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ABSTRACT

One-step shortcut diffusion models [Frans, Hafner, Levine and Abbeel, ICLR
2025] have shown potential in vision generation, but their reliance on first-order
trajectory supervision is fundamentally limited. The Shortcut model’s simplis-
tic velocity-only approach fails to capture intrinsic manifold geometry, leading to
erratic trajectories, poor geometric alignment, and instability-especially in high-
curvature regions. These shortcomings stem from its inability to model mid-
horizon dependencies or complex distributional features, leaving it ill-equipped
for robust generative modeling. In this work, we introduce HOMO (High-Order
Matching for One-Step Shortcut Diffusion), a game-changing framework that
leverages high-order supervision to revolutionize distribution transportation. By
incorporating acceleration, jerk, and beyond, HOMO not only fixes the flaws of
the Shortcut model but also achieves unprecedented smoothness, stability, and
geometric precision. Theoretically, we prove that HOMO’s high-order supervi-
sion ensures superior approximation accuracy, outperforming first-order methods.
Empirically, HOMO dominates in complex settings, particularly in high-curvature
regions where the Shortcut model struggles. Our experiments show that HOMO
delivers smoother trajectories and better distributional alignment, setting a new
standard for one-step generative models.

1 INTRODUCTION

In recent years, deep generative models have exhibited extraordinary promise across various types of
data modalities. Techniques such as Generative Adversarial Networks (GANs) (Goodfellow et al.,
2014), autoregressive models (Vaswani, 2017), normalizing flows (Lipman et al., 2022), and diffu-
sion models (Ho et al., 2020) have achieved outstanding results in tasks related to image, audio, and
video generation (Kalchbrenner et al., 2018; Blattmann et al., 2023). These models have attracted
considerable interest owing to their capacity to create invertible and highly expressive mappings,
transforming simple prior distributions into complex target data distributions. This fundamental
characteristic is the key reason they are capable of modeling any data distribution. Particularly,
(Lipman et al., 2022; Liu et al., 2022a) have effectively unified conventional normalizing flows with
score-based diffusion methods. These techniques produce a continuous trajectory, often referred
to as a “flow”, which transitions samples from the prior distribution to the target data distribution.
By adjusting parameterized velocity fields to align with the time derivatives of the transformation,
flow matching achieves not only significant experimental gains but also retains a strong theoretical
foundation.

Despite the remarkable progress in flow-based generative models, such as the Shortcut model (Frans
et al., 2025), these approaches still face challenges in accurately modeling complex data distribu-
tions, particularly in regions of high curvature or intricate geometric structure (Wang et al., 2024;
Hu et al., 2024c). This limitation stems from the reliance on first-order techniques, which primarily
focus on aligning instantaneous velocities while neglecting the influence of higher-order dynamics
on the overall flow geometry. Recent research in diffusion-based modeling (Chen, 2023; Hang &
Gu, 2024; Lin et al., 2024) has highlighted the importance of capturing higher-order information
to improve the fidelity of learned trajectories. However, a systematic framework for incorporating
such higher-order dynamics into flow matching, especially within Shortcut models, remains an open
problem.
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In this work, we propose HOMO (High-Order Matching for One-Step Shortcut Diffusion), a revolu-
tionary leap beyond the limitations of the original Shortcut model (Frans et al., 2025). While Short-
cut models rely on simplistic first-order dynamics, often empirically struggling to capture complex
data distributions and producing erratic trajectories in high-curvature regions, HOMO shatters these
barriers by introducing high-order supervision. By incorporating acceleration, jerk, and beyond,
HOMO not only addresses the empirical shortcomings of the Shortcut model but also achieves un-
paralleled geometric precision and stability. Where the Shortcut model falters—yielding suboptimal
trajectories and poor distributional alignment—HOMO thrives, delivering smoother, more accurate,
and fundamentally superior results.

Our primary contribution is a rigorous theoretical and empirical framework that showcases the dom-
inance of HOMO. We prove that HOMO’s high-order supervision drastically reduces approximation
errors, ensuring precise trajectory alignment from the earliest stages to long-term evolution. Empir-
ically, we demonstrate that the Shortcut model’s first-order dynamics fall short in complex settings,
while HOMO consistently outperforms it, achieving faster convergence, better sample quality, and
unmatched robustness.

The contributions of our work is summarized as follows:

• We introduce high-order supervision into the Shortcut model, resulting in the HOMO
framework, which includes novel training and sampling algorithms.

• We provide rigorous theoretical guarantees for the approximation error of high-order flow
matching, demonstrating its effectiveness in both the early and late stages of the generative
process.

• We demonstrate that HOMO achieves superior empirical performance in complex settings,
especially in intricate distributional landscapes, beyond the capabilities of the original
Shortcut model (Frans et al., 2025).

2 RELATED WORKS

Diffusion Models. Diffusion models have garnered significant attention for their capability to gen-
erate high-fidelity images by incrementally refining noisy samples, as exemplified by DiT (Peebles
& Xie, 2023) and U-ViT (Bao et al., 2023). These approaches typically involve a forward process
that systematically adds noise to an initial clean image and a corresponding reverse process that
learns to remove noise step by step, thereby recovering the underlying data distribution in a prob-
abilistic manner. Early works (Song & Ermon, 2019; Song et al., 2020) established the theoretical
foundations of this denoising strategy, introducing score-matching and continuous-time diffusion
frameworks that significantly improved sample quality and diversity. Subsequent research has fo-
cused on more efficient training and sampling procedures (Lu et al., 2022; Shen et al., 2024a;b), aim-
ing to reduce computational overhead and converge faster without sacrificing image fidelity. Other
lines of work leverage latent spaces to learn compressed representations, thereby streamlining both
training and inference (Rombach et al., 2022; Hu et al., 2024b). This latent learning approach inte-
grates naturally with modern neural architectures and can be extended to various modalities beyond
images, showcasing the versatility of diffusion processes in modeling complex data distributions. In
parallel, recent researchers have also explored multi-scale noise scheduling and adaptive step-size
strategies to enhance convergence stability and maintain high-resolution detail in generated content
in (Lovelace et al., 2024; Feng et al., 2024; Rout et al., 2024; Jiang et al., 2025; Luo et al., 2024).

Flow Matching. Generative models like diffusion (Sohl-Dickstein et al., 2015; Ho et al., 2020;
Song et al., 2020) and flow-matching (Lipman et al., 2022; Liu et al., 2022a) operate by learning
ordinary differential equations (ODEs) that map noise to data. To simplify, this study leverages the
optimal transport flow-matching formulation (Liu et al., 2022a). A linear combination of a noise
sample x0 ∼ N (0, I) and a data point x1 ∼ D defines xt = (1− t)x0 + tx1, vt = x1 − x0, with vt
representing the velocity vector directed from x0 to x1. While vt is uniquely derived from (x0, x1),
knowledge of only xt renders it a random variable due to the ambiguity in selecting (x0, x1). Neural
networks in flow models approximate the expected velocity v̄t = E[vt | xt], calculated as an average
over all valid pairings. Training involves minimizing the deviation between predicted and empirical
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velocities:

v̄θ(xt, t) ∼ Ex0,x1∼D [vt | xt]
LF(θ) = Ex0,x1∼D

[
∥v̄θ(xt, t)− (x1 − x0)∥2

]
. (1)

Sampling involves first drawing a noise point x0 ∼ N (0, I) and iteratively transforming it into a
data point x1. The denoising ODEs, parameterized by v̄θ(xt, t), governs this transformation, and
Euler’s method approximates it over small, discrete time steps.

High-order ODE Gradient in Diffusion Models. Higher-order gradient-based methods
like TTMs (Kloeden & Platen, 1992) have applications far exceeding DDMs. For instance,
solvers (Djeumou et al., 2022) and regularization frameworks (Kelly et al., 2020; Finlay et al., 2020)
for neural ODEs (Chen et al., 2018; Grathwohl et al., 2018) frequently utilize higher-order deriva-
tives. Beyond machine learning contexts, the study of higher-order TTMs has been extensively
directed toward solving stiff (Chang & Corliss, 1994) and non-stiff (Chang & Corliss, 1994; Corliss
& Chang, 1982) systems.

3 PRELIMINARY

This section elaborates on the flow-matching framework, extending it to the second-order case, with
critical definitions underscored. We begin with describing the general framework of flow matching
and its second-order rectification. These concepts form the basis for our proposed method, as they
integrate first and second-order information for trajectory estimation.

Fact 3.1. Let a field xt be defined as xt = αtx0 + βtx1, where αt and βt are functions of t, and
x0, x1 are constants. Then, the first-order gradient ẋt and the second-order gradient ẍt can be
manually calculated as ẋt = α̇tx0 + β̇tx1, ẍt = α̈tx0 + β̈tx1., reprectively.

In practice, one often samples (x0, x1) from (µ0, π0) and parameterizes xt (e.g., interpolation) at
intermediate times to build a training objective that matches the velocity field to the true time deriva-
tive ẋt.

Definition 3.2 (Shortcut models, implicit definition from page 3 on (Frans et al., 2025)). Let ∆t =
1/128. Let xt be current field. Let t ∈ N denote time step. Let u1(xt, t, d) be the network to
be trained. Let d ∈ (1/128, 1/64, . . . , 1/2, 1) denote step size. Then, we define Shortcut model
compute next field xt+d as follow:

xt+d =

{
xt + u1(xt, t, d)d if d ≥ 1/128,

xt + u1(xt, t, 0)∆t if d < 1/128.

4 METHODOLOGY

When training a flow-based model, such as Shortcut model, using only the first-order term as the
training loss has several limitations compared to incorporating high-order losses. (1) Firstly, relying
solely on the first-order term results in a less accurate approximation of the true dynamics, as it
captures only the linear component and misses important nonlinear aspects that higher-order terms
can represent. This can lead to slower convergence, as the model must implicitly learn complex
dynamics without explicit guidance from higher-order terms. (2) Additionally, while the first-order
approach reduces model complexity and the risk of overfitting, it may also limit the model’s ability to
generalize effectively to unseen data, particularly when the underlying dynamics are highly nonlin-
ear. (3) In contrast, including higher-order terms enhances the model’s capacity to capture intricate
patterns, improving both accuracy and generalization, albeit at the cost of increased computational
complexity and potential overfitting risks.

Then, we introducing our HOMO model. The intuition behind this design is to leverage high-
order dynamics to achieve a more accurate and stable approximation of the field evolution. By
incorporating higher-order losses, we aim to capture the nonlinearities and complex interactions that
are often present in real-world systems. This approach not only improves the fidelity of the model
but also enhances its ability to generalize across different scenarios.
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Definition 4.1 (HOMO Inference). Let ∆t = 1/128. Let xt be the current field. Let t ∈ N
denote the time step. Let u1,θ1(·) and u2,θ2(·) denote the HOMO models to be trained. Let d ∈
(0, 1/128, 1/64, . . . , 1/2, 1) denote the step size. Then, we define the HOMO computation of the
next field xt+d as follows:

xt+d =

{
xt + d · u1(xt, t, d) + d2

2 · u2(u1(xt, t, d), xt, t, d) if d ≥ 1/128,

xt +∆t · u1(xt, t, 0) + (∆t)2

2 · u2(u1(xt, t, 0), xt, t, 0) if d < 1/128.

The self-consistency target is to ensure that the model’s predictions are consistent across different
time steps, which is crucial for maintaining the stability and accuracy of the model over long-term
predictions.
Definition 4.2 (HOMO Self-Consistency Target). Let u1,θ1 be the networks to be trained. Let xt
be the current field and xt+d be defined in Definition 4.1. Let t ∈ N denote the time step. Let
d ∈ (0, 1/128, 1/64, . . . , 1/2, 1) denote the step size. We define the Self-Consistency target as
follows:

ẋtargett = u1,θ1(xt, t, d)/2 + u1,θ1(xt+d, t, d)/2

The second-order HOMO loss is designed to optimize the model by minimizing the discrepancy
between the predicted and true velocities and accelerations. This loss function ensures that the
model not only captures the immediate dynamics but also the underlying trends and changes in the
system.
Definition 4.3 (Second-order HOMO Loss). Let xt be the current field. Let t ∈ N denote the
time step. Let ẋtargett be defined by Definition 4.2. Let u1,θ1(·) and u2,θ2(·) denote the HOMO
models to be trained. Let d ∈ (0, 1/128, 1/64, . . . , 1/2, 1) denote the step size. Let ẋtruet and
ẍtruet be the observed (or numerically approximated) true velocity and acceleration. Let ẋpredt :=
u1,θ1(xt, t, 2d) denote the model prediction of the first-order term. Then, we define the HOMO Loss
as follows:

L(θ1,θ2) = E[ℓ2,1,θ1(xt, ẋtruet )] + E[ℓ2,2,θ2,θ1(xt, ẍtruet )] + E[∥u1,θ1(xt, t, 2d)− ẋ
target
t ∥2]

We define

ℓ2,1,θ1(xt, ẋ
true
t ) := ∥u1,θ1(xt, t, 2d)− ẋtruet ∥2,

ℓ2,2,θ2,θ1(xt, ẍ
true
t ) := ∥u2,θ2(ẋ

pred
t , xt, t, 2d)− ẍtruet ∥2

ℓselfc(xt, ẋ
target
t ) := ∥u1,θ1(xt, t, 2d)− ẋ

target
t ∥2

and

ℓ(θ1,θ2)(xt, x
true
t ) := ℓ2,1,θ1(xt, ẋ

true
t ) + ℓ2,2,θ2,θ1(xt, ẍ

true
t ) + ℓselfc(xt, ẋ

target
t ).

Remark 4.4 (Simple notations). For simplicity, we denote first-order matching as M1, which im-
plies that HOMO is optimized solely by the first-order loss ℓ2,1,θ1(xt, ẋ

true
t ). Second-order matching

is denoted as M2, where HOMO is optimized only by the second-order loss ℓ2,2,θ2,θ1(xt, ẍ
true
t ). We

refer to HOMO optimized solely by the self-consistency loss as SC, denoted by ℓselfc(xt, ẋ
target
t ).

Combinations of M1, M2, and SC are used to indicate HOMO optimized by corresponding com-
binations of loss terms. For example, (M1 + M2) denotes HOMO optimized by both first-order
and second-order terms, while (M1 + M2 + SC) represents HOMO optimized by the first-order,
second-order, and self-consistency terms.

5 THEORETICAL ANALYSIS

In this section, we will introduce our main result, the approximation error of the second order flow
matching. The theory for higher order flow matching is deferred to Section D.

We first present the approximation error result for the early stage of the diffusion process. This
result establishes theoretical guarantees on how well a neural network can approximate the first and
second order flows during the initial phases of the trajectory evolution.
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Algorithm 1 HOMO Training

1: procedure HOMOTRAINING(θ,D, p, k)
2: ▷ Parameter θ for HOMO model u1 and u2.
3: ▷ Training dataset D
4: ▷ Stepsize and time index distribution p
5: ▷ Batch size k
6: while not converged do
7: x0 ∼ N (0, I), x1 ∼ D, (d, t) ∼ p
8: βt ←

√
1− α2

t
9: xt ← αt · x0 + βt · x1 ▷ Noise data point

10: for first k batch elements do
11: ṡtruet ← α̇tx0 + β̇tx1 ▷ First-order target
12: s̈truet ← α̈tx0 + β̈tx1 ▷ Second-order target
13: d← 0
14: end for
15: for other batch elements do
16: st ← u1(xt, t, d) ▷ First small step of first order
17: ṡt ← u2(u1(xt, t, d), xt, t, d) ▷ First small step of second order
18: xt+d ← xt + d · st + d2

2 ṡt ▷ Follow ODE
19: st+d ← u1(xt+d, t+ d, d) ▷ Second small step of first order
20: ṡtargett ← stopgrad (st + st+d)/2 ▷ Self-consistency target of first order
21: end for
22: θ ← ∇θ(∥u1(xt, t, 2d)− ṡtruet ∥2

+∥u2(u1(xt, t, 2d), xt, t, 2d)− s̈truet ∥2
+∥u1(xt, t, 2d)− ṡtargett ∥2)

23: end while
24: return θ
25: end procedure

Algorithm 2 HOMO Sampling

1: procedure HOMOSAMPLING(θ,M )
2: ▷ Parameter θ for the HOMO model u1 and u2
3: ▷ The number of sampling steps M
4: x ∼ N (0, I)
5: d← 1/M
6: t← 0
7: for n ∈ [0, . . . ,M − 1] do
8: x← x+ d · u1(x, t, d) + d2

2 · u2(u1(x, t, d), x, t, d)
9: t← t+ d

10: end for
11: return x
12: end procedure

Theorem 5.1 (Approximation error of second order flow matching for small t, informal version
of Theorem D.1). Let N be a value associated with sample size n. Let T0 := N−R0 and T∗ :=

N− κ−1−δ
d whereR0, κ, δ are some parameters. Let s be the order of smoothness of the Besov space

that the target distribution belongs to. Under some mild assumptions, there exist neural networks
ϕ1, ϕ2 from a class of neural networks such that, for sufficiently large N , we have

∫
(∥ϕ1(x, t) −

ẋtruet ∥22 + ∥ϕ2(x, t)− ẍtruet ∥22)pt(x)dx ≲ (α̇2
t logN + β̇2

t )N
− 2s

d +Ext∼Pt [∥ẋtruet − ẍtruet ∥22] holds
for any t ∈ [T0, 3T∗]. In addition, ϕ1, ϕ2 can be taken so we have ∥ϕ1(·, t)∥∞ = O(|α̇t|

√
log n +

|β̇t|), ∥ϕ2(·, t)∥∞ = O(|α̇t|
√
log n+ |β̇t|).

Next, we present the approximation error result for the later stages, confirming that the second-order
flow matching remains effective throughout the generative process.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Theorem 5.2 (Approximation error of second order flow matching for large t, informal version of
Theorem D.3). Let N be a value associated with sample size n. Let T0 := N−R0 and T∗ :=

N − κ−1−δ
d where R0, κ, δ are some parameters. Let s be the order of smoothness of the Besov

space that the target distribution belongs to. Fix t∗ ∈ [T∗, 1] and let η > 0 be arbitrary. Under
some mild assumptions, there exists neural networks ϕ1, ϕ2 from a class of neural networks such that∫
(∥ϕ1(x, t)− ẋtruet ∥22 + ∥ϕ2(x, t)− ẍtruet ∥22)pt(x)dx ≲ (α̇2

t logN + β̇2
t )N

−η + Ext∼Pt [∥ẋtruet −
ẍtruet ∥22] holds for any t ∈ [2t∗, 1]. In addition, ϕ1, ϕ2 can be taken so we have

∥ϕ1(·, t)∥∞ = O(|α̇t| logN + |β̇t|),
∥ϕ2(·, t)∥∞ = O(|α̇t| logN + |β̇t|).

Overall, these two results demonstrate the effectiveness across different phases of the generative
process.

6 EXPERIMENTS

This section presents a series of experiments to evaluate the effectiveness of our HOMO method
and assess the impact of each loss component. Our results demonstrate that HOMO significantly
improves distribution generation, with the high-order loss playing a key role in enhancing model
performance.
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Figure 1: The first row shows the initial eight-mode dataset (a) and the results of HOMO optimized
with first-order loss (M1), second-order loss (M2), and self-consistency loss (SC) Figures (b-d). The
second row presents combinations of losses: M1+M2 (e), M1+SC (Frans et al., 2025) (f), M2+SC
(g), and M1+M2+SC (Ours) (h). Quantitative results are shown in Table 1

6.1 EXPERIMENT SETUP

We evaluate HOMO on a variety of data distributions and different combinations of losses. We
would like to restate that the HOMO with first order loss and self-consistency loss is equal to the
original One-step Shortcut model (Frans et al., 2025), i.e., M1+SC. Furthermore, M1+M2+SC and
M1+M2+M3+SC are our proposed methods.
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Table 1: Euclidean distance loss on Gaussian datasets. Lower values indicate more accurate
distribution matching. Optimal values are in Bold, with Underlined numbers representing second-
best results. For qualitative results, please refer to Figure 1.

Losses Four mode (↓) Five mode (↓) Eight mode (↓)
M1 2.759 3.281 3.321
M2 11.089 6.554 10.830
SC 6.761 10.893 7.646
M1 + M2 0.941 1.097 0.977
M2 + SC 8.708 9.212 4.801
M1 + SC (Frans et al., 2025) 0.820 1.067 1.084
M1 + M2 + SC (Ours) 0.809 0.917 0.778
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Figure 2: HOMO on complex datasets (Spin). Results of HOMO optimized with various loss
combinations: M1+M2 (a), M1+SC (Frans et al., 2025) (b), M2+SC (c), and M1+M2+SC (Ours)
(d). Quantitative results are in Table 2.

Table 2: Euclidean distance loss on complex datasets. Lower values indicate better distribution
matching. For qualitative results of complex distribution experiments, please refer to Figure 2 and
Figure 13, 14, 15, 16.

Losses Circle (↓) Irregular (↓) Spiral (↓) Spin (↓)
M1 + M2 0.642 0.731 7.233 31.009
M1 + SC 0.736 0.743 3.289 12.055
M2 + SC 7.233 0.975 10.096 50.499
M1 + M2 + SC 0.579 0.678 1.840 10.066

For the distribution dataset, in the left-most figure of Figure 1, we show an example of an eight-mode
Gaussian distribution. The source distribution π0 and the target distribution π1 are constructed
as mixture distributions, each consisting of eight equally weighted Gaussian components. Each
Gaussian component has a variance of 0.3. This setup presents a challenging transportation problem,
requiring the flow to handle multiple modes and cross-modal interactions.

We implement HOMO according to three kinds of losses: the first-order loss ℓ2,1,θ1(xt, ẋ
true
t ), the

second-order loss ℓ2,2,θ2,θ1(xt, ẍ
true
t ), and the self-consistency loss ℓselfc(xt, ẋ

target
t ). Following

Remark 4.4, we use M1, M2 and SC to denote three kinds of losses, respectively. For all experi-
ments, we optimize models by the sum of squared error. For the target transport trajectory setting,
we follow the VP ODE framework from (Liu et al., 2022b), which is xt = αtx0 + βtx1. We choose
αt = exp(− 1

4a(1− t)
2 − 1

2b(1− t)) and βt =
√

1− α2
t , with a = 19.9 and b = 0.1.

6.2 MIXTURE OF GAUSSIAN EXPERIMENTS

We analyze the performance of HOMO on Gaussian mixture datasets (Liang et al., 2024e) with
varying modes (four, five, and eight). The most challenging is the eight-mode distribution, where
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HOMO with all three losses (M1+M2+SC) produces the best results, achieving the lowest Euclidean
distance. The eight-mode Gaussian mixture distribution dataset (Figure 1 (a) ) contains eight Gaus-
sian distributions whose variance is 0.3. Eight source mode (brown) positioned at a distanceD0 = 6
from the origin, and eight target mode (indigo) positioned at a distance D0 = 13 from the origin,
each mode sample 100 points. HOMO optimized with M1+M2+SC losses is the only model that
can accurately learn the target eight-mode Gaussian distribution, achieving high precision as evi-
denced by the lowest Euclidean distance loss among all tested configurations. We emphasize the
importance of the second-order loss. Without it, the model struggles to accurately capture finer
distribution details (Figure 1 (f)). However, when included, the model better matches the target
distribution (Figure 1 (h)).

We further analyze how each loss contributes to the final performance of the HOMO. (1) The first-
order loss enables HOMO to learn the general structure of the target distribution, but it struggles to
capture finer details, as shown in Figure 1 (b) and Figure 1 (g). (2) The second-order loss can lead
to overfitting in the target distribution, as shown in Figure 1(c). When used alone, the second-order
loss may cause the model to focus too much on details and lose sight of the broader distribution.
(3) The self-consistency loss enhances the concentration of the learned distribution, as shown in
Figure 1 (d). Without the self-consistency loss, as shown in Figure 1 (e), the learned distribution
becomes sparser.

6.3 COMPLEX DISTRIBUTION EXPERIMENTS

In this section, we conduct experiments on datasets with complex distributions, where we expect our
HOMO model to learn the transformation from a regular source distribution to an irregular target
distribution. We first introduce the dataset used in Figure 2. In the spin dataset, we sample 600 points
from a Gaussian distribution with a variance of 0.3 for both the source and target distributions. The
second-order loss is essential for accurate fitting, particularly for irregular and spiral distributions.
We emphasize the critical role of the second order loss in the success of our HOMO model for
learning complex distributions. As demonstrated in Figure 2 (b), the original shortcut model, which
includes only first-order and self-consistency losses, fails to accurately fit the outer circle distribu-
tion. In contrast, the result of our HOMO model, shown in Figure 2 (d), illustrates that adding the
second-order loss enables the model to generate points within the outer circle. This highlights the
importance of the second-order loss in enabling the model to learn more complex distributions. We
have also performed experiments with HOMO optimized using each loss individually, as well as on
other distribution datasets. Due to space limitations, we refer the reader to Section E.2, E.3, and E.4
for further details.

6.4 THIRD-ORDER HOMO

Table 3: Euclidean distance loss of three complex distribution datasets under original trajec-
tory setting. Lower values indicate more accurate distribution transfer results. For the qualitative
results , please refer to Figure 3.

Loss terms 2 Round Spin (↓) 3 Round Spin (↓) Dot-Circle (↓)

SC 59.490 50.981 89.974
M1 + SC (Frans et al., 2025) 17.866 23.606 37.550
M1 + M2 + SC (Ours) 9.417 13.085 30.679
M1 + M2 + SC + M3 (Ours) 7.440 10.679 26.819

As discussed in previous sections, second-order HOMO has shown great performance on various
distribution datasets. Therefore, in this section, we further investigate the performance of HOMO
for adding an additional third-order loss. We use the same datasets as discussed in previous sections.
Namely, they are 2 Round spin, 3 Round spin, and Dot-Circle datasets. The qualitative results from
the experiments (Figure 3) demonstrate that the additional third-order loss enables HOMO to better
capture more complex target distributions. For instance, the comparison between Figure 3 (c) and
Figure 3 (d), as well as between Figure 3 (g) and Figure 3 (h), illustrates how the third-order loss
enhances the model’s ability to fit more intricate distributions. These findings are consistent with
the quantitative results presented in Table 3. By capturing higher-order interactions, the model is
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Figure 3: We present the third-order HOMO results in three kinds of complex datasets. From
left to right, we present results of HOMO optimized with different kinds of losses. A quantitative
evaluation is presented in Table 3.

better equipped to understand and adapt to the intricate relationships within the data, leading to more
accurate and robust learning. This approach underscores the value of enriching the model’s training
objective to handle the complexities inherent in real-world data distributions.

7 CONCLUSION

In this work, we introduced HOMO , which incorporates high-order dynamics into the training and
sampling processes of Shortcut models. By leveraging high-order supervision, our method signifi-
cantly enhances the geometric consistency and precision of learned trajectories. Theoretical analyses
demonstrate that high-order supervision ensures stability and generalization across different phases
of the generative process. These findings are supported by extensive experiments, where HOMO
outperforms original Shortcut models (Frans et al., 2025), achieving more accurate distributional
alignment and fewer suboptimal trajectories. The integration of high-order terms establishes a new
style for geometrically-aware generative modeling, highlighting the importance of capturing higher-
order dynamics for accurate transport learning. Our results suggest that high-order supervision is a
powerful tool for improving the fidelity and robustness of generative models.
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Appendix
Roadmap. In Section A, we introduce the Shortcut Model Training and Sampling Algorithm. Sec-
tion B discusses related works that inspire our approach. Section C states the tools from (Fukumizu
et al., 2024) used in our analysis. Section D explores the theory behind Higher-Order Flow Match-
ing. Section E investigates the impact of different optimization terms through empirical ablation
studies. Section F examines model performance on complex distribution experiments. Section G
extends HOMO to third-order dynamics and evaluates its effectiveness on complex tasks. Section H
quantifies the computational and optimization costs associated with different configurations.

A ORIGINAL ALGORITHM

Here we introduce Shortcut Model Training and Sampling Algorithm from Page 5 of (Frans et al.,
2025)

Algorithm 3 Shortcut Model Training from page 5 of (Frans et al., 2025)

1: while not converged do
2: x0 ∼ N (0, I), x1 ∼ D, (d, t) ∼ p(d, t)
3: xt ← (1− t)x0 + tx1 ▷ Noise data point
4: for first k batch elements do
5: starget ← x1 − x0 ▷ Flow-matching target
6: d← 0
7: end for
8: for other batch elements do
9: st ← u1(xt, t, d) ▷ Fitst small step

10: xt+d ← xt + std ▷ Follow ODE
11: st+d ← u1(xt+d, t+ d, d) ▷ Second small step
12: starget ← stopgrad (st + st+d)/2 ▷ Self-consistency target
13: end for
14: θ ← ∇θ∥u1(xt, t, 2d)− starget∥2
15: end while

Algorithm 4 Shortcut model. Sampling from page 5 of (Frans et al., 2025)

1: x ∼ N (0, I)
2: d← 1/M
3: t← 0
4: for n ∈ [0, . . . ,M − 1] do
5: x← x+ d · u1(x, t, d)
6: t← t+ d
7: end for
8: return x

B MORE RELATED WORK

In this section, we discuss more related work that inspires our work.

Large Language Models. Neural networks built upon the Transformer architecture (Vaswani
et al., 2017) have swiftly risen to dominate modern machine learning approaches in natural lan-
guage processing. Extensive Transformer models, trained on wide-ranging and voluminous datasets
while encompassing billions of parameters, are often termed large language models (LLM) or foun-
dation models (Bommasani et al., 2021). Representative instances include BERT (Devlin et al.,
2019), PaLM (Chowdhery et al., 2022), Llama (Touvron et al., 2023), ChatGPT (OpenAI, 2024),
GPT4 (OpenAI, 2023), among others. These LLMs have showcased striking general intelligence
abilities (Bubeck et al., 2023) in various downstream tasks. Numerous adaptation methods have
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been developed to tailor LLMs for specific applications, such as adapters (Hu et al., 2022; Zhang
et al., 2023; Gao et al., 2023a; Shi et al., 2023), calibration schemes (Zhao et al., 2021; Zhou et al.,
2023), multitask fine-tuning (Gao et al., 2021a; Xu et al., 2023; Von Oswald et al., 2023; Xu et al.,
2024), prompt optimization (Gao et al., 2021b; Lester et al., 2021), scratchpad approaches (Nye
et al., 2021), instruction tuning (Li & Liang, 2021; Chung et al., 2022; Mishra et al., 2022), symbol
tuning (Wei et al., 2023), black-box tuning (Sun et al., 2022), and reinforcement learning from hu-
man feedback (RLHF) (Ouyang et al., 2022). Additional lines of research endeavor to boost model
efficiency without sacrificing performance across diverse domains, for example in (Deng et al., 2022;
Song et al., 2023; Gao et al., 2023c;e;d; Bian et al., 2023; Deng et al., 2023; Gao et al., 2023b; Shri-
vastava et al., 2023; Qin et al., 2023; Chen et al., 2024c; Li et al., 2024d; Chen et al., 2024b; Liang
et al., 2024c; Chen et al., 2024a; Liang et al., 2024b;d;a; Li et al., 2024a;c; Cao et al., 2024; Li et al.,
2024b; Chen et al., 2024e;d; Ke et al., 2024; 2025a;b; Li et al., 2025; Hu et al., 2024a).

C TOOLS FROM PREVIOUS WORKS

We state the tools in (Fukumizu et al., 2024) that we will use to prove our main results.

C.1 DEFINITIONS OF BESOV SPACE

Definition C.1 (Modulus of Smoothness). Let Ω be a domain in Rd. For a function f ∈ Lp′
(Ω)

with p′ ∈ (0,∞], the r-th modulus of smoothness of f is defined by

wr,p′(f, t) = sup
∥h∥2≤t

∥∆r
h(f)∥p′ ,

where the finite difference operator ∆r
h(f)(x) is given by

∆r
h(f)(x) =

{∑r
j=0

(
r
j

)
(−1)r−jf(x+ jh), ifx+ jh ∈ Ωforallj,

0, otherwise.

Definition C.2 (Besov Seminorm). Let 0 < p′, q′ ≤ ∞, s > 0, and set r := |s| + 1. The Besov
seminorm of f ∈ Lp′

(Ω) is defined as

|f |Bs
p′,q′

:=


(∫∞

0
(t−swr,p′(f, t))q

′ dt
t

) 1
q′
, q′ <∞,

supt>0 t
−swr,p′(f, t), q′ =∞.

Definition C.3 (Besov Space). The Besov space Bs
p′,q′(Ω) is the function space equipped with the

norm

∥f∥Bs
p′,q′

:= ∥f∥p′ + |f |Bs
p′,q′

,

It consists of all functions f ∈ Lp′
(Ω) such that

Bs
p′,q′(Ω) := {f ∈ Lp′

(Ω) | ∥f∥Bs
p′,q′

<∞}.

Remark C.4. The parameter s governs the degree of smoothness of functions in Bs
p′,q′(Ω). In

particular, when p′ = q′ and s is an integer, the Besov space Bs
p′,q′(Ω) coincides with the standard

Sobolev space of order s. For further details on the properties and applications of Besov spaces, see
(Triebel, 1992).

C.2 B-SPLINE

Definition C.5 (Indicator Function). Let N (x) be the characteristic function defined by

N (x) =

{
1, x ∈ [0, 1],

0, otherwise.

Definition C.6 (Cardinal B-Spline). For ℓ ∈ N , the cardinal B-spline of order ℓ is defined by

Nℓ(x) :=N ∗N ∗ · · · ∗ N︸ ︷︷ ︸
ℓ+1times

(x),
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where ∗ denotes the convolution operation. Explicitly, the convolution of two functions f, g : R→ R
is given by

(f ∗ g)(x) =
∫
R
f(x− y)g(y)dy.

Thus, Nℓ(x) is obtained by convolving N with itself (ℓ+ 1) times.

Definition C.7 (Tensor Product B-Spline Basis). For a multi-index k ∈ N d and j ∈ Zd, the tensor
product B-spline basis in Rd of order ℓ is defined as

Md
k,j(x) :=

d∏
i=1

Nℓ(2
kixi − ji).

This basis is constructed as the product of univariate B-splines, scaled and translated according to
the parameters k and j.
Definition C.8 (B-Spline Approximation in Besov Spaces in (Suzuki, 2019; Oko et al., 2023)). A
function f in the Besov space can be approximated using a superposition of tensor product B-splines
as

fN (x) =
∑
(k,j)

αk,jM
d
k,j(x),

where the summation is taken over appropriate index sets (k, j), and the coefficients αk,j are real
numbers that determine the contribution of each basis function.

C.3 CLASS OF NEURAL NETWORKS

Definition C.9 (Neural Network Class in (Fukumizu et al., 2024)). Let L ∈ N denote the depth
(number of layers), W = (W1,W2, . . . ,WL+1) ∈ NL+1 the width configuration of the network,
S ∈ N a sparsity constraint, andB > 0 a norm bound. The class of neural networksM(L,W, S,B)
is defined as

M(L,W,S,B) := { ψA(L),b(L) ◦ · · · ◦ ψA(2),b(2)(A
(1)x+ b(1))m|A(i) ∈ RWi+1×Wi , b(i) ∈ RWi+1 ,

L∑
i=1

(∥A(i)∥0 + ∥b(i)∥0) ≤ S, max
1≤i≤L

{∥A(i)∥∞ ∨ ∥b(i)∥∞} ≤ B}.

Here, the function ψA,b : RWi → RWi+1 represents the affine transformation with ReLU activation,
given by

ψA,b(z) = A · ReLU(z) + b, where ReLU(z) = max{0, z}.
The sparsity constraint ensures that the total number of nonzero entries in all weight matrices and
bias vectors does not exceed S, while the norm constraint limits their maximum absolute values to
B.

C.4 ASSUMPTIONS

Remark C.10. We introduce a small positive constant δ > 0 and denote by N the number of basis
functions in the B-spline used to approximate pt(x). The value of N is determined by the sample
size n, specifically following the relation N = n

d
2s+d , which balances the approximation error and

the complexity of both the B-spline and the neural network.
Definition C.11 (Stopping Time). As we introduce in Remark C.10, we define the stopping time as
T0 = N−R0 , whereR0 is a parameter to be specified later, and consider solving the ODE backward
in time from t = 1 down to t = T0.
Definition C.12 (Reduced Cube). Let Id = [−1, 1]d denote the d-dimensional cube. To mitigate
boundary effects when N is large, we define the reduced cube as

IdN := [−1 +N−(1−κδ), 1−N−(1−κδ)]d,

where the parameter κ > 0 will be specified later in Assumption C.15.
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Assumption C.13 (Smoothness and support of p0). The target probability P0 has support contained
in Id, and its probability density function p0 satisfies

p0 ∈ Bs
p′,q′(I

d) and p0 ∈ Bs̃
p′,q′(I

d \ IdN ) with s̃ ≥ max{6s− 1, 1}.

Assumption C.14 (Boundedness away from 0 and above). There exists a constant C0 > 0 such that

C−1
0 ≤ p0(x) ≤ C0 forall x ∈ Id.

Assumption C.15 (Form of (αt, βt) and their bounds). There are constants κ ≥ 1
2 , b0 > 0, κ̃ > 0,

and b̃0 > 0 such that, for sufficiently small t ≥ T0,

αt = b0, t
κ, and 1− βt = b̃0, t

κ̃.

Moreover, there exist D0 > 0 and K0 > 0 such that ∀t ∈ [T0, 1], we have

D−1
0 ≤ α2

t + β2
t ≤ D0, |α̇t|+ |β̇t| ≤ NK0 .

Assumption C.16 (Additional bound in the critical case κ = 1
2 ). If κ = 1

2 , then there exist b1 > 0
and D1 > 0 such that, for all 0 ≤ γ < R0,∫ N−γ

T0

{(α̇t)
2 + (β̇t)

2}dt ≤ D1(logN)b1 .

Assumption C.17 (Lipschitz bound on the first moment). There is a constant CL > 0 such that, for
all t ∈ [T0, 1],

∥ ∂
∂x

∫
ypt(y|x)dy∥op ≤ CL.

C.5 APPROXIMATION ERROR FOR SMALL t

Lemma C.18 (Theorem 7 in (Fukumizu et al., 2024)). Under Assumptions C.13 C.14 C.15 C.16
and C.17, and if the following holds

• L = O(log4N).

• ∥W∥∞ = O(N log6N)

• S = O(N log8N)

• B = exp(O(logN log logN)).

Then there exists a neural network ϕ ∈M(L,W, S,B) such that, for sufficiently large N , we have∫
∥ϕ(x, t)− ẋtruet ∥22pt(x)dx ≲ (α̇2

t logN + β̇2
t )N

− 2s
d ,

holds for any t ∈ [T0, 3T∗]. In addition, ϕ can be taken so we have

∥ϕ(·, t)∥∞ = O(|α̇t|
√

log n+ |β̇t|).

C.6 APPROXIMATION ERROR FOR LARGE t

Lemma C.19 (Theorem 7 in (Fukumizu et al., 2024)). Fix t∗ ∈ [T∗, 1] and let η > 0 be arbitrary,
under Assumptions C.13 C.14 C.15 C.16 and C.17, and if the following holds

• L = O(log4N).

• ∥W∥∞ = O(N)

• S = O(t−dκ
∗ Nδκ)

• B = exp(O(logN log logN)).
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Then there exist a neural network ϕ ∈M(L,W,S,B) such that∫
∥ϕ(x, t)− ẋtruet ∥2pt(x)dx ≲ (α̇2

t logN + β̇2
t )N

−η.

holds for any t ∈ [2t∗, 1]. In addition, ϕ can be taken so we have

∥ϕ(·, t)∥∞ = O(|α̇t| logN + |β̇t|).

D THEORY OF HIGHER ORDER FLOW MATCHING

We use dk

dtk
xtruet to denote the k-th order derivative of xtruet with respect to t. Note that ẋtruet :=

d
dtx

true
t , and ẍtruet := d2

dt2x
true
t .

D.1 APPROXIMATION ERROR OF SECOND ORDER FLOW MATCHING FOR SMALL t

Theorem D.1 (Approximation error of second order flow matching for small t, formal version of
Theorem 5.1). Under Assumptions C.13 C.14 C.15 C.16 and C.17, and if the following holds

• L = O(log4N).

• ∥W∥∞ = O(N log6N)

• S = O(N log8N)

• B = exp(O(logN log logN)).

Then there exists neural networks ϕ1, ϕ2 ∈ M(L,W, S,B) such that, for sufficiently large N , we
have ∫

(∥ϕ1(x, t)− ẋtruet ∥22 + ∥ϕ2(x, t)− ẍtruet ∥22)pt(x)dx

≲ (α̇2
t logN + β̇2

t )N
− 2s

d + E
x∼Pt

[∥ẋtruet − ẍtruet ∥22]

holds for any t ∈ [T0, 3T∗]. In addition, ϕ1, ϕ2 can be taken so we have

∥ϕ1(·, t)∥∞ = O(|α̇t|
√
log n+ |β̇t|) and ∥ϕ2(·, t)∥∞ = O(|α̇t|

√
log n+ |β̇t|).

Proof. Suppose that t ∈ [T0, 3T∗]. By Lemma C.18, there is ϕ1 ∈M(L,W, S,B) such that∫
(∥ϕ1(x, t)− ẋtruet ∥22pt(x) ≲ (α̇2

t logN + β̇2
t )N

− 2s
d . (2)

Next, we can show that there exists some ϕ2 ∈M(L,W, S,B) such that∫
∥ϕ2(x, t)− ẍtruet ∥22pt(x)dx =

∫
∥ϕ2(x, t)− ẋtruet + ẋtruet − ẍtruet ∥22pt(x)dx

≤
∫

(∥ϕ2(x, t)− ẋtruet ∥2 + ∥ẋtruet − ẍtruet ∥2)2pt(x)dx

≤
∫

2(∥ϕ2(x, t)− ẋtruet ∥22 + ∥ẋtruet − ẍtruet ∥22)pt(x)dx

= 2

∫
∥ϕ2(x, t)− ẋtruet ∥22pt(x)dx+ 2

∫
∥ẋtruet − ẍtruet ∥22pt(x)dx

= 2

∫
∥ϕ2(x, t)− ẋtruet ∥22pt(x)dx+ 2 E

x∼Pt

[∥ẋtruet − ẍtruet ∥22

≲ (α̇2
t logN + β̇2

t )N
− 2s

d + E
x∼Pt

[∥ẋtruet − ẍtruet ∥22] (3)
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where the first step follows from the basic algebra, the second step follows from the triangle inequal-
ity, the third step follows from (a+ b)2 ≤ 2a2 +2b2, the fourth step follows from basic algebra, the
fifth step follows from the definition of expectation, and the last step follows from Lemma C.18.

Finally, by Eq. (2) and Eq. (3), for any t ∈ [T0, 3T∗], we have∫
(∥ϕ1(x, t)− ẋtruet ∥22 + ∥ϕ2(x, t)− ẍtruet ∥22)pt(x)dx

≲ (α̇2
t logN + β̇2

t )N
− 2s

d + E
x∼Pt

[∥ẋtruet − ẍtruet ∥22].

Moreover, by Lemma C.18, ϕ1, ϕ2 can be taken so we have

∥ϕ1(·, t)∥∞ = O(|α̇t|
√
log n+ |β̇t|) and ∥ϕ2(·, t)∥∞ = O(|α̇t|

√
log n+ |β̇t|).

Thus, the proof is complete.

D.2 APPROXIMATION ERROR OF HIGHER ORDER FLOW MATCHING FOR SMALL t

Theorem D.2 (Approximation error of higher order flow matching for small t). Under Assump-
tions C.13 C.14 C.15 C.16 and C.17, and if the following holds

• L = O(log4N).

• ∥W∥∞ = O(N log6N)

• S = O(N log8N)

• B = exp(O(logN log logN))

• K = O(1)

Then there exists neural networks ϕ1, ϕ2, . . . , ϕK ∈M(L,W, S,B) such that, for sufficiently large
N , we have ∫

(

K∑
k=1

∥ϕk(x, t)−
dk

dtk
xtruet ∥22)pt(x)dx

≲ (α̇2
t logN + β̇2

t )N
− 2s

d +

K−1∑
k=1

E
x∼Pt

[∥ d
k

dtk
xtruet − dk+1

dtk+1
xtruet ∥22]

holds for any t ∈ [T0, 3T∗]. In addition, for any k ∈ [K], ϕk can be taken so we have

∥ϕk(·, t)∥∞ = O(|α̇t|
√

log n+ |β̇t|).

Proof. We first show that for any k ≥ 2, for any t ∈ [T0, 3T∗], there exists ϕ ∈ M(L,W, S,B)
such that ∫

∥ϕ(x, t)− dk

dtk
xtruet ∥22pt(x)dx

≲ (α̇2
t logN + β̇2

t )N
− 2s

d +

k∑
j=1

E
x∼Pt

[∥ d
j

dtj
xtruet − dj+1

dtj+1
xtruet ∥22]. (4)

We prove this by mathematical induction.

Base case. The statements hold when k = 2 because of Lemma D.1.

Induction step. We assume that the statement hold for k ≥ 2. We would like to show that it holds
for k + 1. We can show that, for any t ∈ [T0, 3T∗], there exists ϕ ∈M(L, S,W,B) such that∫

∥ϕ(x, t)− dk+1

dtk+1
xtruet ∥22pt(x)dx
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=

∫
∥ϕ(x, t)− dk

dtk
xtruet +

dk

dtk
xtruet − dk+1

dtk+1
xtruet ∥22pt(x)dx

≤
∫
(∥ϕ(x, t)− dk

dtk
xtruet ∥2 + ∥

dk

dtk
xtruet − dk+1

dtk+1
xtruet ∥2)2pt(x)dx

≤
∫

2(∥ϕ(x, t)− dk

dtk
xtruet ∥22 + ∥

dk

dtk
xtruet − dk+1

dtk+1
xtruet ∥22)pt(x)dx

= 2

∫
∥ϕ(x, t)− dk

dtk
xtruet ∥22pt(x)dx+ 2

∫
∥ d

k

dtk
xtruet − dk+1

dtk+1
xtruet ∥22pt(x)dx

= 2

∫
∥ϕ(x, t)− dk

dtk
xtruet ∥22pt(x)dx+ 2 E

x∼Pt

[∥ d
k

dtk
xtruet − dk+1

dtk+1
xtruet ∥22]

≲ (α̇2
t logN + β̇2

t )N
− 2s

d +

k∑
j=1

E
x∼Pt

[∥ d
j

dtj
xtruet − dj+1

dtj+1
xtruet ∥22] + E

x∼Pt

[∥ d
k

dtk
xtruet − dk+1

dtk+1
xtruet ∥22]

= (α̇2
t logN + β̇2

t )N
− 2s

d +

k+1∑
j=1

E
x∼Pt

[∥ d
j

dtj
xtruet − dj+1

dtj+1
xtruet ∥22], (5)

where the first step follows from basic algebra, the second step follows from triangle inequality, the
third step follows from the Cauchy-Schwarz inequality, the fourth step follows from basic algebra,
the fifth step follows from the definition of expectation, the six step follows from Eq. (4).

Hence, there exists ϕ1, ϕ2, . . . , ϕK ∈ M(L,W, S,B) such that for k ∈ [K], for any t ∈ [T0, 3T∗],
we have ∫

∥ϕk(x, t)−
dk

dtk
xtruet ∥22pt(x)dx

≲ (α̇2
t logN + β̇2

t )N
− 2s

d +

k∑
j=1

E
x∼Pt

[∥ d
j

dtj
xtruet − dj+1

dtj+1
xtruet ∥22]. (6)

Taking the summation over k ∈ [K], we have for any t ∈ [T0, 3T∗],∫ K∑
k=1

∥ϕk(x, t)−
dk

dtk
xtruet ∥22pt(x)dx

≲K · (α̇2
t logN + β̇2

t )N
− 2s

d +

K∑
k=1

(k · E
x∼Pt

[∥ d
j

dtj
xtruet − dj+1

dtj+1
xtruet ∥22])

≲ ((α̇t)
2 logN + (β̇t)

2)N− 2s
d +

K∑
k=1

E
x∼Pt

[∥ d
j

dtj
xtruet − dj+1

dtj+1
xtruet ∥22]

where the first step follows from Eq. (6), and the second step uses K = O(1).

Moreover, by Lemma C.19, ϕ1, ϕ2, . . . , ϕK can be taken so we have for k ∈ [K],

∥ϕk(·, t)∥∞ = O(|α̇t| log
√
n+ |β̇t|).

Thus, the proof is complete.

D.3 APPROXIMATION ERROR OF SECOND ORDER FLOW MATCHING FOR LARGE t

Theorem D.3 (Approximation error of second order flow matching for large t, formal version of
Theorem 5.2). Fix t∗ ∈ [T∗, 1] and let η > 0 be arbitrary, under Assumptions C.13 C.14 C.15 C.16
and C.17, and if the following holds

• L = O(log4N).

• ∥W∥∞ = O(N)
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• S = O(t−dκ
∗ Nδκ)

• B = exp(O(logN log logN)).

Then there exist neural networks ϕ1, ϕ2 ∈M(L,W,S,B) such that∫
(∥ϕ1(x, t)− ẋtruet ∥22 + ∥ϕ2(x, t)− ẍtruet ∥22)pt(x)dx

≲ (α̇2
t logN + β̇2

t )N
−η + E

x∼Pt

[∥ẋtruet − ẍtruet ∥22]

holds for any t ∈ [2t∗, 1]. In addition, ϕ1, ϕ2 can be taken so we have

∥ϕ1(·, t)∥∞ = O(|α̇t| logN + |β̇t|) and ∥ϕ2(·, t)∥∞ = O(|α̇t| logN + |β̇t|).

Proof. Suppose that t ∈ [2t∗, 1]. By Lemma C.19, there is ϕ1 ∈M(L,W, S,B) such that∫
(∥ϕ1(x, t)− ẋtruet ∥22pt(x)dx ≲ (α̇2

t logN + β̇2
t )N

−η. (7)

Next, we can show that there exists some ϕ2 ∈M(L,W, S,B) such that∫
∥ϕ2(x, t)− ẍtruet ∥22pt(x)dx =

∫
∥ϕ2(x, t)− ẋtruet + ẋtruet − ẍtruet ∥22pt(x)dx

≤
∫

(∥ϕ2(x, t)− ẋtruet ∥2 + ∥ẋtruet − ẍtruet ∥2)2pt(x)dx

≤
∫

2(∥ϕ2(x, t)− ẋtruet ∥22 + ∥ẋtruet − ẍtruet ∥22)pt(x)dx

= 2

∫
∥ϕ2(x, t)− ẋtruet ∥22pt(x)dx+ 2

∫
∥2ẋtruet − ẍtruet ∥22pt(x)dx

= 2

∫
∥ϕ2(x, t)− ẋtruet ∥22pt(x)dx+ 2 E

x∼Pt

[∥ẋtruet − ẍtruet ∥22

≲ (α̇2
t logN + β̇2

t )N
−η + E

x∼Pt

[∥ẋtruet − ẍtruet ∥22] (8)

where the first step follows from the basic algebra, the second step follows from the triangle inequal-
ity, the third step follows from (a+ b)2 ≤ 2a2 +2b2, the fourth step follows from basic algebra, the
fifth step follows from the definition of expectation, and the last step follows from Lemma C.19.

Finally, by Eq. (7) and Eq. (8), we have∫
(∥ϕ1(x, t)− ẋtruet ∥2 + ∥ϕ2(x, t)− ẍtruet ∥2)pt(x)dx

≲ (α̇2
t logN + β̇2

t )N
−η + E

x∼Pt

[∥ẋtruet − ẍtruet ∥2].

Moreover, by Lemma C.19, ϕ1, ϕ2 can be taken so we have

∥ϕ1(·, t)∥∞ = O(|α̇t| logN + |β̇t|) and ∥ϕ2(·, t)∥∞ = O(|α̇t| logN + |β̇t|).

Thus, the proof is complete.

D.4 APPROXIMATION ERROR OF HIGHER ORDER FLOW MATCHING FOR LARGE t

Theorem D.4 (Approximation error of higher order flow matching for large t). Fix t∗ ∈ [T∗, 1] and
let η > 0 be arbitrary, under Assumptions C.13 C.14 C.15 C.16 and C.17, and if the following holds

• L = O(log4N).

• ∥W∥∞ = O(N)

• S = O(t−dκ
∗ Nδκ)
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• B = exp(O(logN log logN))

• K = O(1)

Then there exist neural networks ϕ1, ϕ2, . . . , ϕK ∈M(L,W,S,B) such that,∫
(

K∑
k=1

∥ϕk(x, t)−
dk

dtk
xtruet ∥2)pt(x)dx

≲ (α̇2
t logN + β̇2

t )N
−η +

K−1∑
k=1

E
x∼Pt

[∥ d
k

dtk
xtruet − dk+1

dtk+1
xtruet ∥2]

holds for any t ∈ [2t∗, 1]. In addition, for any k ∈ [K], ϕk can be taken so we have

∥ϕk(·, t)∥∞ = O(|α̇t| logN + |β̇t|).

Proof. We first show that for any k ≥ 2, for any t ∈ [2t∗, 1], there exists ϕ ∈ M(L,W,S,B) such
that ∫

∥ϕ(x, t)− dk

dtk
xtruet ∥22pt(x)dx

≲ (α̇2
t logN + β̇2

t )N
−η +

k∑
j=1

E
x∼Pt

[∥ d
j

dtj
xtruet − dj+1

dtj+1
xtruet ∥2]. (9)

We prove this by mathematical induction.

Base case. The statements hold when k = 2 because of Lemma D.3.

Induction step. We assume that the statement hold for k ≥ 2. We would like to show that it holds
for k + 1. We can show that, for any t ∈ [2t∗, 1], there exists ϕ ∈M(L, S,W,B) such that∫

∥ϕ(x, t)− dk+1

dtk+1
xtruet ∥22pt(x)dx

=

∫
∥ϕ(x, t)− dk

dtk
xtruet +

dk

dtk
xtruet − dk+1

dtk+1
xtruet ∥22pt(x)dx

≤
∫
(∥ϕ(x, t)− dk

dtk
xtruet ∥2 + ∥

dk

dtk
xtruet − dk+1

dtk+1
xtruet ∥2)2pt(x)dx

≤
∫

2(∥ϕ(x, t)− dk

dtk
xtruet ∥22 + ∥

dk

dtk
xtruet − dk+1

dtk+1
xtruet ∥22)pt(x)dx

= 2

∫
∥ϕ(x, t)− dk

dtk
xtruet ∥22pt(x)dx+ 2

∫
∥ d

k

dtk
xtruet − dk+1

dtk+1
xtruet ∥22pt(x)dx

= 2

∫
∥ϕ(x, t)− dk

dtk
xtruet ∥22pt(x)dx+ 2 E

x∼Pt

[∥ d
k

dtk
xtruet − dk+1

dtk+1
xtruet ∥22]

≲ (α̇2
t logN + β̇2

t )N
−η +

k∑
j=1

E
x∼Pt

[∥ d
j

dtj
xtruet − dj+1

dtj+1
xtruet ∥22] + E

x∼Pt

[∥ d
k

dtk
xtruet − dk+1

dtk+1
xtruet ∥22]

= (α̇2
t logN + β̇2

t )N
−η +

k+1∑
j=1

E
x∼Pt

[∥ d
j

dtj
xtruet − dj+1

dtj+1
xtruet ∥22], (10)

where the first step follows from basic algebra, the second step follows from triangle inequality, the
third step follows from the Cauchy-Schwarz inequality, the fourth step follows from basic algebra,
the fifth step follows from the definition of expectation, the six step follows from Eq. (9).

Hence, there exists ϕ1, ϕ2, . . . , ϕK ∈M(L,W, S,B) such that for k ∈ [K], for any t ∈ [2t∗, 1], we
have ∫

∥ϕk(x, t)−
dk

dtk
xtruet ∥22pt(x)dx
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≲ (α̇2
t logN + β̇2

t )N
−η +

k∑
j=1

E
x∼Pt

[∥ d
j

dtj
xtruet − dj+1

dtj+1
xtruet ∥22]. (11)

Taking the summation over k ∈ [K], we have for any t ∈ [2t∗, 1],∫ K∑
k=1

∥ϕk(x, t)−
dk

dtk
xtruet ∥22pt(x)dx

≲ ((α̇t)
2 logN + (β̇t)

2)N−η +

K∑
k=1

(k · E
x∼Pt

[∥ d
j

dtj
xtruet − dj+1

dtj+1
xtruet ∥22])

≲ (α̇2
t logN + β̇2

t )N
−η +

K∑
k=1

E
x∼Pt

[∥ d
j

dtj
xtruet − dj+1

dtj+1
xtruet ∥22]

where the first step follows from Eq. (11), and the second step uses K = O(1). Moreover, by
Lemma C.19, ϕ1, ϕ2, . . . , ϕK can be taken so we have for k ∈ [K],

∥ϕk(·, t)∥∞ = O(|α̇t| logN + |β̇t|).
Thus, the proof is complete.

E EMPIRICAL ABLATION STUDY

In Section E.1, we introduce the three Gaussian mixture distribution datasets—four-mode, five-
mode, and eight-mode—used in our empirical ablation study, along with their configurations for
source and target modes. The subsequent subsections analyze the impact of different optimization
terms. Section E.2 evaluates the performance of HOMO optimized solely with the first-order term.
Section E.3 examines the effect of using only the second-order term. Section E.4 assesses results
when optimization is guided by the self-consistency term. Section E.5 explores the combined effect
of first- and second-order terms, while Section E.6 investigates the combination of second-order and
self-consistency terms. Through these analyses, we aim to dissect the contributions of individual
and combined loss terms in achieving effective transport trajectories.

E.1 DATASET

Here we introduce three datasets we use: four-mode, five-mode, and eight-mode Gaussian mixture
distribution datasets; each Gaussian component has a variance of 0.3. In the four-mode Gaussian
mixture distribution, four source mode(brown) positioned at a distance D0 = 5 from the origin,
and four target mode(indigo) positioned at a distance D0 = 14 from the origin, each mode sample
200 points. In five-mode Gaussian mixture distribution, five source mode(brown) positioned at a
distanceD0 = 6 from the origin, and five target mode(indigo) positioned at a distanceD0 = 13 from
the origin, each mode sample 200 points. And in eight-mode Gaussian mixture distribution, eight
source mode(brown) positioned at a distanceD0 = 6 from the origin, and eight target mode(indigo)
positioned at a distance D0 = 13 from the origin, each mode sample 100 points.

E.2 ONLY FIRST ORDER TERM

We optimize models by the sum of squared error(SSE). The source distribution and target dis-
tribution are all Gaussian distributions. For the target transport trajectory setting, we follow
the VP ODE framework from (Liu et al., 2022b), which is xt = αtx0 + βtx1. We choose
αt = exp(− 1

4a(1 − t)2 − 1
2b(1 − t)) and βt =

√
1− α2

t , with hyperparameters a = 19.9 and
b = 0.1. In the four-mode dataset, five-mode dataset, and eight-mode dataset, we all sample 100
points in each source mode and target mode. And in four-mode dataset training, we use an ODE
solver and Adam optimizer, with 2 hidden layer MLP, 100 hidden dimensions, 800 batch size, 0.005
learning rate, and 1000 training steps. In five-mode dataset training, we also use an ODE solver and
Adam optimizer, with 2 hidden layer MLP, 100 hidden dimensions, 1000 batch size, 0.005 learning
rate, and 1000 training steps. And in eight-mode dataset training, we use an ODE solver and Adam
optimizer, with 2 hidden layer MLP, 100 hidden dimensions, 1600 batch size, 0.005 learning rate,
and 1000 training steps.
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Figure 4: The four-mode Gaussian mixture distribution (Left), five-mode Gaussian mixture distribu-
tion (Middle), and eight-mode Gaussian mixture distribution (Right). Our goal is to make HOMO
learn a transport trajectory from distribution π0 (brown) to distribution π1 (indigo).
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Figure 5: (A) The distributions generated by HOMO are only optimized by first-order term in four-
mode dataset (Left), five-mode dataset (Middle), and eight-mode dataset (Right). The source dis-
tribution, π0 (brown), and the target distribution, π1 (indigo), are shown, along with the generated
distribution (pink).

E.3 ONLY SECOND ORDER TERM

We optimize models by the sum of squared error(SSE). The source distribution and target dis-
tribution are all Gaussian distributions. For the target transport trajectory setting, we follow
the VP ODE framework from (Liu et al., 2022b), which is xt = αtx0 + βtx1. We choose
αt = exp(− 1

4a(1 − t)2 − 1
2b(1 − t)) and βt =

√
1− α2

t , with hyperparameters a = 19.9 and
b = 0.1. In the four-mode dataset, five-mode dataset, and eight-mode dataset, we all sample 100
points in each source mode and target mode. And in four-mode dataset training, we use an ODE
solver and Adam optimizer, with 2 hidden layer MLP, 100 hidden dimensions, 800 batch size, 0.005
learning rate, and 100 training steps. In five-mode dataset training, we also use an ODE solver and
Adam optimizer, with 2 hidden layer MLP, 100 hidden dimensions, 1000 batch size, 0.005 learning
rate, and 100 training steps. And in eight-mode dataset training, we use an ODE solver and Adam
optimizer, with 2 hidden layer MLP, 100 hidden dimensions, 1600 batch size, 0.005 learning rate,
and 100 training steps.
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Figure 6: (B) The distributions generated by HOMO are only optimized by second-order term in
the four-mode dataset (Left), five-mode dataset (Middle), and eight-mode dataset (Right). The
source distribution, π0 (brown), and the target distribution, π1 (indigo), are shown, along with the
generated distribution (pink).
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E.4 ONLY SELF-CONSISTENCY TERM

We optimize models by the sum of squared error(SSE). The source distribution and target dis-
tribution are all Gaussian distributions. For the target transport trajectory setting, we follow
the VP ODE framework from (Liu et al., 2022b), which is xt = αtx0 + βtx1. We choose
αt = exp(− 1

4a(1 − t)2 − 1
2b(1 − t)) and βt =

√
1− α2

t , with hyperparameters a = 19.9 and
b = 0.1. In the four-mode dataset, five-mode dataset, and eight-mode dataset, we all sample 100
points in each source mode and target mode. And in four-mode dataset training, we use an ODE
solver and Adam optimizer, with 2 hidden layer MLP, 100 hidden dimensions, 800 batch size, 0.005
learning rate, and 50 training steps. In five-mode dataset training, we also use an ODE solver and
Adam optimizer, with 2 hidden layer MLP, 100 hidden dimensions, 1000 batch size, 0.005 learning
rate, and 50 training steps. And in eight-mode dataset training, we use an ODE solver and Adam
optimizer, with 2 hidden layer MLP, 100 hidden dimensions, 1600 batch size, 0.005 learning rate,
and 50 training steps.
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Figure 7: (C) The distributions generated by HOMO are only optimized by self-consistency term
in the four-mode dataset (Left), five-mode dataset (Middle), and eight-mode dataset (Right). The
source distribution, π0 (brown), and the target distribution, π1 (indigo), are shown, along with the
generated distribution (pink).

E.5 FIRST ORDER PLUS SECOND ORDER

We optimize models by the sum of squared error(SSE). The source distribution and target dis-
tribution are all Gaussian distributions. For the target transport trajectory setting, we follow
the VP ODE framework from (Liu et al., 2022b), which is xt = αtx0 + βtx1. We choose
αt = exp(− 1

4a(1 − t)2 − 1
2b(1 − t)) and βt =

√
1− α2

t , with hyperparameters a = 19.9 and
b = 0.1. In the four-mode dataset, five-mode dataset, and eight-mode dataset, we all sample 100
points in each source mode and target mode. And in four-mode dataset training, we use an ODE
solver and Adam optimizer, with 2 hidden layer MLP, 100 hidden dimensions, 800 batch size, 0.005
learning rate, and 1000 training steps. In five-mode dataset training, we also use an ODE solver and
Adam optimizer, with 2 hidden layer MLP, 100 hidden dimensions, 1000 batch size, 0.005 learning
rate, and 2000 training steps. And in eight-mode dataset training, we use an ODE solver and Adam
optimizer, with 2 hidden layer MLP, 100 hidden dimensions, 1600 batch size, 0.005 learning rate,
and 2000 training steps.

E.6 SECOND ORDER PLUS SELF-TARGET

We optimize models by the sum of squared error(SSE). The source distribution and target dis-
tribution are all Gaussian distributions. For the target transport trajectory setting, we follow
the VP ODE framework from (Liu et al., 2022b), which is xt = αtx0 + βtx1. We choose
αt = exp(− 1

4a(1 − t)2 − 1
2b(1 − t)) and βt =

√
1− α2

t , with hyperparameters a = 19.9 and
b = 0.1. In the four-mode dataset, five-mode dataset, and eight-mode dataset, we all sample 100
points in each source mode and target mode. And in four-mode dataset training, we use an ODE
solver and Adam optimizer, with 2 hidden layer MLP, 100 hidden dimensions, 800 batch size, 0.005
learning rate, and 100 training steps. In five-mode dataset training, we also use an ODE solver and
Adam optimizer, with 2 hidden layer MLP, 100 hidden dimensions, 1000 batch size, 0.005 learning
rate, and 100 training steps. And in eight-mode dataset training, we use an ODE solver and Adam
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Figure 8: (A + B) The distributions generated by HOMO, optimized by first-order term and second-
order term in four-mode dataset (Left), five-mode dataset (Middle), and eight-mode dataset (Right).
The source distribution, π0 (brown), and the target distribution, π1 (indigo), are shown, along with
the generated distribution (pink).

optimizer, with 2 hidden layer MLP, 100 hidden dimensions, 1600 batch size, 0.005 learning rate,
and 100 training steps.
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Figure 9: (B + C) The distributions generated by HOMO, optimized by second-order term and self-
consistency term in four-mode dataset (Left), five-mode dataset (Middle), and eight-mode dataset
(Right). The source distribution, π0 (brown), and the target distribution, π1 (indigo), are shown,
along with the generated distribution (pink).

E.7 FIRST ORDER PLUS SELF-TARGET

We optimize models by the sum of squared error(SSE). The source distribution and target dis-
tribution are all Gaussian distributions. For the target transport trajectory setting, we follow
the VP ODE framework from (Liu et al., 2022b), which is xt = αtx0 + βtx1. We choose
αt = exp(− 1

4a(1 − t)2 − 1
2b(1 − t)) and βt =

√
1− α2

t , with hyperparameters a = 19.9 and
b = 0.1. In the four-mode dataset, five-mode dataset, and eight-mode dataset, we all sample 100
points in each source mode and target mode. And in four-mode dataset training, we use an ODE
solver and Adam optimizer, with 2 hidden layer MLP, 100 hidden dimensions, 800 batch size, 0.005
learning rate, and 1000 training steps. In five-mode dataset training, we also use an ODE solver and
Adam optimizer, with 2 hidden layer MLP, 100 hidden dimensions, 1000 batch size, 0.005 learning
rate, and 1000 training steps. And in eight-mode dataset training, we use an ODE solver and Adam
optimizer, with 2 hidden layer MLP, 100 hidden dimensions, 1600 batch size, 0.005 learning rate,
and 1000 training steps.

E.8 HOMO

We optimize models by the sum of squared error(SSE). The source distribution and target dis-
tribution are all Gaussian distributions. For the target transport trajectory setting, we follow
the VP ODE framework from (Liu et al., 2022b), which is xt = αtx0 + βtx1. We choose
αt = exp(− 1

4a(1 − t)2 − 1
2b(1 − t)) and βt =

√
1− α2

t , with hyperparameters a = 19.9 and
b = 0.1. In the four-mode dataset, five-mode dataset, and eight-mode dataset, we all sample 100
points in each source mode and target mode. And in four-mode dataset training, we use an ODE
solver and Adam optimizer, with 2 hidden layer MLP, 100 hidden dimensions, 800 batch size, 0.005
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Figure 10: (A + C) The distributions generated by HOMO, optimized by first-order term and self-
consistency term in four-mode dataset (Left), five-mode dataset (Middle), and eight-mode dataset
(Right). The source distribution, π0 (brown), and the target distribution, π1 (indigo), are shown,
along with the generated distribution (pink).

learning rate, and 1000 training steps. In five-mode dataset training, we also use an ODE solver and
Adam optimizer, with 2 hidden layer MLP, 100 hidden dimensions, 1000 batch size, 0.005 learning
rate, and 1000 training steps. And in eight-mode dataset training, we use an ODE solver and Adam
optimizer, with 2 hidden layer MLP, 100 hidden dimensions, 1600 batch size, 0.005 learning rate,
and 1000 training steps.
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Figure 11: (A + B + C) The distributions generated by HOMO in four-mode dataset (Left), five-
mode dataset (Middle), and eight-mode dataset (Right). The source distribution, π0 (brown), and
the target distribution, π1 (indigo), are shown, along with the generated distribution (pink).

F COMPLEX DISTRIBUTION EXPERIMENT

In Section F.1, we introduce the datasets used in our experiments. The analysis of results with first-
order and second-order terms in Section F.2, and we evaluate the performance with first-order and
self-consistency terms in Section F.3, assess the impact of second-order and self-consistency terms
in Section F.4. Finally, we present the overall results of HOMO with all loss terms combined in
Section F.5.

F.1 DATASETS

Here, we introduce four datasets we proposed: circle dataset, irregular ring dataset, spiral line
dataset, and spin dataset. In the circle dataset, we sample 600 points from Gaussian distribution
with 0.3 variance for both source distribution and target distribution. In the irregular ring dataset,
we sample 600 points from Gaussian distribution with 0.3 variance for both source distribution and
target distribution. In the spiral line dataset, we sample 600 points from Gaussian distribution with
0.3 variance for both source distribution and target distribution. In the spin dataset, we sample
600 points from the Gaussian distribution with 0.3 variance for both source distribution and target
distribution.
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Figure 12: The circle dataset(Left most), irregular ring dataset (Middle left), spiral line dataset
(Middle right), and spin dataset (Right most). Our goal is to make HOMO to learn a transport
trajectory from distribution π0 (brown) to distribution π1 (indigo).

F.2 FIRST ORDER PLUS SECOND ORDER

We optimize models by the sum of squared error(SSE). The source distribution and target dis-
tribution are all Gaussian distributions. For the target transport trajectory setting, we follow
the VP ODE framework from (Liu et al., 2022b), which is xt = αtx0 + βtx1. We choose
αt = exp(− 1

4a(1 − t)2 − 1
2b(1 − t)) and βt =

√
1− α2

t , with hyperparameters a = 19.9 and
b = 0.1. In the circle dataset, we all sample 400 points, both source distribution and target distri-
bution. In the irregular ring dataset, we all sample 600 points, both source distribution and target
distribution. In the spiral line dataset, we all sample 300 points, both source distribution and target
distribution. In circle dataset training, we use an ODE solver and Adam optimizer, with 2 hidden
layer MLP, 100 hidden dimensions, 800 batch size, 0.005 learning rate, and 1000 training steps.
In irregular ring dataset training, we also use an ODE solver and Adam optimizer, with 2 hidden
layer MLP, 100 hidden dimensions, 1000 batch size, 0.005 learning rate, and 1000 training steps. In
spiral line dataset training, we use an ODE solver and Adam optimizer, with 2 hidden layer MLP,
100 hidden dimensions, 1600 batch size, 0.005 learning rate, and 1000 training steps. In spiral line
dataset training, we use an ODE solver and Adam optimizer, with 2 hidden layer MLP, 100 hidden
dimensions, 1600 batch size, 0.005 learning rate, and 1000 training steps.
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Figure 13: (M1+M2) HOMO results on complex datasets with two kinds of loss: first-order and
second-order terms. The distributions generated by HOMO, in circle dataset(Left most), irregular
ring dataset (Middle left), spiral line dataset (Middle right) and spin dataset (Right most). The
source distribution, π0 (brown), and the target distribution, π1 (indigo), are shown, along with the
generated distribution (pink).

F.3 FIRST ORDER PLUS SELF-CONSISTENCY TERM

We optimize models by the sum of squared error(SSE). The source distribution and target dis-
tribution are all Gaussian distributions. For the target transport trajectory setting, we follow
the VP ODE framework from (Liu et al., 2022b), which is xt = αtx0 + βtx1. We choose
αt = exp(− 1

4a(1 − t)2 − 1
2b(1 − t)) and βt =

√
1− α2

t , with hyperparameters a = 19.9 and
b = 0.1. In the circle dataset, we all sample 400 points, both source distribution and target distri-
bution. In the irregular ring dataset, we all sample 600 points, both source distribution and target
distribution. In the spiral line dataset, we all sample 300 points, both source distribution and target
distribution. In circle dataset training, we use an ODE solver and Adam optimizer, with 2 hidden
layer MLP, 100 hidden dimensions, 800 batch size, 0.005 learning rate, and 1000 training steps.
In irregular ring dataset training, we also use an ODE solver and Adam optimizer, with 2 hidden
layer MLP, 100 hidden dimensions, 1000 batch size, 0.005 learning rate, and 1000 training steps. In
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spiral line dataset training, we use an ODE solver and Adam optimizer, with 2 hidden layer MLP,
100 hidden dimensions, 1600 batch size, 0.005 learning rate, and 1000 training steps. In spiral line
dataset training, we use an ODE solver and Adam optimizer, with 2 hidden layer MLP, 100 hidden
dimensions, 1600 batch size, 0.005 learning rate, and 1000 training steps.
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Figure 14: (M1+SC) HOMO results on complex datasets with two kinds of loss: first-order
and self-consistency terms. The distributions generated by HOMO, in circle dataset(Left most),
irregular ring dataset (Middle left), spiral line dataset (Middle right) and spin dataset (Right most).
The source distribution, π0 (brown), and the target distribution, π1 (indigo), are shown, along with
the generated distribution (pink).

F.4 SECOND ORDER PLUS SELF-CONSISTENCY TERM

We optimize models by the sum of squared error(SSE). The source distribution and target dis-
tribution are all Gaussian distributions. For the target transport trajectory setting, we follow
the VP ODE framework from (Liu et al., 2022b), which is xt = αtx0 + βtx1. We choose
αt = exp(− 1

4a(1 − t)2 − 1
2b(1 − t)) and βt =

√
1− α2

t , with hyperparameters a = 19.9 and
b = 0.1. In the circle dataset, we all sample 400 points, both source distribution and target distri-
bution. In the irregular ring dataset, we all sample 600 points, both source distribution and target
distribution. In the spiral line dataset, we all sample 300 points, both source distribution and target
distribution. And in circle dataset training, we use an ODE solver and Adam optimizer, with 2 hid-
den layer MLP, 100 hidden dimensions, 800 batch size, 0.005 learning rate, and 100 training steps.
In irregular ring dataset training, we also use an ODE solver and Adam optimizer, with 2 hidden
layer MLP, 100 hidden dimensions, 100 batch size, 0.005 learning rate, and 1000 training steps. In
spiral line dataset training, we use an ODE solver and Adam optimizer, with 2 hidden layer MLP,
100 hidden dimensions, 1600 batch size, 0.005 learning rate, and 100 training steps. In spiral line
dataset training, we use an ODE solver and Adam optimizer, with 2 hidden layer MLP, 100 hidden
dimensions, 1600 batch size, 0.005 learning rate, and 1000 training steps.
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Figure 15: (M2+SC) HOMO results on complex datasets with two kinds of loss: second-order
and self-consistency terms. The distributions generated by HOMO, in circle dataset(Left most),
irregular ring dataset (Middle left), spiral line dataset (Middle right) and spin dataset (Right most).
The source distribution, π0 (brown), and the target distribution, π1 (indigo), are shown, along with
the generated distribution (pink).

F.5 HOMO

We optimize models by the sum of squared error(SSE). The source distribution and target dis-
tribution are all Gaussian distributions. For the target transport trajectory setting, we follow
the VP ODE framework from (Liu et al., 2022b), which is xt = αtx0 + βtx1. We choose
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αt = exp(− 1
4a(1 − t)2 − 1

2b(1 − t)) and βt =
√
1− α2

t , with hyperparameters a = 19.9 and
b = 0.1. In the circle dataset, we all sample 400 points, both source distribution and target distri-
bution. In the irregular ring dataset, we all sample 600 points, both source distribution and target
distribution. In the spiral line dataset, we all sample 300 points, both source distribution and target
distribution. And in circle dataset training, we use an ODE solver and Adam optimizer, with 2 hid-
den layer MLP, 100 hidden dimensions, 800 batch size, 0.005 learning rate, and 1000 training steps.
In irregular ring dataset training, we also use an ODE solver and Adam optimizer, with 2 hidden
layer MLP, 100 hidden dimensions, 1000 batch size, 0.005 learning rate, and 1000 training steps. In
spiral line dataset training, we use an ODE solver and Adam optimizer, with 2 hidden layer MLP,
100 hidden dimensions, 1600 batch size, 0.005 learning rate, and 1000 training steps. In spiral line
dataset training, we use an ODE solver and Adam optimizer, with 2 hidden layer MLP, 100 hidden
dimensions, 1600 batch size, 0.005 learning rate, and 1000 training steps.
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Figure 16: (M1+M2+SC) HOMO results on complex datasets with three kinds of loss: first-
order, second-order, and self-consistency terms. The distributions generated by HOMO in circle
dataset(Left most), irregular ring dataset (Middle left), spiral line dataset (Middle right), and spin
dataset (Right most). The source distribution, π0 (brown), and the target distribution, π1 (indigo),
are shown, along with the generated distribution (pink).

G THIRD-ORDER HOMO

This section extends HOMO to third-order dynamics and analyzes its performance on complex syn-
thetic tasks. Section G.1 introduces the training and sampling algorithms incorporating third-order
dynamics. Section G.2 compares two trajectory parameterization strategies for high-order systems.
Section G.3 describes the 2 Round Spin, 3 Round Spin, and Dot-Circle datasets designed to test
complex mode transitions. Section G.4 provides quantitative analysis through Euclidean distance
metrics between generated and target distributions. Section G.5 evaluates the isolated impact of self-
consistency constraints. Section G.6 examines first-order dynamics coupled with self-consistency
regularization. Section G.7 studies the combined effect of first-, second-order dynamics and self-
consistency. Finally, Section G.8 demonstrates full third-order HOMO with all optimization terms,
analyzing trajectory linearity and mode fidelity under different trajectory settings.

G.1 ALGORITHM

Here we first introduce the training algorithm of our third-order HOMO:

Then we will discuss the sampling algorithm in third-order HOMO:

G.2 TRAJECTORY SETTING

We have trajectory as:

zt = αtz0 + βtz1

In original trajectory, we choose αt = exp(− 1
4a(1 − t)

2 − 1
2b(1 − t)) and βt =

√
1− α2

t , with
hyperparameters a = 19.9 and b = 0.1. And new trajectory as αt = 1 − (3t2 − 2t3) and βt =
3t2 − 2t3.

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Algorithm 5 Third-Order HOMO Training

1: while not converged do
2: x0 ∼ N (0, I), x1 ∼ D, (d, t) ∼ p(d, t)
3: βt ←

√
1− α2

t
4: xt ← αt · x0 + βt · x1 ▷ Noise data point
5: for first k batch elements do
6: ṡtruet ← α̇tx0 + β̇tx1 ▷ First-order target
7: s̈truet ← α̈tx0 + β̈tx1 ▷ Second-order target
8:

...
s true
t ← ...

αtx0 +
...
βtx1 ▷ Third-order target

9: d← 0
10: end for
11: for other batch elements do
12: st ← u1(xt, t, d) ▷ First small step of first order
13: ṡt ← u2(u1(xt, t, d), xt, t, d) ▷ First small step of second order
14: s̈t ← u3(u2(u1(xt, t, d), xt, t, d), u1(xt, t, d), xt, t, d) ▷ First small step of third order
15: xt+d ← xt + d · st + d2

2 ṡt +
d6

3 s̈t ▷ Follow ODE
16: st+d ← u1(xt+d, t+ d, d) ▷ Second small step of first order
17: ṡtargett ← stopgrad (st + st+d)/2 ▷ Self-consistency target of first order
18: end for
19: θ ← ∇θ(∥u1(xt, t, 2d)− ṡtruet ∥2

+∥u2(u1(xt, t, 2d), xt, t, 2d)− s̈truet ∥2
+∥u3(u2(u1(x, t, d), x, t, d), u1(x, t, d), x, t, d)−

...
s true
t ∥2

+∥u1(xt, t, 2d)− ṡtargett ∥2
20: end while

Algorithm 6 Third-Order HOMO Sampling

1: x ∼ N (0, I)
2: d← 1/M
3: t← 0
4: for n ∈ [0, . . . ,M − 1] do
5: x ← x + d · u1(x, t, d) + d2

2 · u2(u1(x, t, d), x, t, d) + d3

6 ·
u3(u2(u1(x, t, d), x, t, d), u1(x, t, d), x, t, d)

6: t← t+ d
7: end for
8: return x

G.3 DATASET

Here, we introduce three datasets we use: 2 Round spin, 3 Round spin, and Dot-Circle datasets. In 2
Round spin dataset and 3 Round spin dataset, we both sample 600 points from Gaussian distribution
with 0.3 variance for both source distribution and target distribution. In Dot-Circle datasets, we
sample 300 points from the center dot and 300 points from the outermost circle, combine them as
source distribution, and then sample 600 points from 2 round spin distribution.

G.4 EUCLIDEAN DISTANCE LOSS

Here, we present the Euclidean distance loss performance of four different loss terms combined
under the original trajectory setting and the new trajectory setting.

G.5 ONLY SELF-CONSISTENCY TERM

We optimize models by the sum of squared error(SSE). The source distribution and target distribu-
tion are all Gaussian distributions. For the first line, we use the original transport trajectory setting,
followed by the VP ODE framework from (Liu et al., 2022b), which is xt = αtx0 + βtx1. We
choose αt = exp(− 1

4a(1 − t)
2 − 1

2b(1 − t)) and βt =
√

1− α2
t , with hyperparameters a = 19.9
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Figure 17: The 2 Round spin dataset(Left), 3 Round spin dataset(Middle), and Dot-Circle
datasets(Right). Our goal is to make HOMO learn a transport trajectory from distribution π0
(brown) to distribution π1 (indigo).

Table 4: Euclidean distance loss of three complex distribution datasets under new trajectory
setting. Lower values indicate more accurate distribution transfer results. Optimal values are high-
lighted in Bold. And Underlined numbers represent the second best (second lowest) loss value for
each dataset (row). For the qualitative results of a mixture of Gaussian experiments, please refer to
Figure 1.

2 Round 3 Round Dot-
Loss terms spin spin Circle
SC 41.265 48.201 87.407
M1 + SC 14.926 18.376 30.027
M1 + M2 + SC 11.435 12.422 24.712
M1 + M2 + SC + M3 4.701 9.261 21.968

and b = 0.1. In 2 Round spin datasets and 3 Round spin datasets, we sample 400 points, both source
distribution and target distribution. In the Dot-Circle dataset, we sample 600 points from both source
distribution and target distribution, 300 points of source points from the circle, and another 300 from
the center dot. In 2-round dataset training, we use an ODE solver and Adam optimizer, with 2 hid-
den layer MLP, 100 hidden dimensions, 800 batch size, 0.005 learning rate, and 180 training steps.
In 3-round spin dataset training, we also use an ODE solver and Adam optimizer, with 2 hidden
layer MLP, 100 hidden dimensions, 1000 batch size, 0.005 learning rate, and 180 training steps. In
Dot-Circle dataset training, we use an ODE solver and Adam optimizer, with 2 hidden layer MLP,
100 hidden dimensions, 1600 batch size, 0.005 learning rate, and 180 training steps.

G.6 FIRST ORDER PLUS SELF-CONSISTENCY

We optimize models by the sum of squared error(SSE). The source distribution and target distribu-
tion are all Gaussian distributions. For the first line, we use the original transport trajectory setting,
followed by the VP ODE framework from (Liu et al., 2022b), which is xt = αtx0 + βtx1. We
choose αt = exp(− 1

4a(1 − t)
2 − 1

2b(1 − t)) and βt =
√

1− α2
t , with hyperparameters a = 19.9

and b = 0.1. In 2 Round spin datasets and 3 Round spin datasets, we sample 400 points in both
source distribution and target distribution. And in the Dot-Circle dataset, we sample 600 points from
both source distribution and target distribution, 300 points of sources points from the circle, and an-
other 300 from the center dot. In 2 Round dataset training, we use ODE solver and Adam optimizer,
with 2 hidden layer MLP, 100 hidden dimension, 800 batch size, 0.005 learning rate, and 1000 train-
ing steps. In 3 Round spin dataset training, we also use ODE solver and Adam optimizer, with 2
hidden layer MLP, 100 hidden dimension, 1000 batch size, 0.005 learning rate, and 2000 training
steps. And in Dot-Circle dataset training, we use an ODE solver and Adam optimizer, with 2 hidden
layer MLP, 100 hidden dimensions, 1600 batch size, 0.005 learning rate, and 10000 training steps.

G.7 FIRST ORDER PLUS SECOND ORDER PLUS SELF-CONSISTENCY

We optimize models by the sum of squared error(SSE). The source distribution and target distribu-
tion are all Gaussian distributions. For the first line, we use the original transport trajectory setting,
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Figure 18: (M1+SC) The distributions generated by HOMO are only optimized by first-order loss
and self-consistency loss. Upper row(original trajectory setting): Figure (a), in 2 Round spin
dataset. Figure (b), in 3 Round spin dataset. Figure (c), in Dot-Circle dataset. Lower row(new tra-
jectory setting): Figure (d), in 2 Round spin dataset. Figure (e), in 3 Round spin dataset. Figure (f),
in Dot-Circle dataset. The source distribution, π0 (brown), and the target distribution, π1 (indigo),
are shown, along with the generated distribution (pink).

followed by the VP ODE framework from (Liu et al., 2022b), which is xt = αtx0 + βtx1. We
choose αt = exp(− 1

4a(1 − t)
2 − 1

2b(1 − t)) and βt =
√

1− α2
t , with hyperparameters a = 19.9

and b = 0.1. In 2 Round spin datasets and 3 Round spin datasets, we sample 400 points, both source
distribution and target distribution. And in the Dot-Circle dataset, we sample 600 points from both
source distribution and target distribution, 300 points of source points from the circle, and another
300 from the center dot. In 2 Round dataset training, we use ODE solver and Adam optimizer, with
2 hidden layer MLP, 100 hidden dimension, 800 batch size, 0.005 learning rate, and 1000 training
steps. In 3 Round spin dataset training, we also use ODE solver and Adam optimizer, with 2 hidden
layer MLP, 100 hidden dimension, 1000 batch size, 0.005 learning rate, and 2000 training steps.
And in Dot-Circle dataset training, we use an ODE solver and Adam optimizer, with 2 hidden layer
MLP, 100 hidden dimensions, 1600 batch size, 0.005 learning rate, and 10000 training steps.

G.8 THIRD-ORDER HOMO

We optimize models by the sum of squared error(SSE). The source distribution and target distribu-
tion are all Gaussian distributions. For the first line, we use the original transport trajectory setting,
followed by the VP ODE framework from (Liu et al., 2022b), which is xt = αtx0 + βtx1. We
choose αt = exp(− 1

4a(1 − t)
2 − 1

2b(1 − t)) and βt =
√

1− α2
t , with hyperparameters a = 19.9

and b = 0.1. In 2 Round spin datasets and 3 Round spin datasets, we sample 400 points, both
source distribution and target distribution. In the Dot-Circle dataset, we sample 600 points, both
source distribution and target distribution, 300 points of source points from the circle, and another
300 from the center dot. In 2-round dataset training, we use an ODE solver and Adam optimizer,
with 2 hidden layer MLP, 100 hidden dimensions, 800 batch size, 0.005 learning rate, and 1000
training steps. In 3-round spin dataset training, we also use an ODE solver and Adam optimizer,
with 2 hidden layer MLP, 100 hidden dimensions, 1000 batch size, 0.005 learning rate, and 2000

35



1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

400 200 0 200 400400
300
200
100

0
100
200
300
400

HOMO optimized with
 (M1 + M2 + SC) losses

0
1

Generated

(a) (original)
(M1+M2+SC) / 2 Round

600 400 200 0 200 400 600
600

400

200

0

200

400

600

HOMO optimized with
 (M1 + M2 + SC) losses

0
1

Generated

(b) (original)
(M1+M2+SC) / 3 Round

400 200 0 200 400

400

200

0

200

400

HOMO optimized with
 (M1 + M2 + SC) losses

0
1

Generated

(c) (original)
(M1+M2+SC) / Dot-Circle

400 200 0 200 400400
300
200
100

0
100
200
300
400

HOMO optimized with
 (M1 + M2 + SC) losses

0
1

Generated

(d) (new) (M1+M2+SC) / 2
Round

600 400 200 0 200 400 600
600

400

200

0

200

400

600

HOMO optimized with
 (M1 + M2 + SC) losses

0
1

Generated

(e) (new) (M1+M2+SC) / 3
Round

400 200 0 200 400

400

200

0

200

400

HOMO optimized with
 (M1 + M2 + SC) losses

0
1

Generated

(f) (new) (M1+M2+SC) /
Dot-Circle

Figure 19: (M1+M2+SC) The distributions generated by HOMO are only optimized by first-order
loss and second order loss, and self-consistency loss. Upper row(original trajectory setting):
Figure (a), in 2 Round spin dataset. Figure (b), in 3 Round spin dataset. Figure (c), in Dot-Circle
dataset. Lower row(new trajectory setting): Figure (d), in 2 Round spin dataset. Figure (e), in 3
Round spin dataset. Figure (f), in Dot-Circle dataset. The source distribution, π0 (brown), and the
target distribution, π1 (indigo), are shown, along with the generated distribution (pink).

training steps. In Dot-Circle dataset training, we use an ODE solver and Adam optimizer, with 2
hidden layer MLP, 100 hidden dimensions, 1600 batch size, 0.005 learning rate, and 10000 training
steps.

H COMPUTATIONAL COST AND OPTIMIZATION COST

Table 5: Computational Cost Analysis of Different Configurations

Configuration FLOPs (M) Params (K) Training Speed (it/s)
M1 8.400 10.702 477.03
M2 68.480 43.608 146.34
M3 8.400 10.702 357.45
M1 + M2 16.960 21.604 248.15
M2 + SC 68.480 43.608 144.73
(Shortcut Model) M1 + SC 8.480 10.802 283.20
M1 + M2 + SC 68.480 43.608 136.46
M1 + M2 + M3 + SC 103.680 66.012 122.18

We profile computational efficiency on the Apple MacBook Air (M1 8GB) with an 8-core CPU.
Through systematic analysis, we observe three critical tradeoffs: (1) The M2 configuration demon-
strates an 8.15× FLOPs increase over M1 while achieving 4.07× parameter expansion, revealing
the fundamental FLOPs-parameters scaling relationship. (2) The self-consistency (SC) term in-
troduces minimal computational overhead, with the M2+SC configuration maintaining 144.73 it/s
versus vanilla M2’s 146.34 it/s (1.1% throughput reduction). (3) Architectural innovations yield
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Figure 20: (M1+M2+M3+SC) The distributions generated by Third-Order HOMO, optimized
by first-order loss and second-order loss, third-order loss and self-consistency loss. Upper
row(original trajectory setting): Figure (a), in 2 Round spin dataset. Figure (b), in 3 Round
spin dataset. Figure (c), in Dot-Circle dataset. Lower row(new trajectory setting): Figure (d), in
2 Round spin dataset. Figure (e), in 3 Round spin dataset. Figure (f), in Dot-Circle dataset. The
source distribution, π0 (brown), and the target distribution, π1 (indigo), are shown, along with the
generated distribution (pink).

substantial gains - the Shortcut Model (M1+SC) achieves 33.6% faster iterations than vanilla M1
(283.20 vs 477.03 it/s) with comparable parameter counts. Table 5 quantifies these effects through
comprehensive benchmarking:

Notably, our architecture maintains practical viability even for high-order extensions - the third-
order HOMO configuration (M1+M2+M3+SC) sustains 122.18 it/s despite requiring 12.34× more
FLOPs than the base M1 model. This demonstrates our method’s ability to balance computational
complexity with real-time performance requirements.

LLM USAGE DISCLOSURE

LLMs were used only to polish language, such as grammar and wording. These models did not
contribute to idea creation or writing, and the authors take full responsibility for this paper’s content.
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Figure 21: (SC ) The distributions generated by HOMO are only optimized by self-consistency loss.
Upper row(original trajectory setting): Figure (a), in 2 Round spin dataset. Figure (b), in 3 Round
spin dataset. Figure (c), in Dot-Circle dataset. Lower row(new trajectory setting): Figure (d), in
2 Round spin dataset. Figure (e), in 3 Round spin dataset. Figure (f), in Dot-Circle dataset. The
source distribution, π0 (brown), and the target distribution, π1 (indigo), are shown, along with the
generated distribution (pink).
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