Under review as a conference paper at ICLR 2026

HIGH-ORDER MATCHING FOR ONE-STEP SHORTCUT
DIFFUSION MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

One-step shortcut diffusion models [Frans, Hafner, Levine and Abbeel, ICLR
2025] have shown potential in vision generation, but their reliance on first-order
trajectory supervision is fundamentally limited. The Shortcut model’s simplis-
tic velocity-only approach fails to capture intrinsic manifold geometry, leading to
erratic trajectories, poor geometric alignment, and instability-especially in high-
curvature regions. These shortcomings stem from its inability to model mid-
horizon dependencies or complex distributional features, leaving it ill-equipped
for robust generative modeling. In this work, we introduce HOMO (High-Order
Matching for One-Step Shortcut Diffusion), a game-changing framework that
leverages high-order supervision to revolutionize distribution transportation. By
incorporating acceleration, jerk, and beyond, HOMO not only fixes the flaws of
the Shortcut model but also achieves unprecedented smoothness, stability, and
geometric precision. Theoretically, we prove that HOMQ’s high-order supervi-
sion ensures superior approximation accuracy, outperforming first-order methods.
Empirically, HOMO dominates in complex settings, particularly in high-curvature
regions where the Shortcut model struggles. Our experiments show that HOMO
delivers smoother trajectories and better distributional alignment, setting a new
standard for one-step generative models.

1 INTRODUCTION

In recent years, deep generative models have exhibited extraordinary promise across various types of
data modalities. Techniques such as Generative Adversarial Networks (GANs) (Goodfellow et al.,
2014]), autoregressive models (Vaswani, [2017)), normalizing flows (Lipman et al., [2022)), and diffu-
sion models (Ho et al., [2020) have achieved outstanding results in tasks related to image, audio, and
video generation (Kalchbrenner et al., 2018} |Blattmann et al.; |2023). These models have attracted
considerable interest owing to their capacity to create invertible and highly expressive mappings,
transforming simple prior distributions into complex target data distributions. This fundamental
characteristic is the key reason they are capable of modeling any data distribution. Particularly,
(Lipman et al., 2022} Liu et al., 2022a) have effectively unified conventional normalizing flows with
score-based diffusion methods. These techniques produce a continuous trajectory, often referred
to as a “flow”, which transitions samples from the prior distribution to the target data distribution.
By adjusting parameterized velocity fields to align with the time derivatives of the transformation,
flow matching achieves not only significant experimental gains but also retains a strong theoretical
foundation.

Despite the remarkable progress in flow-based generative models, such as the Shortcut model (Frans
et al., |2025)), these approaches still face challenges in accurately modeling complex data distribu-
tions, particularly in regions of high curvature or intricate geometric structure (Wang et al., 2024
Hu et al.||2024c¢). This limitation stems from the reliance on first-order techniques, which primarily
focus on aligning instantaneous velocities while neglecting the influence of higher-order dynamics
on the overall flow geometry. Recent research in diffusion-based modeling (Chen| 2023} [Hang &
Gul, 2024 Lin et al., [2024) has highlighted the importance of capturing higher-order information
to improve the fidelity of learned trajectories. However, a systematic framework for incorporating
such higher-order dynamics into flow matching, especially within Shortcut models, remains an open
problem.

Under review as a conference paper at ICLR 2026

In this work, we propose HOMO (High-Order Matching for One-Step Shortcut Diffusion), a revolu-
tionary leap beyond the limitations of the original Shortcut model (Frans et al.,2025)). While Short-
cut models rely on simplistic first-order dynamics, often empirically struggling to capture complex
data distributions and producing erratic trajectories in high-curvature regions, HOMO shatters these
barriers by introducing high-order supervision. By incorporating acceleration, jerk, and beyond,
HOMO not only addresses the empirical shortcomings of the Shortcut model but also achieves un-
paralleled geometric precision and stability. Where the Shortcut model falters—yielding suboptimal
trajectories and poor distributional alignment—HOMO thrives, delivering smoother, more accurate,
and fundamentally superior results.

Our primary contribution is a rigorous theoretical and empirical framework that showcases the dom-
inance of HOMO. We prove that HOMO’s high-order supervision drastically reduces approximation
errors, ensuring precise trajectory alignment from the earliest stages to long-term evolution. Empir-
ically, we demonstrate that the Shortcut model’s first-order dynamics fall short in complex settings,
while HOMO consistently outperforms it, achieving faster convergence, better sample quality, and
unmatched robustness.

The contributions of our work is summarized as follows:

* We introduce high-order supervision into the Shortcut model, resulting in the HOMO
framework, which includes novel training and sampling algorithms.

* We provide rigorous theoretical guarantees for the approximation error of high-order flow
matching, demonstrating its effectiveness in both the early and late stages of the generative
process.

* We demonstrate that HOMO achieves superior empirical performance in complex settings,
especially in intricate distributional landscapes, beyond the capabilities of the original
Shortcut model (Frans et al., 2025)).

2 RELATED WORKS

Diffusion Models. Diffusion models have garnered significant attention for their capability to gen-
erate high-fidelity images by incrementally refining noisy samples, as exemplified by DiT (Peebles
& Xie, [2023) and U-ViT (Bao et al., 2023). These approaches typically involve a forward process
that systematically adds noise to an initial clean image and a corresponding reverse process that
learns to remove noise step by step, thereby recovering the underlying data distribution in a prob-
abilistic manner. Early works (Song & Ermon, 2019; [Song et al., |2020) established the theoretical
foundations of this denoising strategy, introducing score-matching and continuous-time diffusion
frameworks that significantly improved sample quality and diversity. Subsequent research has fo-
cused on more efficient training and sampling procedures (Lu et al.,[2022} Shen et al.,[2024aib), aim-
ing to reduce computational overhead and converge faster without sacrificing image fidelity. Other
lines of work leverage latent spaces to learn compressed representations, thereby streamlining both
training and inference (Rombach et al., [2022; |Hu et al.l[2024b). This latent learning approach inte-
grates naturally with modern neural architectures and can be extended to various modalities beyond
images, showcasing the versatility of diffusion processes in modeling complex data distributions. In
parallel, recent researchers have also explored multi-scale noise scheduling and adaptive step-size
strategies to enhance convergence stability and maintain high-resolution detail in generated content
in (Lovelace et al.| |2024; [Feng et al.| 2024} Rout et al.,[2024; Jiang et al.| 2025} Luo et al.| 2024)).

Flow Matching. Generative models like diffusion (Sohl-Dickstein et al., 2015 Ho et al., [2020;
Song et al. 2020) and flow-matching (Lipman et al., 2022} [Liu et al.l |2022a) operate by learning
ordinary differential equations (ODEs) that map noise to data. To simplify, this study leverages the
optimal transport flow-matching formulation (Liu et al.l [2022a). A linear combination of a noise
sample o ~ N(0,1) and a data point x1 ~ D defines x; = (1 —)z + tx1,vs = 1 — X9, With vy
representing the velocity vector directed from g to 1. While v, is uniquely derived from (z¢, x1),
knowledge of only x; renders it a random variable due to the ambiguity in selecting (x¢, x1). Neural
networks in flow models approximate the expected velocity o, = E[v; | a¢], calculated as an average
over all valid pairings. Training involves minimizing the deviation between predicted and empirical

Under review as a conference paper at ICLR 2026

velocities:

Ug(24,t) ~ Eag 2o (Ve | 4]
LF(0) = Eagzy~p [|1U6(2e,t) — (31 — 20)|1%] - (1)

Sampling involves first drawing a noise point 2o ~ A(0,) and iteratively transforming it into a
data point 2. The denoising ODEs, parameterized by Ug(x+,t), governs this transformation, and
Euler’s method approximates it over small, discrete time steps.

High-order ODE Gradient in Diffusion Models. Higher-order gradient-based methods
like TTMs (Kloeden & Platen, [1992) have applications far exceeding DDMs. For instance,
solvers (Djeumou et al.,|2022)) and regularization frameworks (Kelly et al.,[2020; Finlay et al., 2020)
for neural ODEs (Chen et al., 2018}; |Grathwohl et al., [2018)) frequently utilize higher-order deriva-
tives. Beyond machine learning contexts, the study of higher-order TTMs has been extensively
directed toward solving stiff (Chang & Corliss, |1994)) and non-stiff (Chang & Corliss},|1994; (Corliss
& Changl |1982)) systems.

3 PRELIMINARY

This section elaborates on the flow-matching framework, extending it to the second-order case, with
critical definitions underscored. We begin with describing the general framework of flow matching
and its second-order rectification. These concepts form the basis for our proposed method, as they
integrate first and second-order information for trajectory estimation.

Fact 3.1. Let a field x; be defined as vy = azxg + Prx1, where oy and By are functions of t, and
o, x1 are constants. Then, the first-order gradient x; and the second-order gradient ¥y can be

manually calculated as ©y = azxg + Prx1, Tt = dyxg + thl., reprectively.

In practice, one often samples (xg,z1) from (pg, 7o) and parameterizes x; (e.g., interpolation) at
intermediate times to build a training objective that matches the velocity field to the true time deriva-
tive Ty.

Definition 3.2 (Shortcut models, implicit definition from page 3 on (Frans et al 2025)). Let At =
1/128. Let x, be current field. Let t € N denote time step. Let uy(z¢,t,d) be the network to
be trained. Let d € (1/128,1/64,...,1/2,1) denote step size. Then, we define Shortcut model
compute next field x q as follow:

S xy + up (e, t,d)d if d > 1/128,
T\ 2y + ua (24,1, 0)AL if d < 1/128.

4 METHODOLOGY

When training a flow-based model, such as Shortcut model, using only the first-order term as the
training loss has several limitations compared to incorporating high-order losses. (1) Firstly, relying
solely on the first-order term results in a less accurate approximation of the true dynamics, as it
captures only the linear component and misses important nonlinear aspects that higher-order terms
can represent. This can lead to slower convergence, as the model must implicitly learn complex
dynamics without explicit guidance from higher-order terms. (2) Additionally, while the first-order
approach reduces model complexity and the risk of overfitting, it may also limit the model’s ability to
generalize effectively to unseen data, particularly when the underlying dynamics are highly nonlin-
ear. (3) In contrast, including higher-order terms enhances the model’s capacity to capture intricate
patterns, improving both accuracy and generalization, albeit at the cost of increased computational
complexity and potential overfitting risks.

Then, we introducing our HOMO model. The intuition behind this design is to leverage high-
order dynamics to achieve a more accurate and stable approximation of the field evolution. By
incorporating higher-order losses, we aim to capture the nonlinearities and complex interactions that
are often present in real-world systems. This approach not only improves the fidelity of the model
but also enhances its ability to generalize across different scenarios.

Under review as a conference paper at ICLR 2026

Definition 4.1 (HOMO Inference). Let At = 1/128. Let x; be the current field. Lett € N
denote the time step. Let uq g, (-) and ug,g,(-) denote the HOMO models to be trained. Let d €
(0,1/128,1/64,...,1/2,1) denote the step size. Then, we define the HOMO computation of the
next field x4 as follows:

T J)t—|—d-u1(l’t,t,d)+(§ 'Ug(ul(ﬂft,t,d),.rt,t,d) lde 1/1287
= 2
rrd ;vt—i—At-ul(xt,LO)—i—%~uQ(u1(;vt,t,0)7xt7t,0) ifd <1/128.

The self-consistency target is to ensure that the model’s predictions are consistent across different
time steps, which is crucial for maintaining the stability and accuracy of the model over long-term
predictions.

Definition 4.2 (HOMO Self-Consistency Target). Let uy g, be the networks to be trained. Let x;
be the current field and 44 be defined in Definition Let t € N denote the time step. Let
d € (0,1/128,1/64,...,1/2,1) denote the step size. We define the Self-Consistency target as
follows:

x?rget =uyp, ($t7 t7 d)/2 —+ U1,6, (Jit-f-d, t7 d)/2

The second-order HOMO loss is designed to optimize the model by minimizing the discrepancy
between the predicted and true velocities and accelerations. This loss function ensures that the
model not only captures the immediate dynamics but also the underlying trends and changes in the
system.

Definition 4.3 (Second-order HOMO Loss). Let x; be the current field. Let t € N denote the

time step. Let ©\""®%" be defined by Definition Let uj g, (+) and usp,(-) denote the HOMO

models to be trained. Let d € (0,1/128,1/64,...,1/2, 1) denote the step size. Let £{*° and

ZC be the observed (or numerically approxzmated) true velocity and acceleration. Let acpred =

ul,gl (24, t, 2d) denote the model prediction of the first-order term. Then, we define the HOMO Loss
as follows:

L(91,92) - [62 1,01 (xtv true)} + EMQ 2,02,01 (xt’ true)] + E[”ul 01 (mtvt 2d) target”2]

We define
Ua1.0, (w4, 87 = [|uyg, (20, 1, 2d) — &2,
039050, (20, E) 1= |ug., (37 pred ¢ 9q) — jirue||2
b, B84 =, (1, 2d) — 0755 2
and

6(91,92) (xta xztfrue) = 62,1,91 (:Ct’ x;rue) + 6272,92,91 (xtv chrue) + Lselfe (xta xzarget)
Remark 4.4 (Simple notations). For simplicity, we denote first-order matching as M1, which im-
plies that HOMO is optimized solely by the first-order loss {3 1 ¢, (x4, £§™¢). Second-order matching

is denoted as M2, where HOMO is optimized only by the second-order loss 02,2.0,.0, (x4, Ziue). We

refer to HOMO optimized solely by the self-consistency loss as SC, denoted by lsosc (4, xidrget)

Combinations of M1, M2, and SC are used to indicate HOMO optimized by corresponding com-
binations of loss terms. For example, (M1 + M2) denotes HOMO optimized by both first-order
and second-order terms, while (M1 + M2 + SC) represents HOMO optimized by the first-order,
second-order, and self-consistency terms.

5 THEORETICAL ANALYSIS

In this section, we will introduce our main result, the approximation error of the second order flow
matching. The theory for higher order flow matching is deferred to Section D}

We first present the approximation error result for the early stage of the diffusion process. This
result establishes theoretical guarantees on how well a neural network can approximate the first and
second order flows during the initial phases of the trajectory evolution.

Under review as a conference paper at ICLR 2026

Algorithm 1 HOMO Training

1: procedure HOMOTRAINING(A, D, p, k)

2: > Parameter 6 for HOMO model v and us.

3 > Training dataset D
4: > Stepsize and time index distribution p

5: > Batch size k

6 while not converged do

7 2o ~N(0,1),21 ~ D, (d,t) ~p

8: ﬁt «— 1-— Oé%

9: Ty oy - xg + B -1 > Noise data point
10: for first £ batch elements do
11: ST g + thl > First-order target
12: tr‘m — Grxo + B > Second-order target
13: d 0
14: end for
15: for other batch elements do
16: st up(xy, t,d) > First small step of first order
17: $t + ug(uy (2, t,d), x, t, d) > First small step of second order
18: Tiyg — Tt +d-s¢+ d—;ét > Follow ODE
19: Styd < U1 (Tpra,t +d,d) > Second small step of first order
20: §5778° « stopgrad (s; + s¢44)/2 > Self-consistency target of first order
21: end for
22: 0 < Vo(|lui(ze,t,2d) — s8¢ ||?

+|uz (ug (w4, t, 2d), x4, t, 2d) — 589¢|2
+lun (0,8, 2d) — 3,75|2)

23: end while
24: return ¢
25: end procedure

Algorithm 2 HOMO Sampling

1: procedure HOMOSAMPLING(6, M)

2: > Parameter 6 for the HOMO model u©; and us
3 > The number of sampling steps M
4: x ~N(0,1)

5: d<+~1/M

6: t+«0

7 forn e [0,...,M — 1] do

8: xe:z:+d'u1($,t,d)+%-uz(ul(x,t,d),z,t,d)
9: tet+d

10: end for

11: return x

12: end procedure

Theorem 5.1 (Approximation error of second order flow matching for small ¢, informal version
of Theorem [D.1). Let N be a value associated with sample size n. Let Ty := N~ and T,

N — 5= where Ry, ki, § are some parameters. Let s be the order of smoothness of the Besov space
that the target distribution belongs to. Under some mild assumptions, there exist neural networks
d)l, ¢o from a class of neural networks such that, for suﬁ‘iciently large N, we have [(||¢1(z,t) —

@3 + (g2 (x,t) — & e(3)pe(2)d < (67 log N + BF)N ™74 + Eq, ~p,[||47 — £§7°|13] holds
Sor any t € [Ty, 3T.]. In addition, ¢1, ¢2 can be taken so we have lo1(-,) |looc = O(Jt|\/1ogn +

18e); 1625) lloo = O(ls|v/I0g T + [Be))-

Next, we present the approximation error result for the later stages, confirming that the second-order
flow matching remains effective throughout the generative process.

Under review as a conference paper at ICLR 2026

Theorem 5.2 (Approximation error of second order flow matching for large ¢, informal version of
Theorem . Let N be a value associated with sample size n. Let Ty := N —Ro qnd T, =

-1
N - £ d_6 where Ry, k,d are some parameters. Let s be the order of smoothness of the Besov
space that the target distribution belongs to. Fix t. € [Ty, 1] and let n > 0 be arbitrary. Under
some mild assumptions, there exists neural networks ¢1, ¢2 from a class of neural networks such that

Sl (@, t) = a3 + |92, t) = & |3)pe(2)dz S (67 log N + BF)N " + Eqyop, [[[7€ —
#°||2] holds for any t € [2t.,1]. In addition, ¢1, ¢ can be taken so we have
161(,)lloe = O(||log N + |54,
[62(:,)[loc = O(|cte|log N + |B¢]).

Overall, these two results demonstrate the effectiveness across different phases of the generative
process.

6 EXPERIMENTS

This section presents a series of experiments to evaluate the effectiveness of our HOMO method
and assess the impact of each loss component. Our results demonstrate that HOMO significantly
improves distribution generation, with the high-order loss playing a key role in enhancing model
performance.

Samples from mp and my HOMO optimized HOMO optimized HOMO optimized
15 o with M1 loss with M2 loss with SC loss
® | s 2 15 o 15 o
10 0 ° 10 WY, C..... 10 ® U Generatea 10) A° Ceneores
5
S s% 0| 5 e w so.‘gc 51 9 H0e @
0 : & 0 o 'y 0 0 Py £
-51 & ’... L sl Rg® & -51 W “. ® s 8 @al @
-10 _ _ -
& ® 10 10 10
-15 -15 e -15 Q » -15 s »
-10 0 10 -10 0 10 -10 0 10 -10 0 10
(a) Eight-mode Dataset (b) M1 (c) M2 (d) SC
HOMO optimized HOMO optimized HOMO optimized HOMO optimized with
with (M1 + M2) losses with (M1 + SC) losses with (M2 + SC) losses (M1 + M2 + SC) losses
15 . o 15 ‘ o 15 o 15 o g
1 @7 K G| 10 D 0 L0 G| g B0 G| o B Gonrted
5140 @B M 51 B A%y @ 51 & %9 @ s % Ve @
0 * g 0 » @ 0 ' [0 & 4
51 ©e® 4 -5{ 4% ",. % 51 @ ‘. | @ ."" O
-10 ™ P -10 P 7 -10 -10 (O
-15 % -15 r ® -15 Fos -15 - L
-10 0 10 -10 0 10 -10 0 10 -10 0 10
(e) M1 + M2) (f) (M1 + SC) (Frans et al} (g) (M2 + SC) (h)y M1 + M2 + SC)
(Ours)

Figure 1: The first row shows the initial eight-mode dataset (a) and the results of HOMO optimized
with first-order loss (M1), second-order loss (M2), and self-consistency loss (SC) Figures (b-d). The
second row presents combinations of losses: M1+M2 (e), M1+SC (f), M2+SC
(g), and M1+M2+SC (Ours) (h). Quantitative results are shown in TableEl

6.1 EXPERIMENT SETUP

We evaluate HOMO on a variety of data distributions and different combinations of losses. We
would like to restate that the HOMO with first order loss and self-consistency loss is equal to the
original One-step Shortcut model 2025), i.e., M1+SC. Furthermore, M1+M2+SC and
M1+M2+M3+SC are our proposed methods.

Under review as a conference paper at ICLR 2026

Table 1: Euclidean distance loss on Gaussian datasets.

Lower values indicate more accurate

distribution matching. Optimal values are in Bold, with Underlined numbers representing second-
best results. For qualitative results, please refer to Figure

400

Losses | Four mode (]) | Five mode (|) | Eight mode (|)
M1 2.759 3.281 3.321

M2 11.089 6.554 10.830

SC 6.761 10.893 7.646

M1 + M2 0.941 1.097 0.977

M2 + SC 8.708 9.212 4.801

M1 + SC (Frans et al.,[2025) 0.820 1.067 1.084

M1 + M2 + SC (Ours) 0.809 0.917 0.778

HOMO optimized
with (M1 + M2) losses

HOMO optimized
with (M1 + SC) losses

00 with (M2 + SC) losses

HOMO optimized

HOMO optimized with
400(Ml + M2 + SC) losses

400

300 omon, . Gencrated 300 ~ Generated 300 P o Genersted 300 g Cenerated
200 / 200 P \ 200 / \ 200 4 S
00{ g 100{ & . 1001 & ey 1001 £ eig
0 g G) 8 0 [l [})] 0 l J P 0 ;; ,/ o & !
-100{ ¢ ‘A& ‘' -100 A\ y. -1001 % k o 001 N
—200] o w0 —200 ‘ -200{ N, Y, 200 e - o /
-300 D TR -300 — -300 N e -300 g
—400 —400 —400 —400
~400 —200 0 200 400 —400 —200 O 200 400 —400 —200 O 200 400 —400 -200 0 200 400

(a) (M1 + M2) / spin (b) (M1 + SC) / spin (¢) (M2 + SC) /spin (d) (M1 + M2 + SC) / spin
Figure 2: HOMO on complex datasets (Spin). Results of HOMO optimized with various loss
combinations: M1+M2 (a), M1+SC (Frans et al.l 2025) (b), M2+SC (c), and M14+M2+SC (Ours)

(d). Quantitative results are in Table

Table 2: Euclidean distance loss on complex datasets. Lower values indicate better distribution
matching. For qualitative results of complex distribution experiments, please refer to Figure [2| and

Figure T3] [T4] [15] [T6]

Losses | Circle (1) | Irregular () | Spiral () | Spin (})
M1 + M2 0.642 0.731 7.233 31.009
M1 + SC 0.736 0.743 3.289 12.055
M2 + SC 7.233 0.975 10.096 50.499
M1 + M2 + SC 0.579 0.678 1.840 10.066

For the distribution dataset, in the left-most figure of Figure[I] we show an example of an eight-mode
Gaussian distribution. The source distribution 7y and the target distribution 7 are constructed
as mixture distributions, each consisting of eight equally weighted Gaussian components. Each
Gaussian component has a variance of 0.3. This setup presents a challenging transportation problem,
requiring the flow to handle multiple modes and cross-modal interactions.

We implement HOMO according to three kinds of losses: the first-order loss {5 1 g, (24, £i™°), the
second-order 10ss /2.9 g, 9, (1, #""¢), and the self-consistency 10ss fseise (24, 24%°"). Following
Remark .4] we use M1, M2 and SC to denote three kinds of losses, respectively. For all experi-
ments, we optimize models by the sum of squared error. For the target transport trajectory setting,
we follow the VP ODE framework from (Liu et al.,[2022b)), which is z; = azxq + Brx1. We choose

oy = exp(—a(l —t)? — 3b(1 — t)) and B; = \/1 — o}, witha = 19.9 and b = 0.1.

6.2 MIXTURE OF GAUSSIAN EXPERIMENTS

We analyze the performance of HOMO on Gaussian mixture datasets (Liang et al.l [2024e) with
varying modes (four, five, and eight). The most challenging is the eight-mode distribution, where

Under review as a conference paper at ICLR 2026

HOMO with all three losses (M1+M2+SC) produces the best results, achieving the lowest Euclidean
distance. The eight-mode Gaussian mixture distribution dataset (Figure (a)) contains eight Gaus-
sian distributions whose variance is 0.3. Eight source mode (brown) positioned at a distance Dy = 6
from the origin, and eight target mode (indigo) positioned at a distance Dy = 13 from the origin,
each mode sample 100 points. HOMO optimized with M1+M2+SC losses is the only model that
can accurately learn the target eight-mode Gaussian distribution, achieving high precision as evi-
denced by the lowest Euclidean distance loss among all tested configurations. We emphasize the
importance of the second-order loss. Without it, the model struggles to accurately capture finer
distribution details (Figure E] (f)). However, when included, the model better matches the target
distribution (Figure[I] (h)).

We further analyze how each loss contributes to the final performance of the HOMO. (1) The first-
order loss enables HOMO to learn the general structure of the target distribution, but it struggles to
capture finer details, as shown in Figure [T| (b) and Figure[I](g). (2) The second-order loss can lead
to overfitting in the target distribution, as shown in Figure[I[c). When used alone, the second-order
loss may cause the model to focus too much on details and lose sight of the broader distribution.
(3) The self-consistency loss enhances the concentration of the learned distribution, as shown in
Figure |1| (d). Without the self-consistency loss, as shown in Figure [1| (e), the learned distribution
becomes sparser.

6.3 COMPLEX DISTRIBUTION EXPERIMENTS

In this section, we conduct experiments on datasets with complex distributions, where we expect our
HOMO model to learn the transformation from a regular source distribution to an irregular target
distribution. We first introduce the dataset used in Figure[2] In the spin dataset, we sample 600 points
from a Gaussian distribution with a variance of 0.3 for both the source and target distributions. The
second-order loss is essential for accurate fitting, particularly for irregular and spiral distributions.
We emphasize the critical role of the second order loss in the success of our HOMO model for
learning complex distributions. As demonstrated in Figure 2] (b), the original shortcut model, which
includes only first-order and self-consistency losses, fails to accurately fit the outer circle distribu-
tion. In contrast, the result of our HOMO model, shown in Figure E] (d), illustrates that adding the
second-order loss enables the model to generate points within the outer circle. This highlights the
importance of the second-order loss in enabling the model to learn more complex distributions. We
have also performed experiments with HOMO optimized using each loss individually, as well as on
other distribution datasets. Due to space limitations, we refer the reader to Section and
for further details.

6.4 THIRD-ORDER HOMO

Table 3: Euclidean distance loss of three complex distribution datasets under original trajec-
tory setting. Lower values indicate more accurate distribution transfer results. For the qualitative
results , please refer to Figure E}

Loss terms | 2 Round Spin () | 3 Round Spin (}) | Dot-Circle ({)
SC 59.490 50.981 89.974
M1 + SC (Frans et al., |2025) 17.866 23.606 37.550
M1 + M2 + SC (Ours) 9.417 13.085 30.679
M1 + M2 + SC + M3 (Ours) 7.440 10.679 26.819

As discussed in previous sections, second-order HOMO has shown great performance on various
distribution datasets. Therefore, in this section, we further investigate the performance of HOMO
for adding an additional third-order loss. We use the same datasets as discussed in previous sections.
Namely, they are 2 Round spin, 3 Round spin, and Dot-Circle datasets. The qualitative results from
the experiments (Figure[3) demonstrate that the additional third-order loss enables HOMO to better
capture more complex target distributions. For instance, the comparison between Figure |3|(c) and
Figure [3] (d), as well as between Figure [3] (g) and Figure 3] (h), illustrates how the third-order loss
enhances the model’s ability to fit more intricate distributions. These findings are consistent with
the quantitative results presented in Table [3| By capturing higher-order interactions, the model is

Under review as a conference paper at ICLR 2026

HOM.O optimized _HOMO optimized HOMO optimized with HOMO optimized with
400 with SC Ios"s 400 with (M1 + SC) "Iosses 400(M1 + M2 + SC)"Iosses 408M1+M2+M3+SC) losses
300 on 300 om 300 om 300 om
o WOy Generated P S Generated & Ip Generated 0 Generated
200 200 - . 2000 8 200 Vo . N\
100 1001 A 3 by 1001 4 P 1001 4 gy &
0 . o o] & K o o [L 0 LR |
: i b | {)
-100 §| —100 -100 \ \ 4 -100 \ b A |
—200 r4 —-200 aaad -200 T -200 " g /
-300 _,./ -300 oo -300 \m/ -300 \-.\, Seme”
—400 -400 -400 -400
—400 —200 0 200 400 —400 —200 0 200 400 —400 —200 0 200 400 400 -200 0 200 400
(a) SC/2 Round (b) (M1 + SC)) /2 Round (c) M1 + M2 + SC)) / 2(d) M1+M2+M3+SC))/2
Round Round
HOMO optimized HOMO optimized HOMO optimized with HOMO optimized with
with SC loss with (M1 + SC) losses (M1 + M2 + SC) losses éM1+M2+M3+SC) losses
600 . 600 - 600 - 601 -
400 ,w‘“ @° Gerermea | 400 400 O D e | 400 e ° Generoes
w0] & 2 \ 200 200 ,;f‘»‘ =y \‘ 200{ & 7
. N W | Y&y |
0 ! H) 0 0 i £ 4 o0 °% 5 0 t 5 o9 B
{ ! VA1 R
—2001 & \Q "/ R ~200 -200{ & % A ~200 \ ! :
—400 \b - / —400 -400 \b Nyt 400 \ "!‘(i
o o’ °® cages %%q o=
-600 -600 -600 —-600
—600—-400-200 0 200 400 600 —600—-400-200 0 200 400 600 —600—-400—-200 0 200 400 600 —600—-400-200 0 200 400 600

(e) SC/ 3 Round (f) M1 + SC)) / 3 Round (g) (M1 + M2 + SC)) / 3(h) (M1+M2+M3+SC))/3

Round Round
HOMO optimized .HOMO optimized HOMO optimized with HOMO optimized with
with SC loss with (M1 + SC) losses (M1 + M2 + SC) losses (M1+M2+M3+5C) losses
400 v P 400 I nte 400 I el I 400 s bante LY
r 4 Generated P Generated f! . Gen'e‘rated L Generated
2001 L7 2001 L\ 200 ST a) T -
4 \ § /‘:\) J 7 A Y SN ‘\ 3
0 o 0l ¢ ¥ 4 ol & : ’E } ol ® £ ¥ |]
\] ’ Y4 tE ¢ # /e H oA
—2004 °% £ —200] § oy & 200] B e] & Nl 2y
£ N, & Dw/ii -2007 e]
\3 s g -anr” .) Yyt peed” s
-400 Vow s -400 °e wp o=’ -400 ® 6 aoanes”” -400 N g o
-400-200 0 200 400 -400-200 0 200 400 -400 200 0 200 400 —400 —200 0 200 400
(i) SC/DC () M1 +SC)/DC (k) M1 +M2+SC))/DC() (MI1+M2+M3+SC)) /
DC

Figure 3: We present the third-order HOMO results in three kinds of complex datasets. From
left to right, we present results of HOMO optimized with different kinds of losses. A quantitative
evaluation is presented in Table@

better equipped to understand and adapt to the intricate relationships within the data, leading to more
accurate and robust learning. This approach underscores the value of enriching the model’s training
objective to handle the complexities inherent in real-world data distributions.

7 CONCLUSION

In this work, we introduced HOMO , which incorporates high-order dynamics into the training and
sampling processes of Shortcut models. By leveraging high-order supervision, our method signifi-
cantly enhances the geometric consistency and precision of learned trajectories. Theoretical analyses
demonstrate that high-order supervision ensures stability and generalization across different phases
of the generative process. These findings are supported by extensive experiments, where HOMO
outperforms original Shortcut models (Frans et al., [2025)), achieving more accurate distributional
alignment and fewer suboptimal trajectories. The integration of high-order terms establishes a new
style for geometrically-aware generative modeling, highlighting the importance of capturing higher-
order dynamics for accurate transport learning. Our results suggest that high-order supervision is a
powerful tool for improving the fidelity and robustness of generative models.

Under review as a conference paper at ICLR 2026

ETHIC STATEMENT

This paper does not involve human subjects, personally identifiable data, or sensitive applications.
We do not foresee direct ethical risks. We follow the ICLR Code of Ethics and affirm that all aspects
of this research comply with the principles of fairness, transparency, and integrity.

REPRODUCIBILITY STATEMENT

We ensure reproducibility on both theoretical and empirical fronts. For theory, we include all formal
assumptions, definitions, and complete proofs in the appendix. For experiments, we describe model
architectures, datasets, preprocessing steps, hyperparameters, and training details in the main text
and appendix.

REFERENCES

Fan Bao, Shen Nie, Kaiwen Xue, Yue Cao, Chongxuan Li, Hang Su, and Jun Zhu. All are worth
words: A vit backbone for diffusion models. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 22669-22679, 2023.

Song Bian, Zhao Song, and Junze Yin. Federated empirical risk minimization via second-order
method. arXiv preprint arXiv:2305.17482, 2023.

Andreas Blattmann, Robin Rombach, Huan Ling, Tim Dockhorn, Seung Wook Kim, Sanja Fidler,
and Karsten Kreis. Align your latents: High-resolution video synthesis with latent diffusion mod-
els. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp- 22563-22575, 2023.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the opportu-
nities and risks of foundation models. arXiv preprint arXiv:2108.07258, 2021.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Ka-
mar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general
intelligence: Early experiments with gpt-4. arXiv preprint arXiv:2303.12712, 2023.

Yang Cao, Xiaoyu Li, and Zhao Song. Grams: Gradient descent with adaptive momentum scaling.
arXiv preprint arXiv:2412.17107, 2024.

YF Chang and George Corliss. Atomft: solving odes and daes using taylor series. Computers &
Mathematics with Applications, 28(10-12):209-233, 1994.

Bo Chen, Xiaoyu Li, Yingyu Liang, Jiangxuan Long, Zhenmei Shi, and Zhao Song. Circuit com-
plexity bounds for rope-based transformer architecture. arXiv preprint arXiv:2411.07602, 2024a.

Bo Chen, Xiaoyu Li, Yingyu Liang, Zhenmei Shi, and Zhao Song. Bypassing the exponential de-
pendency: Looped transformers efficiently learn in-context by multi-step gradient descent. arXiv
preprint arXiv:2410.11268, 2024b.

Bo Chen, Yingyu Liang, Zhizhou Sha, Zhenmei Shi, and Zhao Song. Hsr-enhanced sparse attention
acceleration. arXiv preprint arXiv:2410.10165, 2024c.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in neural information processing systems, 31, 2018.

Ting Chen. On the importance of noise scheduling for diffusion models. arXiv preprint
arXiv:2301.10972, 2023.

Yifang Chen, Jiayan Huo, Xiaoyu Li, Yingyu Liang, Zhenmei Shi, and Zhao Song. Fast gradient
computation for rope attention in almost linear time. arXiv preprint arXiv:2412.17316, 2024d.

10

Under review as a conference paper at ICLR 2026

Yifang Chen, Xiaoyu Li, Yingyu Liang, Zhenmei Shi, and Zhao Song. The computational
limits of state-space models and mamba via the lens of circuit complexity. arXiv preprint
arXiv:2412.06148, 2024e.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311, 2022.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned language mod-
els. arXiv preprint arXiv:2210.11416, 2022.

George Corliss and YF Chang. Solving ordinary differential equations using taylor series. ACM
Transactions on Mathematical Software (TOMS), 8(2):114—144, 1982.

Yichuan Deng, Zhao Song, Yitan Wang, and Yuanyuan Yang. A nearly optimal size coreset algo-
rithm with nearly linear time. arXiv preprint arXiv:2210.08361, 2022.

Yichuan Deng, Sridhar Mahadevan, and Zhao Song. Randomized and deterministic attention sparsi-
fication algorithms for over-parameterized feature dimension. arXiv preprint arXiv:2304.04397,
2023.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies. Association for Computational Linguistics, 2019.

Franck Djeumou, Cyrus Neary, Eric Goubault, Sylvie Putot, and Ufuk Topcu. Taylor-lagrange
neural ordinary differential equations: Toward fast training and evaluation of neural odes. arXiv
preprint arXiv:2201.05715, 2022.

Shibo Feng, Chunyan Miao, Zhong Zhang, and Peilin Zhao. Latent diffusion transformer for proba-
bilistic time series forecasting. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 38, pp. 11979-11987, 2024.

Chris Finlay, Jorn-Henrik Jacobsen, Levon Nurbekyan, and Adam Oberman. How to train your
neural ode: the world of jacobian and kinetic regularization. In International conference on
machine learning, pp. 3154-3164. PMLR, 2020.

Kevin Frans, Danijar Hafner, Sergey Levine, and Pieter Abbeel. One step diffusion via shortcut
models. In International Conference on Learning Representations, 2025.

Kenji Fukumizu, Taiji Suzuki, Noboru Isobe, Kazusato Oko, and Masanori Koyama. Flow matching
achieves minimax optimal convergence. arXiv preprint arXiv:2405.20879, 2024.

Peng Gao, Jiaming Han, Renrui Zhang, Ziyi Lin, Shijie Geng, Aojun Zhou, Wei Zhang, Pan Lu,
Conghui He, Xiangyu Yue, et al. Llama-adapter v2: Parameter-efficient visual instruction model.
arXiv preprint arXiv:2304.15010, 2023a.

Tianyu Gao, Adam Fisch, and Danqi Chen. Making pre-trained language models better few-shot
learners. In Proceedings of the 59th Annual Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference on Natural Language Processing, 2021a.

Tianyu Gao, Adam Fisch, and Danqi Chen. Making pre-trained language models better few-shot
learners. In Proceedings of the 59th Annual Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference on Natural Language Processing, 2021b.

Yeqi Gao, Sridhar Mahadevan, and Zhao Song. An over-parameterized exponential regression.
arXiv preprint arXiv:2303.16504, 2023b.

Yeqi Gao, Zhao Song, Weixin Wang, and Junze Yin. A fast optimization view: Reformulating single

layer attention in 1lm based on tensor and svm trick, and solving it in matrix multiplication time.
arXiv preprint arXiv:2309.07418, 2023c.

11

Under review as a conference paper at ICLR 2026

Yeqi Gao, Zhao Song, and Junze Yin. Gradientcoin: A peer-to-peer decentralized large language
models. arXiv preprint arXiv:2308.10502, 2023d.

Yeqi Gao, Zhao Song, and Junze Yin. An iterative algorithm for rescaled hyperbolic functions
regression. arXiv preprint arXiv:2305.00660, 2023e.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information
processing systems, 27, 2014.

Will Grathwohl, Ricky TQ Chen, Jesse Bettencourt, Ilya Sutskever, and David Duvenaud. Ffjord:
Free-form continuous dynamics for scalable reversible generative models. arXiv preprint
arXiv:1810.01367, 2018.

Tiankai Hang and Shuyang Gu. Improved noise schedule for diffusion training. arXiv preprint
arXiv:2407.03297, 2024.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840-6851, 2020.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International Con-
ference on Learning Representations, 2022.

Jerry Yao-Chieh Hu, Wei-Po Wang, Ammar Gilani, Chenyang Li, Zhao Song, and Han Liu. Funda-
mental limits of prompt tuning transformers: Universality, capacity and efficiency. arXiv preprint
arXiv:2411.16525, 2024a.

Jerry Yao-Chieh Hu, Weimin Wu, Zhao Song, and Han Liu. On statistical rates and provably efficient
criteria of latent diffusion transformers (dits). arXiv preprint arXiv:2407.01079, 2024b.

Vincent Hu, Di Wu, Yuki Asano, Pascal Mettes, Basura Fernando, Bjorn Ommer, and Cees Snoek.
Flow matching for conditional text generation in a few sampling steps. In Proceedings of the 18th
Conference of the European Chapter of the Association for Computational Linguistics (Volume
2: Short Papers), pp. 380-392, 2024c.

Yitong Jiang, Zhaoyang Zhang, Tianfan Xue, and Jinwei Gu. Autodir: Automatic all-in-one image
restoration with latent diffusion. In European Conference on Computer Vision, pp. 340-359.
Springer, 2025.

Nal Kalchbrenner, Erich Elsen, Karen Simonyan, Seb Noury, Norman Casagrande, Edward Lock-
hart, Florian Stimberg, Aaron Oord, Sander Dieleman, and Koray Kavukcuoglu. Efficient neural
audio synthesis. In International Conference on Machine Learning, pp. 2410-2419. PMLR, 2018.

Yekun Ke, Xiaoyu Li, Yingyu Liang, Zhenmei Shi, and Zhao Song. Advancing the understanding
of fixed point iterations in deep neural networks: A detailed analytical study. arXiv preprint
arXiv:2410.11279, 2024.

Yekun Ke, Xiaoyu Li, Yingyu Liang, Zhizhou Sha, Zhenmei Shi, and Zhao Song. On computational
limits and provably efficient criteria of visual autoregressive models: A fine-grained complexity
analysis. arXiv preprint arXiv:2501.04377, 2025a.

Yekun Ke, Xiaoyu Li, Yingyu Liang, Zhenmei Shi, and Zhao Song. Circuit complexity bounds for
visual autoregressive model. arXiv preprint arXiv:2501.04299, 2025b.

Jacob Kelly, Jesse Bettencourt, Matthew J Johnson, and David K Duvenaud. Learning differential
equations that are easy to solve. Advances in Neural Information Processing Systems, 33:4370—
4380, 2020.

Peter E Kloeden and Eckhard Platen. Numerical Solution of Stochastic Differential Equations.
Springer, 1992.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Pro-
cessing. Association for Computational Linguistics, 2021.

12

Under review as a conference paper at ICLR 2026

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation.
In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing. Association for
Computational Linguistics, 2021.

Xiaoyu Li, Yingyu Liang, Zhenmei Shi, and Zhao Song. A tighter complexity analysis of sparsegpt.
arXiv preprint arXiv:2408.12151, 2024a.

Xiaoyu Li, Yingyu Liang, Zhenmei Shi, Zhao Song, and Yufa Zhou. Fine-grained attention i/o
complexity: Comprehensive analysis for backward passes. arXiv preprint arXiv:2410.09397,
2024b.

Xiaoyu Li, Jiangxuan Long, Zhao Song, and Tianyi Zhou. Fast second-order method for neural
network under small treewidth setting. In 2024 IEEE International Conference on Big Data
(BigData). IEEE, 2024c.

Xiaoyu Li, Zhao Song, and Junwei Yu. Quantum speedups for approximating the john ellipsoid.
arXiv preprint arXiv:2408.14018, 2024d.

Xiaoyu Li, Yingyu Liang, Zhenmei Shi, Zhao Song, Wei Wang, and Jiahao Zhang. On the com-
putational capability of graph neural networks: A circuit complexity bound perspective. arXiv
preprint arXiv:2501.06444, 2025.

Yingyu Liang, Jiangxuan Long, Zhenmei Shi, Zhao Song, and Yufa Zhou. Beyond linear approxi-
mations: A novel pruning approach for attention matrix, 2024a.

Yingyu Liang, Zhizhou Sha, Zhenmei Shi, and Zhao Song. Differential privacy mechanisms in
neural tangent kernel regression. arXiv preprint arXiv:2407.13621, 2024b.

Yingyu Liang, Zhizhou Sha, Zhenmei Shi, Zhao Song, and Yufa Zhou. Multi-layer transformers
gradient can be approximated in almost linear time. arXiv preprint arXiv:2408.13233, 2024c.

Yingyu Liang, Zhizhou Sha, Zhenmei Shi, Zhao Song, and Yufa Zhou. Looped relu mlps may be
all you need as practical programmable computers. arXiv preprint arXiv:2410.09375, 2024d.

Yingyu Liang, Zhenmei Shi, Zhao Song, and Yufa Zhou. Unraveling the smoothness properties of
diffusion models: A gaussian mixture perspective. arXiv preprint arXiv:2405.16418, 2024e.

Shanchuan Lin, Bingchen Liu, Jiashi Li, and Xiao Yang. Common diffusion noise schedules and
sample steps are flawed. In Proceedings of the IEEE/CVF winter conference on applications of
computer vision, pp. 5404-5411, 2024.

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
for generative modeling. arXiv preprint arXiv:2210.02747, 2022.

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
transfer data with rectified flow. arXiv preprint arXiv:2209.03003, 2022a.

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
transfer data with rectified flow. arXiv preprint arXiv:2209.03003, 2022b.

Justin Lovelace, Varsha Kishore, Chao Wan, Eliot Shekhtman, and Kilian Q Weinberger. Latent
diffusion for language generation. Advances in Neural Information Processing Systems, 36, 2024.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A fast
ode solver for diffusion probabilistic model sampling in around 10 steps. Advances in Neural
Information Processing Systems, 35:5775-5787, 2022.

Simian Luo, Chuanhao Yan, Chenxu Hu, and Hang Zhao. Diff-foley: Synchronized video-to-audio
synthesis with latent diffusion models. Advances in Neural Information Processing Systems, 36,
2024.

Swaroop Mishra, Daniel Khashabi, Chitta Baral, and Hannaneh Hajishirzi. Cross-task generalization
via natural language crowdsourcing instructions. In Proceedings of the 60th Annual Meeting of
the Association for Computational Linguistics, 2022.

13

Under review as a conference paper at ICLR 2026

Maxwell Nye, Anders Johan Andreassen, Gur AriGuy, Henryk Michalewski, Jacob Austin,
David Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan, et al. Show
your work: Scratchpads for intermediate computation with language models. arXiv preprint
arXiv:2112.00114, 2021.

Kazusato Oko, Shunta Akiyama, and Taiji Suzuki. Diffusion models are minimax optimal distri-
bution estimators. In International Conference on Machine Learning, pp. 26517-26582. PMLR,
2023.

OpenAl. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.
OpenAl Introducing ChatGPT, 2024.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in Neural Information Processing Systems, 2022.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 4195-4205, 2023.

Lianke Qin, Zhao Song, and Baocheng Sun. Is solving graph neural tangent kernel equivalent to
training graph neural network? arXiv preprint arXiv:2309.07452, 2023.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684-10695, 2022.

Litu Rout, Yujia Chen, Abhishek Kumar, Constantine Caramanis, Sanjay Shakkottai, and Wen-
Sheng Chu. Beyond first-order tweedie: Solving inverse problems using latent diffusion. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9472—
9481, 2024.

Xuan Shen, Zhao Song, Yufa Zhou, Bo Chen, Yanyu Li, Yifan Gong, Kai Zhang, Hao Tan, Jason
Kuen, Henghui Ding, et al. Lazydit: Lazy learning for the acceleration of diffusion transformers.
arXiv preprint arXiv:2412.12444, 2024a.

Xuan Shen, Zhao Song, Yufa Zhou, Bo Chen, Jing Liu, Ruiyi Zhang, Ryan A Rossi, Hao Tan, Tong
Yu, Xiang Chen, et al. Numerical pruning for efficient autoregressive models. arXiv preprint
arXiv:2412.12441, 2024b.

Zhenmei Shi, Jiefeng Chen, Kunyang Li, Jayaram Raghuram, Xi Wu, Yingyu Liang, and Somesh
Jha. The trade-off between universality and label efficiency of representations from contrastive
learning. In The Eleventh International Conference on Learning Representations, 2023.

Anshumali Shrivastava, Zhao Song, and Zhaozhuo Xu. A theoretical analysis of nearest neighbor
search on approximate near neighbor graph. arXiv preprint arXiv:2303.06210, 2023.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learn-
ing, pp. 2256-2265. PMLR, 2015.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
Advances in neural information processing systems, 32, 2019.

Zhao Song, Weixin Wang, and Junze Yin. A unified scheme of resnet and softmax. arXiv preprint
arXiv:2309.13482, 2023.

Tianxiang Sun, Yunfan Shao, Hong Qian, Xuanjing Huang, and Xipeng Qiu. Black-box tuning for
language-model-as-a-service. In International Conference on Machine Learning. PMLR, 2022.

14

Under review as a conference paper at ICLR 2026

Taiji Suzuki. Adaptivity of deep relu network for learning in besov and mixed smooth besov spaces:
optimal rate and curse of dimensionality. In International Conference on Learning Representa-
tions, 2019.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Hans Triebel. Theory of Function Spaces II, volume 84 of Monographs in Mathematics. Birkhéuser,
1992.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 2017.

Johannes Von Oswald, Eyvind Niklasson, Ettore Randazzo, Jodo Sacramento, Alexander Mordv-
intsev, Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient
descent. In International Conference on Machine Learning. PMLR, 2023.

Xiaofei Wang, Sefik Emre Eskimez, Manthan Thakker, Hemin Yang, Zirun Zhu, Min Tang, Yufei
Xia, Jinzhu Li, Sheng Zhao, Jinyu Li, et al. An investigation of noise robustness for flow-
matching-based zero-shot tts. arXiv preprint arXiv:2406.05699, 2024.

Jerry Wei, Le Hou, Andrew Kyle Lampinen, Xiangning Chen, Da Huang, Yi Tay, Xinyun Chen,
Yifeng Lu, Denny Zhou, Tengyu Ma, and Quoc V Le. Symbol tuning improves in-context learn-
ing in language models. In The 2023 Conference on Empirical Methods in Natural Language
Processing, 2023.

Zhuoyan Xu, Zhenmei Shi, Junyi Wei, Yin Li, and Yingyu Liang. Improving foundation models
for few-shot learning via multitask finetuning. In ICLR 2023 Workshop on Mathematical and
Empirical Understanding of Foundation Models, 2023.

Zhuoyan Xu, Zhenmei Shi, Junyi Wei, Fangzhou Mu, Yin Li, and Yingyu Liang. Towards few-shot
adaptation of foundation models via multitask finetuning. In The Twelfth International Conference
on Learning Representations, 2024.

Renrui Zhang, Jiaming Han, Aojun Zhou, Xiangfei Hu, Shilin Yan, Pan Lu, Hongsheng Li, Peng
Gao, and Yu Qiao. Llama-adapter: Efficient fine-tuning of language models with zero-init atten-
tion. arXiv preprint arXiv:2303.16199, 2023.

Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and Sameer Singh. Calibrate before use: Improving
few-shot performance of language models. In International Conference on Machine Learning.
PMLR, 2021.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srini Iyer, Jiao Sun, Yuning Mao, Xuezhe Ma, Avia Efrat,
Ping Yu, LILI YU, Susan Zhang, Gargi Ghosh, Mike Lewis, Luke Zettlemoyer, and Omer Levy.
LIMA: Less is more for alignment. In Thirty-seventh Conference on Neural Information Process-
ing Systems, 2023.

15

Under review as a conference paper at ICLR 2026

Appendix

Roadmap. In Section[A] we introduce the Shortcut Model Training and Sampling Algorithm. Sec-
tion B discusses related works that inspire our approach. Section [C]states the tools from (Fukumizu
et al., [2024) used in our analysis. Section [D]explores the theory behind Higher-Order Flow Match-
ing. Section [E] investigates the impact of different optimization terms through empirical ablation
studies. Section [F] examines model performance on complex distribution experiments. Section
extends HOMO to third-order dynamics and evaluates its effectiveness on complex tasks. Section|H]
quantifies the computational and optimization costs associated with different configurations.

A ORIGINAL ALGORITHM

Here we introduce Shortcut Model Training and Sampling Algorithm from Page 5 of (Frans et al.,
2025)

Algorithm 3 Shortcut Model Training from page 5 of (Frans et al.,[2025)

1: while not converged do

2: o NN(O,I),JBl ~ D, (d,t) ~p(d,t)

3: xp (1 —t)xg + tay > Noise data point
4: for first k batch elements do

5: Starget < T1 — T > Flow-matching target
6: d+ 0

7: end for

8: for other batch elements do

9: st uy (g, t,d) > Fitst small step
10: Tigd < Tt + Sed > Follow ODE
11: Sttd — U1 (xpta,t +d,d) > Second small step
12: Starget < stopgrad (s; + s¢4q)/2 > Self-consistency target

13: end for
14: 0 <~ Vg”ul (l’t, t, 2d) — Stargct”z
15: end while

Algorithm 4 Shortcut model. Sampling from page 5 of (Frans et al., [2025])

z ~N(0,1)

d<«1/M

t<+0

forn e 0,...,M — 1] do
x—x+d-ui(x,t d)
t—t+d

end for

return x

PRI AR

B MORE RELATED WORK
In this section, we discuss more related work that inspires our work.

Large Language Models. Neural networks built upon the Transformer architecture (Vaswani
et al.l 2017) have swiftly risen to dominate modern machine learning approaches in natural lan-
guage processing. Extensive Transformer models, trained on wide-ranging and voluminous datasets
while encompassing billions of parameters, are often termed large language models (LLM) or foun-
dation models (Bommasani et al., [2021). Representative instances include BERT (Devlin et al.,
2019), PaLM (Chowdhery et al., 2022), Llama (Touvron et al., 2023), ChatGPT (OpenAll |2024),
GPT4 (OpenAl, [2023), among others. These LLMs have showcased striking general intelligence
abilities (Bubeck et al., [2023) in various downstream tasks. Numerous adaptation methods have

16

Under review as a conference paper at ICLR 2026

been developed to tailor LLMs for specific applications, such as adapters (Hu et al.l 2022; Zhang|
et all 2023} [Gao et al. 20234} [2023)), calibration schemes (Zhao et al.,[2021} Zhou et al.
2023), multitask fine-tuning (Gao et al.| [2021a} [Xu et al, 2023}, [Von Oswald et al., 2023}, [Xu et al.
2024), prompt optimization (Gao et al., [2021b} [Lester et al., [2021), scratchpad approaches (Nye]
et al.,[2021), instruction tuning (Li & Liang| [2021; |Chung et al., 2022} [Mishra et al., [2022), symbol

tuning (Wei et al., 2023), black-box tuning (Sun et al., [2022), and reinforcement learning from hu-
man feedback (RLHF) (Ouyang et al.} [2022). Additional lines of research endeavor to boost model

efficiency without sacrificing performance across diverse domains, for example in (Deng et al}
Song et al.l [2023;Gao et al., [2023cfefd; Bian et al., 2023} Deng et al.l 2023} [Gao et al.,[2023b}, [Shri-|
vastava et al., 2023} |Qin et al.| 2023} (Chen et al., [2024c; [Li et al., 2024d; Chen et al., 2024b; [Liang
et al.,2024c; Chen et al.,[2024a; [Liang et al.| 2024bidfa; [Li et al., [2024a:c; (Cao et al.| 2024} [Li et al.}
2024b; |Chen et al., 2024eid; [Ke et al.|[2024; [2025azb; [Li et al., 2025} Hu et al., 2024a).

C TooLS FROM PREVIOUS WORKS

We state the tools in (Fukumizu et al.| [2024) that we will use to prove our main results.

C.1 DEFINITIONS OF BESOV SPACE

Definition C.1 (Modulus of Smoothness). Let be a domain in R%. For a function f € L¥ (Q)
with p' € (0, 00, the r-th modulus of smoothness of f is defined by

wrp (fi1) = sup [[AL(H)]p

Al <t

where the finite difference operator A} (f)(x) is given by

E;:o (;)(—1)T_jf(x + jh), ifx + jh € Qforallj,

0, otherwise.

AR(f)(x) = {

Definition C.2 (Besov Seminorm). Let 0 < p’, ¢’ < oo, s > 0, and set r := |s| + 1. The Besov
seminorm of f € ¥ (Q) is defined as
1
|f|Bs = (fooo(t_swr,p’(fu t))q %) !) ql < 0,
n SUPy~o t *Wr,pr (f:1), q' = oc.

Definition C.3 (Besov Space). The Besov space B, ., (Q) is the function space equipped with the
norm

1Bz, = Il + 1 flBs, s
It consists of all functions | € LPI(Q) such that
B (@)= (£ € I (@) | If]lm, , < .

Remark C.4. The parameter s governs the degree of smoothness of functions in By, q/(Q). In

particular, when p" = q' and s is an integer, the Besov space B, () coincides with the standard
Sobolev space of order s. For further details on the properties and applications of Besov spaces, see

1992).
C.2 B-SPLINE

Definition C.5 (Indicator Function). Let N'(x) be the characteristic function defined by

vy = b zeb)

Definition C.6 (Cardinal B-Spline). For £ € N, the cardinal B-spline of order { is defined by
Ne(z) :=N « N x5 N(x),
—_—

{+1times

otherwise.

17

Under review as a conference paper at ICLR 2026

where x denotes the convolution operation. Explicitly, the convolution of two functions f,g : R — R

is given by
(F+9)@) = [1= vay

Thus, Ny¢(x) is obtained by convolving N with itself (¢ + 1) times.

Definition C.7 (Tensor Product B-Spline Basis). For a multi-index k € N'* and j € 7%, the tensor
product B-spline basis in R? of order (is defined as

M (= HM T = Ji)-

This basis is constructed as the product of univariate B-splines, scaled and translated according to
the parameters k and j.

Definition C.8 (B-Spline Approximation in Besov Spaces in (Suzuki, [2019; |Oko et al., 2023)). A
Sfunction f in the Besov space can be approximated using a superposition of tensor product B-splines

as
_ d
= Z ak,ij,j(x)
(k.5)
where the summation is taken over appropriate index sets (k, j), and the coefficients oy, ; are real
numbers that determine the contribution of each basis function.

C.3 CLASS OF NEURAL NETWORKS

Definition C.9 (Neural Network Class in (Fukumizu et al., [2024)). Let L € N denote the depth
(number of layers), W = (W1, Wa, ..., Wri1) € NETL the width configuration of the network,
S € Na sparsity constraint, and B > 0 a norm bound. The class of neural networks M (L, W, S, B)
is defined as

M(L,W, S, B) == { $ham) px) 0+ 01y (AD 2 + b)ym|AD € RWirrxWi p(0) ¢ RWisr,
L

(i) @) < @) D) <
>4+ 16000) < 8. ma, (147 e v 1001} < B

Here, the function 1 4 : RWi — RWi+1 represents the affine transformation with ReLU activation,
given by

Yap(z) = A-ReLU(2) +b, where RelLU(z)=max{0,z}.
The sparsity constraint ensures that the total number of nonzero entries in all weight matrices and

bias vectors does not exceed S, while the norm constraint limits their maximum absolute values to
B.

C.4 ASSUMPTIONS

Remark C.10. We introduce a small positive constant § > 0 and denote by N the number of basis
functions in the B-spline used to approximate pi(x). The value of N is determined by the sample

size n, specifically following the relation N = nﬁ which balances the approximation error and
the complexity of both the B-spline and the neural network.

Deﬁnltlon C.11 (Stopping Time). As we introduce in Remark[C.10} we define the stopping time as
To = N~Fo, where Ry is a parameter to be specified later, and conszder solving the ODE backward
in time from t = ldowntot ="1Tj.

Definition C.12 (Reduced Cube). Let I? = [—1,1]% denote the d-dimensional cube. To mitigate
boundary effects when N is large, we define the reduced cube as
Iﬁ; — [71 + Nf(lfmé)’ 1— N7(1755)}d7

where the parameter . > 0 will be specified later in Assumption[C.13)|

18

Under review as a conference paper at ICLR 2026

Assumption C.13 (Smoothness and support of pg). The target probability Py has support contained
in I%, and its probability density function pg satisfies

po € By o (IY) and pg € Bgl’q, (I“\ 1) with 3> max{6s—1,1}.
Assumption C.14 (Boundedness away from 0 and above). There exists a constant Cy > 0 such that
C’O_1 <po(z) <Cy forall ze€ Ie.

Assumption C.15 (Form of (o, ;) and their bounds). There are constants k > % bop >0,k >0,
and by > 0 such that, for sufficiently small t > T,

oy = bo,t", and 1-— 3 :EO,tE.
Moreover, there exist Dy > 0 and Ko > 0 such that V't € [Ty, 1], we have
Dyl <ai+ 87 < Do, |ou|+] < N¥o.

Assumption C.16 (Additional bound in the critical case k = 3). If & = 3, then there exist by > 0

and D1 > 0 such that, for all 0 < v < Ry,

N*’Y
| (@02 + Gy < Duftog).
To

Assumption C.17 (Lipschitz bound on the first moment). There is a constant C'r, > 0 such that, for
allt € [Ty, 1],

0
15 [wpitola)dylon < o

C.5 APPROXIMATION ERROR FOR SMALL ¢

Lemma C.18 (Theorem 7 in (Fukumizu et all, [2024). Under Assumptions [C.13|[C.14[C.13|[C.16
and[C-I7] and if the following holds

« L =0(log* N).

W]l = O(Nlog° N)

S =O(Nlog® N)
* B =exp(O(log N loglog N)).
Then there exists a neural network ¢ € M(L, W, S, B) such that, for sufficiently large N, we have
[196.8) = i [pu(o)ds S (@310 N +)N,
holds for any t € [Ty, 3T.). In addition, ¢ can be taken so we have
160+ t)lloe = O(lée|\/log n + [¢]).-
C.6 APPROXIMATION ERROR FOR LARGE

Lemma C.19 (Theorem 7 in (Fukumizu et al., 2024)). Fix t. € [T\, 1] and let 1 > 0 be arbitrary,
under Assumptions|C.13|[C.14|[C.13|[C.16|and[C.17 and if the following holds

« L =0(log* N).
[Wlloe = O(N)
S = O(t; 9" N°*)

* B =exp(O(log N loglog N)).

19

Under review as a conference paper at ICLR 2026

Then there exist a neural network ¢ € M(L, W, S, B) such that
[196.8) = i Pputa)de S (63 1og N + GHN

holds for any t € [2t.,1]. In addition, ¢ can be taken so we have

160+ t)lloo = O(lére| log N + |Be).

D THEORY OF HIGHER ORDER FLOW MATCHING

We use (?tk x¢ to denote the k-th order derivative of z{™° with respect to ¢. Note that £{™¢ :=
d ,.true strue . d® true
T ¢, and Ty 1= gmwy

D.1 APPROXIMATION ERROR OF SECOND ORDER FLOW MATCHING FOR SMALL ¢

Theorem D.1 (Approximation error of second order flow matching for small ¢, formal version of

Theorem[5.1). Under Assumptions[C13|[C-I4[C.I3|[C-16|and[C17} and if the following holds
« L=0(log*N).

IWlls = O(Nlog° N)

S = O(Nlog®N)
* B =exp(O(log N loglog N)).

Then there exists neural networks ¢1, pa € M(L, W, S, B) such that, for sufficiently large N, we
have

J10r(,0) = 5718 + onlat) = 5 (o)
S (@flog N+ FNTF + B [[l47™ — |13
holds for any t € [Ty, 3T.]. In addition, ¢1, ¢2 can be taken so we have
161(+t)lloo = O(|ée|v/Togn + [B:]) and [|g2(-,1)]| o = O(léue|/logn + |Bi]).
Proof. Suppose that t € [T, 3T%]. By Lemma there is ¢1 € M(L, W, S, B) such that
J01.t) = 557 Bpita) S (6 log N + 52N @
Next, we can show that there exists some ¢o € M(L, W, S, B) such that
[ll0atant) = & Bputaido = [loaat) - a4+ aim = 5 pu(o)da
< / (lg2(x, t) — ||z + |45 — &°12)2pe (x)da
< / 2, £) — #13 + |4 — #42)py () de
=2 [foalan) 55 Bpr(a)do +2 [67— & (o) da
=2 [fjoa(a.t) — a7 p(o)de + 2B, ([— 53

S (6flog N+ FHN"F + E [l = el 3] 3)

20

Under review as a conference paper at ICLR 2026

where the first step follows from the basic algebra, the second step follows from the triangle inequal-
ity, the third step follows from (a + b)? < 2a® + 202, the fourth step follows from basic algebra, the
fifth step follows from the definition of expectation, and the last step follows from Lemma[C.18]

Finally, by Eq. (Z) and Eq. (@), for any ¢ € [Tp, 3T.], we have

/ (161 () — 512 + o, £) — 27 [2)pe(2)de

< (6flog N+ G))N"4 + E [l = e 3]

Moreover, by Lemma[C.18] ¢1, ¢2 can be taken so we have

61,) [loo = O(ldu|\/logn + |B]) and [|¢2(-,#)]oc = O(|6[v/logn + |Be).
Thus, the proof is complete. O
D.2 APPROXIMATION ERROR OF HIGHER ORDER FLOW MATCHING FOR SMALL ¢

Theorem D.2 (Approximation error of higher order flow matching for small t). Under Assump-

tions[C.13|[C.14|C.13|[C.16|and[C.17) and if the following holds
« L =0(log* N).

* [Wlle = O(N log" N)

+ S=0O(Nlog® N)

« B = exp(O(log N loglog N))
« K=0(1)

Then there exists neural networks ¢1, ¢s, ..., 0 € M(L, W, S, B) such that, for sufficiently large
N, we have

/Zum (@) = i By (o)

K-—1 dk+1

_L rue rue
S@HogN + BN H 4 30 E (10 g - S ey
k=1

holds for any t € [Ty, 3T.). In addition, for any k € [K]|, ¢y can be taken so we have
165 8)lloo = O(ldu|V/log n + |52

Proof. We first show that for any k > 2, for any ¢t € [T}, 37|, there exists ¢ € M(L, W, S, B)
such that

dk:
166,00~ S lmos

Qi+
true”] (4)

k
. N-Z% ru
< (67 log N + Bt ¢ Z ; - dp+1

~Pt dtJ

We prove this by mathematical induction.
Base case. The statements hold when k = 2 because of Lemma[D.1]

Induction step. We assume that the statement hold for k£ > 2. We would like to show that it holds
for k + 1. We can show that, for any ¢ € [Tp, 37%], there exists ¢ € M(L, S, W, B) such that

[J166.0) = Sz mas

21

Under review as a conference paper at ICLR 2026

d* ¢ d* . dr+t .)
T T T
= [16(0.0) = St + fpain = St pu(e)da

dk . dk . dk +1 .
< [(6(.0) ~ Sratla+ I) 2 — ™) (@) da

dk t t dk+1 t 2
< [2(1ota0) - i w4 | St - dtkﬂxtmenapt(x)dx

tr T dk+1 T
=2 (6.0 - 5 i s Bpaiae +2 [15 i A e)

ruc rue dk+1 rue

=2 [lota,t) - SgeiBpe)ds +2 B, (| 5708 - frai™lB

k .

——S rue dj+l rue rue dk+ rue
S @FlogN + FINF + 3 B (S atme - D pmeygyy g (g e S
j=1
. e k+1 d-]+1

= (G0N 4 BN + 30 E [agme - T ey B

J

where the first step follows from basic algebra, the second step follows from triangle inequality, the
third step follows from the Cauchy-Schwarz inequality, the fourth step follows from basic algebra,
the fifth step follows from the definition of expectation, the six step follows from Eq. (@).

Hence, there exists ¢1, ¢o, ..., ¢x € M(L, W, S, B) such that for k € [K], for any t € [Ty, 3T%],
we have

dk
[llon@)~ Gratrlmos

k: .
il —L rue dj+ rue
S(6flogN+BN"T +3 | E || = i S lB) (6)
j=1
Taking the summation over k € [K], we have for any ¢ € [Tp, 3T,
/ant & aime (o)
K .
——9 rue /Tt rue
SK- G0N + BN 4 3 (k- B (|5 gt - Uy
k=1
< —2* - pirue d true||2
S ((@)?log N+ (B)N + 3 | E | dtﬂ T - g2
k=1

where the first step follows from Eq. (6), and the second step uses K = O(1).
Moreover, by Lemma|C.19} ¢1, ¢2, ..., ¢k can be taken so we have for k € [K],

6k (-, t)loo = O] log v/m + |Be]).
Thus, the proof is complete. O
D.3 APPROXIMATION ERROR OF SECOND ORDER FLOW MATCHING FOR LARGE ¢

Theorem D.3 (Approximation error of second order flow matching for large ¢, formal version of
Theorem[5.2). Fixt, € [T\, 1] and let n > 0 be arbitrary, under Assumptions|C.13||C.14|C.15||C.16]
and[C17} and if the following holds

« L =0(log* N).
* [Wl]leo = O(N)

22

Under review as a conference paper at ICLR 2026

o S = O(t; " N°*)
* B =exp(O(log N loglog N)).
Then there exist neural networks ¢1, oo € M(L, W, S, B) such that
[10100 = 518 + gn(at) = 5 (o)
< @7 log N + AN+ B [— a3
holds for any t € |2t.,1]. In addition, 1, ¢ can be taken so we have
161,)lloc = O(léve| log N + |B:]) and [|g2 (-, t)[los = O(|de|log N + |By]).

Proof. Suppose that ¢ € [2t,,1]. By Lemma|[C.19] there is ¢ € M(L, W, S, B) such that
[J1010,8) = 557 () < (@ log N + BN Q
Next, we can show that there exists some ¢o € M(L, W, S, B) such that
[ls(a.t) = v Bmtords = [foalet) — a1 4 a3 - 53y (a)do
< /(Hsz(x,t) — a2 (| — E2) e () dar
< [2(léalt) - a3l + i - 2 R)pu(e)do
=2 [fjoal.t) - i o)t + 2 [o = 2 ()

=2 [fjoa(a.t) — a7 pu(o)de + 2 B, (| — 51
< (@F10gN + BN+ E [— |3 ®

where the first step follows from the basic algebra, the second step follows from the triangle inequal-
ity, the third step follows from (a + b)? < 2a? + 2b2, the fourth step follows from basic algebra, the
fifth step follows from the definition of expectation, and the last step follows from Lemma[C.19]

Finally, by Eq. (7) and Eq. (8), we have
/ (161 (s) —] + o, £) — #7[2)py () de

S @FlogN + BN+ E, [— 3|,

Moreover, by Lemma[C.19] ¢1, ¢2 can be taken so we have

[¢1()lloe = O(|du|log N +[B]) and [[¢a(:,t)]lec = O(lcve|log N + |B1]).
Thus, the proof is complete. O
D.4 APPROXIMATION ERROR OF HIGHER ORDER FLOW MATCHING FOR LARGE ¢

Theorem D.4 (Approximation error of higher order flow matching for large ¢). Fix t. € [T, 1] and
let n > 0 be arbitrary, under Assumptions|C.13|C.I14[C.I3|C.16|and[C.17 and if the following holds

« L =0(log* N).
* [Wllse = O(N)
« S =0t Nw)

23

Under review as a conference paper at ICLR 2026

* B =exp(O(log N loglog N))
c K=0(1)
Then there exist neural networks ¢1, ¢a, ..., 0x € M(L,W, S, B) such that,

K met et Ppu()dr

K-1

DL e
S@HoEN + N+ 3 B [lgzat™ - Geat™ I
holds for any t € [2t., 1]. In addition, for any k € [K], ¢y can be taken so we have

165,)loc = O(|de| log N + [B4]).-

Proof. 'We first show that for any k > 2, for any ¢ € [2t,, 1], there exists ¢ € M(L, W, S, B) such
that

[l196a.t) = Sai ot

k .
d rue
S (a7 10gN—|—ﬂt)N ?7_|_Z dtJ e —

d]Jr rue
i) ©)

We prove this by mathematical induction.
Base case. The statements hold when k = 2 because of Lemma[D.3]

Induction step. We assume that the statement hold for £ > 2. We would like to show that it holds
for k + 1. We can show that, for any ¢ € [2t,, 1], there exists ¢ € M(L, S, W, B) such that

dr+1
[166.0) = Gt Bpn(a)ds

dk ru dk ru dk+1 tru
= [l166a.t) - Szt @xz et)

dk . . dk +1 .
< [(oe.t) - Grat™lla + 15z o) B) ()

dk t t dk+1 t 2
< [2(16ta0) - o e+ | S - g e
I‘u ru dk 1 ru
—2 [ot) - 5 dtk Papnae +2 [|t - S oy
I"I.lC rue dk+1 rue
=2 [1ote, 1) et Bz +2_B, [l et — St
rue dJJrl rue rue k+1 rue
< (@7 log N +)N uz B (1 e - Bty g e - ey
k+1 ; ;
d7 . dit+1 .
= (a2 log N + B2)N~ "+Z dtjx'; s e |2, (10)

where the first step follows from basic algebra, the second step follows from triangle inequality, the
third step follows from the Cauchy-Schwarz inequality, the fourth step follows from basic algebra,
the fifth step follows from the definition of expectation, the six step follows from Eq. (9).

Hence, there exists ¢1, ¢, ..., dx € M(L, W, S, B) such that for k € [K], for any ¢ € [2¢,, 1], we
have

[I68ta.t) = S Bpn(a)ds

24

Under review as a conference paper at ICLR 2026

k dt AR
S (a7 log N + B7)N~ W+Z dtﬂ R S 13]-

(1)

Taking the summation over k € [K] we have for any ¢ € [2¢,,1],

/: Zn@) et)

2 52 - 2t 4/t t 2
< ((é1)*log N + (By))N*wkZ(mNP[H e g I3
ru dJ+1 ru
S (67 log N + 57)N~ "+Z E, ||dt] ™ = g Il

where the first step follows from Eq. (T1)), and the second step uses K = O(1). Moreover, by
LemmalC.19| ¢1, ¢, ..., ¢x can be taken so we have for k € [K],

165(-,)l = O(|de| log N + [B4]).
Thus, the proof is complete. O

E EMPIRICAL ABLATION STUDY

In Section [E.I] we introduce the three Gaussian mixture distribution datasets—four-mode, five-
mode, and eight-mode—used in our empirical ablation study, along with their configurations for
source and target modes. The subsequent subsections analyze the impact of different optimization
terms. Section [E.2] evaluates the performance of HOMO optimized solely with the first-order term.
Section examines the effect of using only the second-order term. Section assesses results
when optimization is guided by the self-consistency term. Section|E.5|explores the combined effect
of first- and second-order terms, while Section[E.6|investigates the combination of second-order and
self-consistency terms. Through these analyses, we aim to dissect the contributions of individual
and combined loss terms in achieving effective transport trajectories.

E.1 DATASET

Here we introduce three datasets we use: four-mode, five-mode, and eight-mode Gaussian mixture
distribution datasets; each Gaussian component has a variance of 0.3. In the four-mode Gaussian
mixture distribution, four source mode(brown) positioned at a distance Dy = 5 from the origin,
and four target mode(indigo) positioned at a distance Dy = 14 from the origin, each mode sample
200 points. In five-mode Gaussian mixture distribution, five source mode(brown) positioned at a
distance Dy = 6 from the origin, and five target mode(indigo) positioned at a distance Dy = 13 from
the origin, each mode sample 200 points. And in eight-mode Gaussian mixture distribution, eight
source mode(brown) positioned at a distance Dy = 6 from the origin, and eight target mode(indigo)
positioned at a distance Dy = 13 from the origin, each mode sample 100 points.

E.2 ONLY FIRST ORDER TERM

We optimize models by the sum of squared error(SSE). The source distribution and target dis-
tribution are all Gaussian distributions. For the target transport trajectory setting, we follow
the VP ODE framework from (Liu et all 2022b), which is x; = «azxg + Pfezr1. We choose
o = exp(—1a(l —)2 — 1b(1 — t)) and B; = /1 — o, with hyperparameters ¢ = 19.9 and
b = 0.1. In the four-mode dataset, five-mode dataset, and eight-mode dataset, we all sample 100
points in each source mode and target mode. And in four-mode dataset training, we use an ODE
solver and Adam optimizer, with 2 hidden layer MLP, 100 hidden dimensions, 800 batch size, 0.005
learning rate, and 1000 training steps. In five-mode dataset training, we also use an ODE solver and
Adam optimizer, with 2 hidden layer MLP, 100 hidden dimensions, 1000 batch size, 0.005 learning
rate, and 1000 training steps. And in eight-mode dataset training, we use an ODE solver and Adam
optimizer, with 2 hidden layer MLP, 100 hidden dimensions, 1600 batch size, 0.005 learning rate,
and 1000 training steps.

25

Under review as a conference paper at ICLR 2026

Samples from mp and m; Samples from my and m Samples from my and m;
15 o 154 o 15 o
0 @ ® | 1 s .OD "1 . @
5 & 5 8 L 51 &6 ¢%g @
0 e €& o P L] 0 B &
-5 o -51 & & s Rl @
-10) L 4 ~101 ’ ~10 & o
-15 -15 ® -15
-10 0 10 -10 0 10 -10 0 10

Figure 4: The four-mode Gaussian mixture distribution (Left), five-mode Gaussian mixture distribu-
tion (Middle), and eight-mode Gaussian mixture distribution (Right). Our goal is to make HOMO
learn a transport trajectory from distribution 7y (brown) to distribution 71 (indigo).

HOMO optimized HOMO optimized HOMO optimized
with M1 loss with M1 loss with M1 loss
15 . 151 o 15 g
10 :\\ '59 eeeee ted 101 . F‘everaled 10 ‘ ‘ Genera ted
5 54 ® B 5108 @ « > W
0 * 9 of.. = 2 0 E o
-5 & -5 * o ° sty g® &
-10 < A -101 -10
€
-15 -15 o -15 .
-10 0 10 -10 0 10 -10 0 10

Figure 5: (A) The distributions generated by HOMO are only optimized by first-order term in four-
mode dataset (Left), five-mode dataset (Middle), and eight-mode dataset (Right). The source dis-
tribution, 7y (brown), and the target distribution, 7; (indigo), are shown, along with the generated
distribution (pink).

E.3 ONLY SECOND ORDER TERM

We optimize models by the sum of squared error(SSE). The source distribution and target dis-
tribution are all Gaussian distributions. For the target transport trajectory setting, we follow
the VP ODE framework from (Liu et al} [2022b), which is z; = «ayz9 + SBix1. We choose
oy = exp(—1a(l —)2 — 1b(1 — t)) and B; = /1 — o, with hyperparameters a = 19.9 and
b = 0.1. In the four-mode dataset, five-mode dataset, and eight-mode dataset, we all sample 100
points in each source mode and target mode. And in four-mode dataset training, we use an ODE
solver and Adam optimizer, with 2 hidden layer MLP, 100 hidden dimensions, 800 batch size, 0.005
learning rate, and 100 training steps. In five-mode dataset training, we also use an ODE solver and
Adam optimizer, with 2 hidden layer MLP, 100 hidden dimensions, 1000 batch size, 0.005 learning
rate, and 100 training steps. And in eight-mode dataset training, we use an ODE solver and Adam
optimizer, with 2 hidden layer MLP, 100 hidden dimensions, 1600 batch size, 0.005 learning rate,
and 100 training steps.

HOMO optimized HOMO optimized HOMO optimized
with M2 loss with M2 loss with M2 loss
15 o m 15 o o m 15 o m
o] @ & 10 » & o L _JER R
5) 5 - ® 51 @ @ ® R
0 ® & o W == & =
_5 _5 @ & » -5 * & & o ®
-10 ® » -10 * ~10 s
-15 -151 -15
-10 0 10 -10 0 10 -10 0 10

Figure 6: (B) The distributions generated by HOMO are only optimized by second-order term in
the four-mode dataset (Left), five-mode dataset (Middle), and eight-mode dataset (Right). The
source distribution, 7y (brown), and the target distribution, 7; (indigo), are shown, along with the
generated distribution (pink).

26

Under review as a conference paper at ICLR 2026

E.4 ONLY SELF-CONSISTENCY TERM

We optimize models by the sum of squared error(SSE). The source distribution and target dis-
tribution are all Gaussian distributions. For the target transport trajectory setting, we follow
the VP ODE framework from (Liu et all 2022b), which is z; = «aixg + PBrz1. We choose
oy = exp(—ta(l — ¢)2 — 3b(1 — t)) and B; = /1 — o, with hyperparameters a = 19.9 and
b = 0.1. In the four-mode dataset, five-mode dataset, and eight-mode dataset, we all sample 100
points in each source mode and target mode. And in four-mode dataset training, we use an ODE
solver and Adam optimizer, with 2 hidden layer MLP, 100 hidden dimensions, 800 batch size, 0.005
learning rate, and 50 training steps. In five-mode dataset training, we also use an ODE solver and
Adam optimizer, with 2 hidden layer MLP, 100 hidden dimensions, 1000 batch size, 0.005 learning
rate, and 50 training steps. And in eight-mode dataset training, we use an ODE solver and Adam
optimizer, with 2 hidden layer MLP, 100 hidden dimensions, 1600 batch size, 0.005 learning rate,
and 50 training steps.

HOMO optimized HOMO optimized HOMO optimized
with SC loss with SC loss with SC loss
e | W e PR N e gii
5 (5 w O 51 8 6%9 @
0 5 of § & 0 /
-5 Y -5 v g 5 8 Wl @
-10{ 4§ L 3 -101 L -10 s »
-15 ~15- ® =15
-10 0 10 -10 0 10 -10 0 10

Figure 7: (C) The distributions generated by HOMO are only optimized by self-consistency term
in the four-mode dataset (Left), five-mode dataset (Middle), and eight-mode dataset (Right). The
source distribution, 7y (brown), and the target distribution, 7; (indigo), are shown, along with the
generated distribution (pink).

E.5 FIRST ORDER PLUS SECOND ORDER

We optimize models by the sum of squared error(SSE). The source distribution and target dis-
tribution are all Gaussian distributions. For the target transport trajectory setting, we follow
the VP ODE framework from (Liu et all 2022b), which is z; = aixg + PBrz1. We choose
oy = exp(—+a(l — ¢)2 — b(1 — t)) and B; = /1 — o, with hyperparameters a = 19.9 and
b = 0.1. In the four-mode dataset, five-mode dataset, and eight-mode dataset, we all sample 100
points in each source mode and target mode. And in four-mode dataset training, we use an ODE
solver and Adam optimizer, with 2 hidden layer MLP, 100 hidden dimensions, 800 batch size, 0.005
learning rate, and 1000 training steps. In five-mode dataset training, we also use an ODE solver and
Adam optimizer, with 2 hidden layer MLP, 100 hidden dimensions, 1000 batch size, 0.005 learning
rate, and 2000 training steps. And in eight-mode dataset training, we use an ODE solver and Adam
optimizer, with 2 hidden layer MLP, 100 hidden dimensions, 1600 batch size, 0.005 learning rate,
and 2000 training steps.

E.6 SECOND ORDER PLUS SELF-TARGET

We optimize models by the sum of squared error(SSE). The source distribution and target dis-
tribution are all Gaussian distributions. For the target transport trajectory setting, we follow
the VP ODE framework from (Liu et al., 2022b), which is x; = a;xo + Bix1. We choose
oy = exp(—1a(l —)2 — 1b(1 — t)) and B; = /1 — o, with hyperparameters @ = 19.9 and
b = 0.1. In the four-mode dataset, five-mode dataset, and eight-mode dataset, we all sample 100
points in each source mode and target mode. And in four-mode dataset training, we use an ODE
solver and Adam optimizer, with 2 hidden layer MLP, 100 hidden dimensions, 800 batch size, 0.005
learning rate, and 100 training steps. In five-mode dataset training, we also use an ODE solver and
Adam optimizer, with 2 hidden layer MLP, 100 hidden dimensions, 1000 batch size, 0.005 learning
rate, and 100 training steps. And in eight-mode dataset training, we use an ODE solver and Adam

27

Under review as a conference paper at ICLR 2026

HOMO optimized
with (M1 + M2) losses

HOMO optimized

HOMO optimized

with (M1 + M2) losses with (M1 + M2) losses

15 ° :: 151 “‘R‘) o m 15 & d e
10 P L‘(.Se.neraled 101 $ Generated 10 " LY Generated
5 ® 5 e ™ 0 e%e B
0 ®» @ 0 & ¢ 0 @ £
-5 & -5 L o -5 ;} S o® 4
-10 £ S 104 g 10
2 4 - 3 - S O
-15 -15 ’ -15 :
-10 0 10 -10 0 10 -10 0 10

Figure 8: (A + B) The distributions generated by HOMO, optimized by first-order term and second-
order term in four-mode dataset (Left), five-mode dataset (Middle), and eight-mode dataset (Right).
The source distribution, 7y (brown), and the target distribution, 7; (indigo), are shown, along with
the generated distribution (pink).

optimizer, with 2 hidden layer MLP, 100 hidden dimensions, 1600 batch size, 0.005 learning rate,
and 100 training steps.

HOMO optimized
with (M2 + SC) losses

HOMO optimized
with (M2 + SC) losses

HOMO optimized
with (M2 + SC) losses

15

1 Py °émd 10 !] : ;[a 10 L N
5 51 o ¥ s @ T &
0 @ @ o] B @ 0 & &
s Q -5 P -5 8 T @
-10 & * -101 b -10 F Y
-15 -151 L4 -15
-0 0 10 -0 o 10 -0 o 10

Figure 9: (B + C) The distributions generated by HOMO, optimized by second-order term and self-
consistency term in four-mode dataset (Left), five-mode dataset (Middle), and eight-mode dataset
(Right). The source distribution, 7y (brown), and the target distribution, 7; (indigo), are shown,
along with the generated distribution (pink).

E.7 FIRST ORDER PLUS SELF-TARGET

We optimize models by the sum of squared error(SSE). The source distribution and target dis-
tribution are all Gaussian distributions. For the target transport trajectory setting, we follow
the VP ODE framework from (Liu et all 2022b), which is x; = o xg + Pfez1. We choose
o = exp(—1a(l —)2 — 1b(1 — t)) and B; = /1 — o, with hyperparameters a = 19.9 and
b = 0.1. In the four-mode dataset, five-mode dataset, and eight-mode dataset, we all sample 100
points in each source mode and target mode. And in four-mode dataset training, we use an ODE
solver and Adam optimizer, with 2 hidden layer MLP, 100 hidden dimensions, 800 batch size, 0.005
learning rate, and 1000 training steps. In five-mode dataset training, we also use an ODE solver and
Adam optimizer, with 2 hidden layer MLP, 100 hidden dimensions, 1000 batch size, 0.005 learning
rate, and 1000 training steps. And in eight-mode dataset training, we use an ODE solver and Adam
optimizer, with 2 hidden layer MLP, 100 hidden dimensions, 1600 batch size, 0.005 learning rate,
and 1000 training steps.

E.§ HOMO

We optimize models by the sum of squared error(SSE). The source distribution and target dis-
tribution are all Gaussian distributions. For the target transport trajectory setting, we follow
the VP ODE framework from (Liu et al) 2022b), which is x; = a;xg + Brx1. We choose
oy = exp(—1a(l —)2 — 1b(1 — t)) and B; = /1 — o, with hyperparameters @ = 19.9 and
b = 0.1. In the four-mode dataset, five-mode dataset, and eight-mode dataset, we all sample 100
points in each source mode and target mode. And in four-mode dataset training, we use an ODE
solver and Adam optimizer, with 2 hidden layer MLP, 100 hidden dimensions, 800 batch size, 0.005

28

Under review as a conference paper at ICLR 2026

HOMO optimized
with (M1 + SC) losses

HOMO optimized
with (M1 + SC) losses

HOMO optimized

with (M1 + SC) losses

15 o 157 @ °- 15 > - 4!
10 :\v z G.Jeneraled 104 v ?er:raled 10 - Generated
5 54 é " 51 49 2 %g B
0 * @ 01 &] 0 » 3
_ i w - P
5)] -5 8 & -5 h @ @& ®
-10 o C ~101 v -10 - o
AR
-15 -15 = -15
-10 0 10 -10 0 10 -10 0 10

Figure 10: (A + C) The distributions generated by HOMO, optimized by first-order term and self-
consistency term in four-mode dataset (Left), five-mode dataset (Middle), and eight-mode dataset
(Right). The source distribution, 7y (brown), and the target distribution, 7; (indigo), are shown,
along with the generated distribution (pink).

learning rate, and 1000 training steps. In five-mode dataset training, we also use an ODE solver and
Adam optimizer, with 2 hidden layer MLP, 100 hidden dimensions, 1000 batch size, 0.005 learning
rate, and 1000 training steps. And in eight-mode dataset training, we use an ODE solver and Adam
optimizer, with 2 hidden layer MLP, 100 hidden dimensions, 1600 batch size, 0.005 learning rate,
and 1000 training steps.

HOMO optimized with
(M1 + M2 + SC) losses

HOMO optimized with
(M1 + M2 + SC) losses

HOMO optimized with
(M1 + M2 + SC) losses

o [S It IR O 2
5 54 & ® g 51 ¥ & @ ® i)
0 ® @ o & @ 0 & ®
-5 -5 LA I 5 @ Bg® &
-10 o ¥ -10{ z ~ -10 - &
-15 15 ¢ 1 ¥ d
-0 0 10 10 0 10 -0 0 10

Figure 11: (A + B + C) The distributions generated by HOMO in four-mode dataset (Left), five-
mode dataset (Middle), and eight-mode dataset (Right). The source distribution, 7y (brown), and
the target distribution, 7, (indigo), are shown, along with the generated distribution (pink).

F COMPLEX DISTRIBUTION EXPERIMENT

In Section [FI] we introduce the datasets used in our experiments. The analysis of results with first-
order and second-order terms in Section [F.2] and we evaluate the performance with first-order and
self-consistency terms in Section assess the impact of second-order and self-consistency terms

in Section Finally, we present the overall results of HOMO with all loss terms combined in
Section
F.1 DATASETS

Here, we introduce four datasets we proposed: circle dataset, irregular ring dataset, spiral line
dataset, and spin dataset. In the circle dataset, we sample 600 points from Gaussian distribution
with 0.3 variance for both source distribution and target distribution. In the irregular ring dataset,
we sample 600 points from Gaussian distribution with 0.3 variance for both source distribution and
target distribution. In the spiral line dataset, we sample 600 points from Gaussian distribution with
0.3 variance for both source distribution and target distribution. In the spin dataset, we sample
600 points from the Gaussian distribution with 0.3 variance for both source distribution and target
distribution.

29

Under review as a conference paper at ICLR 2026

Samples from mp and Samples from mp and Samples from mp and my

Samples from my and m;
15 15 200 400
Mo
150 300
10 10 e m
100 200 e
5 5 4
50 100
0 0 0 0 . o
s s -50 -100
-100 -200
-10 -10
-150 -300 SN
-15 -15 -200 -400
~15-10 -5 0 5 10 15 ~15-10 -5 0 5 10 15 ~200 -100 0 100 200 —400 -200 0 200 400

Figure 12: The circle dataset(Left most), irregular ring dataset (Middle left), spiral line dataset
(Middle right), and spin dataset (Right most). Our goal is to make HOMO to learn a transport
trajectory from distribution 7y (brown) to distribution 7; (indigo).

F.2 FIRST ORDER PLUS SECOND ORDER

We optimize models by the sum of squared error(SSE). The source distribution and target dis-
tribution are all Gaussian distributions. For the target transport trajectory setting, we follow
the VP ODE framework from (Liu et all 2022b), which is z; = aixg + Pfrz1. We choose
oy = exp(—+a(l — ¢)2 — b(1 — t)) and B; = /1 — o, with hyperparameters a = 19.9 and
b = 0.1. In the circle dataset, we all sample 400 points, both source distribution and target distri-
bution. In the irregular ring dataset, we all sample 600 points, both source distribution and target
distribution. In the spiral line dataset, we all sample 300 points, both source distribution and target
distribution. In circle dataset training, we use an ODE solver and Adam optimizer, with 2 hidden
layer MLP, 100 hidden dimensions, 800 batch size, 0.005 learning rate, and 1000 training steps.
In irregular ring dataset training, we also use an ODE solver and Adam optimizer, with 2 hidden
layer MLP, 100 hidden dimensions, 1000 batch size, 0.005 learning rate, and 1000 training steps. In
spiral line dataset training, we use an ODE solver and Adam optimizer, with 2 hidden layer MLP,
100 hidden dimensions, 1600 batch size, 0.005 learning rate, and 1000 training steps. In spiral line
dataset training, we use an ODE solver and Adam optimizer, with 2 hidden layer MLP, 100 hidden
dimensions, 1600 batch size, 0.005 learning rate, and 1000 training steps.

HOMO optimized HOMO optimized HOMO optimized HOMO optimized
with (M1 + M2) losses with (M1 + M2) losses with (M1 + M2) losses with (M1 + M2) losses
15 15 200 400
10 f)"v‘(’ Emmd 1;2 7 Generates igg /_:-., ° Generaes
5 & a
& rv;} 50 P 1001 §# ‘
Nk ® 0 2 o] § et '
?{r v 3 . 1 .
_5] -50 \ / -1007 % N\)
o R ssf’ ~100)X -200{ & % u’.!
- Al 2 -150 -300 \m..m'
-15 -15 — -200, -400
~15-10 -5 0 5 10 15 ~15-10 -5 0 5 10 15 =200 -100 0 100 200 =400 —200 0 200 400

Figure 13: (M1+M2) HOMO results on complex datasets with two kinds of loss: first-order and
second-order terms. The distributions generated by HOMO, in circle dataset(Left most), irregular
ring dataset (Middle left), spiral line dataset (Middle right) and spin dataset (Right most). The
source distribution, 7y (brown), and the target distribution, 71 (indigo), are shown, along with the
generated distribution (pink).

F.3 FIRST ORDER PLUS SELF-CONSISTENCY TERM

We optimize models by the sum of squared error(SSE). The source distribution and target dis-
tribution are all Gaussian distributions. For the target transport trajectory setting, we follow
the VP ODE framework from (Liu et all 2022b), which is x; = «aixg + Pfrz1. We choose
oy = exp(—+a(l — ¢)2 — 3b(1 — 1)) and B; = /1 — o, with hyperparameters a = 19.9 and
b = 0.1. In the circle dataset, we all sample 400 points, both source distribution and target distri-
bution. In the irregular ring dataset, we all sample 600 points, both source distribution and target
distribution. In the spiral line dataset, we all sample 300 points, both source distribution and target
distribution. In circle dataset training, we use an ODE solver and Adam optimizer, with 2 hidden
layer MLP, 100 hidden dimensions, 800 batch size, 0.005 learning rate, and 1000 training steps.
In irregular ring dataset training, we also use an ODE solver and Adam optimizer, with 2 hidden
layer MLP, 100 hidden dimensions, 1000 batch size, 0.005 learning rate, and 1000 training steps. In

30

Under review as a conference paper at ICLR 2026

spiral line dataset training, we use an ODE solver and Adam optimizer, with 2 hidden layer MLP,
100 hidden dimensions, 1600 batch size, 0.005 learning rate, and 1000 training steps. In spiral line
dataset training, we use an ODE solver and Adam optimizer, with 2 hidden layer MLP, 100 hidden
dimensions, 1600 batch size, 0.005 learning rate, and 1000 training steps.

HOMO optimized HOMO optimized HOMO optimized HOMO optimized
15 with (M1 + SC) losses 15 with (M1 + SC) losses 200 with (M1 + SC) losses 400 with (M1 + SC) losses

150 o m 300

DAMMEES © oot | | o Geneuted ° Generated
S B, 100 200 /'..“ \
5) ' 50 100 -

b i g 3 A
0] % . 0] Lbe L 0 g 0 oV)
= ® = g { y
s € A s 1 -50 \ A -0
® g 5 A g -100) -200
-10 A 8 ~10 LT e /
w i X3 -150 -300 oo’

=15 =15 —200. —400
-15-10 -5 0 5 10 15 -15-10 -5 0 5 10 15 -200 -100 O 100 200 —400 -200 O 200 400

o o m
10 W‘:W 4y e 10

«

Figure 14: (M1+SC) HOMO results on complex datasets with two kinds of loss: first-order
and self-consistency terms. The distributions generated by HOMO, in circle dataset(Left most),
irregular ring dataset (Middle left), spiral line dataset (Middle right) and spin dataset (Right most).
The source distribution, 7y (brown), and the target distribution, 7; (indigo), are shown, along with
the generated distribution (pink).

F.4 SECOND ORDER PLUS SELF-CONSISTENCY TERM

We optimize models by the sum of squared error(SSE). The source distribution and target dis-
tribution are all Gaussian distributions. For the target transport trajectory setting, we follow
the VP ODE framework from (Liu et all 2022b), which is z; = aixg + PBrz1. We choose
oy = exp(—ta(l — ¢)2 — 3b(1 — t)) and B; = /1 — o, with hyperparameters a = 19.9 and
b = 0.1. In the circle dataset, we all sample 400 points, both source distribution and target distri-
bution. In the irregular ring dataset, we all sample 600 points, both source distribution and target
distribution. In the spiral line dataset, we all sample 300 points, both source distribution and target
distribution. And in circle dataset training, we use an ODE solver and Adam optimizer, with 2 hid-
den layer MLP, 100 hidden dimensions, 800 batch size, 0.005 learning rate, and 100 training steps.
In irregular ring dataset training, we also use an ODE solver and Adam optimizer, with 2 hidden
layer MLP, 100 hidden dimensions, 100 batch size, 0.005 learning rate, and 1000 training steps. In
spiral line dataset training, we use an ODE solver and Adam optimizer, with 2 hidden layer MLP,
100 hidden dimensions, 1600 batch size, 0.005 learning rate, and 100 training steps. In spiral line
dataset training, we use an ODE solver and Adam optimizer, with 2 hidden layer MLP, 100 hidden
dimensions, 1600 batch size, 0.005 learning rate, and 1000 training steps.

HOMO optimized HOMO optimized HOMO optimized HOMO optimized
15 with (M2 + SC) losses 15 with (M2 + SC) losses 200 with (M2 + SC) losses 400 with (M2 + SC) losses

150 o m 300

aaaaaaaaaaaaaaaaaa
100 200 ” \
50 100

ROE()
-50 -1001 % .
1 /7

S NPL N
-10 -0 ~150 -300 ~
o ° me
-15 -15 ~200 —~400
215-10 -5 0 5 10 15 -15-10 -5 0 5 10 15 2200 -100 0 100 200 2400 —200 0 200 400

Figure 15: (M2+SC) HOMO results on complex datasets with two kinds of loss: second-order
and self-consistency terms. The distributions generated by HOMO, in circle dataset(Left most),
irregular ring dataset (Middle left), spiral line dataset (Middle right) and spin dataset (Right most).
The source distribution, 7y (brown), and the target distribution, 7; (indigo), are shown, along with
the generated distribution (pink).

F.5 HOMO
We optimize models by the sum of squared error(SSE). The source distribution and target dis-

tribution are all Gaussian distributions. For the target transport trajectory setting, we follow
the VP ODE framework from (Liu et al., 2022b), which is x; = a;xo + Bixr1. We choose

31

Under review as a conference paper at ICLR 2026

oy = exp(—1a(l —¢)?2 — 1b(1 — t)) and B; = /1 — o, with hyperparameters = 19.9 and
b = 0.1. In the circle dataset, we all sample 400 points, both source distribution and target distri-
bution. In the irregular ring dataset, we all sample 600 points, both source distribution and target
distribution. In the spiral line dataset, we all sample 300 points, both source distribution and target
distribution. And in circle dataset training, we use an ODE solver and Adam optimizer, with 2 hid-
den layer MLP, 100 hidden dimensions, 800 batch size, 0.005 learning rate, and 1000 training steps.
In irregular ring dataset training, we also use an ODE solver and Adam optimizer, with 2 hidden
layer MLP, 100 hidden dimensions, 1000 batch size, 0.005 learning rate, and 1000 training steps. In
spiral line dataset training, we use an ODE solver and Adam optimizer, with 2 hidden layer MLP,
100 hidden dimensions, 1600 batch size, 0.005 learning rate, and 1000 training steps. In spiral line
dataset training, we use an ODE solver and Adam optimizer, with 2 hidden layer MLP, 100 hidden
dimensions, 1600 batch size, 0.005 learning rate, and 1000 training steps.

HOMO optimized with HOMO optimized with HOMO optimized with HOMO optimized with
(M1 + M2 + SC) losses (M1 + M2 + SC) losses (M1 + M2 + SC) losses (M1 + M2 + SC) losses
15 = 15 = 200 = 400 =
10 10 150 % Generstea 300 P Generated
100 200 y N
5 5 50 100{ 4 a3
0 0 0 (@« 0 lr i b ’.; !
-5 -5 » -0 s I -
- o & . % ~100 g™ -200{ g ‘
~10 A _ 9. .
“\f{f b% -150 —-300 \.\
-15 -15 -200, -400
~15-10 -5 0 5 10 15 Z15-10 -5 0 5 10 15 =200 -100 0 100 200 =400 —200 0 200 400

Figure 16: (M1+M2+SC) HOMO results on complex datasets with three kinds of loss: first-
order, second-order, and self-consistency terms. The distributions generated by HOMO in circle
dataset(Left most), irregular ring dataset (Middle left), spiral line dataset (Middle right), and spin
dataset (Right most). The source distribution, 7y (brown), and the target distribution, 71 (indigo),
are shown, along with the generated distribution (pink).

G THIRD-ORDER HOMO

This section extends HOMO to third-order dynamics and analyzes its performance on complex syn-
thetic tasks. Section[G.I]introduces the training and sampling algorithms incorporating third-order
dynamics. Section[G.2|compares two trajectory parameterization strategies for high-order systems.
Section describes the 2 Round Spin, 3 Round Spin, and Dot-Circle datasets designed to test
complex mode transitions. Section [G.4] provides quantitative analysis through Euclidean distance
metrics between generated and target distributions. Section|G.5|evaluates the isolated impact of self-
consistency constraints. Section examines first-order dynamics coupled with self-consistency
regularization. Section studies the combined effect of first-, second-order dynamics and self-
consistency. Finally, Section demonstrates full third-order HOMO with all optimization terms,
analyzing trajectory linearity and mode fidelity under different trajectory settings.

G.1 ALGORITHM
Here we first introduce the training algorithm of our third-order HOMO:
Then we will discuss the sampling algorithm in third-order HOMO:
G.2 TRAJECTORY SETTING
We have trajectory as:
2= auzo + Pz
In original trajectory, we choose oy = exp(—1a(l —)2 — 1b(1 —t)) and B; = /1 — o, with

hyperparameters ¢ = 19.9 and b = 0.1. And new trajectory as oy = 1 — (3t — 2t3) and 3; =
3t — 23,

32

Under review as a conference paper at ICLR 2026

Algorithm 5 Third-Order HOMO Training

1: while not converged do

2: xONN(OvI)axlND7(d7t)Np(dat)
3: Bt — 1-— Oé%
4: Ty oy - xo+ Py - 1y > Noise data point
5: for first k batch elements do
6: sPUe ¢ g + Braa > First-order target
7: siue o G + By > Second-order target
8: §irue o Gyxo + B &> Third-order target
9: d<+« 0
10: end for
11: for other batch elements do
12: 8¢ up(xy, t,d) > First small step of first order
13: $¢ < ua(uq (e, t,d), x4, t, d) &> First small step of second order
14: 8t + ug(ua(uy(ze, t, d), s, t, d), uy (x4, t,d), x4, t,d) > First small step of third order
15: Topa e ai+dos+ La 4+ L5 > Follow ODE
16: Sttd — U1 (xpqa,t +d,d) > Second small step of first order
17: 55778« stopgrad (s; + S114)/2 > Self-consistency target of first order
18: end for
19: 0 < Vo(|lui(ze,t,2d) — strue||?

+||uz (ur (2, t, 2d), x4, t, 2d) — 589¢|2

+luz(ua(uy (2, t,d), 2, t, d), uy (2, t,d), v, t,d) — §8e|?

Hllua (e, t, 2d) — $,7782

20: end while

Algorithm 6 Third-Order HOMO Sampling

z~N(0,1)
d+ 1/M
t+ 0
forn e [0,...,M — 1] do
x — x + d - wl(x,t,d) + d; - ug(uy(z,t,d), x, t,d) + %
U3(u2(u1(x,t,d),x,t,d),ul(x,t,d),x,t,d)
t—t+d
end for
8: return x

AN e

2

G.3 DATASET

Here, we introduce three datasets we use: 2 Round spin, 3 Round spin, and Dot-Circle datasets. In 2
Round spin dataset and 3 Round spin dataset, we both sample 600 points from Gaussian distribution
with 0.3 variance for both source distribution and target distribution. In Dot-Circle datasets, we
sample 300 points from the center dot and 300 points from the outermost circle, combine them as
source distribution, and then sample 600 points from 2 round spin distribution.

G.4 EUCLIDEAN DISTANCE LOSS

Here, we present the Euclidean distance loss performance of four different loss terms combined
under the original trajectory setting and the new trajectory setting.

G.5 ONLY SELF-CONSISTENCY TERM

We optimize models by the sum of squared error(SSE). The source distribution and target distribu-
tion are all Gaussian distributions. For the first line, we use the original transport trajectory setting,
followed by the VP ODE framework from (Liu et al., [2022b)), which is x; = asxg + Srz1. We

choose a; = exp(—32a(l —¢)? — 1b(1 —t)) and B; = /1 — o2, with hyperparameters a = 19.9

33

Under review as a conference paper at ICLR 2026

Samples from mp and m;
400

Samples from mp and i

1

Samples from my and m;

600
o o . o
300 o m 400 »,
400 e m 0 e m
200 # g Y
4 200 2001 §
100 L Y
®
0 . o of & o ol N |
100 / ;
-200 / 200 f 4
~400 ¢
—300 S - —400) .
—400 —600 T T T T T
=400 -200 0 200 400 ~600-400-200 0 200 400 600 —400-200 O 200 400

Figure 17: The 2 Round spin dataset(Left), 3 Round spin dataset(Middle), and Dot-Circle
datasets(Right). Our goal is to make HOMO learn a transport trajectory from distribution 7
(brown) to distribution 71 (indigo).

Table 4: Euclidean distance loss of three complex distribution datasets under new trajectory
setting. Lower values indicate more accurate distribution transfer results. Optimal values are high-
lighted in Bold. And Underlined numbers represent the second best (second lowest) loss value for
each dataset (row). For the qualitative results of a mixture of Gaussian experiments, please refer to

Figure/[T}

2 Round | 3 Round | Dot-
Loss terms ‘ spin ‘ spin ‘ Circle
SC 41.265 48.201 | 87.407
M1 + SC 14.926 18.376 | 30.027
M1+ M2+ SC 11.435 12.422 | 24.712
M1 + M2 + SC + M3 4.701 9.261 21.968

and b = 0.1. In 2 Round spin datasets and 3 Round spin datasets, we sample 400 points, both source
distribution and target distribution. In the Dot-Circle dataset, we sample 600 points from both source
distribution and target distribution, 300 points of source points from the circle, and another 300 from
the center dot. In 2-round dataset training, we use an ODE solver and Adam optimizer, with 2 hid-
den layer MLP, 100 hidden dimensions, 800 batch size, 0.005 learning rate, and 180 training steps.
In 3-round spin dataset training, we also use an ODE solver and Adam optimizer, with 2 hidden
layer MLP, 100 hidden dimensions, 1000 batch size, 0.005 learning rate, and 180 training steps. In
Dot-Circle dataset training, we use an ODE solver and Adam optimizer, with 2 hidden layer MLP,
100 hidden dimensions, 1600 batch size, 0.005 learning rate, and 180 training steps.

G.6 FIRST ORDER PLUS SELF-CONSISTENCY

We optimize models by the sum of squared error(SSE). The source distribution and target distribu-
tion are all Gaussian distributions. For the first line, we use the original transport trajectory setting,
followed by the VP ODE framework from (Liu et al., [2022b)), which is x; = axg + Bix1. We
choose a; = exp(—3a(l —t)? — 1b(1 —t)) and B, = /1 — o2, with hyperparameters a = 19.9
and b = 0.1. In 2 Round spin datasets and 3 Round spin datasets, we sample 400 points in both
source distribution and target distribution. And in the Dot-Circle dataset, we sample 600 points from
both source distribution and target distribution, 300 points of sources points from the circle, and an-
other 300 from the center dot. In 2 Round dataset training, we use ODE solver and Adam optimizer,
with 2 hidden layer MLP, 100 hidden dimension, 800 batch size, 0.005 learning rate, and 1000 train-
ing steps. In 3 Round spin dataset training, we also use ODE solver and Adam optimizer, with 2
hidden layer MLP, 100 hidden dimension, 1000 batch size, 0.005 learning rate, and 2000 training
steps. And in Dot-Circle dataset training, we use an ODE solver and Adam optimizer, with 2 hidden
layer MLP, 100 hidden dimensions, 1600 batch size, 0.005 learning rate, and 10000 training steps.

G.7 FIRST ORDER PLUS SECOND ORDER PLUS SELF-CONSISTENCY

We optimize models by the sum of squared error(SSE). The source distribution and target distribu-
tion are all Gaussian distributions. For the first line, we use the original transport trajectory setting,

34

Under review as a conference paper at ICLR 2026

HOMO optimized

00 with (M1 + SC) losses

HOMO optimized

HOMO optimized
with (M1 + SC) losses

600

with (M1 + SC) losses

300 o P 400 ¥ iane
<% » Generated 400 Generated G eeeee ted
200 N P
100{ # kY 200 S 200 E.
0 - ;‘« N 0 ' O & 0 ;
1 A 5 4 y
-100 200 % \\ > o 500 ‘/ /
-200 \ e ..(t‘ Cd
~300 400 i -400 o prp =
_409400 -200 400 _607060074007200 0 200 400 600 —400-200 O 200 400
(a) (original)(M1+4SC) / 2(b) (original)(M1+SC) / 3(c) (original)(M1+SC) /

Round Round Dot-Circle

HOMO optimized
with (M1 + SC) losses

HOMO optimized
with (M1 + SC) losses

HOMO optimized

200 with (M1 + SC) losses

600

300 o 400 S odatet B
BT o Generated 400 y Generated
200 4 \ 200f f 27 "
100 / \ 200 4 / n ¢
Jé ? OB
01 & o 3 0 0 3 [' o,) l
_ y
igg Nt / 200 -200 3}‘\ ""j"
v 3 4
- Sommms
~300 o4 400 -400 00 vt o ?”
—400 ~600
=400 —200 0 200 400 ° -600-400-200 0 200 400 600 —400-200 0 200 400
d) (new)M1 + SC) / 2(e) (new)M1 + SC) / 3(f) (new)(M1+SC) / Dot-
Round Round Circle

Figure 18: (M1+SC) The distributions generated by HOMO are only optimized by first-order loss
and self-consistency loss. Upper row(original trajectory setting): Figure (a), in 2 Round spin
dataset. Figure (b), in 3 Round spin dataset. Figure (c), in Dot-Circle dataset. Lower row(new tra-
jectory setting): Figure (d), in 2 Round spin dataset. Figure (e), in 3 Round spin dataset. Figure (f),
in Dot-Circle dataset. The source distribution, 7 (brown), and the target distribution, 71 (indigo),
are shown, along with the generated distribution (pink).

followed by the VP ODE framework from (Liu et al., 2022b), which is x; = axg + Bix1. We
choose a; = exp(—za(l —)% — 3b(1 —t)) and B; = \/1 — o, with hyperparameters a = 19.9
and b = 0.1. In 2 Round spin datasets and 3 Round spin datasets, we sample 400 points, both source
distribution and target distribution. And in the Dot-Circle dataset, we sample 600 points from both
source distribution and target distribution, 300 points of source points from the circle, and another
300 from the center dot. In 2 Round dataset training, we use ODE solver and Adam optimizer, with
2 hidden layer MLP, 100 hidden dimension, 800 batch size, 0.005 learning rate, and 1000 training
steps. In 3 Round spin dataset training, we also use ODE solver and Adam optimizer, with 2 hidden
layer MLP, 100 hidden dimension, 1000 batch size, 0.005 learning rate, and 2000 training steps.
And in Dot-Circle dataset training, we use an ODE solver and Adam optimizer, with 2 hidden layer
MLP, 100 hidden dimensions, 1600 batch size, 0.005 learning rate, and 10000 training steps.

G.8 THIRD-ORDER HOMO

We optimize models by the sum of squared error(SSE). The source distribution and target distribu-
tion are all Gaussian distributions. For the first line, we use the original transport trajectory setting,
followed by the VP ODE framework from (Liu et al., 2022b), which is x; = aixg + Bix1. We
choose c; = exp(—3a(l —t)? — 1b(1 —t)) and B; = /1 — o, with hyperparameters a = 19.9
and b = 0.1. In 2 Round spin datasets and 3 Round spin datasets, we sample 400 points, both
source distribution and target distribution. In the Dot-Circle dataset, we sample 600 points, both
source distribution and target distribution, 300 points of source points from the circle, and another
300 from the center dot. In 2-round dataset training, we use an ODE solver and Adam optimizer,
with 2 hidden layer MLP, 100 hidden dimensions, 800 batch size, 0.005 learning rate, and 1000
training steps. In 3-round spin dataset training, we also use an ODE solver and Adam optimizer,
with 2 hidden layer MLP, 100 hidden dimensions, 1000 batch size, 0.005 learning rate, and 2000

35

Under review as a conference paper at ICLR 2026

HOMO optimized with
(M1 + M2 + SC) losses

HOMO optimized with

HOMO optimized with
(M1 + M2 + SC) losses

200 00 (M1 + M2 + SC) losses
™ ™ -
300 . m 400 o
o o o Conerated 400 P R A p ” B perated
y . 200 4/ o '\ 200{ & ¢ s ™ (3
100 . 0 §. # % 3 4 4 N 3
LY 3 { ’ b e ¥ ,‘ 1 &
01 £ & o ¢ 0 § 4 ¥°F 3 {8 §, ¥ §
e oA ; v LA | ; ¢ E / H
—-100 R 4 200 . \ g - 1 i - f 4
—200 S cudl e f" / -2001 ® r 4
—400 ‘)/ o o
-300 \u“ 4 © o' o ~400 ® ¢ oanws”
—400 —600
—400 -200 0 200 400 —600—400—-200 0 200 400 600 —400 -200 0 200 400

(a) (original) (b) (original)
M1+M2+SC) /2 Round (M1+M2+SC) /3 Round

400

HOMO optimized with
(M1 + M2 + SC) losses

HOMO optimized with

00 (M1 + M2 + SC) losses

(c) (original)
(M14M2+SC) / Dot-Circle

HOMO optimized with
(M1 + M2 + SC) losses

™ w -
300) . . 400 P e
o0 g Geneaes 400 SO D e S iy, - -
4 ~ y _ 9 . pee= S a
100 t[‘ \\ 200 " e 7(,‘.\ 2001 § N
£) | y ‘ PN B A ? S0, 3§ H
o1 7 [oW & } 01 § H I ov ¥y B 01 ¢ (¥ 1
\ y h | L ¥ ®
-100 %» ' g 4 _200 . ' ! 200 § \ , W ®
_200 ﬁ o - / ~ ‘;‘ kv 39 ” ,O «\ﬁ)\ ¢
~300 e e ~400 F Vo s
S -400 e
—-400 —600 T T T T T
—400 -200 0 200 400 —-600-400-200 0 200 400 600 —400-200 O 200 400

(d) (new) (M1+M2+SC) / 2(e) (new) M1+M2+SC) / 3(f) (new) (M1+M2+SC) /
Round Round Dot-Circle

Figure 19: (M14+M2+SC) The distributions generated by HOMO are only optimized by first-order
loss and second order loss, and self-consistency loss. Upper row(original trajectory setting):
Figure (a), in 2 Round spin dataset. Figure (b), in 3 Round spin dataset. Figure (c), in Dot-Circle
dataset. Lower row(new trajectory setting): Figure (d), in 2 Round spin dataset. Figure (e), in 3
Round spin dataset. Figure (f), in Dot-Circle dataset. The source distribution, 7y (brown), and the
target distribution, 7; (indigo), are shown, along with the generated distribution (pink).

training steps. In Dot-Circle dataset training, we use an ODE solver and Adam optimizer, with 2
hidden layer MLP, 100 hidden dimensions, 1600 batch size, 0.005 learning rate, and 10000 training
steps.

H COMPUTATIONAL COST AND OPTIMIZATION COST

Table 5: Computational Cost Analysis of Different Configurations

Configuration FLOPs (M) Params (K) Training Speed (it/s)
M1 8.400 10.702 477.03
M2 68.480 43.608 146.34
M3 8.400 10.702 357.45
M1 + M2 16.960 21.604 248.15
M2 + SC 68.480 43.608 144.73
(Shortcut Model) M1 + SC 8.480 10.802 283.20
M1 + M2 + SC 68.480 43.608 136.46
M1 +M2 +M3 +SC 103.680 66.012 122.18

We profile computational efficiency on the Apple MacBook Air (M1 8GB) with an 8-core CPU.
Through systematic analysis, we observe three critical tradeoffs: (1) The M2 configuration demon-
strates an 8.15x FLOPs increase over M1 while achieving 4.07x parameter expansion, revealing
the fundamental FLOPs-parameters scaling relationship. (2) The self-consistency (SC) term in-
troduces minimal computational overhead, with the M2+SC configuration maintaining 144.73 it/s
versus vanilla M2’s 146.34 it/s (1.1% throughput reduction). (3) Architectural innovations yield

36

Under review as a conference paper at ICLR 2026

HOMO optimized with

8M1+M2+M3+SC) losses
40 -

HOMO optimized with

60($M1+M2+M3+SC) losses

o

HOMO optimized with
(M1+M2+M3+SC) losses

200 9o Generted 400 PN Coneres 400 ol Genersted
200 £ w] & N | ¢, -\
100 V4 P) {-‘ 4 _ \ . pSom. t @
0 o N 0 n bk i ol & £ ¥ |]
100 b A y 9' “ | \ p -Ej $ ¢ N ' kA
- A 4 _ % 2 a hewdsr
—200{ nat / 20 \ ’rnr.;j‘ —2007 e e t;
- » b touee®
—300 e > 400 s o -400 ™ e :
-400 -600
—400 -200 0 200 400 —600—-400-200 0 200 400 600 —-400 -200 0 200 400
(a) (original)(b) (original)(c) (original)
M1+M2+M3+SC) / 2M1+M2+M3+SC) / 3(MI1+M2+M3+SC) /
Round Round Dot-Circle

408M1+M2+M3+SC) losses

HOMO optimized with

HOMO optimized with

60éM1+M2+M3+SC) losses

HOMO optimized with

(M1+M2+M3+SC) losses
300 o e 400 oo o ™
_ Sy . Generated 400 > o T, Generated P o . S
2001 X P e X o %
wo| £ % 200] f #UN A ¢ 7’(/" l\)
1 4 L SN 1 5 TR
0 € [o8 ' I 0 e § o8 °% § ! of ‘ N j ;.
& e B ol L] a y '
—100 | N 2001 % 4. / 200l & ® s
—200 ,‘) }; Sl re” j \~ \ /),
—300 N s a0 S -400 N %o 3,4’
_409400 —-200 0 200 400 7609600—400—200 0 200 400 600 —400 -200 0 200 400
() (new)(e) (new)(f) (new)
M1+M2+M3+SC) / 2M1+M2+M34SC) [/ 3(MI1+M2+M3+SC) /
Round Round Dot-Circle

Figure 20: (M1+M2+M3+SC) The distributions generated by Third-Order HOMO, optimized
by first-order loss and second-order loss, third-order loss and self-consistency loss. Upper
row(original trajectory setting): Figure (a), in 2 Round spin dataset. Figure (b), in 3 Round
spin dataset. Figure (c), in Dot-Circle dataset. Lower row(new trajectory setting): Figure (d), in
2 Round spin dataset. Figure (e), in 3 Round spin dataset. Figure (f), in Dot-Circle dataset. The
source distribution, 7y (brown), and the target distribution, 7; (indigo), are shown, along with the
generated distribution (pink).

substantial gains - the Shortcut Model (M1+SC) achieves 33.6% faster iterations than vanilla M1
(283.20 vs 477.03 it/s) with comparable parameter counts. Table 5] quantifies these effects through
comprehensive benchmarking:

Notably, our architecture maintains practical viability even for high-order extensions - the third-
order HOMO configuration (M1+M2+M3+SC) sustains 122.18 it/s despite requiring 12.34 x more
FLOPs than the base M1 model. This demonstrates our method’s ability to balance computational
complexity with real-time performance requirements.

LLM USAGE DISCLOSURE

LLMs were used only to polish language, such as grammar and wording. These models did not
contribute to idea creation or writing, and the authors take full responsibility for this paper’s content.

37

Under review as a conference paper at ICLR 2026

400
300
200
100
0
—-100
—200
-300
—400

HOMO optimized

HOMO optimized

HOMO optimized

with SC loss 600 with SC loss with SC loss
o "a PN NN o
. 400 ®
o TUw ° generated 400 I". «? Generated ' & ° gene rated
\ 200 ! 200
o o 0 0 }
; \
Vi —200 s -200
—-400
Naeer” \--./ -400 R o
-600
—400 —200 0 200 400 ~600-400-200 0 200 400 600 —-400-200 0 200 400

(a) (original)SC / 2 Round (b) (original)SC / 3 Round (c) (original)SC / DotPlus-

Circle
HOMO optimized HOMO optimized HOMO optimized
with SC loss with SC loss with SC loss
400 = 600
" " 400 "
300 C_L 2 ° Generated 4001 @ ®e | e ° Generated
200
200
100 '. 200
0 . 0 < E ’ 0
-100 \ C ! 200 ; 200
—200 “ / ~../ h
-300 - 400 e #” -400
~400/00 —200 0 200 400 ~°co0-400-300 & 260 200 00 —400-200 0 200 400
(d) (new)SC /2 Round (e) (new)SC /3 Round (f) (new)SC / DotPlusCir-

Figure 21: (SC) The distributions generated by HOMO are only optimized by self-consistency loss.
Upper row(original trajectory setting): Figure (a), in 2 Round spin dataset. Figure (b), in 3 Round
spin dataset. Figure (c), in Dot-Circle dataset. Lower row(new trajectory setting): Figure (d), in
2 Round spin dataset. Figure (e), in 3 Round spin dataset. Figure (f), in Dot-Circle dataset. The
source distribution, 7y (brown), and the target distribution, 7; (indigo), are shown, along with the

generated distribution (pink).

38

cle

	Introduction
	Related Works
	Preliminary
	Methodology
	Theoretical Analysis
	Experiments
	Experiment setup
	Mixture of Gaussian experiments
	Complex distribution experiments
	Third-order HOMO

	Conclusion
	Original Algorithm
	More Related Work
	Tools from Previous Works
	Definitions of Besov Space
	B-spline
	Class of Neural Networks
	Assumptions
	Approximation error for small
	Approximation error for large

	Theory of Higher Order Flow Matching
	Approximation Error of Second Order Flow Matching for Small
	Approximation Error of Higher Order Flow Matching for Small
	Approximation Error of Second Order Flow Matching for Large
	Approximation Error of Higher Order Flow Matching for Large

	Empirical Ablation Study
	Dataset
	Only First Order Term
	Only Second Order Term
	Only Self-Consistency Term
	First Order Plus Second Order
	Second Order Plus Self-Target
	First Order Plus Self-Target
	HOMO

	Complex Distribution Experiment
	Datasets
	First Order Plus Second Order
	First Order Plus Self-Consistency Term
	Second Order Plus Self-Consistency Term
	HOMO

	Third-Order HOMO
	Algorithm
	Trajectory setting
	Dataset
	Euclidean distance loss
	Only Self-Consistency Term
	First Order Plus Self-Consistency
	First Order Plus Second Order Plus Self-Consistency
	Third-Order HOMO

	Computational Cost and Optimization Cost

