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Abstract

Recently, traffic sign recognition (TSR) systems have become a prominent target for
physical adversarial attacks. These attacks typically rely on conspicuous stickers
and projections, or using invisible light and acoustic signals that can be easily
blocked. In this paper, we introduce a novel attack medium, i.e., fluorescent ink,
to design a stealthy and effective physical adversarial patch, namely FIPatch, to
advance the state-of-the-art. Specifically, we first model the fluorescence effect
in the digital domain to identify the optimal attack settings, which guide the real-
world fluorescence parameters. By applying a carefully designed fluorescence
perturbation to the target sign, the attacker can later trigger a fluorescent effect
using invisible ultraviolet light, causing the TSR system to misclassify the sign and
potentially leading to traffic accidents. We conducted a comprehensive evaluation
to investigate the effectiveness of FIPatch, which shows a success rate of 98.31%
in low-light conditions. Furthermore, our attack successfully bypasses five popular
defenses and achieves a success rate of 96.72%.

1 Introduction

Traffic sign recognition (TSR) plays a pivotal role in autonomous driving by visually detecting and
classifying traffic signs to ensure driving safety under various road situations. However, most TSR
systems were built atop machine-learning models that are inherently suspected and also shown to be
subject to adversarial attacks Ilyas et al. [2019], Zhang et al. [2020], making TSR systems work in-
correctly. In particular, these attacks were launched by using adversarial examples (AEs) to introduce
subtle perturbations to normal images, and these perturbations could deceive the underlying machine-
learning model into making incorrect detection and classification. Numerous efforts have been devoted
to investigating AEs in TSR systems, and recent focus has shifted from the digital domain Goodfellow
et al. [2014], Carlini and Wagner [2017], Su et al. [2019] to the physical domain Tu et al. [2020],
Sayles et al. [2021], Yan et al. [2022], Wang et al. [2023], Sato et al. [2024]. These adversarial attacks
target either cameras or traffic signs. Since attacks on cameras involove the impractical requirement
of physically accessing the target vehicle, we focuse on adversarial attacks targeting traffic signs.

Existing physical AEs against TSR exploits stickers, light and acoustic signals. Specifically, extensive
studies have been conducted on sticker-based adversarial attacks Eykholt et al. [2018], Song et al.
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Figure 1: An example of FIPatch attack. The attacker first applies carefully crafted fluorescent ink to
a traffic sign. When the attack is not triggered, the TSR system correctly classifies the sign. However,
the attacker can uses a UV lamp from the side of the road to launch the attack against the victim’s
vehicle, causing it to misrecognize a no-parking sign as a STOP sign, which leads to the vehicle
suddenly stopping.

[2018], Liu et al. [2019], which are easy to deploy with low cost. Note that we consider printed
perturbations Ye et al. [2021], Jia et al. [2022], Wei et al. [2022] as stickers as well. However, these
adversarial stickers are visually suspicious and attack all vehicles indiscriminately once deployed.
Furthermore, some works used visible light, such as projections Lovisotto et al. [2021] and lasers
Duan et al. [2021], to construct physical AEs capable of flexibly triggering attacks. Unfortunately,
such visible light can be easily tracked, revealing the location of the attacker. Recently, Sato et
al. Sato et al. [2024] constructed physical AEs to mislead TSR via an infrared (IR) laser, which is
invisible to human eyes. However, IR-based attacks are vulnerable to simple physical defenses such
as IR filters. Unlike others, Zhu et al. Zhu et al. [2023] designed adversarial patches triggered by
acoustic signals, which can be easily blocked by physical signal protection mechanisms Sharma et al.
[2017], Lou et al. [2021]. Overall, existing physical AEs are either poorly stealthy or easily countered.

In this work, surprisingly, we discovered a new attack vector, i.e., fluorescent ink, that can significantly
address the aforementioned issues and advance the state-of-the-art. Specifically, fluorescent ink is
transparent in normal environments, making them “unnoticeable”. On the other hand, fluorescent
ink exhibits fluorescent effects after absorbing specific wavelengths of light, e.g., invisible ultraviolet
(UV) light, which allows adversarial attacks to not only be flexibly triggered but also to bypass any
filters. This is because the light emitted by fluorescent materials falls within the visible light spectrum
NASA, meaning only visible-light filters could potentially block it. Nonetheless, no cameras in current
AVs use visible-light filters, as such filters would significantly damage the camera’s utility. Moreover,
filtering a single color does not prevent the effectiveness of fluorescent ink in other colors. Although
fluorescent ink demonstrates strong stealthiness and resistance to filters, designing an effective
and robust physical adversarial patch using fluorescent ink remains non-trivial with the following
challenges. First, it is challenging to simulate fluorescent effects and determine the optimal choices
of massive factors in fluorescent ink, e.g., color, transparency, and size, for achieving high attack
effectiveness. Second, fluorescent effects are easily influenced by real-world environments, including
surroundings, ambient light, vehicle distance, and speed. Feasibility study is provided in Appendix A.

To address the above challenges, we design a stealthy and effective physical adversarial patch with
fluorescent ink (FIPatch2), which leverages the aforementioned fluorescent properties. At a high level,
an attacker applies carefully designed fluorescent ink to a target sign and later triggers a fluorescent
effect using invisible UV light. The resulting fluorescent perturbations cause the TSR system to
misclassify the sign, which could potentially lead to traffic accidents. Figure 1 shows an example
of our FIPatch. In more detail, our methodology consists of four key modules. First, we develop
a color-edge fusion method to automatically locate traffic signs, enabling precise application of
fluorescent ink to the signs themselves, rather than invalid backgrounds. Second, to effectively
simulate fluorescent effects, we model fluorescent perturbations on traffic signs by defining the
various critical parameters of fluorescent ink, including colors, intensities, and perturbation sizes.
Third, we design goal-based and patch-aware loss functions to achieve high attack success rates
with minimal perturbations, supporting three attack goals: hiding attack, generative attack, and

2Our demonstration videos of FIPatch can be found at https://sites.google.com/view/
fipatch-attack/home/.
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misrecognition attack. Finally, to improve the robustness of FIPatch in the physical world, we present
several fluorescence-specific transformation methods that simulate fluorescence perturbations for
real-world attacks.

We perform extensive experiments using 10 TSR models to validate our attacks in both digital and
physical settings. The evaluation results show that under low-light conditions, the success rates
for both generative and misrecognition attacks are above 98.31%, while the success rate for hiding
attacks is at least 87.81%. Additionally, we conduct ablation studies to examine the impact of various
factors, such as color, size, and shape, and test how real-world environments e.g., distance, ambient
light, and vehicle speed affect the robustness of FIPatch. We further evaluate the effectiveness of
FIPatch in two specific attack scenarios. It is worth noting that we test 5 common defenses and find
that FIPatch can achieve an attack success rate of at least 96.72%.

Our contributions are summarized as follows.

• We are the first to introduce fluorescent ink to construct physical adversarial patches.
• We design FIPatch, a systematic attack optimization framework tailored to the physical

properties of fluorescent ink that achieves high stealthiness, effectiveness, robustness with
low-cost.

• We extensively evaluate FIPatch for three attack goals in both digital and physical worlds
against five popular defenses.

2 Background and Related Works

2.1 Traffic sign recognition

Generally, the TSR system is divided into two main steps: detection and classification. We briefly
describe the popular detectors and classifiers. First, Yolov3 Redmon and Farhadi [2018] and Yolov5
Redmon et al. [2016] are classical one-stage detectors that achieve accurate object detection by
dividing the image into grids and predicting both bounding boxes and categories. Other popular
one-stage detectors include SSD Liu et al. [2016], RetinaNet Lin et al. [2017], and EfficientNet Tan
and Le [2019]. In contrast, Faster R-CNN Ren et al. [2015] is one of the most popular two-stage
detectors. Faster R-CNN first screens high-quality candidate target regions using a region proposition
network, and then performs target classification and localization via a convolutional neural network.
Some recent works such as HyperNet Kong et al. [2016], R-FCN Dai et al. [2016], Mask R-CNN He
et al. [2017], and Cascade R-CNN Cai and Vasconcelos [2018] have also improved the performance
of Faster R-CNN. Second, the classifiers usually receive images and a series of bounding boxes of
traffic signs as input and then output the classification results of these traffic signs. Models such
as VGG Simonyan and Zisserman [2014], GoogleNet Szegedy et al. [2015], ResNet He et al. [2016],
and MobileNet Howard et al. [2017] are widely used classifiers in TSR systems.

2.2 Physical adversarial examples

Physical AEs are designed to deceive machine learning models by introducing perceptible
perturbations to physical systems. In TSR, such attacks mainly target traffic signs or cameras, though
camera-based attacks typically involve color or translucent films Li et al. [2019], Zolfi et al. [2021],
Hu and Shi [2022]. Following most prior work, we focus on attacks against traffic signs.

The current attack mediums for traffic signs can be categorized into stickers, light signals, and
acoustic signals. Specifically, some researchers Eykholt et al. [2018], Song et al. [2018], Liu et al.
[2019], Wei et al. [2022] have used stickers to create physical AEs on traffic signs. Other studies Chen
et al. [2019], Yang et al. [2020] designed full-size printable adversarial signs, which we also classify
as stickers. However, once deployed, these stickers launch attacks continuously and indiscriminately.

To address this issue, some studies have explored the light to deceive TSR systems. The first type
utilizes visible light (wavelengths from 400 nm to 800 nm), implemented via projectors Lovisotto
et al. [2021] or lasers Duan et al. [2021]. However, these light sources are easily tracked, which
exposes the attacker. Moreover, the projector used in Lovisotto et al. [2021] is expensive, costing
between $1500 and $44379. Recently, Sato et al. [2024] proposed an IR laser reflection (ILR) attack
to mislead AV perception modules, which is invisible to human eyes. However, as highlighted by Sato
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Figure 2: The workflow of our FIPatch.

et al. [2024], this attack only affects sensors without IR filters, indicating that IR filters can effectively
block ILR attacks. dditionally, Zhu et al. Zhu et al. [2023] designed a physical adversarial patch
triggered by acoustic signals. However, this method is impractical due to the challenges of using
ultrasonic devices and can be easily countered by physical signal protection mechanisms Sharma
et al. [2017], Lou et al. [2021]. In this paper, we introduce a novel attack medium that addresses the
limitations of the aforementioned methods and may pose a significant threat to TSR systems.

3 Threat Model

3.1 Attack goals

We analyze TSR outputs and propose three attacks: hiding and generative attacks for detection, and a
misrecognition attack for classification, defined as follows.

• Hiding attack. An attacker hides a traffic sign from the TSR system to cause detection failure.
• Generative attack. An attacker causes a TSR system to detect a forged traffic sign.
• Misrecognition attack. An attacker causes a TSR system to misclassify a traffic sign.

3.2 Attacker capabilities

In this work, we assume that the attack is black-box based, i.e., the attacker does not have direct
access to the internal details of the target model, such as its architecture, parameters, or gradients. We
assume the attacker has the following capabilities.

• Direct access to traffic signs. An attacker can physically access traffic signs.
• No direct access to a victim’s vehicle. An attacker does not have digital or physical access to the

victim’s vehicle before or during any phase of an attack.
• Launching an attack. An attacker can launch an attack by either placing a UV lamp by the

roadside and controlling it remotely to target the traffic sign, or by driving close to the victim’s
vehicle and using a UV lamp to target the traffic sign.

4 Methodology

To implement FIPatch in the physical world, it is essential to overcome the following challenges:

Challenge 1: How to accurately model fluorescent ink and determine the most effective attack
parameters for FIPatch?

Challenge 2: How to enhance the robustness of FIPatch by leveraging the properties of fluorescent
ink, making it more viable for real-world application?

To address these challenges, we propose a four-module FIPatch attack framework, as illustrated in
Figure 2. The Automatic Traffic Sign Localization module automatically detects the valid region
on a traffic sign to ensure consistency between the location of the perturbation in the digital and
physical environments. The Fluorescence Modeling module defines and systematically models
several key parameters related to fluorescent ink, including position, radius, color, and intensity. To
the best of our knowledge, this is the first attempt to parameterize fluorescent perturbations for attack
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optimization. The Fluorescence Optimization module optimizes these parameters using goal-based
and patch-aware loss functions and employs a particle swarm optimization algorithm to identify the
most effective attack configuration. These three modules collectively address Challenge 1.

To tackle Challenge 2, the Robustness Improvement module customizes multiple transformation
distributions based on the properties of fluorescent materials to enhance the real-world robustness of
FIPatch. The following subsections provide a detailed explanation of each step.

4.1 Automatic traffic sign localization

Since fluorescent ink can only be applied to the actual surface of the traffic signs, we propose three
steps to automatically identify the regions of traffic signs for precise placement of perturbations.
This masking mechanism ensures that the perturbation fully complies with the shape and placement
constraints of the real-world scenario. As a result, the perturbation remains effective and consistent
across both digital and physical environments.

Histogram equalization. The histogram equalization Pizer et al. [1987] is used if the input image x
satisfies the following condition:

P99(t(x(i, j)))− P1(t(x(i, j)))

max(t(x(i, j)))−min(t(x(i, j)))
< Th (1)

where t(x(i, j)) represents the pixel intensity at coordinates i and j in the image x. Here, P99 and P1

are the 99th and 1st percentile of pixel values, respectively, and Th is a threshold fraction.

Canny edge detection. We use the canny edge detector Canny [1986] with a selected threshold
to detect the edge in image x. With customized high and low thresholds, we filter out non-edge
information and highlight the edges of traffic signs in the image.

Color-based detection. We propose a color-based detection algorithm as follows.

Color lower range upper range

Y ellow (20, 40, 50) (35, 255, 210)
Blue (90, 40, 50) (120, 255, 210)
Red1 (0, 40, 50) (10, 255, 210)
Red2 (165, 40, 50) (179, 255, 210)
Black (0, 40, 50) (10, 255, 210)

Table 1: HSV color ranges

We define HSV Smith [1978] ranges for each color in
Table 1. Voxels falling inside these boxes are assigned
a value of “255” in the output array, while those outside
are assigned “0”. The four color masks are merged via
bitwise OR, followed by morphological opening and
closing to reduce noise and fill gaps. Finally, we compare
the areas identified by the two detectors. The larger area
is selected as the region A of the traffic sign, and the mask
matrix MA is determined accordingly.

4.2 Fluorescence modeling

After identifying the legal area for perturbation, we aim to simulate the effect of fluorescent ink on a
traffic sign, particularly under UV light.

Fluorescence definition. First, we assume that the fluorescent ink is used to draw a circle, then the
parameters of circle C0 are defined as follows:

θ0 = ((x0, y0), r0, γ0, α0) (2)

corresponding to the following aspects of the circle C0:

• (x0, y0) ∈ [W,H] ⊂ R2: Coordinates of the circle in an image with width W and height H .
• r0 ∈ [rmin, rmax] ⊂ R: Radius of the circle relative to the patch size.
• γ0 = [R0, G0, B0] ⊂ R3: RGB color triplet of the circle.
• α0 ∈ [0, 1] ⊂ R: Opacity level of the circle.

Perturbation function. Let x be a 2D image where x(i, j) denotes the pixel at the (i, j) location.
We define the perturbation function for a single circle in the image, π(x; θ0), as follows:

π(x; θ0)(i, j) = x(i, j) · (1− α(i, j)) + α(i, j) · γ0 (3)

Intuitively, each pixel π(x; θ0)(i, j) in the perturbed image is a linear combination of the original
pixel and the color γ0, weighted by the position-dependent alpha mask α0. To create our perturbed
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image, we combine K single-circle (C0, · · · , CK−1) as follows:

π(x; θ) = π(x; θ0) ◦ π(x; θ1) ◦ · · · ◦ π(x; θK−1) (4)

where the parameters θ = (θ0, . . . , θK−1) are the concatenation of the parameters for each circle.

Fluorescence intensity. In this study, UV light intensity primarily affects the illumination of the
traffic sign area A, while other components remain unchanged. Starting with a clean image x in RGB
color space, we first convert x to LAB color space:

LAB(x) = [Lx, Ax, Bx] (5)

Given masks MA and MF , the value of pixel (i, j) in the adversarial image xadv is:

LAB(xadv)(i, j) = [Li,j
xadv

, Ai,j
xadv

, Bi,j
xadv

]

=


LAB(x)(i, j) · [l1, 1, 1]T , (i, j) ∈ A

∧(i, j) /∈ F

LAB(x)(i, j) · [l2, 1, 1]T , (i, j) ∈ F

LAB(x)(i, j) · [1, 1, 1]T , (i, j) /∈ A

(6)

Finally, we convert xadv back to RGB color space. We refer to the entire AE generation process as:

xadv = LAB(π(x; θ)) = LAB(π(x; θ0) ◦ · · · ◦ π(x; θK)) (7)

4.3 Fluorescence optimization

In this section, we consider two customized loss functions:

min
θ∈Θ

Ex∼X,t∼T [ℓgoal + λℓarea] (8)

where θ is the attack parameters and t denotes a random transformation. X and T correspond to
their respective distributions, E denotes the expectation, and λ is a weighting factor used to balance
the different components of the loss function.

Goal-based loss. The goal-based loss ℓgoal is tied to the attack objectives, allowing the attacker
to apply different ℓgoal depending on the specific attack goals.

For a hiding attack, an attacker attempts to eliminate the detection results:

ℓgoal = Pr(object) · Pr(class) + βIoU truth
predceted (9)

where Pr(object) and Pr(class) correspond to the detector’s outputs, which respectively represent:
(1) the confidence that an object exists in a given cell, and (2) the classification confidence for a
specific class in that cell. Additionally, the attacker minimizes the “intersection over union” (IoU)
score between the predicted bounding box and the ground truth bounding box. β is a manually set
penalty term. This strategy forces the detector to inaccurately predict the bounding box location,
resulting in the incorrect detection of the object’s position.

For a generative attack, an attacker aims to improve the confidence by minimizing Equation 10:

ℓgoal = −Pr(object) · Pr(class) (10)

The attacker focuses on increasing the detector’s confidence in its output and does not need to
minimize the IoU score.

For a misrecognition attack, an attacker attempts to reduce the original category’s score:

ℓgoal = log(py) (11)

where py denotes the probability of the original category y. As py decreases, the probabilities of
other categories increase, which can lead to a change in the model’s predicted category.

Area-based loss. To introduce the smallest perturbation possible, we minimize the loss:

ℓarea = min
r∈[rmin,rmax]

K∑
i=1

πr2i (12)
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where K is the number of circles and r is the radius of each circle. The goal is to make the perturbation
subtle enough that the driver does not notice any anomaly, while the TSR system is led to make an
incorrect decision.

Particle swarm optimization. In the black-box setting with discrete coordinate values in Θ, we
use particle swarm optimization (PSO) Kennedy and Eberhart [1995]. PSO is robust to the initial
settings, aligning with our use of random initialization for parameters like perturbation position and
color. To enhance success rates, we employ the n-random-restarts strategy, allowing us to reinitialize
and rerun the PSO up to n− 1 times if the attack fails.

4.4 Robustness improvement

In this section, we propose two methods to improve the robustness of FIPatch in the real world.

Expectation over transformation. EOT Athalye et al. [2018] is an effective method for
addressing discrepancies between digital and real-world scenarios. In this paper, we extend EOT’s
transformation distributions T to accommodate variations in fluorescent materials across different
physical environments. This includes accounting for perspective, brightness, and other environmental
factors previously overlooked, as detailed in Appendix B.

Transparency transformation. To simulate the transparency of fluorescent ink when not triggered,
we apply a specific alpha value. Over time, environmental factors reduce the ink’s transparency,
impacting stealthiness. We model this over 5 days, with transparency ranging from [0, 0.1]. Despite
this, the effect remains invisible to passing vehicles in Appendix Figure 12.

5 Evaluation

In this section, we evaluate the attack’s performance in the physical world and provide the results in
the digital world in Appendix C.

5.1 Experimental setup

Datasets. We select two datasets of traffic signs captured in real driving conditions: the German
Traffic Sign Recognition Benchmark (GTSRB) Stallkamp et al. [2012] and the Chinese Traffic Sign
Recognition Database (CTSRD) Huang. These datasets are widely used in current research Liu et al.
[2019] Li et al. [2020] Ye et al. [2021].

Models. We evaluate 10 different models. For traffic sign detection, we use Yolov3 and Faster
R-CNN, both pre-trained on the COCO dataset Microsoft [2018]. We set the input size for the traffic
sign detection models to 416 × 416 and the confidence threshold for the output boxes to 0.5. For
traffic sign classification, we train CNN, Inception v3, MobileNet v2, and GoogleNet on the GTSRB
dataset. Additionally, we use ResNet50, ResNet101, VGG13, and VGG16 for the CTSRD dataset.
We set the input size to 32× 32 for all classifiers, except Inception v3, which uses an input size of
299× 299. The number of queries required to perform the attack is 1500.

B

CA

Figure 3: Experimental setup in real-world environ-
ments. (A) A traffic sign in front of a Tesla Model
Y with a UV lamp. The Tesla’s front cameras cap-
ture videos sent to the TSR system. (B) Sixteen
fluorescent material colors. (C) Equipment: stand,
Tesla USB, photometer, and 3 UV lamps.

Metrics We define the attack success rate (ASR)
Equation 13 to evaluate FIPatch attacks.

ASR =
1

N

N∑
1

IF (x,untri)=y&F (x,tri)̸=y(x) (13)

where N is the total number of frames or in-
put images, I is the indicator, F represents the
model’s prediction function, and y is the origi-
nal prediction label. The indicator I(x) equals
1 if the model’s prediction is y when the attack
is not triggered, and 0 if the model misclassifies
when the attack is triggered.

Devices. As shown in Figure 3, we employ a
Tesla Model Y as the victim’s vehicle, equipped
with a dashcam recording videos at 30 fps.
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Table 2: The ASR of FIPatch on various models in the physical world.
Ambient Frames Generative Attack Hiding Attack Misrecognition Attack

Light (Lux) Yolov3 Faster R-CNN Yolov3 Faster R-CNN ResNet50 VGG13 MobileNet v2 GoogleNet
200 4374 98.31% 98.66% 91.59% 87.81% 100% 99.82% 98.93% 100%
500 3655 98.72% 93.41% 83.64% 80.09% 99.35% 98.01% 95.38% 97.52%

1000 4163 95.22% 88.31% 69.19% 64.91% 94.26% 92.58% 92.15% 93.66%
2000 3719 94.06% 86.10% 53.81% 48.43% 90.59% 86.37% 85.92% 84.03%
3000 3924 89.63% 83.39% 31.48% 25.92% 84.12% 79.55% 74.59% 76.15%
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These videos are transmitted to a computer to simulate the TSR system. Fluorescent ink is ap-
plied to a traffic sign positioned 1.5 meters high, and a UV lamp is mounted on a stand 2.0 meters
away. All models are deployed on an Apple M2 Pro GPU.

5.2 Overall performance

Generative Hiding Misrecognition

Figure 4: Untriggered (top) and triggered (bottom)
attack examples in real-world environments.

In this section, we present examples and exper-
imental results of FIPatch in the physical world.
In Figure 4, examples of three different attacks
are illustrated. Specifically, when the attack is
untriggered, the model performs detection and
recognition normally. For example, it recog-
nizes a blank sign as empty; it correctly recog-
nizes various traffic signs such as stop signs and
turn right ahead. When an attacker triggers an
attack, the generative attack allows the model
to incorrectly detect the stop sign by drawing
a simple border. The hiding attack makes the
model fail to detect the sign without affecting
the naked eye’s recognition. The misrecognition attack induces the model to misclassify the traffic
signs. We emphasize that in the physical world, the perturbation only needs to be active for a short
time. When a self-driving car approaches the stop sign, even if it fails to recognize the stop sign for
merely a short time window, it can lead to a fatal accident.

We measure the ambient light intensity on traffic signs using a photometer and analyze the ASRs of
FIPatch under various light conditions. As shown in Table 2, Yolov3 exhibits higher ASR compared
to Faster R-CNN for both generative and hiding attacks, suggesting that Faster R-CNN is more
robust against FIPatch. Generative attacks are more effective than hiding attacks at all ambient
light levels while hiding attacks maintain ASRs above 80% only when the light is below 500 lux. At
3000 lux, the ASR for hiding attacks drops to below 32%. This drop is likely because detectors are
more sensitive to perturbations on blank signs, such as contours, but more resilient when predicting
existing traffic signs. All four classification models are highly vulnerable to attacks, with ASRs
above 93% when light is below 1000 lux. Overall, the ASRs decreases with increasing ambient light
because the fluorescent effect diminishes, reducing its impact on the models.
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5.2.1 Impact of FIPatch in real-world enviroments

Impact of distance & angle. We place traffic signs at various locations and record around 3000
frames of video with a dashcam. The setup includes a traffic sign of size 60 cm× 60 cm, ambient
brightness of approximately 200 lux, and a fluorescent perturbation radius of 14 cm. The distance
between the camera and the traffic sign ranges from 0m to 20m, and angles follow the perspective
described in Appendix B. As shown in Figure 5, CNN models achieve an ASR of over 91% across
all distances, although ASR decreases with distance and is less affected by angle variations. In
contrast, Inception v3 experiences a significant drop in ASR, achieving only 70% or 77% at the
furthest distances, indicating higher sensitivity to angle changes at greater distances. Overall, while
increasing distance reduces ASR for all models, angle variations have less impact except at extreme
angles (60◦ or −30◦). Additional results on other models can be found in Appendix Figure 16.

Impact of UV lamp power. To examine the effect of UV lamp power on ASRs, we test three types
of UV lamps: 40 Watts (W), 60W, and three levels of 80W, 100W, and 120W. As shown in Figure 6,
VGG13 shows the greatest sensitivity to changes in UV lamp power. When using a 40W UV lamp,
Inception v3 achieves the lowest ASR of 77%. In contrast, with a 120W UV lamp, all models achieve
ASR above 97%. Overall, the ASR increases with UV lamp power because higher power results
in a brighter fluorescent effect, leading to stronger interference with the models.

Table 3: Impact of the vehicle speed on ASRs.

Speed Model

(km/h) Yolov3 Faster R-CNN ResNet50 VGG13 CNN GoogleNet

0 98% 91% 99% 98% 100% 100%
5 96% 90% 98% 96% 99% 93%
10 91% 85% 96% 95% 97% 87%
15 83% 77% 93% 87% 97% 83%

Impact of vehicle speed. For detection, we per-
form generative attacks on Yolov3 and Faster
R-CNN. For classification, we apply misrecog-
nition attacks to four classification models. As
shown in Figure 3, Yolov3 consistently shows
higher ASRs than Faster R-CNN across all ve-
hicle speeds. At a speed of 15 km/h, Faster
R-CNN achieves only a 77% ASR. For classi-
fiers, the ASRs for all four models remains above 93% when the vehicle speed is below 10 km/h.
Notably, ResNet50 and CNN maintain stable ASRs, while other models experience a significant drop
in ASRs when the speed exceeds 10 km/h. This decline is attributed to rapid changes in the angle of
the traffic sign and reflections from the fluorescent material, which make it more challenging for the
models to maintain accurate detection as speed increases.

We also evaluate the impact of distance between UV lamp and traffic sign in Appendix D and find
that there is an ASR of at least 81% at a distance of 8 meters. This distance is sufficient for an
attacker to place the UV lamp in the bushes near the traffic sign. In addition, since the UV light
is invisible to the naked eye, the victim cannot locate the light source, and the attack device is in
the bushes, further increasing the stealthiness of the attack. For elevated traffic signs commonly
found on highways, attackers can leverage drones to carry out the attack. By equipping a drone with
a UV lamp and hovering it at a specific position, the attacker can activate the perturbation without
physical access to the sign. The drone only needs to remain in position for a few seconds during
the attack and can quickly leave the area afterward, making the attack highly stealthy and flexible.
Other factors, e.g., radius, colors, position, and shape, are evaluated in Appendix C.1.1.

6 Defenses

Since defenses against object detectors are not well-explored, we focus on misrecognition attacks,
as detailed in Table 4. The image smoothing Cohen et al. [2019] shows minimal impact on the
ASRs, with a slight increase observed for some models. The feature compression Jia et al. [2019]
offers slight benefits for ResNet50, CNN, and GoogleNet, reducing the ASRs by 1 ∼ 2%. The input
randomization Xie et al. [2017] does not effectively mitigate fluorescent perturbations, thus having
little impact across all models. The adversarial training Madry et al. [2017], known to be effective in
other scenarios, does not significantly defend against our scheme. This is because attackers can vary
colors and perturbation positions, preventing models from effectively learning our attack patterns. The
defensive dropout Wang et al. [2018] enhances model robustness by reducing network complexity. As
seen in Table 4, this method provides the most effective defense against our attacks compared to other
techniques. In summary, current popular defense methods are ineffective against FIPatch attacks,
presenting new challenges to driving safety and security. For more details, refer to Appendix E.
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Table 4: The ASR of FIPatch across various defenses.

Model W/o defense Image
Smoothing

Feature
Compression

Input
Randomization

Adversarial
Training

Defensive
Dropout

ResNet50 99.47% 98.54%(-0.93%) 97.82%(-1.65%) 99.18%(-0.29%) 98.63%(-0.84%) 97.17%(-2.30%)
ResNet101 99.30% 99.46%(+0.16%) 98.47%(-0.83%) 98.35%(-0.95%) 99.27%(-0.03%) 97.55%(-1.75%)

VGG13 99.29% 99.11%(-0.18%) 99.04%(-0.25%) 98.60%(-0.69%) 98.75%(-0.54%) 97.92%(-1.37%)
VGG16 99.81% 98.74%(-1.07%) 99.22%(-0.59%) 98.92%(0.90%) 99.04%(-0.77%) 98.33%(-1.48%)

CNN 100% 99.87%(-0.13%) 98.61%(-1.39%) 99.28%(-0.72%) 99.84%(-0.16%) 99.34%(-0.66%)
Inception v3 98.75% 99.14%(+0.39%) 98.36%(-0.39%) 98.54%(-0.21%) 99.17%(+0.42%) 96.72%(-2.03%)

MobileNet v2 99.32% 98.72%(-0.60%%) 98.45%(-0.87%) 99.04%(-0.28%) 98.66%(-0.66%) 98.17%(-1.15%)
GoogleNet 99.68% 99.54%(-0.14%) 97.55%(-2.13%) 98.26%(-1.42%) 98.52%(-1.16%) 97.24%(-2.44%)

Due to the vulnerability of the TSR system, we propose two potential defenses against our FIPatch
attack. One defense strategy is using high-definition maps, which provide stable, accurate traffic
sign information unaffected by FIPatch. These maps, regularly updated by providers based on official
traffic authority announcements, allow vehicles to make informed decisions even if signs are altered.
However, they don’t replace the need for sensors in case of unexpected conditions or map delays.
Another promising defense is collaborative perception among multiple vehicles. If one vehicle is
attacked by fluorescent ink, nearby vehicles can share their recognition results, enabling the affected
vehicle to correct its prediction, enhancing overall system robustness.

7 Discussions

Limitations. Our FIPatch has two limitations. First, our outdoor experiments mainly assess the
effects at the AI component level rather than the autonomous vehicle system level. Second, ambient
light impacts different attack goals in varying ways.

Future work. In our future work, we plan to focus on two main directions. First, we intend to
investigate the use of fluorescent materials to challenge object detection systems. Specifically, adding
suitable perturbations using fluorescent materials on curved surfaces presents a significant challenge.
Second, we aim to develop effective defenses against FIPatch. This includes exploring multi-vehicle
collaboration and leveraging deep learning models to enhance security. Determining how to imple-
ment these defenses effectively remains a challenge and will be a key focus of our future research.

Societal impacts. The proposed FIPatch attack has important societal implications. On the positive
side, it exposes a previously overlooked vulnerability in TSR systems, thereby encouraging the
development of more robust models and defenses. However, due to its stealthiness and physical
feasibility, FIPatch also poses potential risks if maliciously exploited to disrupt traffic environments
or compromise public safety. We emphasize that our study serves as an effective approach to
identifying security issues, encouraging researchers to focus more on the robustness of models.

Ethics statements. The closed roads used for physical world experiments have obtained IRB approval
from our institution for data collection. All images and videos used in physical world attacks are
legally obtained from vehicle owners and do not contain any personal information. We ensure that
there are no pedestrians during the experiments while the vehicle is operated by the driver without
any safety incidents.

8 Conclusion

In this paper, we propose FIPatch, a stealthy and effective adversarial attack that leverages fluorescent
ink to create adversarial examples in the physical world. We focus on the context of traffic sign recog-
nition, where the goal of the attack is to alter the appearance of a traffic sign using specially crafted flu-
orescent ink, causing the traffic sign recognition system to either fail to detect or misclassify the sign.

Considering the physical constraints of applying fluorescent ink to multiple traffic signs under
various conditions, we develop a tailored approach to create robust black-box adversarial examples.
We evaluate our proposed attack method against 10 state-of-the-art detectors and classifiers in both
the digital and physical worlds. Our investigation into various factors affecting the success rate of
FIPatch attacks demonstrates its robustness in real-world scenarios. Finally, our analysis of existing
defenses shows that current methods against adversarial examples are ineffective against FIPatch,
highlighting the need for further research into this potent new attack vector.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper discuss the limitations of the work.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
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3. Theory assumptions and proofs
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Justification: The paper does not include theoretical results.
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• All assumptions should be clearly stated or referenced in the statement of any theorems.
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proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper fully disclose all the information needed to reproduce the main
experimental results of the paper.
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
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to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: https://anonymous.4open.science/r/FIPatch-FA52/.
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: https://anonymous.4open.science/r/FIPatch-FA52/.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Section 5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
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• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).
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NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in this paper fully complies with the NeurIPS Code of
Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper discuss both potential positive societal impacts and negative societal
impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The assets used in the paper are properly credited and respected.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The new assets introduced in the paper are well documented.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Feasibility Study

In this section, we explore the feasibility of using fluorescent ink to attack a TSR system. We
introduce the fundamental concepts of fluorescent materials. Following this, we render the fluorescent
effect and apply it to traffic signs, which are then analyzed by a TSR system.

A.1 Fluorescent materials

Fluorescence occurs in certain molecules, called fluorophores (typically polyaromatic hydrocarbons
or heterocycles), through a three-stage process illustrated in the jablonski energy diagram Jablonski
[1933] (Figure 7).
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Figure 7: The jablonski energy diagram Jablonski
[1933] illustrating the fluorescence process.

First ( 1⃝), a photon with energy hvEX from an
external source with wavelength λEX (like an
incandescent lamp or laser) is absorbed by the
fluorophore, creating an excited singlet state S1.

Second ( 2⃝), during its excited state, which lasts
a few nanoseconds, the fluorophore undergoes
conformational changes and interacts with its en-
vironment. These interactions cause energy dis-
sipation, resulting in a relaxed singlet state S2,
from which fluorescence emission occurs. Not
all molecules return to the ground state S0 via
fluorescence. Some molecules are depopulated
through processes like collisional quenching and
intersystem crossing.

Finally ( 3⃝), a photon with energy hvEM is
emitted, returning the fluorophore to its ground
state S0. Due to energy dissipation, the emitted photon has lower energy and a longer wavelength
than the excitation photon hvEx. The difference, (hvEx − hvEM ), is called the stokes shift Stokes
[1852].

Fluorescent materials can be either solid or liquid. Solid materials like phosphors are difficult to
attach to targets and lack stealthiness. This paper focuses on fluorescent ink, which is transparent
when not triggered, hard to detect, and easy to apply to targets.

A.2 Fluorescent materials rendering

In this section, we introduce the main parameters of fluorescent materials and how they render
fluorescent effects on the surfaces of objects. The key parameters are fluorescence quantum yield,
fluorescence excitation spectrum, and fluorescence emission spectrum. The fluorescence quantum
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Figure 8: The effect of excitation (blue) at different wavelengths on the fluorophore emission (red) at
various excitation wavelengths is as follows: (A) Excitation at the fluorophore’s excitation maximum
yields maximum emission. (B-E) Excitation at suboptimal wavelengths leads to decreased emission
intensity, proportional to the reduced amount of excitation input.
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(a) Visible light (b) UV light (c) UV + Visible light

Figure 9: Examples of simulated renderings include (a) BSDF rendering in visible light, (b)
fluorescent BSDF rendering in UV light, and (c) fluorescent BSDF rendering in UV and visible light.
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(b) The confidence score for a STOP sign
with three different fluorescent materials.
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(a) The fluorescence excitation and emission spectra 
with three different fluorescent materials.

Figure 10: The feasibility experiments involve (a) obtaining fluorescence spectra of fluorescent
materials at various wavelengths, and (b) assessing the confidence scores of the TSR system regarding
the STOP sign at different wavelengths for three fluorescent materials applied on its surface.

yield is the ratio of the number of fluorescence photons emitted to the number of photons absorbed. It
measures the efficiency of the fluorescence process. A fluorescence excitation spectrum is obtained
by fixing the emission wavelength (typically at the maximum emission intensity) and scanning
the excitation wavelength. Since excitation leads to the molecule reaching the excited state upon
absorption, the excitation spectrum effectively represents the absorption characteristics. A fluores-
cence emission spectrum is obtained by fixing the excitation wavelength and scanning the emission
wavelength to produce a plot of intensity versus emission wavelength. For instance, if we fix the
excitation at wavelength B (350 nm) in Figure 8 and scan the emission spectrum between 430 nm
and 580 nm, we obtain the emission spectrum corresponding to wavelength B. It is important to note
that illuminating a fluorophore at its excitation maximum produces the greatest fluorescence output.
However, illuminating at other wavelengths only affects the intensity of the emitted light, without
changing the range or overall shape of the emission profile.

To render fluorescent effects on the surface of objects, we use the bidirectional scattering distribution
function (BSDF) Bartell et al. [1981], a general representation of the optical properties of surface
reflection and transmission. Utilizing the Ocean light simulator Digital, we incorporate the specific
parameters mentioned above into the fluorescence BSDF model. Figure 9 shows multiple examples
of rendering. The left ball is a control sample without fluorescence, while the right ball represents a
fluorophore. Note that this fluorophore is hypothetical and created solely for demonstration purposes.

A.3 TSR with fluorescent materials

To investigate the feasibility of fooling a TSR system, we separately render three common colors, i.e.
red, green, and blue, of fluorescent materials onto the surface of a traffic sign and feed the resulting
images into the TSR system. The excitation and emission spectra of the fluorescent materials are
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depicted in Figure 10 (a). The optimal trigger wavelengths for red, blue, and green fluorescent
materials are 348 nm, 360 nm, and 430 nm, respectively.

In this section, we use standard stop signs and manually annotate their locations in images. We then
render different fluorescent materials to these signs in the digital world and submit the modified
images to the Yolov3 model for recognition. The model’s confidence scores for detecting stop
signs are shown in Figure 10 (b). The results show that fluorescent materials can effectively lower
the model’s confidence in recognizing stop signs, confirming the feasibility of this attack. Red
fluorescent material significantly reduces the confidence score more than green and blue, likely
due to the model’s sensitivity to longer wavelengths. Green fluorescent material also lowers the
confidence score over a wider wavelength range, thanks to its broad excitation spectrum.

From the above experiments, we can draw the following conclusions: First, a TSR system can be
successfully attacked using fluorescent materials. However, the success of such an attack is not
guaranteed, as the confidence scores are highly sensitive to the wavelength used. Second, various
factors—such as fluorescence intensity, perturbation placement, and ambient light—significantly
affect the attack’s effectiveness. Therefore, the same set of fluorescence parameters cannot be
universally applied to different traffic signs.

B Different Settings for EOT

We present the transformation methods used in EOT.

(1) Background. We select various backgrounds, including highways, viaducts, city lanes, and
country roads, and carefully position traffic signs at the road edges. Following the approach of using
Google Images as suggested in Zhao et al. [2019], we gather a diverse set of road backgrounds to
further expand the transformation set.

(2) Brightness. To simulate varying ambient brightness, we capture images of traffic signs under
different weather conditions and times of day, including sunny, cloudy, rainy, evening, night, and
dawn. Additionally, the intensity of headlights affects the visibility of traffic signs. We convert the
traffic sign image to LAB color space, adjust the L channel values within the range [0, 50], and then
convert the image back to RGB.

Autonomous Vehicle

30° 60°

60°

Autonomous Vehicle

Figure 11: Horizontal (left) and vertical
(right) viewing angles.

(3) Perspective. As shown in Figure 11, we apply perspec-
tive transformations based on real-world environments in
two ways. First, traffic signs are typically positioned on
the right side or above the road (in right-driving countries),
so they are rarely seen on the right side of the screen.
Therefore, we set the horizontal field of view to range
from 30° left to 60° right, with 0° directly in front.

Second, On-board cameras are usually installed at specific
heights (e.g., the forward-looking camera on a Tesla
Model Y is positioned 1.4 to 1.5 meters above the ground).
Traffic sign heights also have specific requirements (e.g.,
4 to 17 feet in the U.S. on Uniform Traffic Control Devices [2023.12]), typically aligning with the
camera height. Thus, we set the vertical field of view to range from 0° to 60°.

(4) Distance. As an autonomous vehicle approaches a traffic sign, the size of the sign in the camera’s
view increases progressively. We account for the size of traffic signs at varying distances during
the optimization process. Specifically, we set the maximum distance between the vehicle and the
traffic sign to 20 meters and record the sign’s size at different distances.

(5) Rotation. Traffic signs are not always directly in front of the vehicle’s cameras and may be
slightly offset. These slight rotations can cause misrecognition by the model, so we account for
rotations of plus or minus 10 degrees during the optimization process.

(6) Motion. During vehicle travel, images captured by the camera may suffer from motion blur
caused by road bumps and other factors. To enhance the model’s robustness, we simulate motion blur
at various angles and directions.
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Figure 12: Transparency of fluorescent ink at different placement times when no attack is triggered.

Table 5: The ASR of FIPatch on various models in simulation.
Overall Performance Target Model

& Transferability ResNet50 ResNet101 VGG13 VGG16 CNN Inception v3 MobileNet v2 GoogleNet

Source Model
ResNet50 100% 95% 89% 91% CNN 100% 76% 79% 80%

ResNet101 93% 100% 92% 94% Inception v3 92% 100% 69% 81%
VGG13 94% 85% 99% 92% MobileNet v2 92% 83% 99% 87%
VGG16 95% 93% 88% 100% GoogleNet 91% 81% 80% 100%

Original Accuracy 99.27% 99.11% 98.70% 99.19% 99.27% 99.33% 99.49% 99.61%

C Digital-world attacks

C.1 Overall performance

We conduct misrecognition attacks on various classifiers in the digital domain. Specifically, we
configure the PSO search color space from (0, 0, 0) to (255, 255, 255). The setup includes a single
circle with a radius ranging from 0 to 15 and a fluorescent effect transparency set between 0.7 and
0.9. We perform 5 random restarts and run 30 iterations per PSO.

We present the experimental results in Table 5 in two parts. First, the underlined results show the
ASRs of our method in a black-box setting. By using optimal attack parameters for each traffic sign,
we achieve nearly 100% ASRs on several high-precision models, with VGG13 and MobileNet v2
having slightly lower ASRs of 99%. Second, we evaluate the transferability of our attack. In this
context, the source model is the attacker’s shadow model, and the target model is the one intended
for attack. As shown in Table 5, the ASRs are above 85% for ResNet50, ResNet101, VGG13, and
VGG16. The lowest ASR of 69% is observed when transferring from Inception v3 to MobileNet v2.
Models with similar architectures, such as ResNet50 to ResNet101, achieve high ASRs, reaching up
to 95%. These results demonstrate the effectiveness of our attack across various models.

C.1.1 Impact of FIPatch in simulation

CTSRD GTSRB

Figure 13: Impact of the radius on ASRs for
models trained on CTSRD and GTSRB.
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Figure 14: Impact of the colors C(r, g, b) on ASRs.

Impact of radius. To investigate the effect of the fluorescent ink radius, we vary it from 1 to 15
pixels relative to the image height. As shown in Figure 13, there is a strong correlation between
the perturbation radius and the ASR: a larger radius generally leads to a higher ASR. Additionally,
smaller radii have less impact on more complex models.
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Table 6: Impact of the number of circles on ASRs.
The number Model

of circle ResNet50 ResNet101 VGG13 VGG16 CNN Inception v3 MobileNet v2 GoogleNet

1 88.42% 89.74% 84.18% 84.31% 96.11% 49.26% 95.60% 98.32%
2 95.24% 97.86% 94.79% 93.82% 94.19% 75.57% 89.10% 95.28%
3 96.41% 100% 97.36% 95.43% 98.23% 76.91% 92.15% 96.28%
4 96.41% 100% 96.75% 95.38% 97.83% 80.17% 97.88% 96.42%
5 98.27% 100% 98.65% 97.53% 97.14% 78.26% 95.70% 97.49%
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Figure 15: Impact of the positions on ASRs.

Impact of colors. To analyze the impact of color on the attack’s effectiveness, we test 27 different
colors. As shown in Figure 14, black color results in the lowest ASR for both models and fluorescent
materials that emit black are not found in reality. For the CNN model, the color C(127, 127, 255)
yields the highest ASR, while for ResNet50, the color C(255, 255, 0) achieves the highest ASR.

Impact of number of circles. We next examine how the number of circles affects the ASR. As
shown in Table 6, while adding more circles generally improves the ASRs, the effect varies across
different models. This is because increasing the number of circles does not necessarily enlarge the
perturbation area, and some circles may overlap.

Impact of positions. To explore how perturbation positions affect the ASRs, we divide the 32× 32
pixel image into 64 blocks of 8 × 8 pixels each. As shown in Figure 15, the central region of the
image has the highest percentage of successful attacks. This is because the traffic signs in the dataset
are centered, making attacks on the edges less effective. Consequently, the center of the sign is the
most vulnerable and prone to successful attacks.

Impact of shapes. In this section, we analyze the impact of different perturbation shapes on the
ASRs. As shown in Figure 17, circles achieve a much higher ASRs compared to straight and curved
lines. This is because circles cover a larger area and have a more significant impact on misclassifying
models. In contrast, straight lines and curves result in ASRs below 60% on Inception v3, indicating
that these simple linear perturbations are less effective in causing misclassification.

D Impact of distance between UV lamp and traffic sign

Table 7: Impact of the distance between UV lamp and traffic
sign on ASRs.

Model 1m 2m 4m 6m 8m

ResNet50 100% 98% 96% 90% 87%
VGG13 100% 97% 96% 89% 84%

CNN 100% 100% 98% 93% 90%
GoogleNet 100% 93% 89% 87% 81%

We place traffic signs at 30◦ to the
right of the vehicle at a distance of
10m. The ambient light intensity is
150 lux, the radius of the patch re-
mains 14 cm and the UV lamp is po-
sitioned directly in front of the traf-
fic sign. We adjust the distance be-
tween UV lamp and traffic sign to test
its impact on the ASR of each model.
As shown in Table 7, all four models
achieve a 100% ASR when the dis-
tance is less than 1m. As the distance increases, the ASR gradually decreases, as the fluorescence
effect triggered by the UV light weakens with greater distance. ResNet50, VGG13, and CNN show
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Figure 16: Impact of the distance & angle between vehicle and traffic sign on ASRs.

the most significant decrease in ASR when the distance increases from 4m to 6m. In contrast,
GoogleNet experiences the largest drop in ASR between 2m and 4m. To achieve optimal attack
results, we recommend placing the UV lamps in bushes within 4m of the traffic signs. Notably, all
models maintain an ASR of at least 81% even at a distance of 8m.
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Typically, AE defenses are designed for digital
domains to detect small perturbations. In
physical AEs, attackers cannot precisely control
inputs and are constrained by real-world
conditions. Since defenses for physical AEs are
less well-studied compared to those for digital
AEs, and many existing approaches simply
apply general AE defenses to the physical
world, we select three popular AE defense
classes to evaluate our FIPatch.

The first category is input preprocessing, which
includes image smoothing Cohen et al. [2019],
feature compression Jia et al. [2019], and input
randomization Xie et al. [2017]. Specifically,
image smoothing Cohen et al. [2019] involves
training a neural network f with Gaussian data
augmentation (variance σ2) and using f to cre-
ate a new "smoothing classifier." In this paper,
we set σ to 0.5. Feature compression Jia et al.
[2019] leverages redundant information in images to defend against AEs. We use the same network
structure as in Jia et al. [2019] and apply it to AEs generated by our FIPatch. Input randomization
Xie et al. [2017] uses random resizing or padding to reduce adversarial effects. We resize the input
image from 32× 32 to 36× 36. For Inception v3, we first shrink the image to 290× 290 and then
pad it to 299× 299.

The second category is adversarial training Madry et al. [2017], a widely used defense method that
aims to help the model learn to recognize and counteract attacks. We set the perturbation radius in our
FIPatch to 7, with Particle Swarm Optimization (PSO) exploring various locations and colors. Each
model generates AEs that successfully perform an attack, representing 10% of the initial training
set, and records the original correct labels of these AEs. Each model then continues training for 10
epochs on its own set of generated AEs.

The third category is structural modifications, with defensive dropout Wang et al. [2018] being a
notable example. This method improves upon random activation pruning. We implement dropout
during both training and testing, setting the dropout rate to 0.3 to achieve robust defense.

Due to the vulnerability of the TSR system, we propose a potential defense against our FIPatch
attack: high definition maps. Traffic signs are typically fixed, unlike changeable traffic lights, which
means their information remains stable over time. High definition maps, which contain accurate
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traffic sign information, are not affected by FIPatch attacks. Vehicles equipped with such maps
can make informed decisions based on the traffic sign data provided, independent of potential
perturbations caused by attacks. Furthermore, changes to traffic signs generally require approval from
the traffic department. High definition map providers can update the map information in real-time
based on official announcements from traffic authorities, ensuring that the data remains current and
reliable. However, using high definition maps does not eliminate the need for a sensing system. In
cases of unexpected road conditions or delays in map updates, sensors are crucial for ensuring safe
driving. Therefore, combining high-definition maps with robust sensor systems improves the safety
of autonomous vehicles against AEs.
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