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Abstract
Recent advances in knowledge graph embedding
(KGE) rely on Euclidean/hyperbolic orthogonal
relation transformations to model intrinsic logical
patterns and topological structures. However, ex-
isting approaches are confined to rigid relational
orthogonalization with restricted dimension and
homogeneous geometry, leading to deficient mod-
eling capability. In this work, we move beyond
these approaches in terms of both dimension and
geometry by introducing a powerful framework
named GoldE, which features a universal orthogo-
nal parameterization based on a generalized form
of Householder reflection. Such parameterization
can naturally achieve dimensional extension and
geometric unification with theoretical guarantees,
enabling our framework to simultaneously capture
crucial logical patterns and inherent topological
heterogeneity of knowledge graphs. Empirically,
GoldE achieves state-of-the-art performance on
three standard benchmarks. Codes are available
at https://github.com/xxrep/GoldE.

1. Introduction
Knowledge graphs (KGs) structurally organize vast human
knowledge into the factual triples, where each triple (h, r, t)
signifies the existence of a relation r between head entity h
and tail entity t. Imbued with a wealth of factual knowledge,
KGs have facilitated a myriad of downstream applications
(Saxena et al., 2020; Yasunaga et al., 2022; Sun et al., 2023).
However, real-world KGs such as Freebase (Bollacker et al.,
2008) are plagued by incompleteness (Bordes et al., 2013).
This motivates substantial research on Knowledge Graph
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Figure 1. Illustrations of logical patterns (a-d) (Sun et al., 2019)
and topological structures (e-f) (Chami et al., 2020).

Embedding (KGE), which learns expressive representations
of entities and relations for predicting the missing links.

The key to KGE lies in capturing crucial logical patterns
(e.g., symmetry, antisymmetry, inversion and composition)
(Sun et al., 2019) and inherent topological structures (e.g.,
cyclicity and hierarchy) (Chami et al., 2020) as illustrated
in Figure 1. Recent advances highlight the effectiveness of
orthogonal relation transformations for this principle. As a
pioneering work, RotatE (Sun et al., 2019) represents rela-
tions as 2-dimensional Euclidean rotations, i.e., isometries
on 1-spheres (Sommer, 2013), which is able to model the
four logical patterns and cyclical structures. The subsequent
works can be categorized into two branches: (1) “Dimension
Branch” (Zhang et al., 2019; Gao et al., 2020; Cao et al.,
2021; Li et al., 2022) extends the (Euclidean) orthogonal
relation transformations into higher-dimensional spaces for
better modeling capacity; (2) “Geometry Branch” (Balaze-
vic et al., 2019; Chami et al., 2020) leverages hyperbolic
isometries to preserve the hierarchical structures.

However, it takes two to tango—none of existing approaches
can simultaneously break the restrictions of dimension and
geometry for orthogonal relation transformations. As shown
in Table 1, the dimensional extensions are entrenched in Eu-
clidean geometry, while the hyperbolic relational orthogo-
nalization remains constrained in low-dimensional spaces
due to the significant computational demand and complexity.
Moreover, all these approaches are specifically designed on
homogeneous geometry, which is inadequate to preserve the
topological heterogeneity of KGs—in some regions cyclical,
in others hierarchical (Gu et al., 2019; Skopek et al., 2020;
Wang et al., 2021). In light of such limitations, a challenging
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Table 1. Recent models’ capability of modeling logical patterns and topological structures of KGs. E, P and Q denote Euclidean, elliptic
and hyperbolic geometries for orthogonal relation transformations, respectively. Note that Euclidean models essentially act by isometries
on hyperspheres (Sommer, 2013), which can be viewed as special cases of our elliptic parameterization.

Model Geometry
of Orth.

Dimension
of Orth.

Logical Patterns Topological Structures

Symmetry Antisymmetry Inversion Composition Cyclicity Hierarchy

RotatE (Sun et al., 2019) E 2 " " " " " %

Rotate3D (Gao et al., 2020) E 3 " " " " " %

DualE (Cao et al., 2021) E 3 " " " % " %

QuatE (Zhang et al., 2019) E 4 " " " % " %

HousE (Li et al., 2022) E k " " " " " %

RefH (Chami et al., 2020) Q 2 " " " " % "

RotH (Chami et al., 2020) Q 2 " " " " % "

AttH (Chami et al., 2020) Q 2 " " " " % "

GoldE P(E),Q k " " " " " "

question arises: can we generalize these approaches in both
dimension and geometry to achieve the best of all worlds?

In this paper, we give an affirmative answer by presenting a
general framework named GoldE, which represents relations
with a universal orthogonal parameterization. To establish
the universality, we first derive a generalized form of House-
holder reflection (Householder, 1958) based on a quadratic
inner product. By treating such reflection as the elementary
operator, we can then theoretically design elegant mappings
to parameterize orthogonal relation transformations of typi-
cal geometric types (i.e., Euclidean, elliptic and hyperbolic).
Each of them breaks through the dimensional rigidity with-
out losing degrees of freedom, enabling superior capacity
for modeling logical patterns and corresponding topologies.
Considering the inherent topological heterogeneity of KGs,
we further integrate the designed mappings within a product
manifold (Ficken, 1939) to unify multiple geometric types
of orthogonal transformations. In this way, such parameter-
ization can simultaneously achieve dimensional extension
and geometric unification for relational orthogonalization,
empowering our framework to better match heterogeneous
topologies and thus provide higher-quality representations.

Contributions: To the best of our knowledge, GoldE is the
first framework that generalizes existing KGE approaches
in both dimension and geometry of the orthogonal relation
transformations. With theoretical guarantees, we establish a
universal orthogonal parameterization, based on which our
GoldE can simultaneously capture crucial logical patterns
and inherent topological heterogeneity as shown in Table 1.
Empirically, we conduct extensive experiments over three
standard benchmarks, and GoldE consistently outperforms
current state-of-the-art baselines across all the datasets.

2. Preliminaries
2.1. Problem Setup

Given the entity set V and relation set R, a knowledge graph
can be formally defined as a collection of factual triples F =

{(h, r, t)} ⊆ V ×R× V , where each triple represents that
there is a relation r between head entity h and tail entity t.
As an effective technique for automatically inferring missing
links, KGE encodes entities and relations into expressive
representations, and measures the plausibility of each triple
with a pre-defined score function.

2.2. Geometric Background

We briefly introduce some necessary background on elliptic
and hyperbolic geometry. More relevant details are available
in the standard texts (Do Carmo, 1992; Eisenhart, 1997).

Elliptic Manifold: Let p ∈ Rk
+ be a weighting vector

where all elements are positive. For any x,y ∈ Rk, the
elliptic inner product (Özdemir, 2016) is defined as:

⟨x,y⟩p = x⊤diag(p)y = p1x1y1 + · · ·+ pkxkyk.

For any β > 0, the elliptic manifold (ellipsoid) Pk
p,β is the

following submanifold in Rk:

Pk
p,β = {x ∈ Rk : ⟨x,x⟩p = β}. (1)

If one set p to an all-ones vector 1, ⟨x,y⟩p =
∑k

i=1 xiyi
is the Euclidean inner product, based on which the ellipsoid
Pk
p,β is specialized into the hypersphere Skβ .

Hyperbolic Manifold: This paper chooses the hyperboloid
model of hyperbolic space for its simplicity and numerical
stability (Nickel & Kiela, 2018). Let q ∈ Rk be a weighting
vector with the first element equal to −1 and the remaining
elements equal to +1. For any x,y ∈ Rk, the hyperbolic
(Lorentz) inner product is defined as:

⟨x,y⟩q = x⊤diag(q)y = −x1y1 + x2y2 + · · ·+ xkyk.

For any β > 0, the hyperboloid Qk
β is denoted as:

Qk
β = {x ∈ Rk : ⟨x,x⟩q = −β, x1 > 0}. (2)

For the sake of clarification, all notations used in this paper
are listed in Appendix A.

2



Generalizing Knowledge Graph Embedding with Universal Orthogonal Parameterization

(a) (b) (c) (d)
Figure 2. (a) Illustration of generalized Householder reflection; (b) Three types of reflections of x about the hyperplanes ζ orthogonal to u
under different weighting vectors, i.e., Euclidean (green lines), elliptic (purple lines) and hyperbolic (blue lines). Note that all quantities
are displayed in the uniformly weighted Euclidean space, thus the non-Euclidean hyperplanes ζP and ζQ do not appear perpendicular to u;
(c) Elliptic orthogonal parameterization in 2-dimensional space; (d) Hyperbolic orthogonal parameterization in 2-dimensional space.

3. Methodology
3.1. Generalized Orthogonal Matrix and Mapping

In the first step, we seek an elegant parameterization method
for modeling orthogonal matrices in Euclidean, elliptic and
hyperbolic spaces of arbitrary dimension k. To establish this
universality, we take a broader perspective by introducing a
generalized space equipped with a quadratic inner product.

Quadratic form: For any x,y ∈ Rk, the quadratic inner
product ⟨x,y⟩w with respect to w ∈ Rk is defined as:

⟨x,y⟩w = x⊤diag(w)y =

k∑
i=1

wixiyi, (3)

where w is a weighting vector with no elements equal to 0,
ensuring that ⟨x,y⟩w is non-degenerate.

Generalized orthogonal matrix: In the generalized space
endowed with ⟨x,y⟩w, a real square matrix G ∈ Rk×k is
orthogonal if it satisfies:

⟨Gx,Gy⟩w = ⟨x,y⟩w ⇔ G⊤diag(w)G = diag(w).
(4)

We call the set of all G as the generalized orthogonal group
in dimension k, denoted by Ow(k). According to Equation
(1) and (2), the generalized orthogonal matrix G ∈ Ow(k)
can be naturally specialized into Euclidean, elliptic and hy-
perbolic spaces by setting w to 1, p and q, respectively.
Based on this observation, we turn to modeling such gener-
alized orthogonal matrices for establishing the universality.

Generalized Householder matrix: Before fully covering
all G ∈ Ow(k), we start with the simplest case: elementary
reflection matrix, which is also known as the Householder
matrix (Householder, 1958) in Euclidean space. Here we
derive the generalized form of Householder matrix in the
quadratic inner product space.

Geometrically, the generalized Householder matrix H de-
scribes an elementary reflection from x to x′ about a a hy-
perplane ζ as shown in Figure 2(a). Given a normal vector

u ∈ Rk of ζ, the projection of x onto u is denoted as:

Prou(x) =
⟨u,x⟩w
⟨u,u⟩w

u. (5)

By the law of vector addition, the projection of x onto the
hyperplane ζ, i.e., Proζ(x), is calculated as:

Proζ(x) = x− Prou(x). (6)

Based on the concept of projections, we move to the elemen-
tary reflection of x with respect to ζ in the quadratic inner
product space. The resulting vector x′ is given by:

x′ = Proζ(x)− Prou(x) = (I− 2
uu⊤diag(w)

u⊤diag(w)u
)︸ ︷︷ ︸

H(u,w)

x,
(7)

where I ∈ Rk×k is the identity matrix. Notably, the induced
reflection matrix H(u,w), with normal vector u and weight-
ing vector w as variables, can be viewed as a generalization
of Euclidean Householder matrix (w = 1) in the quadratic
inner product space. It is straightforward to demonstrate that
the generalized Householder matrix H(u,w) is orthogonal,
which satisfies the inner product invariance in Equation (4).
Figure 2(b) illustrates the Euclidean, elliptic and hyperbolic
reflections in 2-dimensional space, described by H with w
equal to 1, p and q, respectively.

Orthogonal mapping: By taking the elementary reflections
as basic operators, we can design a mapping to represent the
generalized orthogonal transformations. Formally, given a
series of vectors U = {uc}nc=1 where uc ∈ Rk, we define
the mapping with respect to w ∈ Rk as follows:

Orth(U,w) =

n∏
c=1

H(uc,w). (8)

Since each H(uc,w) preserves the quadratic inner product,
one can easily verify that the output of Orth(U,w) is also
a generalized orthogonal matrix according to Equation (4).
Moreover, we have the following theorem:
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Theorem 3.1. When n = k, the image of Orth is the
set of all k × k generalized orthogonal matrices, i.e.,
Image(Orth) = Ow(k). (See proof in Appendix B)

This theorem guarantees that the output of Orth completely
covers the generalized orthogonal group Ow(k). Therefore,
such a mapping can naturally represent all the orthogonal
matrices of Euclidean, elliptic and hyperbolic types with the
weighting vector w equal to 1, p and q, respectively.

3.2. GoldE: Universal Orthogonal Parameterization

In the following, we leverage the derived mapping Orth as
the cornerstone to develop the elliptic (Section 3.2.1) and
hyperbolic (Section 3.2.2) orthogonal parameterizations for
modeling relations, which are further integrated in a product
manifold to establish our GoldE framework (Section 3.2.3).

3.2.1. ELLIPTIC ORTHOGONAL PARAMETERIZATION

To better capture logical patterns and cyclical structures of
KGs, we propose to model each relation as a k-dimensional
elliptic orthogonal transformation between head and tail
entities with the designed mapping Orth in Equation (8).

Given an elliptic weighting vector p ∈ Rk
+, the initial em-

bedding ev ∈ Rk for entity v ∈ V can be regarded as lying
on the ellipsoid Pk

p,βev,p
, where βev,p = ⟨ev, ev⟩p. Consid-

ering that each entity typically exhibits different characteris-
tics when involving different relations (Wang et al., 2014),
we define a learnable weighting vector pr for each relation
r ∈ R to associate entities with the r-specific ellipsoid. For
each triple (h, r, t), the r-associated embeddings of head en-
tity h and tail entity t are denoted as eh,r ∈ Pk

pr,βeh,pr
and

et,r ∈ Pk
pr,βet,pr

. We then represent relation r as an elliptic
orthogonal transformation between eh,r and et,r. Formally,
the embedding of relation r is defined as Ur ∈ Rk×k, in
which each row Ur[i] ∈ Rk is a normal vector for elemen-
tary reflection. Taking Ur and pr as input to the mapping
Orth, we can apply the r-specific elliptic orthogonal trans-
formation to the head embedding eh,r:

e′h,r = OrthP(Ur,pr)eh,r

=

k∏
i=1

H(Ur[i],pr)eh,r.
(9)

Based on Theorem 3.1, any k-dimensional elliptic orthogo-
nal relation transformation can be naturally represented by
Equation (9) without any loss of degrees of freedom.

Objective function: If triple (h, r, t) holds, the transformed
head embedding e′h,r is expected to be close to the tail em-
bedding et,r. Figure 2(c) illustrates the elliptic orthogonal
parameterization in 2-dimensional space. Note that e′h,r and
et,r lie on the ellipsoids that have the same pr but different
β. To measure such proximity, we introduce the extrinsic

Mahalanobis distance (Mitchell & Krzanowski, 1985) as
the score function for each (h, r, t):

sr(h, t) = −dP(e
′
h,r, et,r) (10)

= −
√
(e′h,r − et,r)⊤diag(pr)(e′h,r − et,r).

Note that it is also possible to normalize all entities onto one
ellipsoid and measure similarity using the elliptic geodesic
distance. However, the extrinsic measurement usually works
better in practice (Sun et al., 2019; Wang et al., 2021).

Connections to Euclidean models: As shown in Table 1, a
series of existing models such as RotatE, QuatE and HousE
represent relations as Euclidean orthogonal transformations
with respective dimensions. All these models can be viewed
as the special cases of the proposed elliptic parameterization
by setting pr to 1 for all r ∈ R. With the designed orthogo-
nal mapping Orth, our parameterization is applicable to the
space of any dimension k. Moreover, we highlight that such
elliptic generalization moves beyond Euclidean models by
introducing an additional relation-specific scaling operation.
Formally, we can prove the following claim:

Claim 3.2. The proposed elliptic parameterization can be
reformulated as Euclidean parameterization equipped with
element-wise scaling transformations determined by

√
pr.

(See proof in Appendix C)

Such scaling transformations enable an adaptive adjustment
of the margin in loss function to fit for complex relations
(Chao et al., 2021). However, elliptic geometry is inherently
not the optimal choice for preserving the hierarchical struc-
tures due to its mismatched geometric characteristics, which
then motivates us to investigate hyperbolic parameterization.

3.2.2. HYPERBOLIC ORTHOGONAL PARAMETERIZATION

As a complement for preserving the hierarchical structures
of KGs with low distortion, we further represent relations
as k-dimensional hyperbolic orthogonal transformations.

In order to rigorously measure similarity with the hyperbolic
geodesic distance1, we begin by projecting the initial entity
embeddings eh and et to the hyperboloid via the hyperbolic
exponential map gβ : Rk−1 → Qk

β . Given any x ∈ Rk−1,
gβ is defined as (Mishne et al., 2023):

gβ(x) = (
√
β cosh(

∥x∥√
β
),
√

β sinh(
∥x∥√
β
)

x

∥x∥
). (11)

Following (Chami et al., 2020), we define a learnable radius
of curvature βr for each relation r to encode a variety of
hierarchies. For each triple (h, r, t), eh and et are mapped

1Another alternative is the extrinsic Lorentzian distance (Law
et al., 2019). However, such distance does not satisfy the triangle
inequality and may underestimate the plausibility of triples.
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to the r-specific hyperboloid Qk
βr

via gβr
, resulting in the r-

associated embeddings eh,r = gβr (eh) and et,r = gβr (et).

For parameterizing hyperbolic orthogonal transformation of
any dimension k between eh,r and et,r, a straightforward
strategy is to leverage the designed orthogonal mapping
Orth in the case of w := q = (−1, 1, . . . , 1)⊤. Given the
relation embedding Ur ∈ Rk×k, the mapping Orth(Ur,q)
is able to represent every hyperbolic orthogonal relation
matrix Gr ∈ Oq(k) according to Theorem 3.1.

Nevertheless, although Gr satisfies the inner product invari-
ance in Equation (4), it is not guaranteed to preserve the sign
of the first element of eh,r. In other words, e′h,r might be
transformed to the lower sheet of the hyperboloid with the
first element less than 0, leading to the inability to calculate
the geodesic distance between e′h,r /∈ Qk

βr
and et,r ∈ Qk

βr
.

To remedy this deficiency, we restrict the orthogonal relation
matrix Gr into the positive subgroup of Oq(k) such that for
any x ∈ Qk

βr
, the first element of Grx is positive, thereby

ensuring that Grx ∈ Qk
βr

. Essentially, the full hyperbolic
orthogonal group Oq(k) can be classified into two distinct
connected components based on the following proposition:

Proposition 3.3. For any x ∈ Qk
β , every hyperbolic orthog-

onal matrix G ∈ Oq(k) falls into two subsets according to
the sign of its first element G11 for which |G11| ≥ 1:

• The matrix in the positive subset O+
q (k) = {G ∈ Oq(k) :

G11 ≥ +1} preserves the sign of the first element of x;

• The matrix in the negative subset O−
q (k) = {G ∈ Oq(k) :

G11 ≤ −1} reverses the sign of the first element of x;

• O+
q (k) is a multiplicative subgroup of Oq(k).

(See proof in Appendix D)

For fully covering the positive subgroup O+
q (k), we employ

the polar decomposition (Gallier, 2005) to express any G ∈
O+

q (k) as the product of a Euclidean orthogonal matrix and
a hyperbolic boost matrix. Formally, we have the following
proposition, based on which a positive hyperbolic mapping
OrthQ is defined for relational parameterization:

Proposition 3.4. Every (positive) hyperbolic orthogonal
matrix G ∈ O+

q (k) can be expressed by a mapping OrthQ
such that for U ∈ R(k−1)×(k−1) and b ∈ Rk−1:

G = OrthQ(U,b)

=

[
1 0
0 Orth(U,1)

][√
∥b∥2 + 1 b⊤

b
√
I+ bb⊤

]
.

(See proof in Appendix E)

Based on Proposition 3.4, we can represent each relation r as
a hyperbolic orthogonal transformation whose output space
is restricted to Qk

βr
. Specifically, two types of parameters

are defined for each r: Ur ∈ R(k−1)×(k−1) and br ∈ Rk−1.

Taking Ur and br as input to the mapping OrthQ, we apply
such restricted orthogonal transformation to eh,r ∈ Qk

βr
:

e′h,r = OrthQ(Ur,br)eh,r (12)

=

[
1 0

0
∏k−1

i=1 H(Ur[i],1)

][√
∥br∥2 + 1 b⊤

r

br

√
I+ brb⊤

r

]
eh,r.

Objective function: Proposition 3.4 theoretically ensures
that the transformed head embedding e′h,r lies on the same
hyperboloid as the tail embedding et,r, enabling us to mea-
sure their similarity using the hyperbolic geodesic distance.
Formally, the score function for each (h, r, t) is defined as:

sr(h, t) = −dQ(e
′
h,r, et,r)

= −
√

β cosh−1(−
⟨e′h,r, et,r⟩q

β
).

(13)

Connections to hyperbolic models: Existing hyperbolic
models such as AttH, RotH and RefH (Chami et al., 2020)
represent each relation as the combination of a rotation (or
reflection) and a Möbius addition in the Poincaré ball. Since
the Poincaré ball is isometric to the hyperboloid (Nickel &
Kiela, 2017), and the Möbius addition is equivalent to the
hyperbolic boost (Tabaghi & Dokmanic, 2021), all these
models can be viewed as the special cases of our proposed
hyperbolic parameterization. Note that these models param-
eterize rotations/reflections using the 2-dimensional Givens
transformations, while our approach breaks the dimensional
restriction without loss of degrees of freedom, thereby gen-
eralizing them and achieving superior modeling capacity.

3.2.3. MIXED ORTHOGONAL PARAMETERIZATION

Although our elliptic and hyperbolic parameterizations are
advantageous for embedding the corresponding topologies
(cyclicity or hierarchy), real-world KGs typically exhibit
non-uniform structures (Gu et al., 2019; Wang et al., 2021).
Considering such inherent topological heterogeneity, we fur-
ther introduce a mixed orthogonal parameterization in the
product manifold (Gu et al., 2019) to unify multiple geomet-
ric spaces, culminating in the universal GoldE framework.

Product manifold: Beyond individual elliptic or hyperbolic
spaces, we leverage the Cartesian product to describe a het-
erogeneous embedding space for GoldE: Dk =×m

i=1
Xki

i ,
where Xki

i ∈ {E,P,Q}2 denotes the i-th component space
of dimension ki

3 such that the total dimension k =
∑m

i=1 ki.
The resulting product space is a “non-constantly” curved
manifold that is more flexible than a single constant curva-
ture manifold (Skopek et al., 2020).

2Note that the notation E is redundant since Euclidean orthog-
onal parameterization is the special case of our proposed elliptic
orthogonal parameterization according to Claim 3.2.

3One can assign identical dimensions to component spaces of
the same geometric type (i.e., ki ∈ {kP, kQ}) for reducing the
number of hyperparameters (Gu et al., 2019).
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For each triple (h, r, t), GoldE represents relation r as a
component-wise orthogonal transformation between head
entity h and tail entity t in the product manifold. Formally,
let e(i)h,r and e

(i)
t,r denote the i-th sub-embeddings of h and t,

which are associated to the r-specific (elliptic or hyperbolic)
space as described in Section 3.2.1 and 3.2.2. GoldE applies
the generalized orthogonal transformation to e

(i)
h,r according

to the geometric type of the i-th component space Xi:

e′
(i)
h,r =

OrthP(U
(i)
r ,p

(i)
r )e

(i)
h,r, for Xi = P

OrthQ(U
(i)
r ,b

(i)
r )e

(i)
h,r, for Xi = Q

, (14)

where U
(i)
r , p(i)

r and b
(i)
r are the parameters of relation

transformations in the i-th component space.

Objective function: Since the orthogonal transformations
guarantee the inner product invariance in each component
space, the transformed head embedding e′h,r remains in the
product space Dk. The distance between e′h,r and et,r can
be calculated by performing decomposition (Ficken, 1939;
Turaga & Srivastava, 2016). Formally, the score function
for measuring the plausibility of each (h, r, t) is defined as:

sr(h, t) = −dD(e
′
h,r, et,r) = −

m∑
i=1

dlXi
(e′

(i)
h,r , e

(i)
t,r), (15)

where l is the norm indicator. We highlight that such mixed
orthogonal parameterization in the product space naturally
achieves the geometric unification, enabling improved rep-
resentations by better matching the geometry of the embed-
ding space to the heterogeneous structures of KGs.

Complexity analysis: The learnable parameters of GoldE
include {ev}v∈V and {Ur,pr,br, βr}r∈R. Compared to
the previous models (Sun et al., 2019; Chami et al., 2020;
Li et al., 2022), the extra space cost is proportional to the
number of relation types, which is usually much smaller
than the number of entities. Therefore, GoldE has the same
space complexity as the existing KGE models, i.e., O(k|V|).
In the aspect of time cost for processing a single triple, one
may observe that the time complexity of Equation (14) is
O(k3i ), in which ki matrix-vector multiplications incur high
computational costs. However, it is worth noting that these
multiplications can be entirely replaced by vector operations
via efficient computation (refer to Appendix G for details),
thereby reducing the time complexity to O(k2i ).

Modeling capability: Benefiting from the dimensional ex-
tension and geometric unification achieved by the designed
parameterization, GoldE is able to simultaneously model
the logical patterns and heterogeneous structures as shown
in Table 1. Formally, we have the following claim:
Claim 3.5. GoldE is capable of capturing the symmetry,
antisymmetry, inversion and composition patterns, as well
as the inherent cyclical and hierarchical structures in KGs.
(See proof in Appendix F)

3.3. Optimization

Following (Sun et al., 2019; Gao et al., 2020; Li et al., 2022),
we use the self-adversarial negative sampling loss (Sun et al.,
2019) to optimize our GoldE framework. Formally, given a
positive triple (h, r, t), the loss function is defined as:

L =− log σ(γ + sr(h, t))

−
g∑

i=1

p(h′
i, r, t

′
i) log σ(−sr(h

′
i, t

′
i)− γ),

(16)

where γ is a pre-defined margin, σ is the sigmoid function,
g is the number of negative samples, (h′

i, r, t
′
i) is the i-th

negative sample against (h, r, t), and p(h′
i, r, t

′
i) determines

the proportion of (h′
i, r, t

′
i) in the current optimization as

defined in (Sun et al., 2019). Note that we initially define
the entity embeddings of GoldE in Euclidean space, and all
the relation transformations (including gβ) are differentiable
and bijective (Chami et al., 2019). This enables us to learn
the parameters using the standard Euclidean optimization
techniques for the numerical stability (Mishne et al., 2023).

4. Experiments
To comprehensively validate the effectiveness of GoldE, we
conduct extensive experiments on link prediction task, and
attempt to answer the following questions:

(1) How does GoldE perform on link prediction compared
to existing KGE approaches? (Section 4.2)

(2) What is the effect of configuring different geometries
and dimensions for orthogonal relation transformations on
the performance of GoldE? (Section 4.3)

(3) From a fine-grained perspective, does GoldE effectively
model different relation types? (Section 4.4)

(4) Can GoldE still learn high-quality representations even
when the embedding size k is restricted? (Section 4.5)

4.1. Experimental Setup

Datasets: We evaluate GoldE framework on three standard
benchmarks: WN18RR (Dettmers et al., 2018), FB15k-237
(Toutanova & Chen, 2015) and YAGO3-10 (Mahdisoltani
et al., 2015). Refer to Appendix H for statistical details.

Baselines: We compare GoldE to a series of advanced KGE
approaches, including (1) non-orthogonal models: TransE
(Bordes et al., 2013), DistMult (Yang et al., 2015), ComplEx
(Trouillon et al., 2016), ConvE (Dettmers et al., 2018) and
MuRP (Balazevic et al., 2019); (2) Euclidean orthogonal
models: RotatE (Sun et al., 2019), Rotate3D (Gao et al.,
2020), QuatE (Zhang et al., 2019), DualE (Cao et al., 2021),
ReflectE (Zhang et al., 2022), HousE (Li et al., 2022) and
CompoundE (Ge et al., 2023); (3) hyperbolic orthogonal
models: RefH, RotH and AttH (Chami et al., 2020).
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Table 2. Link prediction results on WN18RR, FB15k-237 and YAGO3-10. Best results are in bold and second best results are underlined.
[†]: Results are taken from (Nguyen et al., 2018); [⋄]: Results are taken from (Dettmers et al., 2018). [∗]: HousE-pro is a variant of HousE
with additional projection operations (Li et al., 2022). Other results are taken from the corresponding original papers.

Model
WN18RR FB15k-237 YAGO3-10

MR MRR H@1 H@3 H@10 MR MRR H@1 H@3 H@10 MR MRR H@1 H@3 H@10

TransE† 3384 .226 - - .501 357 .294 - - .465 - - - - -
DistMult⋄ 5110 .430 .390 .440 .490 254 .241 .155 .263 .419 5926 .340 .240 .380 .540
ComplEx⋄ 5261 .440 .410 .460 .510 339 .247 .158 .275 .428 6351 .360 .260 .400 .550
ConvE⋄ 4187 .430 .400 .440 .520 224 .325 .237 .356 .501 1671 .440 .350 .490 .620
MuRP - .481 .440 .495 .566 - .335 .243 .367 .518 - .354 .249 .400 .567

RotatE 3340 .476 .428 .492 .571 177 .338 .241 .375 .533 1767 .495 .402 .550 .670
Rotate3D 3328 .489 .442 .505 .579 165 .347 .250 .385 .543 - - - - -
QuatE 3472 .481 .436 .500 .564 176 .311 .221 .342 .495 - - - - -
DualE - .482 .440 .500 .561 - .330 .237 .363 .518 - - - - -
ReflectE 1730 .488 .450 .501 .559 148 .358 .263 .396 .546 - - - - -
HousE 1885 .496 .452 .511 .585 165 .348 .254 .384 .534 1449 .565 .487 .616 .703
HousE-pro∗ 1303 .511 .465 .528 .602 153 .361 .266 .399 .551 1415 .571 .491 .620 .714
CompoundE - .491 .450 .508 .576 - .357 .264 .393 .545 - - - - -

RefH - .461 .404 .485 .568 - .346 .252 .383 .536 - .576 .502 .619 .711
RotH - .496 .449 .514 .586 - .344 .246 .380 .535 - .570 .495 .612 .706
AttH - .486 .443 .499 .573 - .348 .252 .384 .540 - .568 .493 .612 .702

GoldE 790 .525 .476 .542 .615 142 .370 .277 .405 .558 536 .588 .510 .634 .723

Table 3. Link prediction results for our GoldE framework under
different geometric combinations.

Geometry of Orth.
WN18RR FB15k-237 YAGO3-10

MRR H@10 MRR H@10 MRR H@10

Ek .496 .585 .348 .534 .565 .703
Pk .505 .593 .358 .547 .572 .708
Qk .513 .606 .354 .542 .580 .714

(PkP
i )mP .509 .602 .365 .553 .578 .712

(QkQ
j )mQ .518 .610 .360 .549 .585 .718

(PkP
i )mP×(QkQ

j )mQ .525 .615 .370 .558 .588 .723

Implementation details: For fair comparisons, we follow
(Li et al., 2022) to fix the embedding dimension k, ensuring
that the number of parameters is comparable to the baselines.
Moreover, we follow the most natural way (Gu et al., 2019)
to construct the product manifold D as the combination of
both P and Q for GoldE, i.e., Dk =×mP

i=1
PkP
i ××mQ

j=1
QkQ

j .
The hyperparameters mP and kP (mQ and kQ) determine the
number and dimension of elliptic (hyperbolic) components,
respectively. More details can be found in Appendix I.

4.2. Performance Comparison

Table 2 summarizes the main results on link prediction task.
One can observe that GoldE framework consistently outper-
forms the baselines on all metrics across the three datasets.
In particular, compared to HousE, the most relevant baseline
that represents relations as k-dimensional Euclidean House-
holder rotations, GoldE achieves an average absolute gain of
2.5% in MRR, and even surpasses its projection-enhanced
variant (i.e., HousE-pro) with 1.3% absolute improvement
in MRR. Moreover, GoldE also outperforms exisiting hyper-
bolic orthogonal models (i.e., RefH, RotH and AttH) by a
clear margin. Such new state-of-the-art results demonstrate
the superiority of our universal orthogonal parameterization.
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Figure 3. MRR results of GoldE under the product of X with vary-
ing dimension kX (X ∈ {E,P,Q}) on WN18RR and FB15k-237.

4.3. Effect of Universal Orthogonal Parameterization

Effect of geometric unification: To investigate the effect
of geometries for orthogonal relation transformations, we
explore the performance of GoldE under different geometric
combinations4. From the results summarized in Table 3, one
can observe the following: (1) Both elliptic and hyperbolic
parameterizations are more effective than the Euclidean
counterpart, indicating the importance of additional scaling
operations and modeling inherent hierarchies, respectively;
(2) As we expected, hyperbolic parameterization performs
better on the two datasets (i.e., WN18RR and YAGO3-10)
dominated by hierarchies, while the elliptic counterpart ex-
cels on the dataset (i.e., FB15k-237) dominated by cycles.
Note that the product of multiple P (or Q) outperforms its
single case, since such homogeneous combination is able to
embed a variety of cycles (or hierarchies) (Gu et al., 2019);
(3) By combining multiple P and Q, our GoldE can naturally
preserve both cyclical and hierarchical structures, thereby
achieving the optimal performance on all the three datasets.

4To simplify, we use a shorthand notation for repeated compo-
nents: (XkX

i )mX=×mX
i=1

XkX
i . Note that the Cartesian product of E

is redundant since it satisfies Ek =×mE
i=1

EkE
i , while this equality

does not hold for non-Euclidean manifolds (Skopek et al., 2020).
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Table 4. MRR for the models tested on each relation of WN18RR.

Relation Name #Triple RotH HousE GoldE

hypernym 1,251 0.190 0.182 0.226
instance hypernym 122 0.362 0.395 0.453
member meronym 253 0.266 0.275 0.296
synset domain topic of 114 0.406 0.396 0.430
has part 172 0.213 0.217 0.255
member of domain usage 24 0.350 0.415 0.455
member of domain region 26 0.356 0.281 0.403
derivationally related form 1,074 0.947 0.958 0.961
also see 56 0.583 0.638 0.665
verb group 39 0.820 0.968 0.975
similar to 3 1.000 1.000 1.000

Such improvements confirm the effectiveness of the geomet-
ric unification in our universal orthogonal parameterization.

Effect of dimensional extension: To verify the expressive-
ness of the dimensional extension in our parameterization,
we further conduct experiments for GoldE under the prod-
uct of X with varying dimension kX. Figure 3 exhibits the
MRR results on WN18RR and FB15k-237. As expected,
whether in Euclidean, elliptic, or hyperbolic parameteriza-
tions, the higher-dimensional orthogonal transformations
enhance modeling capability, leading to superior perfor-
mance compared to their lower-dimensional counterparts.

4.4. Fine-grained Performance Analysis

To verify the modeling capability of our GoldE from a fine-
grained perspective, we report its performance per relation
on WN18RR in Table 4. Compared to the hyperbolic model
RotH and the Euclidean model HousE, our GoldE achieves
the best performance on all 11 relation types. Specifically,
GoldE not only obtains significant improvements on hier-
archical relations (e.g., hypernym and instance hypernym),
but also performs well on symmetric relations (e.g., deriva-
tionally related form and verb group). These advanced fine-
grained results demonstrate the superior and comprehensive
modeling capability of our GoldE framework.

4.5. Results with Restricted Embedding Size

We also follow (Chami et al., 2020) to evaluate our GoldE
under the restriction of fixing the embedding size k to 32.
It is challenging for KGE models to offer qualified repre-
sentations in such a restricted setting. Table 5 reports the
experimental results on the three datasets. We observe that
GoldE consistently surpasses the baselines by a clear margin
across all datasets, confirming the higher-quality representa-
tions learned by our universal orthogonal parameterization.
See Appendix J for more results of GoldE with varying k.

5. Related Work
Early KGE approaches explore various geometric operations
such as translation (Bordes et al., 2013; Wang et al., 2014;

Table 5. Link prediction results for 32-dimensional embeddings.

WN18RR FB15k-237 YAGO3-10

Model MRR H@10 MRR H@10 MRR H@10

RotatE .387 .491 .290 .458 - -
QuatE .421 .467 .293 .460 - -
MuRE .458 .525 .313 .489 .283 .478
MuRP .465 .544 .323 .501 .230 .392
RefH .447 .518 .312 .489 .381 .530
RotH .472 .553 .314 .497 .393 .559
AttH .466 .551 .324 .501 .397 .566

GoldE .482 .558 .335 .506 .420 .586

Lin et al., 2015; Ji et al., 2015) and scaling (Yang et al., 2015;
Trouillon et al., 2016) to model relations. As a representative
work, RotatE (Sun et al., 2019) goes beyond the previous
methods by modeling relations as 2-dimensional rotations
between entities to handle the crucial logical patterns in KGs.
Inspired by the effectiveness of orthogonal transformations,
subsequent research mainly advances in two directions.

Dimension direction: A series of works (Zhang et al., 2019;
Gao et al., 2020; Cao et al., 2021; Li et al., 2022) seek higher-
dimensional orthogonal transformations for better modeling
capacity. Recently, HousE (Li et al., 2022) introduces the
Euclidean Householder reflections to represent relations as
k-dimensional Euclidean rotations, which can be viewed as
the Euclidean specialization of our proposal.

Geometry direction: Another branch of KGE models (Bal-
azevic et al., 2019; Chami et al., 2020) exploits hyperbolic
geometry for preserving the hierarchical structures in KGs.
AttH (Chami et al., 2020) represents relations as hyperbolic
orthogonal transformations to accommodate both hierarchi-
cal structures and logical patterns, yet remains constrained
by low-dimensional space and homogeneous geometry.

Notably, our GoldE framework generalizes existing KGE
models in terms of both dimension and geometry. Moreover,
the designed parameterization is orthogonal to advanced
techniques such as regularizers (Lacroix et al., 2018) and
graph encoders (Vashishth et al., 2020; Zhu et al., 2021),
allowing for their integration to achieve better performance.

6. Conclusion
In this paper, we introduce GoldE, a powerful and general
framework that generalizes existing KGE approaches based
on a universal orthogonal parameterization. Empowered by
such parameterization, our framework can simultaneously
achieve dimensional extension and geometric unification for
relational orthogonalization, thereby possessing the superior
capability of capturing logical patterns and heterogeneous
structures in KGs. Experimental results over three datasets
comprehensively validate the effectiveness of our proposal.
In future work, we will explore the potential of GoldE in
modeling hyper-relational and temporal knowledge graphs.
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Özdemir, M. An alternative approach to elliptical mo-
tion. Advances in Applied Clifford Algebras, 26:279–304,
2016.

O’Meara, O. T. Introduction to quadratic forms, volume
117. Springer, 2013.

Rui, Y., Carmona, V. I. S., Pourvali, M., Xing, Y., Yi, W.-
W., Ruan, H.-B., and Zhang, Y. Knowledge mining: A
cross-disciplinary survey. Machine Intelligence Research,
19:89–114, 2022.

Saxena, A., Tripathi, A., and Talukdar, P. P. Improving multi-
hop question answering over knowledge graphs using
knowledge base embeddings. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pp. 4498–4507, 2020.

Skopek, O., Ganea, O., and Bécigneul, G. Mixed-curvature
variational autoencoders. In 8th International Conference
on Learning Representations, 2020.

Sommer, G. Geometric computing with Clifford algebras:
theoretical foundations and applications in computer vi-
sion and robotics. Springer Science & Business Media,
2013.

Sun, J., Xu, C., Tang, L., Wang, S., Lin, C., Gong, Y., Shum,
H.-Y., and Guo, J. Think-on-graph: Deep and responsible
reasoning of large language model with knowledge graph.
arXiv preprint arXiv:2307.07697, 2023.

Sun, Z., Deng, Z.-H., Nie, J.-Y., and Tang, J. Rotate: Knowl-
edge graph embedding by relational rotation in complex
space. In 7th International Conference on Learning Rep-
resentations, 2019.

Tabaghi, P. and Dokmanic, I. On procrustes analysis in
hyperbolic space. IEEE Signal Process. Lett., 28:1120–
1124, 2021.

Toutanova, K. and Chen, D. Observed versus latent features
for knowledge base and text inference. In Proceedings
of the 3rd Workshop on Continuous Vector Space Models
and Their Compositionality, pp. 57–66, 2015.

Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., and
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A. Glossary of Symbols

Table 6. Glossary of variables and symbols used in this paper.

Symbol Shape Description

V - Set of entities

R - Set of relations

F - Set of factual triples

h, t - Head entity and tail entity

r - Relation type

Ek - k-dimensional Euclidean space, equivalent to Rk

Pk - Elliptic subspace embedded in Rk

Qk - Hyperbolic subspace embedded in Rk

Dk - Product manifold with total dimension k

Xki
i - The i-th component space of product manifold D
m R+ Number of component spaces

βr R+ Param. of r ∈ R that determines the curvature of manifold

pr Rk
+ r-specific elliptic weighting vector

q Rk Hyperbolic weighting vector (−1, 1, . . . , 1)

ev Rk Embedding of entity v ∈ V
ev,r Rk r-associated representation of entity v ∈ V
br Rk Param. of r ∈ R for hyperbolic boost

Ur Rk×k Param. of r ∈ R for generalized orthogonal transformation

B. Proof of Theorem 3.1
This theorem is a special case of the “Cartan-Dieudonné Theorem” (Cartan, 1966; Dieudonné, 1967), which is one of the
fundamental results of geometric algebra (Gallier, 2011). Since this result is not used in the remainder of this paper and the
proof is somewhat intricate, we encourage the beginning reader to read the statement and then skip to the next part.

B.1. Proof of Theorem B.1 (Cartan-Dieudonné Theorem)

Theorem B.1. (Cartan-Dieudonné Theorem). In the non-degenerate quadratic space V endowed with ⟨·, ·⟩w, every element
G of the orthogonal group Ow(k) can be expressed as a product of at most k reflections.

Proof. (1) The first step is to prove the following lemma: Suppose that G ∈ Ow(k) satisfies such a condition: for every
anisotropic vector x, the vector Gx− x is nonzero and isotropic5. Then, k ≥ 4, k is even, and G is a rotation.

It is evident that we cannot have k = 1. If k = 2, let x be an anisotropic vector. Since Gx− x is isotropic and nonzero,
Gx must be linearly independent from x. This implies that the determinant of the quadratic form with respect to the basis
Gx− x and x is equal to 0, contradicting the non-degeneracy of the space. We therefore must have k ≥ 3.

Since Gx− x is isotropic for all anisotropic x, we have q(Gx− x) = ⟨Gx− x,Gx− x⟩w = 0. In fact, this holds for all
x. To see this, let y be a nonzero isotropic vector. There is a plane containing y and splitting the space V (O’Meara, 2013),
hence there is a vector z with q(z) ̸= 0 and ⟨y, z⟩w = 0. Then, we have q(y + ϵz) ̸= 0 for any ϵ ∈ R\{0}, hence

q(G(y + ϵz)− (y + ϵz)) = 0, q(Gz− z) = 0.

It follows that
q(Gy − y) + 2ϵ ⟨Gy − y,Gz− z⟩w = 0.

5A vector x ∈ V is said to be isotropic if ⟨x,x⟩w = 0 and anisotropic otherwise.

13



Generalizing Knowledge Graph Embedding with Universal Orthogonal Parameterization

If we substitute ϵ = 1, and then ϵ = −1, and then add, we obtain q(Gy − y) = 0 as we asserted. Therefore, if we define
the space W := (G− 1)V , we have q(y) = 0 for any y ∈ W , i.e., q(W ) = 0. Then, the orthogonal complement of W is
W⊥ = {x ∈ V | ∀y ∈ W, ⟨x,y⟩w = 0}. Now for any x ∈ V and y ∈ W⊥, we have

⟨x,Gy − y⟩w = ⟨Gx,Gy − y⟩w − ⟨Gx− x,Gy − y⟩w
= ⟨Gx,Gy − y⟩w
= ⟨Gx,Gy⟩w − ⟨Gx,y⟩w
= ⟨x,y⟩w − ⟨Gx,y⟩w
= −⟨Gx− x,y⟩w
= 0.

Hence Gy − y is perpendicular to all of V . Since V is non-degenerate, we conclude that Gy = y for all y ∈ W⊥. Then,
q(W⊥) = 0 by the given condition. Thus we get W = W⊥. Therefore, k = dim(V ) = dim(W )+dim(W⊥) = 2dim(W )
is even, hence at least 4. Moreover, since G acts as the identity on a maximal totally isotropic subspace of V (Clark, 2013),
G is a rotation with the determinant equal to +1, completing Step 1.

(2) Now we can prove the theorem. The proof is by induction on k. For k = 1, the result is trivial, so let k > 1.

Case 1: Suppose there exists an anisotropic vector x ∈ V such that Gx = x. Then the restriction of G to the hyperplane ζ
orthogonal to x is an element of Ow(k − 1). By the inductive assumption, this restriction is a product of at most k − 1
reflections taken with respect to lines in ζ. One can naturally view each of them as the reflection on all of V , and the same
product of reflections agrees with G on ζ . Moreover, it also agrees with G on x, since G and all of the reflections are equal
to the identity on x. Thus G is itself equal to the product of the at most k − 1 reflections.

Case 2: Next suppose that there is an anisotropic vector x such that Gx−x is anisotropic, i.e., q(Gx−x) ̸= 0. To facilitate
presentation, we denote the elementary reflection in Equation (7) as τu. In this way, we have

τGx−x(Gx) = Gx− 2
⟨Gx,Gx− x⟩w

⟨Gx− x,Gx− x⟩w
(Gx− x)

= Gx− 2
⟨x,x⟩w − ⟨Gx,x⟩w
⟨Gx− x,Gx− x⟩w

(Gx− x)

= Gx−
⟨Gx− x,Gx− x⟩w
⟨Gx− x,Gx− x⟩w

(Gx− x)

= Gx− (Gx− x)

= x,

which implies that τGx−xG leaves x fixed. Based on the first case, the orthogonal matrix τGx−xG is a product of at most
k − 1 reflections, hence G is a product of at most k reflections.

Case 3: According to Case 1 and 2, any G that does not satisfy the condition in Step 1 is a product of at most k reflections.
Now, let’s consider the G that for every anisotropic vector x ∈ V , Gx− x is isotropic and nonzero. Based on Step 1, we
conclude that k is even and G is a rotation matrix. Then, G′ = τG is a reflection that cannot satisfy the condition in Step 1.
Hence G′ can be expressed as a product of at most k reflections based on Case 1 and 2. Therefore, G is itself a product of at
most k + 1 reflections. However, G cannot be a product of k + 1 reflections, since k + 1 is odd and G is a rotation matrix.
Hence G is a product of at most k reflections, qed.

B.2. Proof of Theorem 3.1

Proof. First, the designed mapping Orth is a product of n elementary reflections, and its output is a generalized orthogonal
matrix that satisfies the quadratic inner product invariance, i.e., (Hn · · ·H1)

⊤diag(w)(Hn · · ·H1) = diag(w). Therefore,
we have Image(Orth) ⊆ Ow(k). Then, according to the Cartan-Dieudonné Theorem, every generalized orthogonal matrix
G ∈ Ow(k) can be expressed as

∏z
c=1 H(uc,w) for a certain z ≤ k. Since the k × k identity matrix I ∈ Image(Orth)

for any value of n, we can get G = GI =
∏k

c=1 H(uc,w). Therefore, we also have Ow(k) ⊆ Image(Orth) when n = k.
On the whole, we conclude that Image(Orth) = Ow(k).
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C. Proof of Claim 3.2
Proof. We show that the elliptic parameterization is equivalent to Euclidean parameterization equipped with element-wise
scaling transformations determined by

√
pr. Specifically, the distance function of elliptic parameterization in Equation (10)

can be reformulated as follows:

dP(e
′
h,r, et,r) =

√
(e′h,r − et,r)⊤diag(pr)(e′h,r − et,r)

=
√
(diag(

√
pr)e′h,r − diag(

√
pr)et,r)⊤(diag(

√
pr)e′h,r − diag(

√
pr)et,r)

= ∥diag(√pr)e
′
h,r − diag(

√
pr)et,r∥

= ∥diag(√pr)

k∏
i=1

H(Ur[i],pr)eh,r − diag(
√
pr)et,r∥

= ∥diag(√pr)(I− 2
U[k]U[k]⊤diag(pr)

u⊤diag(pr)u
)

k−1∏
i=1

H(Ur[i],pr)eh,r − diag(
√
pr)et,r∥

= ∥(I− 2
diag(

√
pr)U[k]U[k]⊤diag(

√
pr)

⊤

U[k]⊤diag(
√
pr)⊤diag(

√
pr)U[k]

)diag(
√
pr)

k−1∏
i=1

H(Ur[i],pr)eh,r − diag(
√
pr)et,r∥

= ∥H(diag(
√
pr)Ur[k],1)diag(

√
pr)

k−1∏
i=1

H(Ur[i],pr)eh,r − diag(
√
pr)et,r∥

= ∥
k∏

i=1

H(diag(
√
pr)Ur[i],1)diag(

√
pr)eh − diag(

√
pr)et∥

= ∥Orth(diag(
√
pr)Ur,1)diag(

√
pr)eh − diag(

√
pr)et∥.

This expression implies that the head embedding eh ∈ Rk is first scaled by
√
pr, and then performs a Euclidean orthogonal

transformation, with the expectation of being similar to the tail embedding et ∈ Rk, which is also scaled by
√
pr.

D. Proof of Proposition 3.3
Proof. For any G ∈ Oq(k) and x ∈ Qk

β , the hyperbolic orthogonal transformation Gx can be expressed in the following
block form:

Gx =

[
a b⊤

c A

] [
x1

x2:k

]
=

[
ax1 + b⊤x2:k

x1c+Ax2:k

]
,

where a ∈ R, b, c ∈ Rk−1 and A ∈ R(k−1)×(k−1). We prove that (1) the absolute value of the first element of G is greater
than or equal to 1, i.e., |G11| = |a| ≥ 1; (2) when a ≥ 1 (or a ≤ −1), the transformation Gx preserves (or reverses) the sign
of the first element of x, i.e., sign(x1) = sign(ax1 + b⊤x2:k) for a ≥ 1 and sign(x1) ̸= sign(ax1 + b⊤x2:k) for a ≤ −1.

According to the definition of generalized orthogonal matrix in Equation (4), one can verify that the hyperbolic orthogonal
matrix G ∈ Oq(k) satisfies the inner product invariance:

G⊤diag(q)G = diag(q) ⇒ Gdiag(q)G⊤ = diag(q).

Since q = (−1, 1, . . . , 1) ∈ Rk, the first element of G (i.e., G11 = a) requires that

a2 − ∥b∥2 = 1 ⇒ |a| =
√
1 + ∥b∥2 ≥ 1.

We then consider the following square equation:

(
b

a
+

x2:k

x1
)2 = (

b

a
)2 + 2

b⊤x2:k

ax1
+ (

x2:k

x1
)2

= (
∥b∥2

a2
) + 2

b⊤x2:k

ax1
+ (

∥x2:k∥2

x2
1

)

= (
a2 − 1

a2
) + 2

b⊤x2:k

ax1
+ (

∥x2:k∥2

x2
1

) ≥ 0.
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Since x ∈ Qk
β , one can easily derive that x2

1 > ∥x2:k∥2 according to the definition of hyperboloid in Equation (2). Based on
this, we further have the following inequality:

−2
b⊤x2:k

ax1
≤ (

a2 − 1

a2
) + (

∥x2:k∥2

x2
1

) < (
a2 − 1

a2
) + 1 < 2.

When a ≥ +1 and x1 > 0, we have

2ax1 > −2b⊤x2:k ⇒ ax1 + b⊤x2:k > 0.

When a ≥ +1 and x1 < 0, we have

2ax1 < −2b⊤x2:k ⇒ ax1 + b⊤x2:k < 0.

When a ≤ −1 and x1 > 0, we have

2ax1 < −2b⊤x2:k ⇒ ax1 + b⊤x2:k < 0.

When a ≤ −1 and x1 < 0, we have

2ax1 > −2b⊤x2:k ⇒ ax1 + b⊤x2:k > 0.

Therefore, we can observe that the hyperbolic orthogonal matrix G with its first element G11 = a ≥ +1 preserves the sign of
x1, while G with G11 ≤ −1 reverses the sign of x1. Moreover, the set of all G with G11 ≥ +1, namely the positive subset
O+

q (k) = {G ∈ Oq(k) : G11 ≥ +1}, forms a multiplicative subgroup of Oq(k), since (1) for any G1,G2 ∈ O+
q (k), their

multiplication also preserves the quadratic inner product of x and the sign of x1, i.e., G1G2 ∈ O+
q (k); (2) O+

q (k) contains
the identity matrix I; (3) every matrix G ∈ O+

q (k) has an inverse G−1 ∈ O+
q (k) such that GG−1 = I.

E. Proof of Proposition 3.4
Proof. The positive hyperbolic orthogonal matrix G ∈ O+

q (k) can be written in block form as follows:

G =

[
a b⊤

c A

]
,

where a ≥ +1, b, c ∈ Rk−1 and A ∈ R(k−1)×(k−1). Since G⊤diag(q)G = Gdiag(q)G⊤ = diag(q), we get[
a c⊤

b A⊤

] [
−a −b⊤

c A

]
=

[
a b⊤

c A

] [
−a −c⊤

b A⊤

]
=

[
−1 0
0 I

]
,

then

A⊤A = I+ bb⊤,

c⊤c = a2 − 1,

A⊤c = ab,

b⊤b = a2 − 1,

Ab = ac.

From A⊤A = I+ bb⊤, we get that A⊤A is symmetric and positive definite. Geometrically, it is well known that bb⊤

b⊤b
is

the orthogonal projection onto the line determined by b. Consequently, bb⊤ has the eigenvalue 0 with multiplicity k − 2
and the eigenvalue b⊤b = a2 − 1 with multiplicity 1. The eigenvectors associated with 0 are orthogonal to b and the
eigenvectors associated with a2 − 1 are proportional with b. It follows that I+ bb⊤ has the eigenvalue 1 with multiplicity
k−2 and the eigenvalue a2 with multiplicity 1, the eigenvectors being as before. Now, A has the polar form A = QS, where
Q is a Euclidean orthogonal matrix, S is a positive semi-definite symmetric matrix and S2 = S⊤S = A⊤A = I+ bb⊤.
Since a ≥ +1, S =

√
I+ bb⊤ has the eigenvalue 1 with multiplicity k − 2 and the eigenvalue a with multiplicity 1, the

eigenvectors being as before. Then, since b is an eigenvector of S for the eigenvalue a, we have

Ab = QSb = Q(Sb) = Q(ab) = aQb.
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Since we also have Ab = ac, this implies
aQb = ac ⇒ Qb = c.

It follows that

G =

[
a b⊤

c A

]
=

[
a b⊤

Qb QS

]
=

[
1 0
0 Q

] [√
∥b∥2 + 1 b⊤

b
√
I+ bb⊤

]
.

Based on Theorem 3.1, we can further parameterize the Euclidean orthogonal matrix Q ∈ R(k−1)×(k−1) as the composition
of k − 1 Euclidean Householder reflections:

G =

[
1 0
0 Orth(U,1)

] [√
∥b∥2 + 1 b⊤

b
√
I+ bb⊤

]
.

F. Proof of Claim 3.5
Proof. Our proposed GoldE framework models each relation r as a generalized orthogonal transformation between entities.
To facilitate presentation, we denote the r-specific generalized orthogonal matrix derived from Equation (14) as Gr:

G(i)
r =

OrthP(U
(i)
r ,p

(i)
r ), for Xi = P

OrthQ(U
(i)
r ,b

(i)
r ), for Xi = Q

.

Due to the orthogonality of the relation matrix and the geometric unification of the embedding space, GoldE is capable of
simultaneously capturing the crucial logical patterns and the inherent topological structures in KGs. For simplicity, we omit
the indices (i) of component spaces in the following proofs.

Symmetry/antisymmetry pattern: A relation r is symmetric (antisymmetric) if ∀x, y

r(x, y) ⇒ r(y, x) (r(x, y) ⇒ ¬r(y, x)).

If r(x, y) and r(y, x) hold, we have

ey = Grex ∧ ex = Grey ⇒ GrGr = I.

Otherwise, if r(x, y) and ¬r(y, x) hold, we have

ey = Grex ∧ ex ̸= Grey ⇒ GrGr ̸= I.

Inversion pattern: A relation r1 is inverse to relation r2 if ∀x, y

r2(x, y) ⇒ r1(y, x).

If r1(x, y) and r2(y, x) hold, we have

ey = Gr1ex ∧ ex = Gr2ey ⇒ Gr1 = G⊤
r2 .

Composition pattern: A relation r1 is composed of relation r2 and relation r3 if ∀x, y, z

r2(x, y) ∧ r3(y, z) ⇒ r1(x, z).

If r1(x, z), r2(x, y) and r3(y, z) hold, we have

ez = Gr1ex ∧ ey = Gr2ex ∧ ez = Gr3ey ⇒ Gr1 = Gr3Gr2 .

Cyclical and hierarchical structures: The fidelity of representations arises from the correspondence between the structure
of the data and the geometry of the space (Gu et al., 2019). Our GoldE is endowed with a product manifold composed
of multiple model spaces, enabling improved representations by better matching the geometry of the embedding space to
the heterogeneous structures of KGs. On the one hand, the orthogonal relation transformations in the elliptic component
spaces are naturally suitable for capturing the cyclical structures (Wilson et al., 2014; Liu et al., 2017). On the other hand,
the hyperbolic orthogonal transformation in Equation (12) inherently encodes the hierarchical structures—the Euclidean
orthogonal matrix models the transformation between entities at the same level of hierarchies, and the hyperbolic boost
matrix models the transformation between entities at different levels of hierarchies (Tabaghi & Dokmanic, 2021).
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G. Efficient Computation
The training time cost of GoldE primarily stems from the elliptic and hyperbolic orthogonal relation transformations in
Equation (9) and (12), where k matrix-vector multiplications incur the time complexity of O(k3). We show that these
matrix-vector multiplications can be entirely replaced by vector-vector operations to achieve efficient computation.

For the elliptic orthogonal relation transformations in Equation (9), the entity embedding eh,r iteratively performs k elliptic
Householder reflections. Each iteration can be achieved by vector-vector operations as follows:

ei+1
h,r = H(Ur[i],pr)e

i
h,r = (I− 2

Ur[i]Ur[i]
⊤diag(pr)

Ur[i]⊤diag(pr)Ur[i]
)eih,r = eih,r − 2

⟨Ur[i], e
i
h,r⟩pr

⟨Ur[i],Ur[i]⟩pr

Ur[i], (17)

where e1h,r is the initial entity embedding eh,r. In this way, the time complexity of Equation (9) is reduced to O(k2).

For the hyperbolic orthogonal relation transformations in Equation (12), the entity embedding eh,r is transformed by a
hyperbolic boost matrix and a Euclidean orthogonal matrix. We first replace the hyperbolic boost matrix with its equivalent
form (Barrett, 2011) to avoid calculating the matrix square root, and then accelerate the transformation via block matrix
multiplication. Formally, the hyperbolic boost transformation can be achieved by vector-vector operations as follows:[√

∥br∥2 + 1 b⊤
r

br

√
I+ brb⊤

r

]
eh,r =

[
γ −γv⊤

r

−γvr I+ γ2

1+γvrv
⊤
r

][
e1h,r
e2:kh,r

]
=

[
γe1h,r − γ ⟨vr, e

2:k
h,r⟩1

−γe1h,rvr + e2:kh,r +
γ2⟨vr,e

2:k
h,r⟩1

1+γ vr

]
, (18)

where vr ∈ Rk−1, ∥vr∥ < 1, γ = 1√
1−∥vr∥2

, e1h,r and e2:kh,r are the first and the remaining k−1 entries of eh,r, respectively.

The subsequent Euclidean orthogonal transformation can also be replaced by vector-vector operations, which is analogous
to Equation (17). Therefore, the time complexity of Equation (12) is also reduced to O(k2).

Table 7 shows the convergence time required for training the models on three standard benchmarks. We select RotatE (for
its simplicity) and HousE (for its advanced performance) as the baselines. By using the efficient computation, our GoldE
framework costs comparable training time to these two models. Combined with the link prediction results in Table 2, one
can see that the GoldE is capable of achieving superior effectiveness without sacrificing the efficiency.

Table 7. Training time of RotatE, HousE and our GoldE on three datasets.

Model WN18RR FB15k-237 YAGO3-10

RotatE 4h 6h 10h
HousE 2h 3h 11h
GoldE 2h 5h 13h

H. Datasets
Table 8 summarizes the detailed statistics of three benchmark datasets.

WN18RR (Dettmers et al., 2018) and FB15k-237 (Toutanova & Chen, 2015) datasets are subsets of WN18 (Bordes et al.,
2013) and FB15k (Bordes et al., 2013) respectively with inverse relations removed to avoid test leakage. WN18 is extracted
from WordNet (Miller, 1995), a database featuring lexical relations between words. FB15k is extracted from Freebase
(Bollacker et al., 2008), a large-scale KG containing general knowledge facts.

YAGO3-10 is a subset of YAGO3 (Mahdisoltani et al., 2015), containing 123,182 entities and 37 relations. Most of the
triples in YAGO3-10 are descriptive attributes of people, such as citizenship, gender, profession and marital status.

Table 8. Statistics of five standard benchmarks.

Dataset #Entity #Relation #Training #Validation #Test

WN18RR 40,943 11 86,835 3,034 3,134
FB15k-237 14,541 237 272,115 17,535 20,466
YAGO3-10 123,182 37 1,079,040 5,000 5,000
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I. Implementation Details
Evaluation: We follow the filtered ranking protocol (Bordes et al., 2013) for evaluation. For a test triple (h, r, t), we rank
it against all negative triplets (h, r, t′) or (h′, r, t) that do not appear in the knowledge graph. We report mean rank (MR),
mean reciprocal rank (MRR) and HITS at N (H@N) as performance metrics.

Fair comparisons: To ensure fair comparisons, we control the total number of parameters of GoldE to be similar to the
baselines as shown in Table 9. Specifically, we follow (Li et al., 2022) to fix the embedding size k of each entity as 800, 600,
1000 on WN18RR, FB15k-237 and YAGO3-10 datasets, respectively.

Table 9. Comparison of the number of parameters. The results of baselines are taken from the original papers.

Dataset RotatE Rotate3D DualE HousE GoldE

WN18RR 40.95M 61.44M 32.76M 32.57M 31.23M
FB15k-237 29.32M 44.57M 11.64M 12.13M 15.93M
YAGO3-10 123.18M - - 122.91M 118.52M

Selection of Product Manifold: For reducing the number of hyperparameters, we set identical dimensions for component
spaces of the same geometric type to describe the product space as Dk =×mP

i=1
PkP
i ××mQ

j=1
QkQ

j , where mP and mQ
denote the number of elliptic and hyperbolic component spaces, kP and kQ denote the dimension of elliptic and hyperbolic
component spaces. We omit E since the Euclidean orthogonal parameterization is the special case of our proposed
elliptic orthogonal parameterization according to Claim 3.2. Considering that the embedding size k is fixed to ensure fair
comparisons, we can define the product manifold Dk with only three hyperparameters: the embedding size of one partition
k∗ = mPkP, the number of elliptic component spaces mP, and the number of hyperbolic component spaces mQ. Note that
the selected product manifold may not be the optimal case due to the simplified dimension configuration. One potential
direction is to design a signature6 estimator (Gu et al., 2019) for KGs, and we leave this as the future work.

Hyperparameters: We use Adam (Kingma & Ba, 2015) as the optimizer and fine-tune the hyperparameters on the
validation dataset. The hyperparameters are tuned by the random search (Bergstra & Bengio, 2012), including batch size
b, self-adversarial sampling temperature α, fixed margin γ, learning rate lr, dimension k∗, number of elliptic component
spaces mP, and number of hyperbolic component spaces mQ. The hyperparameter search space is shown in Table 10.

Table 10. Hyperparameter search space.

Hyperparameter Search Space Type

b {500, 800, 1000, 1500, 2000} Choice
α [0.5, 2.0] Range
γ {6, 8, 10, 12, 16, 20, 24, 28} Choice
lr {0.0001, 0.0005, 0.001, 0.003} Choice
k∗ {0, 200, 400, 600, 800} Choice

mP,mQ {2, 4, 8, 10, 15, 20, 25, 30} Choice

J. More Results of GoldE with Varying Embedding Size
Table 11 shows the full results of GoldE with embedding size k equal to 32. Such low-dimensional setting follows (Chami
et al., 2020). One can observe that our GoldE framework consistently outperforms the baselines on all metrics across the
three datasets, demonstrating the superior modeling capability of our designed universal orthogonal parameterization.

Table 11. Full results of GoldE with embedding size k equal to 32.
WN18RR FB15k-237 YAGO3-10

Model MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

RotatE .387 .330 .417 .491 .290 .208 .316 .458 - - - -
QuatE .421 .396 .430 .467 .293 .212 .320 .460 - - - -
MuRE .458 .421 .471 .525 .313 .226 .340 .489 .283 .187 .317 .478
MuRP .465 .420 .484 .544 .323 .235 .353 .501 .230 .150 .247 .392
RefH .447 .408 .464 .518 .312 .224 .342 .489 .381 .302 .415 .530
RotH .472 .428 .490 .553 .314 .223 .346 .497 .393 .307 .435 .559
AttH .466 .419 .484 .551 .324 .236 .354 .501 .397 .310 .437 .566

GoldE .482 .447 .493 .558 .335 .246 .360 .506 .420 .330 .465 .586

6The signature of product manifold refers to the number of component spaces of each geometric type and their dimensions.
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Figure 4. MRR results of the models with embedding size k ∈ {10, 16, 20, 32, 50, 200, 500, 800} on WN18RR.

To delve deeper into the impact of different embedding sizes, we further conduct experiments for GoldE with varying values
of k. The parameters in all cases are tuned, and the results are averaged over 5 runs with different random initializations.
Figure 4 exhibits the MRR performance curves on WN18RR. It reveals that GoldE consistently surpasses the baselines
across a broad range of embedding sizes, comprehensively confirming the effectiveness of our proposal.

K. Limitations and Future Work
The proposed GoldE framework follows the traditional learning paradigm of KGE (Li et al., 2023). Specifically, GoldE
(as well as existing KGE approaches) models each training triple independently to implicitly capture the multi-hop logical
patterns. However, the single-triple constraints inevitably have biases during optimization. These biases will accumulate
with the increase of relation hops and make the perceived logical patterns unreliable, thereby hindering the generalization
ability. A possible solution is to combine our framework with a path/graph encoder (Li et al., 2023; Zhang et al., 2023)
to simultaneously process multiple structurally-dependent training triples. Furthermore, GoldE purely accesses the graph
structures for symbolic inference. We plan to incorporate the textual attributes (Li et al., 2017; Yan et al., 2023; Zhao et al.,
2023) of entities and relations in our future work to enhance the quality of learned representations. In addition, we would
also like to investigate other theories and methodologies (Yang & Ni, 2022; Liu et al., 2023; Li et al., 2024; Hu et al., 2024;
Feng et al., 2024) to unveil their potential significance in the realm of knowledge mining (Rui et al., 2022).
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