers as codebook such that c(i) ∈ Rv, i = 1 . . . M be the M grid centers
of the v-dimensional shape (e.g hexagonal grids center for v = 2) and PMF of our v-dimensional grid using
learned 1D PMF by equation 2 in the main paper.

The additional steps involved in the encoding time over the baseline approach are as follows:

1. Reshape the latents into pseudo v-dimensional vector y ∈ Rm×m×o → y̌ ∈ Rb×v, where b = m.m.o
v

(before reshaping, the latent can be sorted by their distribution’s σ parameters. In this way, the
latents that belongs to a similar distribution can be dropped into the same latent vector).

2. Find closest codebook from our initial quantization grids for each b vector such ỹj=argmini||y̌j −
c(i)||, where ỹj ∈ {1 . . . M}, j = 1 . . . b are the codes to be encoded into bitstream.

In the shared step (with baseline method), ỹj , j = 1 . . . b should be encoded into bitstream by given PMF.
Thus, in encoding time above 2 step’s complexity is the reason for the extra complexity introduced by our
proposed method.

F.2 Decoding complexity of uniform VQ

In decoding time, ỹj , j = 1 . . . b should be decoded from bitstream by provided PMF table. The source of
extra complexity of our method (over the baseline) in the decoding time is the following two steps:

1. De-quantizate the decoded codes: find the center of selected quanta center such that ȳj = cỹj , j =
1 . . . b

2. Reshape dequantized latent into the original dimensions such that ȳ ∈ Rb×v → ŷ ∈ Rm×m×o, (if the
ordering wrt σ is applied, we need to revert the order back in order to have the latents in original
order)

In shared step (with the baseline method), these dequantized and reshaped latents are fed to the decoder
network.

6https://github.com/esa/torchquad
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F.3 Encoding complexity of Latent Shift

In encoding time, the complexity introduced by the Latent Shift are as follows:

1. The calculation of the gradients of the entropy ∇ŷ(−log(ph(ŷ; ẑ, Θ)); θ)

2. finding the best step size ρh that maximize the reconstruction quality when the latent is shifted as
ŷ← ŷ + ρ∗

h∇ŷ(−log(ph(ŷ; ẑ, Θ)))

It is noted that calculating gradient of the entropy has a negligible complexity, because we do not need the
forward pass and there is closed form solution. When the entropy model uses Gaussian distribution such as
ph(ŷ; ẑ, Θ) := N(ŷ; µ, σ), the gradient of the entropy becomes the derivative of −log(N(ŷ; µ, σ)) wrt ŷ which
has closed form solution, where N(.; µ, σ) is PDF of gaussian distribution by given fixed µ, σ parameters.

However, the second step to find the best step size ρh is moderately demanding process. In the experiments,
we tested 8 different choices for ph and selected the best one. Thus, it needs 8 forward passes of decoding
and calculation of error between input and reconstruction.

G Additional Results

In this section, we present additional results of gain evaluated over different methods with Kodak and
Clic-2021 dataset. Figure 9-12 shows th BD-rate gain for bmshj2018-factorized in Ballé et al. (2017),
mbt2018-mean and mbt2018 in Minnen et al. (2018) and cheng2020-attn in Cheng et al. (2020).

(a) (b)

Figure 9: BD-Rates gain of our proposals from bmshj2018-factorized codecs for different quality a) Kodak
test set b) Clic-2021
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(a) (b)

Figure 10: BD-Rates gain of our proposals from mbt2018-mean codecs for different quality a) Kodak test
set b) Clic-2021

(a) (b)

Figure 11: BD-Rates gain of our proposals from mbt2018 codecs for different quality a) Kodak test set b)
Clic-2021
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(a) (b)

Figure 12: BD-Rates gain of our proposals from cheng2020-attn codecs for different quality a) Kodak test
set b) Clic-2021
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