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ABSTRACT

One-step shortcut diffusion models [Frans, Hafner, Levine and Abbeel, ICLR
2025] have shown potential in vision generation, but their reliance on first-order
trajectory supervision is fundamentally limited. The Shortcut model’s simplis-
tic velocity-only approach fails to capture intrinsic manifold geometry, leading to
erratic trajectories, poor geometric alignment, and instability-especially in high-
curvature regions. These shortcomings stem from its inability to model mid-
horizon dependencies or complex distributional features, leaving it ill-equipped
for robust generative modeling. In this work, we introduce HOMO (High-Order
Matching for One-Step Shortcut Diffusion), a game-changing framework that
leverages high-order supervision to revolutionize distribution transportation. By
incorporating acceleration, jerk, and beyond, HOMO not only fixes the flaws of
the Shortcut model but also achieves unprecedented smoothness, stability, and
geometric precision. Theoretically, we prove that HOMQ’s high-order supervi-
sion ensures superior approximation accuracy, outperforming first-order methods.
Empirically, HOMO dominates in complex settings, particularly in high-curvature
regions where the Shortcut model struggles. Our experiments show that HOMO
delivers smoother trajectories and better distributional alignment, setting a new
standard for one-step generative models.

1 INTRODUCTION

In recent years, deep generative models have exhibited extraordinary promise across various types of
data modalities. Techniques such as Generative Adversarial Networks (GANs) (Goodfellow et al.,
2014]), autoregressive models (Vaswani, [2017)), normalizing flows (Lipman et al., [2022)), and diffu-
sion models (Ho et al., [2020) have achieved outstanding results in tasks related to image, audio, and
video generation (Kalchbrenner et al., 2018} |Blattmann et al.; |2023). These models have attracted
considerable interest owing to their capacity to create invertible and highly expressive mappings,
transforming simple prior distributions into complex target data distributions. This fundamental
characteristic is the key reason they are capable of modeling any data distribution. Particularly,
(Lipman et al., 2022} Liu et al., 2022a) have effectively unified conventional normalizing flows with
score-based diffusion methods. These techniques produce a continuous trajectory, often referred
to as a “flow”, which transitions samples from the prior distribution to the target data distribution.
By adjusting parameterized velocity fields to align with the time derivatives of the transformation,
flow matching achieves not only significant experimental gains but also retains a strong theoretical
foundation.

Despite the remarkable progress in flow-based generative models, such as the Shortcut model (Frans
et al., |2025)), these approaches still face challenges in accurately modeling complex data distribu-
tions, particularly in regions of high curvature or intricate geometric structure (Wang et al., 2024
Hu et al.||2024c¢). This limitation stems from the reliance on first-order techniques, which primarily
focus on aligning instantaneous velocities while neglecting the influence of higher-order dynamics
on the overall flow geometry. Recent research in diffusion-based modeling (Chen| 2023} [Hang &
Gul, 2024 Lin et al., [2024) has highlighted the importance of capturing higher-order information
to improve the fidelity of learned trajectories. However, a systematic framework for incorporating
such higher-order dynamics into flow matching, especially within Shortcut models, remains an open
problem.
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In this work, we propose HOMO (High-Order Matching for One-Step Shortcut Diffusion), a revolu-
tionary leap beyond the limitations of the original Shortcut model (Frans et al.,2025)). While Short-
cut models rely on simplistic first-order dynamics, often empirically struggling to capture complex
data distributions and producing erratic trajectories in high-curvature regions, HOMO shatters these
barriers by introducing high-order supervision. By incorporating acceleration, jerk, and beyond,
HOMO not only addresses the empirical shortcomings of the Shortcut model but also achieves un-
paralleled geometric precision and stability. Where the Shortcut model falters—yielding suboptimal
trajectories and poor distributional alignment—HOMO thrives, delivering smoother, more accurate,
and fundamentally superior results.

Our primary contribution is a rigorous theoretical and empirical framework that showcases the dom-
inance of HOMO. We prove that HOMO’s high-order supervision drastically reduces approximation
errors, ensuring precise trajectory alignment from the earliest stages to long-term evolution. Empir-
ically, we demonstrate that the Shortcut model’s first-order dynamics fall short in complex settings,
while HOMO consistently outperforms it, achieving faster convergence, better sample quality, and
unmatched robustness.

The contributions of our work is summarized as follows:

* We introduce high-order supervision into the Shortcut model, resulting in the HOMO
framework, which includes novel training and sampling algorithms.

* We provide rigorous theoretical guarantees for the approximation error of high-order flow
matching, demonstrating its effectiveness in both the early and late stages of the generative
process.

* We demonstrate that HOMO achieves superior empirical performance in complex settings,
especially in intricate distributional landscapes, beyond the capabilities of the original
Shortcut model (Frans et al., 2025)).

2 RELATED WORKS

Diffusion Models. Diffusion models have garnered significant attention for their capability to gen-
erate high-fidelity images by incrementally refining noisy samples, as exemplified by DiT (Peebles
& Xie, [2023) and U-ViT (Bao et al., 2023). These approaches typically involve a forward process
that systematically adds noise to an initial clean image and a corresponding reverse process that
learns to remove noise step by step, thereby recovering the underlying data distribution in a prob-
abilistic manner. Early works (Song & Ermon, 2019; [Song et al., |2020) established the theoretical
foundations of this denoising strategy, introducing score-matching and continuous-time diffusion
frameworks that significantly improved sample quality and diversity. Subsequent research has fo-
cused on more efficient training and sampling procedures (Lu et al.,[2022} Shen et al.,[2024aib), aim-
ing to reduce computational overhead and converge faster without sacrificing image fidelity. Other
lines of work leverage latent spaces to learn compressed representations, thereby streamlining both
training and inference (Rombach et al., [2022; |Hu et al.l[2024b). This latent learning approach inte-
grates naturally with modern neural architectures and can be extended to various modalities beyond
images, showcasing the versatility of diffusion processes in modeling complex data distributions. In
parallel, recent researchers have also explored multi-scale noise scheduling and adaptive step-size
strategies to enhance convergence stability and maintain high-resolution detail in generated content
in (Lovelace et al.| |2024; [Feng et al.| 2024} Rout et al.,[2024; Jiang et al.| 2025} Luo et al.| 2024)).

Flow Matching.  Generative models like diffusion (Sohl-Dickstein et al., 2015 Ho et al., [2020;
Song et al. 2020) and flow-matching (Lipman et al., 2022} [Liu et al.l |2022a) operate by learning
ordinary differential equations (ODEs) that map noise to data. To simplify, this study leverages the
optimal transport flow-matching formulation (Liu et al.l [2022a). A linear combination of a noise
sample o ~ N(0,1) and a data point x1 ~ D defines x; = (1 — )z + tx1,vs = 1 — X9, With vy
representing the velocity vector directed from g to 1. While v, is uniquely derived from (z¢, x1),
knowledge of only x; renders it a random variable due to the ambiguity in selecting (x¢, x1). Neural
networks in flow models approximate the expected velocity o, = E[v; | a¢], calculated as an average
over all valid pairings. Training involves minimizing the deviation between predicted and empirical
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velocities:

Ug(24,t) ~ Eag 2o (Ve | 4]
LF(0) = Eagzy~p [|1U6(2e,t) — (31 — 20)|1%] - (1)

Sampling involves first drawing a noise point 2o ~ A(0, ) and iteratively transforming it into a
data point 2. The denoising ODEs, parameterized by Ug(x+,t), governs this transformation, and
Euler’s method approximates it over small, discrete time steps.

High-order ODE Gradient in Diffusion Models. Higher-order gradient-based methods
like TTMs (Kloeden & Platen, [1992) have applications far exceeding DDMs. For instance,
solvers (Djeumou et al.,|2022)) and regularization frameworks (Kelly et al.,[2020; Finlay et al., 2020)
for neural ODEs (Chen et al., 2018}; |Grathwohl et al., [2018)) frequently utilize higher-order deriva-
tives. Beyond machine learning contexts, the study of higher-order TTMs has been extensively
directed toward solving stiff (Chang & Corliss, |1994)) and non-stiff (Chang & Corliss},|1994; (Corliss
& Changl |1982)) systems.

3 PRELIMINARY

This section elaborates on the flow-matching framework, extending it to the second-order case, with
critical definitions underscored. We begin with describing the general framework of flow matching
and its second-order rectification. These concepts form the basis for our proposed method, as they
integrate first and second-order information for trajectory estimation.

Fact 3.1. Let a field x; be defined as vy = azxg + Prx1, where oy and By are functions of t, and
o, x1 are constants. Then, the first-order gradient x; and the second-order gradient ¥y can be

manually calculated as ©y = azxg + Prx1, Tt = dyxg + thl., reprectively.

In practice, one often samples (xg,z1) from (pg, 7o) and parameterizes x; (e.g., interpolation) at
intermediate times to build a training objective that matches the velocity field to the true time deriva-
tive Ty.

Definition 3.2 (Shortcut models, implicit definition from page 3 on (Frans et al 2025)). Let At =
1/128. Let x, be current field. Let t € N denote time step. Let uy(z¢,t,d) be the network to
be trained. Let d € (1/128,1/64,...,1/2,1) denote step size. Then, we define Shortcut model
compute next field x q as follow:

S xy + up (e, t,d)d  if d > 1/128,
T\ 2y + ua (24,1, 0)AL if d < 1/128.

4 METHODOLOGY

When training a flow-based model, such as Shortcut model, using only the first-order term as the
training loss has several limitations compared to incorporating high-order losses. (1) Firstly, relying
solely on the first-order term results in a less accurate approximation of the true dynamics, as it
captures only the linear component and misses important nonlinear aspects that higher-order terms
can represent. This can lead to slower convergence, as the model must implicitly learn complex
dynamics without explicit guidance from higher-order terms. (2) Additionally, while the first-order
approach reduces model complexity and the risk of overfitting, it may also limit the model’s ability to
generalize effectively to unseen data, particularly when the underlying dynamics are highly nonlin-
ear. (3) In contrast, including higher-order terms enhances the model’s capacity to capture intricate
patterns, improving both accuracy and generalization, albeit at the cost of increased computational
complexity and potential overfitting risks.

Then, we introducing our HOMO model. The intuition behind this design is to leverage high-
order dynamics to achieve a more accurate and stable approximation of the field evolution. By
incorporating higher-order losses, we aim to capture the nonlinearities and complex interactions that
are often present in real-world systems. This approach not only improves the fidelity of the model
but also enhances its ability to generalize across different scenarios.
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Definition 4.1 (HOMO Inference). Let At = 1/128. Let x; be the current field. Lett € N
denote the time step. Let uq g, (-) and ug,g,(-) denote the HOMO models to be trained. Let d €
(0,1/128,1/64,...,1/2,1) denote the step size. Then, we define the HOMO computation of the
next field x4 as follows:

T J)t—|—d-u1(l’t,t,d)+(§ 'Ug(ul(ﬂft,t,d),.rt,t,d) lde 1/1287
= 2
rrd ;vt—i—At-ul(xt,LO)—i—%~uQ(u1(;vt,t,0)7xt7t,0) ifd <1/128.

The self-consistency target is to ensure that the model’s predictions are consistent across different
time steps, which is crucial for maintaining the stability and accuracy of the model over long-term
predictions.

Definition 4.2 (HOMO Self-Consistency Target). Let uy g, be the networks to be trained. Let x;
be the current field and 44 be defined in Definition Let t € N denote the time step. Let
d € (0,1/128,1/64,...,1/2,1) denote the step size. We define the Self-Consistency target as
follows:

x?rget =uyp, ($t7 t7 d)/2 —+ U1,6, (Jit-f-d, t7 d)/2

The second-order HOMO loss is designed to optimize the model by minimizing the discrepancy
between the predicted and true velocities and accelerations. This loss function ensures that the
model not only captures the immediate dynamics but also the underlying trends and changes in the
system.

Definition 4.3 (Second-order HOMO Loss). Let x; be the current field. Let t € N denote the

time step. Let ©\""®%" be defined by Definition Let uj g, (+) and usp,(-) denote the HOMO

models to be trained. Let d € (0,1/128,1/64,...,1/2, 1) denote the step size. Let £{*° and

ZC be the observed (or numerically approxzmated) true velocity and acceleration. Let acpred =

ul,gl (24, t, 2d) denote the model prediction of the first-order term. Then, we define the HOMO Loss
as follows:

L(91,92) - [62 1,01 (xtv true)} + EMQ 2,02,01 (xt’ true)] + E[”ul 01 (mtvt 2d) target”2]

We define
Ua1.0, (w4, 87 = [|uyg, (20, 1, 2d) — &2,
039050, (20, E) 1= |ug., (37 pred ¢ 9q) — jirue||2
b, B84 =, (1, 2d) — 0755 2
and

6(91,92) (xta xztfrue) = 62,1,91 (:Ct’ x;rue) + 6272,92,91 (xtv chrue) + Lselfe (xta xzarget)
Remark 4.4 (Simple notations). For simplicity, we denote first-order matching as M1, which im-
plies that HOMO is optimized solely by the first-order loss {3 1 ¢, (x4, £§™¢). Second-order matching

is denoted as M2, where HOMO is optimized only by the second-order loss 02,2.0,.0, (x4, Ziue). We

refer to HOMO optimized solely by the self-consistency loss as SC, denoted by lsosc (4, xidrget)

Combinations of M1, M2, and SC are used to indicate HOMO optimized by corresponding com-
binations of loss terms. For example, (M1 + M2) denotes HOMO optimized by both first-order
and second-order terms, while (M1 + M2 + SC) represents HOMO optimized by the first-order,
second-order, and self-consistency terms.

5 THEORETICAL ANALYSIS

In this section, we will introduce our main result, the approximation error of the second order flow
matching. The theory for higher order flow matching is deferred to Section D}

We first present the approximation error result for the early stage of the diffusion process. This
result establishes theoretical guarantees on how well a neural network can approximate the first and
second order flows during the initial phases of the trajectory evolution.
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Algorithm 1 HOMO Training

1: procedure HOMOTRAINING(A, D, p, k)

2: > Parameter 6 for HOMO model v and us.

3 > Training dataset D
4: > Stepsize and time index distribution p

5: > Batch size k

6 while not converged do

7 2o ~N(0,1),21 ~ D, (d,t) ~p

8: ﬁt «— 1-— Oé%

9: Ty oy - xg + B -1 > Noise data point
10: for first £ batch elements do
11: ST g + thl > First-order target
12: tr‘m — Grxo + B > Second-order target
13: d 0
14: end for
15: for other batch elements do
16: st up(xy, t,d) > First small step of first order
17: $t + ug(uy (2, t,d), x, t, d) > First small step of second order
18: Tiyg — Tt +d-s¢+ d—;ét > Follow ODE
19: Styd < U1 (Tpra,t +d,d) > Second small step of first order
20: §5778° « stopgrad (s; + s¢44)/2 > Self-consistency target of first order
21: end for
22: 0 < Vo(|lui(ze,t,2d) — s8¢ ||?

+|uz (ug (w4, t, 2d), x4, t, 2d) — 589¢|2
+lun (0,8, 2d) — 3,75|2)

23: end while
24: return ¢
25: end procedure

Algorithm 2 HOMO Sampling

1: procedure HOMOSAMPLING(6, M)

2: > Parameter 6 for the HOMO model u©; and us
3 > The number of sampling steps M
4: x ~N(0,1)

5: d<+~1/M

6: t+«0

7 forn e [0,...,M — 1] do

8: xe:z:+d'u1($,t,d)+%-uz(ul(x,t,d),z,t,d)
9: tet+d

10: end for

11: return x

12: end procedure

Theorem 5.1 (Approximation error of second order flow matching for small ¢, informal version
of Theorem [D.1). Let N be a value associated with sample size n. Let Ty := N~ and T,

N — 5= where Ry, ki, § are some parameters. Let s be the order of smoothness of the Besov space
that the target distribution belongs to. Under some mild assumptions, there exist neural networks
d)l, ¢o from a class of neural networks such that, for suﬁ‘iciently large N, we have [(||¢1(z,t) —

@3 + (g2 (x,t) — & e(3)pe(2)d < (67 log N + BF)N ™74 + Eq, ~p,[||47 — £§7°|13] holds
Sor any t € [Ty, 3T.]. In addition, ¢1, ¢2 can be taken so we have lo1(-, ) |looc = O(Jt|\/1ogn +

18e); 1625 ) lloo = O(ls|v/I0g T + [Be))-

Next, we present the approximation error result for the later stages, confirming that the second-order
flow matching remains effective throughout the generative process.
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Theorem 5.2 (Approximation error of second order flow matching for large ¢, informal version of
Theorem . Let N be a value associated with sample size n. Let Ty := N —Ro qnd T, =

-1
N - £ d_6 where Ry, k,d are some parameters. Let s be the order of smoothness of the Besov
space that the target distribution belongs to. Fix t. € [Ty, 1] and let n > 0 be arbitrary. Under
some mild assumptions, there exists neural networks ¢1, ¢2 from a class of neural networks such that

Sl (@, t) = a3 + |92, t) = & |3)pe(2)dz S (67 log N + BF)N " + Eqyop, [[[ 7€ —
#°||2] holds for any t € [2t.,1]. In addition, ¢1, ¢ can be taken so we have
161(,)lloe = O(||log N + |54,
[62(:,)[loc = O(|cte|log N + |B¢]).

Overall, these two results demonstrate the effectiveness across different phases of the generative
process.

6 EXPERIMENTS

This section presents a series of experiments to evaluate the effectiveness of our HOMO method
and assess the impact of each loss component. Our results demonstrate that HOMO significantly
improves distribution generation, with the high-order loss playing a key role in enhancing model
performance.
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Figure 1: The first row shows the initial eight-mode dataset (a) and the results of HOMO optimized
with first-order loss (M1), second-order loss (M2), and self-consistency loss (SC) Figures (b-d). The
second row presents combinations of losses: M1+M2 (e), M1+SC (f), M2+SC
(g), and M1+M2+SC (Ours) (h). Quantitative results are shown in TableEl

6.1 EXPERIMENT SETUP

We evaluate HOMO on a variety of data distributions and different combinations of losses. We
would like to restate that the HOMO with first order loss and self-consistency loss is equal to the
original One-step Shortcut model 2025), i.e., M1+SC. Furthermore, M1+M2+SC and
M1+M2+M3+SC are our proposed methods.



Under review as a conference paper at ICLR 2026

Table 1: Euclidean distance loss on Gaussian datasets.

Lower values indicate more accurate

distribution matching. Optimal values are in Bold, with Underlined numbers representing second-
best results. For qualitative results, please refer to Figure

400

Losses | Four mode (]) | Five mode (|) | Eight mode (|)
M1 2.759 3.281 3.321

M2 11.089 6.554 10.830

SC 6.761 10.893 7.646

M1 + M2 0.941 1.097 0.977

M2 + SC 8.708 9.212 4.801

M1 + SC (Frans et al.,[2025) 0.820 1.067 1.084

M1 + M2 + SC (Ours) 0.809 0.917 0.778

HOMO optimized
with (M1 + M2) losses

HOMO optimized
with (M1 + SC) losses

00 with (M2 + SC) losses

HOMO optimized
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Figure 2: HOMO on complex datasets (Spin). Results of HOMO optimized with various loss
combinations: M1+M2 (a), M1+SC (Frans et al.l 2025) (b), M2+SC (c), and M14+M2+SC (Ours)

(d). Quantitative results are in Table

Table 2: Euclidean distance loss on complex datasets. Lower values indicate better distribution
matching. For qualitative results of complex distribution experiments, please refer to Figure [2| and

Figure T3] [T4] [15] [T6]

Losses | Circle (1) | Irregular () | Spiral () | Spin (})
M1 + M2 0.642 0.731 7.233 31.009
M1 + SC 0.736 0.743 3.289 12.055
M2 + SC 7.233 0.975 10.096 50.499
M1 + M2 + SC 0.579 0.678 1.840 10.066

For the distribution dataset, in the left-most figure of Figure[I] we show an example of an eight-mode
Gaussian distribution. The source distribution 7y and the target distribution 7 are constructed
as mixture distributions, each consisting of eight equally weighted Gaussian components. Each
Gaussian component has a variance of 0.3. This setup presents a challenging transportation problem,
requiring the flow to handle multiple modes and cross-modal interactions.

We implement HOMO according to three kinds of losses: the first-order loss {5 1 g, (24, £i™°), the
second-order 10ss /2.9 g, 9, (1, #""¢), and the self-consistency 10ss fseise (24, 24%°"). Following
Remark .4] we use M1, M2 and SC to denote three kinds of losses, respectively. For all experi-
ments, we optimize models by the sum of squared error. For the target transport trajectory setting,
we follow the VP ODE framework from (Liu et al.,[2022b)), which is z; = azxq + Brx1. We choose

oy = exp(—a(l —t)? — 3b(1 — t)) and B; = \/1 — o}, witha = 19.9 and b = 0.1.

6.2 MIXTURE OF GAUSSIAN EXPERIMENTS

We analyze the performance of HOMO on Gaussian mixture datasets (Liang et al.l [2024e) with
varying modes (four, five, and eight). The most challenging is the eight-mode distribution, where
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HOMO with all three losses (M1+M2+SC) produces the best results, achieving the lowest Euclidean
distance. The eight-mode Gaussian mixture distribution dataset (Figure (a) ) contains eight Gaus-
sian distributions whose variance is 0.3. Eight source mode (brown) positioned at a distance Dy = 6
from the origin, and eight target mode (indigo) positioned at a distance Dy = 13 from the origin,
each mode sample 100 points. HOMO optimized with M1+M2+SC losses is the only model that
can accurately learn the target eight-mode Gaussian distribution, achieving high precision as evi-
denced by the lowest Euclidean distance loss among all tested configurations. We emphasize the
importance of the second-order loss. Without it, the model struggles to accurately capture finer
distribution details (Figure E] (f)). However, when included, the model better matches the target
distribution (Figure[I] (h)).

We further analyze how each loss contributes to the final performance of the HOMO. (1) The first-
order loss enables HOMO to learn the general structure of the target distribution, but it struggles to
capture finer details, as shown in Figure [T| (b) and Figure[I](g). (2) The second-order loss can lead
to overfitting in the target distribution, as shown in Figure[I[c). When used alone, the second-order
loss may cause the model to focus too much on details and lose sight of the broader distribution.
(3) The self-consistency loss enhances the concentration of the learned distribution, as shown in
Figure |1| (d). Without the self-consistency loss, as shown in Figure [1| (e), the learned distribution
becomes sparser.

6.3 COMPLEX DISTRIBUTION EXPERIMENTS

In this section, we conduct experiments on datasets with complex distributions, where we expect our
HOMO model to learn the transformation from a regular source distribution to an irregular target
distribution. We first introduce the dataset used in Figure[2] In the spin dataset, we sample 600 points
from a Gaussian distribution with a variance of 0.3 for both the source and target distributions. The
second-order loss is essential for accurate fitting, particularly for irregular and spiral distributions.
We emphasize the critical role of the second order loss in the success of our HOMO model for
learning complex distributions. As demonstrated in Figure 2] (b), the original shortcut model, which
includes only first-order and self-consistency losses, fails to accurately fit the outer circle distribu-
tion. In contrast, the result of our HOMO model, shown in Figure E] (d), illustrates that adding the
second-order loss enables the model to generate points within the outer circle. This highlights the
importance of the second-order loss in enabling the model to learn more complex distributions. We
have also performed experiments with HOMO optimized using each loss individually, as well as on
other distribution datasets. Due to space limitations, we refer the reader to Section and
for further details.

6.4 THIRD-ORDER HOMO

Table 3: Euclidean distance loss of three complex distribution datasets under original trajec-
tory setting. Lower values indicate more accurate distribution transfer results. For the qualitative
results , please refer to Figure E}

Loss terms | 2 Round Spin () | 3 Round Spin (}) | Dot-Circle ({)
SC 59.490 50.981 89.974
M1 + SC (Frans et al., |2025) 17.866 23.606 37.550
M1 + M2 + SC (Ours) 9.417 13.085 30.679
M1 + M2 + SC + M3 (Ours) 7.440 10.679 26.819

As discussed in previous sections, second-order HOMO has shown great performance on various
distribution datasets. Therefore, in this section, we further investigate the performance of HOMO
for adding an additional third-order loss. We use the same datasets as discussed in previous sections.
Namely, they are 2 Round spin, 3 Round spin, and Dot-Circle datasets. The qualitative results from
the experiments (Figure[3) demonstrate that the additional third-order loss enables HOMO to better
capture more complex target distributions. For instance, the comparison between Figure |3|(c) and
Figure [3] (d), as well as between Figure [3] (g) and Figure 3] (h), illustrates how the third-order loss
enhances the model’s ability to fit more intricate distributions. These findings are consistent with
the quantitative results presented in Table [3| By capturing higher-order interactions, the model is
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Figure 3: We present the third-order HOMO results in three kinds of complex datasets. From
left to right, we present results of HOMO optimized with different kinds of losses. A quantitative
evaluation is presented in Table@

better equipped to understand and adapt to the intricate relationships within the data, leading to more
accurate and robust learning. This approach underscores the value of enriching the model’s training
objective to handle the complexities inherent in real-world data distributions.

7 CONCLUSION

In this work, we introduced HOMO , which incorporates high-order dynamics into the training and
sampling processes of Shortcut models. By leveraging high-order supervision, our method signifi-
cantly enhances the geometric consistency and precision of learned trajectories. Theoretical analyses
demonstrate that high-order supervision ensures stability and generalization across different phases
of the generative process. These findings are supported by extensive experiments, where HOMO
outperforms original Shortcut models (Frans et al., [2025)), achieving more accurate distributional
alignment and fewer suboptimal trajectories. The integration of high-order terms establishes a new
style for geometrically-aware generative modeling, highlighting the importance of capturing higher-
order dynamics for accurate transport learning. Our results suggest that high-order supervision is a
powerful tool for improving the fidelity and robustness of generative models.
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Appendix

Roadmap. In Section[A] we introduce the Shortcut Model Training and Sampling Algorithm. Sec-
tion B discusses related works that inspire our approach. Section [C]states the tools from (Fukumizu
et al., [2024) used in our analysis. Section [D]explores the theory behind Higher-Order Flow Match-
ing. Section [E] investigates the impact of different optimization terms through empirical ablation
studies. Section [F] examines model performance on complex distribution experiments. Section
extends HOMO to third-order dynamics and evaluates its effectiveness on complex tasks. Section|H]
quantifies the computational and optimization costs associated with different configurations.

A ORIGINAL ALGORITHM

Here we introduce Shortcut Model Training and Sampling Algorithm from Page 5 of (Frans et al.,
2025)

Algorithm 3 Shortcut Model Training from page 5 of (Frans et al.,[2025)

1: while not converged do

2: o NN(O,I),JBl ~ D, (d,t) ~p(d,t)

3: xp (1 —t)xg + tay > Noise data point
4: for first k batch elements do

5: Starget < T1 — T > Flow-matching target
6: d+ 0

7: end for

8: for other batch elements do

9: st uy (g, t,d) > Fitst small step
10: Tigd < Tt + Sed > Follow ODE
11: Sttd — U1 (xpta,t +d,d) > Second small step
12: Starget < stopgrad (s; + s¢4q)/2 > Self-consistency target

13: end for
14: 0 <~ Vg”ul (l’t, t, 2d) — Stargct”z
15: end while

Algorithm 4 Shortcut model. Sampling from page 5 of (Frans et al., [2025])

z ~N(0,1)

d<«1/M

t<+0

forn e 0,...,M — 1] do
x—x+d-ui(x,t d)
t—t+d

end for

return x

PRI AR

B MORE RELATED WORK
In this section, we discuss more related work that inspires our work.

Large Language Models. Neural networks built upon the Transformer architecture (Vaswani
et al.l 2017) have swiftly risen to dominate modern machine learning approaches in natural lan-
guage processing. Extensive Transformer models, trained on wide-ranging and voluminous datasets
while encompassing billions of parameters, are often termed large language models (LLM) or foun-
dation models (Bommasani et al., [2021). Representative instances include BERT (Devlin et al.,
2019), PaLM (Chowdhery et al., 2022), Llama (Touvron et al., 2023), ChatGPT (OpenAll |2024),
GPT4 (OpenAl, [2023), among others. These LLMs have showcased striking general intelligence
abilities (Bubeck et al., [2023) in various downstream tasks. Numerous adaptation methods have
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been developed to tailor LLMs for specific applications, such as adapters (Hu et al.l 2022; Zhang|
et all 2023} [Gao et al. 20234} [2023)), calibration schemes (Zhao et al.,[2021} Zhou et al.
2023), multitask fine-tuning (Gao et al.| [2021a} [Xu et al, 2023}, [Von Oswald et al., 2023}, [Xu et al.
2024), prompt optimization (Gao et al., [2021b} [Lester et al., [2021), scratchpad approaches (Nye]
et al.,[2021), instruction tuning (Li & Liang| [2021; |Chung et al., 2022} [Mishra et al., [2022), symbol

tuning (Wei et al., 2023), black-box tuning (Sun et al., [2022), and reinforcement learning from hu-
man feedback (RLHF) (Ouyang et al.} [2022). Additional lines of research endeavor to boost model

efficiency without sacrificing performance across diverse domains, for example in (Deng et al}
Song et al.l [2023;Gao et al., [2023cfefd; Bian et al., 2023} Deng et al.l 2023} [Gao et al.,[2023b}, [Shri-|
vastava et al., 2023} |Qin et al.| 2023} (Chen et al., [2024c; [Li et al., 2024d; Chen et al., 2024b; [Liang
et al.,2024c; Chen et al.,[2024a; [Liang et al.| 2024bidfa; [Li et al., [2024a:c; (Cao et al.| 2024} [Li et al.}
2024b; |Chen et al., 2024eid; [Ke et al.|[2024; [2025azb; [Li et al., 2025} Hu et al., 2024a).

C TooLS FROM PREVIOUS WORKS

We state the tools in (Fukumizu et al.| [2024) that we will use to prove our main results.

C.1 DEFINITIONS OF BESOV SPACE

Definition C.1 (Modulus of Smoothness). Let  be a domain in R%. For a function f € L¥ (Q)
with p' € (0, 00, the r-th modulus of smoothness of f is defined by

wrp (fi1) = sup [[AL(H)]p

Al <t

where the finite difference operator A} (f)(x) is given by

E;:o (;)(—1)T_jf(x + jh), ifx + jh € Qforallj,

0, otherwise.

AR(f)(x) = {

Definition C.2 (Besov Seminorm). Let 0 < p’, ¢’ < oo, s > 0, and set r := |s| + 1. The Besov
seminorm of f € ¥ (Q) is defined as
1
|f|Bs = (fooo(t_swr,p’(fu t))q %) ! ) ql < 0,
n SUPy~o t *Wr,pr (f:1), q' = oc.

Definition C.3 (Besov Space). The Besov space B, ., (Q) is the function space equipped with the
norm

1Bz, = Il + 1 flBs, s
It consists of all functions | € LPI(Q) such that
B (@)= (£ € I (@) | If]lm, , < .

Remark C.4. The parameter s governs the degree of smoothness of functions in By, q/(Q). In

particular, when p" = q' and s is an integer, the Besov space B, () coincides with the standard
Sobolev space of order s. For further details on the properties and applications of Besov spaces, see

1992).
C.2 B-SPLINE

Definition C.5 (Indicator Function). Let N'(x) be the characteristic function defined by

vy = b zeb)

Definition C.6 (Cardinal B-Spline). For £ € N, the cardinal B-spline of order { is defined by
Ne(z) :=N « N x5 N(x),
—_—

{+1times

otherwise.
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where x denotes the convolution operation. Explicitly, the convolution of two functions f,g : R — R

is given by
(F+9)@) = [ 1= vay

Thus, Ny¢(x) is obtained by convolving N with itself (¢ + 1) times.

Definition C.7 (Tensor Product B-Spline Basis). For a multi-index k € N'* and j € 7%, the tensor
product B-spline basis in R? of order ( is defined as

M (= HM T = Ji)-

This basis is constructed as the product of univariate B-splines, scaled and translated according to
the parameters k and j.

Definition C.8 (B-Spline Approximation in Besov Spaces in (Suzuki, [2019; |Oko et al., 2023)). A
Sfunction f in the Besov space can be approximated using a superposition of tensor product B-splines

as
_ d
= Z ak,ij,j(x)
(k.5)
where the summation is taken over appropriate index sets (k, j), and the coefficients oy, ; are real
numbers that determine the contribution of each basis function.

C.3 CLASS OF NEURAL NETWORKS

Definition C.9 (Neural Network Class in (Fukumizu et al., [2024)). Let L € N denote the depth
(number of layers), W = (W1, Wa, ..., Wri1) € NETL the width configuration of the network,
S € Na sparsity constraint, and B > 0 a norm bound. The class of neural networks M (L, W, S, B)
is defined as

M(L,W, S, B) == { $ham) px) 0+ 01y (AD 2 + b )ym|AD € RWirrxWi p(0) ¢ RWisr,
L

(i) @) < @) D) <
>4+ 16000) < 8. ma, (147 e v 1001} < B

Here, the function 1 4 : RWi — RWi+1 represents the affine transformation with ReLU activation,
given by

Yap(z) = A-ReLU(2) +b, where RelLU(z)=max{0,z}.
The sparsity constraint ensures that the total number of nonzero entries in all weight matrices and

bias vectors does not exceed S, while the norm constraint limits their maximum absolute values to
B.

C.4 ASSUMPTIONS

Remark C.10. We introduce a small positive constant § > 0 and denote by N the number of basis
functions in the B-spline used to approximate pi(x). The value of N is determined by the sample

size n, specifically following the relation N = nﬁ which balances the approximation error and
the complexity of both the B-spline and the neural network.

Deﬁnltlon C.11 (Stopping Time). As we introduce in Remark[C.10} we define the stopping time as
To = N~Fo, where Ry is a parameter to be specified later, and conszder solving the ODE backward
in time from t = ldowntot ="1Tj.

Definition C.12 (Reduced Cube). Let I? = [—1,1]% denote the d-dimensional cube. To mitigate
boundary effects when N is large, we define the reduced cube as
Iﬁ; — [71 + Nf(lfmé)’ 1— N7(1755)}d7

where the parameter . > 0 will be specified later in Assumption[C.13)|
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Assumption C.13 (Smoothness and support of pg). The target probability Py has support contained
in I%, and its probability density function pg satisfies

po € By o (IY) and pg € Bgl’q, (I“\ 1) with 3> max{6s—1,1}.
Assumption C.14 (Boundedness away from 0 and above). There exists a constant Cy > 0 such that
C’O_1 <po(z) <Cy forall ze€ Ie.

Assumption C.15 (Form of (o, ;) and their bounds). There are constants k > % bop >0,k >0,
and by > 0 such that, for sufficiently small t > T,

oy = bo,t", and 1-— 3 :EO,tE.
Moreover, there exist Dy > 0 and Ko > 0 such that V't € [Ty, 1], we have
Dyl <ai+ 87 < Do, |ou|+ ] < N¥o.

Assumption C.16 (Additional bound in the critical case k = 3). If & = 3, then there exist by > 0

and D1 > 0 such that, for all 0 < v < Ry,

N*’Y
| (@02 + Gy < Duftog ).
To

Assumption C.17 (Lipschitz bound on the first moment). There is a constant C'r, > 0 such that, for
allt € [Ty, 1],

0
15 [ wpitola)dylon < o

C.5 APPROXIMATION ERROR FOR SMALL ¢

Lemma C.18 (Theorem 7 in (Fukumizu et all, [2024). Under Assumptions [C.13|[C.14[C.13|[C.16
and[C-I7] and if the following holds

« L =0(log* N).

W]l = O(Nlog° N)

S =O(Nlog® N)
* B =exp(O(log N loglog N)).
Then there exists a neural network ¢ € M(L, W, S, B) such that, for sufficiently large N, we have
[ 196.8) = i [pu(o)ds S (@310 N + )N,
holds for any t € [Ty, 3T.). In addition, ¢ can be taken so we have
160+ t)lloe = O(lée|\/log n + [¢]).-
C.6 APPROXIMATION ERROR FOR LARGE

Lemma C.19 (Theorem 7 in (Fukumizu et al., 2024)). Fix t. € [T\, 1] and let 1 > 0 be arbitrary,
under Assumptions|C.13|[C.14|[C.13|[C.16|and[C.17 and if the following holds

« L =0(log* N).
[Wlloe = O(N)
S = O(t; 9" N°*)

* B =exp(O(log N loglog N)).
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Then there exist a neural network ¢ € M(L, W, S, B) such that
[ 196.8) = i Pputa)de S (63 1og N + GHN

holds for any t € [2t.,1]. In addition, ¢ can be taken so we have

160+ t)lloo = O(lére| log N + |Be).

D THEORY OF HIGHER ORDER FLOW MATCHING

We use (?tk x¢ to denote the k-th order derivative of z{™° with respect to ¢. Note that £{™¢ :=
d ,.true strue . d® true
T ¢, and Ty 1= gmwy

D.1 APPROXIMATION ERROR OF SECOND ORDER FLOW MATCHING FOR SMALL ¢

Theorem D.1 (Approximation error of second order flow matching for small ¢, formal version of

Theorem[5.1). Under Assumptions[C13|[C-I4[C.I3|[C-16|and[C17} and if the following holds
« L=0(log*N).

IWlls = O(Nlog° N)

S = O(Nlog®N)
* B =exp(O(log N loglog N)).

Then there exists neural networks ¢1, pa € M(L, W, S, B) such that, for sufficiently large N, we
have

J10r(,0) = 5718 + onlat) = 5 (o)
S (@flog N+ FNTF + B [[l47™ — |13
holds for any t € [Ty, 3T.]. In addition, ¢1, ¢2 can be taken so we have
161(+t)lloo = O(|ée|v/Togn + [B:]) and [|g2(-,1)]| o = O(léue|/logn + |Bi]).
Proof. Suppose that t € [T, 3T%]. By Lemma there is ¢1 € M(L, W, S, B) such that
J01.t) = 557 Bpita) S (6 log N + 52N @
Next, we can show that there exists some ¢o € M(L, W, S, B) such that
[ ll0atant) = & Bputaido = [ loaat) - a4+ aim = 5 pu(o)da
< / (lg2(x, t) — ||z + |45 — &°12)2pe (x)da
< / 2, £) — #13 + |4 — #42)py () de
=2 [ foalan ) 55 Bpr(a)do +2 [ 67— & (o) da
=2 [ fjoa(a.t) — a7 p(o)de + 2B, ([ — 53

S (6flog N+ FHN"F + E [l = el 3] 3)
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where the first step follows from the basic algebra, the second step follows from the triangle inequal-
ity, the third step follows from (a + b)? < 2a® + 202, the fourth step follows from basic algebra, the
fifth step follows from the definition of expectation, and the last step follows from Lemma[C.18]

Finally, by Eq. (Z) and Eq. (@), for any ¢ € [Tp, 3T.], we have

/ (161 () — 512 + o, £) — 27 [2)pe(2)de

< (6flog N+ G))N"4 + E [l = e 3]

Moreover, by Lemma[C.18] ¢1, ¢2 can be taken so we have

61, ) [loo = O(ldu|\/logn + |B]) and [|¢2(-,#)]oc = O(|6[v/logn + |Be).
Thus, the proof is complete. O
D.2 APPROXIMATION ERROR OF HIGHER ORDER FLOW MATCHING FOR SMALL ¢

Theorem D.2 (Approximation error of higher order flow matching for small t). Under Assump-

tions[C.13|[C.14|C.13|[C.16|and[C.17) and if the following holds
« L =0(log* N).

* [Wlle = O(N log" N)

+ S=0O(Nlog® N)

« B = exp(O(log N loglog N))
« K=0(1)

Then there exists neural networks ¢1, ¢s, ..., 0 € M(L, W, S, B) such that, for sufficiently large
N, we have

/Zum (@) = i By (o)

K-—1 dk+1

_L rue rue
S@HogN + BN H 4 30 E (10 g - S ey
k=1

holds for any t € [Ty, 3T.). In addition, for any k € [K]|, ¢y can be taken so we have
165 8)lloo = O(ldu|V/log n + |52

Proof. We first show that for any k > 2, for any ¢t € [T}, 37|, there exists ¢ € M(L, W, S, B)
such that

dk:
166,00~ S lmos

Qi+
true” ] (4)

k
. N-Z% ru
< (67 log N + Bt ¢ Z ; - dp+1

~Pt dtJ

We prove this by mathematical induction.
Base case. The statements hold when k = 2 because of Lemma[D.1]

Induction step. We assume that the statement hold for k£ > 2. We would like to show that it holds
for k + 1. We can show that, for any ¢ € [Tp, 37%], there exists ¢ € M(L, S, W, B) such that

[J166.0) = Sz mas
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d* ¢ d* . dr+t . )
T T T
= [ 16(0.0) = St + fpain = St pu(e)da

dk . dk . dk +1 .
< [(6(.0) ~ Sratla+ I ) 2 — ™) (@) da

dk t t dk+1 t 2
< [2(1ota0) - i w4 | St - dtkﬂxtmenapt(x)dx

tr T dk+1 T
=2 (6.0 - 5 i s Bpaiae +2 [ 15 i A e )

ruc rue dk+1 rue

=2 [ lota,t) - SgeiBpe)ds +2 B, (| 5708 - frai™lB

k .

——S rue dj+l rue rue dk+ rue
S @FlogN + FINF + 3 B (S atme - D pmeygyy g (g e S
j=1
. e k+1 d-]+1

= (G0N 4 BN + 30 E [ agme - T ey B

J

where the first step follows from basic algebra, the second step follows from triangle inequality, the
third step follows from the Cauchy-Schwarz inequality, the fourth step follows from basic algebra,
the fifth step follows from the definition of expectation, the six step follows from Eq. (@).

Hence, there exists ¢1, ¢o, ..., ¢x € M(L, W, S, B) such that for k € [K], for any t € [Ty, 3T%],
we have

dk
[llon@ )~ Gratrlmos

k: .
il —L rue dj+ rue
S(6flogN+BN"T +3 | E || = i S lB) (6)
j=1
Taking the summation over k € [K], we have for any ¢ € [Tp, 3T,
/ant & aime (o)
K .
——9 rue /Tt rue
SK- G0N + BN 4 3 (k- B (|5 gt - Uy
k=1
< —2* - pirue d true||2
S ((@)?log N+ (B )N + 3 | E | dtﬂ T - g2
k=1

where the first step follows from Eq. (6), and the second step uses K = O(1).
Moreover, by Lemma|C.19} ¢1, ¢2, ..., ¢k can be taken so we have for k € [K],

6k (-, t)loo = O] log v/m + |Be]).
Thus, the proof is complete. O
D.3 APPROXIMATION ERROR OF SECOND ORDER FLOW MATCHING FOR LARGE ¢

Theorem D.3 (Approximation error of second order flow matching for large ¢, formal version of
Theorem[5.2). Fixt, € [T\, 1] and let n > 0 be arbitrary, under Assumptions|C.13||C.14|C.15||C.16]
and[C17} and if the following holds

« L =0(log* N).
* [Wl]leo = O(N)
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o S = O(t; " N°*)
* B =exp(O(log N loglog N)).
Then there exist neural networks ¢1, oo € M(L, W, S, B) such that
[ 10100 = 518 + gn(at) = 5 (o)
< @7 log N + AN+ B [ — a3
holds for any t € |2t.,1]. In addition, 1, ¢ can be taken so we have
161, )lloc = O(léve| log N + |B:]) and [|g2 (-, t)[los = O(|de|log N + |By]).

Proof. Suppose that ¢ € [2t,,1]. By Lemma|[C.19] there is ¢ € M(L, W, S, B) such that
[J1010,8) = 557 () < (@ log N + BN Q
Next, we can show that there exists some ¢o € M(L, W, S, B) such that
[ ls(a.t) = v Bmtords = [ foalet) — a1 4 a3 - 53y (a)do
< /(Hsz(x,t) — a2 (| — E2) e () dar
< [ 2(léalt) - a3l + i - 2 R )pu(e)do
=2 [ fjoal.t) - i o)t + 2 [ o = 2 ()

=2 [ fjoa(a.t) — a7 pu(o)de + 2 B, (| — 51
< (@F10gN + BN+ E [ — |3 ®

where the first step follows from the basic algebra, the second step follows from the triangle inequal-
ity, the third step follows from (a + b)? < 2a? + 2b2, the fourth step follows from basic algebra, the
fifth step follows from the definition of expectation, and the last step follows from Lemma[C.19]

Finally, by Eq. (7) and Eq. (8), we have
/ (161 (s ) — ] + o, £) — #7[2)py () de

S @FlogN + BN+ E, [ — 3|,

Moreover, by Lemma[C.19] ¢1, ¢2 can be taken so we have

[¢1()lloe = O(|du|log N +[B]) and [[¢a(:,t)]lec = O(lcve|log N + |B1]).
Thus, the proof is complete. O
D.4 APPROXIMATION ERROR OF HIGHER ORDER FLOW MATCHING FOR LARGE ¢

Theorem D.4 (Approximation error of higher order flow matching for large ¢). Fix t. € [T, 1] and
let n > 0 be arbitrary, under Assumptions|C.13|C.I14[C.I3|C.16|and[C.17 and if the following holds

« L =0(log* N).
* [Wllse = O(N)
« S =0t Nw)
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* B =exp(O(log N loglog N))
c K=0(1)
Then there exist neural networks ¢1, ¢a, ..., 0x € M(L,W, S, B) such that,

K met et Ppu()dr

K-1

DL e
S@HoEN + N+ 3 B [lgzat™ - Geat™ I
holds for any t € [2t., 1]. In addition, for any k € [K], ¢y can be taken so we have

165, )loc = O(|de| log N + [B4]).-

Proof. 'We first show that for any k > 2, for any ¢ € [2t,, 1], there exists ¢ € M(L, W, S, B) such
that

[l196a.t) = Sai ot

k .
d rue
S (a7 10gN—|—ﬂt)N ?7_|_Z dtJ e —

d]Jr rue
i) ©)

We prove this by mathematical induction.
Base case. The statements hold when k = 2 because of Lemma[D.3]

Induction step. We assume that the statement hold for £ > 2. We would like to show that it holds
for k + 1. We can show that, for any ¢ € [2t,, 1], there exists ¢ € M(L, S, W, B) such that

dr+1
[ 166.0) = Gt Bpn(a)ds

dk ru dk ru dk+1 tru
= [l166a.t) - Szt @xz et )

dk . . dk +1 .
< [(oe.t) - Grat™lla + 15z o) B ) ()

dk t t dk+1 t 2
< [2(16ta0) - o e+ | S - g e
I‘u ru dk 1 ru
—2 [ ot ) - 5 dtk Papnae +2 [ |t - S oy
I"I.lC rue dk+1 rue
=2 [ 1ote, 1) et Bz +2_B, [l et — St
rue dJJrl rue rue k+1 rue
< (@7 log N + )N uz B (1 e - Bty g e - ey
k+1 ; ;
d7 . dit+1 .
= (a2 log N + B2)N~ "+Z dtjx'; s e |2, (10)

where the first step follows from basic algebra, the second step follows from triangle inequality, the
third step follows from the Cauchy-Schwarz inequality, the fourth step follows from basic algebra,
the fifth step follows from the definition of expectation, the six step follows from Eq. (9).

Hence, there exists ¢1, ¢, ..., dx € M(L, W, S, B) such that for k € [K], for any ¢ € [2¢,, 1], we
have

[ I68ta.t) = S Bpn(a)ds
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k dt AR
S (a7 log N + B7)N~ W+Z dtﬂ R S 13]-

(1)

Taking the summation over k € [K ] we have for any ¢ € [2¢,,1],

/: Zn@ ) et )

2 52 - 2t 4/t t 2
< ((é1)*log N + (By) )N*wkZ( mNP[H e g I3
ru dJ+1 ru
S (67 log N + 57)N~ "+Z E, ||dt] ™ = g Il

where the first step follows from Eq. (T1)), and the second step uses K = O(1). Moreover, by
LemmalC.19| ¢1, ¢, ..., ¢x can be taken so we have for k € [K],

165(-, )l = O(|de| log N + [B4]).
Thus, the proof is complete. O

E EMPIRICAL ABLATION STUDY

In Section [E.I] we introduce the three Gaussian mixture distribution datasets—four-mode, five-
mode, and eight-mode—used in our empirical ablation study, along with their configurations for
source and target modes. The subsequent subsections analyze the impact of different optimization
terms. Section [E.2] evaluates the performance of HOMO optimized solely with the first-order term.
Section examines the effect of using only the second-order term. Section assesses results
when optimization is guided by the self-consistency term. Section|E.5|explores the combined effect
of first- and second-order terms, while Section[E.6|investigates the combination of second-order and
self-consistency terms. Through these analyses, we aim to dissect the contributions of individual
and combined loss terms in achieving effective transport trajectories.

E.1 DATASET

Here we introduce three datasets we use: four-mode, five-mode, and eight-mode Gaussian mixture
distribution datasets; each Gaussian component has a variance of 0.3. In the four-mode Gaussian
mixture distribution, four source mode(brown) positioned at a distance Dy = 5 from the origin,
and four target mode(indigo) positioned at a distance Dy = 14 from the origin, each mode sample
200 points. In five-mode Gaussian mixture distribution, five source mode(brown) positioned at a
distance Dy = 6 from the origin, and five target mode(indigo) positioned at a distance Dy = 13 from
the origin, each mode sample 200 points. And in eight-mode Gaussian mixture distribution, eight
source mode(brown) positioned at a distance Dy = 6 from the origin, and eight target mode(indigo)
positioned at a distance Dy = 13 from the origin, each mode sample 100 points.

E.2 ONLY FIRST ORDER TERM

We optimize models by the sum of squared error(SSE). The source distribution and target dis-
tribution are all Gaussian distributions. For the target transport trajectory setting, we follow
the VP ODE framework from (Liu et all 2022b), which is x; = «azxg + Pfezr1. We choose
o = exp(—1a(l — )2 — 1b(1 — t)) and B; = /1 — o, with hyperparameters ¢ = 19.9 and
b = 0.1. In the four-mode dataset, five-mode dataset, and eight-mode dataset, we all sample 100
points in each source mode and target mode. And in four-mode dataset training, we use an ODE
solver and Adam optimizer, with 2 hidden layer MLP, 100 hidden dimensions, 800 batch size, 0.005
learning rate, and 1000 training steps. In five-mode dataset training, we also use an ODE solver and
Adam optimizer, with 2 hidden layer MLP, 100 hidden dimensions, 1000 batch size, 0.005 learning
rate, and 1000 training steps. And in eight-mode dataset training, we use an ODE solver and Adam
optimizer, with 2 hidden layer MLP, 100 hidden dimensions, 1600 batch size, 0.005 learning rate,
and 1000 training steps.
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Figure 4: The four-mode Gaussian mixture distribution (Left), five-mode Gaussian mixture distribu-
tion (Middle), and eight-mode Gaussian mixture distribution (Right). Our goal is to make HOMO
learn a transport trajectory from distribution 7y (brown) to distribution 71 (indigo).
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Figure 5: (A) The distributions generated by HOMO are only optimized by first-order term in four-
mode dataset (Left), five-mode dataset (Middle), and eight-mode dataset (Right). The source dis-
tribution, 7y (brown), and the target distribution, 7; (indigo), are shown, along with the generated
distribution (pink).

E.3 ONLY SECOND ORDER TERM

We optimize models by the sum of squared error(SSE). The source distribution and target dis-
tribution are all Gaussian distributions. For the target transport trajectory setting, we follow
the VP ODE framework from (Liu et al} [2022b), which is z; = «ayz9 + SBix1. We choose
oy = exp(—1a(l — )2 — 1b(1 — t)) and B; = /1 — o, with hyperparameters a = 19.9 and
b = 0.1. In the four-mode dataset, five-mode dataset, and eight-mode dataset, we all sample 100
points in each source mode and target mode. And in four-mode dataset training, we use an ODE
solver and Adam optimizer, with 2 hidden layer MLP, 100 hidden dimensions, 800 batch size, 0.005
learning rate, and 100 training steps. In five-mode dataset training, we also use an ODE solver and
Adam optimizer, with 2 hidden layer MLP, 100 hidden dimensions, 1000 batch size, 0.005 learning
rate, and 100 training steps. And in eight-mode dataset training, we use an ODE solver and Adam
optimizer, with 2 hidden layer MLP, 100 hidden dimensions, 1600 batch size, 0.005 learning rate,
and 100 training steps.
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Figure 6: (B) The distributions generated by HOMO are only optimized by second-order term in
the four-mode dataset (Left), five-mode dataset (Middle), and eight-mode dataset (Right). The
source distribution, 7y (brown), and the target distribution, 7; (indigo), are shown, along with the
generated distribution (pink).
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E.4 ONLY SELF-CONSISTENCY TERM

We optimize models by the sum of squared error(SSE). The source distribution and target dis-
tribution are all Gaussian distributions. For the target transport trajectory setting, we follow
the VP ODE framework from (Liu et all 2022b), which is z; = «aixg + PBrz1. We choose
oy = exp(—ta(l — ¢)2 — 3b(1 — t)) and B; = /1 — o, with hyperparameters a = 19.9 and
b = 0.1. In the four-mode dataset, five-mode dataset, and eight-mode dataset, we all sample 100
points in each source mode and target mode. And in four-mode dataset training, we use an ODE
solver and Adam optimizer, with 2 hidden layer MLP, 100 hidden dimensions, 800 batch size, 0.005
learning rate, and 50 training steps. In five-mode dataset training, we also use an ODE solver and
Adam optimizer, with 2 hidden layer MLP, 100 hidden dimensions, 1000 batch size, 0.005 learning
rate, and 50 training steps. And in eight-mode dataset training, we use an ODE solver and Adam
optimizer, with 2 hidden layer MLP, 100 hidden dimensions, 1600 batch size, 0.005 learning rate,
and 50 training steps.
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Figure 7: (C) The distributions generated by HOMO are only optimized by self-consistency term
in the four-mode dataset (Left), five-mode dataset (Middle), and eight-mode dataset (Right). The
source distribution, 7y (brown), and the target distribution, 7; (indigo), are shown, along with the
generated distribution (pink).

E.5 FIRST ORDER PLUS SECOND ORDER

We optimize models by the sum of squared error(SSE). The source distribution and target dis-
tribution are all Gaussian distributions. For the target transport trajectory setting, we follow
the VP ODE framework from (Liu et all 2022b), which is z; = aixg + PBrz1. We choose
oy = exp(—+a(l — ¢)2 — b(1 — t)) and B; = /1 — o, with hyperparameters a = 19.9 and
b = 0.1. In the four-mode dataset, five-mode dataset, and eight-mode dataset, we all sample 100
points in each source mode and target mode. And in four-mode dataset training, we use an ODE
solver and Adam optimizer, with 2 hidden layer MLP, 100 hidden dimensions, 800 batch size, 0.005
learning rate, and 1000 training steps. In five-mode dataset training, we also use an ODE solver and
Adam optimizer, with 2 hidden layer MLP, 100 hidden dimensions, 1000 batch size, 0.005 learning
rate, and 2000 training steps. And in eight-mode dataset training, we use an ODE solver and Adam
optimizer, with 2 hidden layer MLP, 100 hidden dimensions, 1600 batch size, 0.005 learning rate,
and 2000 training steps.

E.6 SECOND ORDER PLUS SELF-TARGET

We optimize models by the sum of squared error(SSE). The source distribution and target dis-
tribution are all Gaussian distributions. For the target transport trajectory setting, we follow
the VP ODE framework from (Liu et al., 2022b), which is x; = a;xo + Bix1. We choose
oy = exp(—1a(l — )2 — 1b(1 — t)) and B; = /1 — o, with hyperparameters @ = 19.9 and
b = 0.1. In the four-mode dataset, five-mode dataset, and eight-mode dataset, we all sample 100
points in each source mode and target mode. And in four-mode dataset training, we use an ODE
solver and Adam optimizer, with 2 hidden layer MLP, 100 hidden dimensions, 800 batch size, 0.005
learning rate, and 100 training steps. In five-mode dataset training, we also use an ODE solver and
Adam optimizer, with 2 hidden layer MLP, 100 hidden dimensions, 1000 batch size, 0.005 learning
rate, and 100 training steps. And in eight-mode dataset training, we use an ODE solver and Adam
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Figure 8: (A + B) The distributions generated by HOMO, optimized by first-order term and second-
order term in four-mode dataset (Left), five-mode dataset (Middle), and eight-mode dataset (Right).
The source distribution, 7y (brown), and the target distribution, 7; (indigo), are shown, along with
the generated distribution (pink).

optimizer, with 2 hidden layer MLP, 100 hidden dimensions, 1600 batch size, 0.005 learning rate,
and 100 training steps.
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Figure 9: (B + C) The distributions generated by HOMO, optimized by second-order term and self-
consistency term in four-mode dataset (Left), five-mode dataset (Middle), and eight-mode dataset
(Right). The source distribution, 7y (brown), and the target distribution, 7; (indigo), are shown,
along with the generated distribution (pink).

E.7 FIRST ORDER PLUS SELF-TARGET

We optimize models by the sum of squared error(SSE). The source distribution and target dis-
tribution are all Gaussian distributions. For the target transport trajectory setting, we follow
the VP ODE framework from (Liu et all 2022b), which is x; = o xg + Pfez1. We choose
o = exp(—1a(l — )2 — 1b(1 — t)) and B; = /1 — o, with hyperparameters a = 19.9 and
b = 0.1. In the four-mode dataset, five-mode dataset, and eight-mode dataset, we all sample 100
points in each source mode and target mode. And in four-mode dataset training, we use an ODE
solver and Adam optimizer, with 2 hidden layer MLP, 100 hidden dimensions, 800 batch size, 0.005
learning rate, and 1000 training steps. In five-mode dataset training, we also use an ODE solver and
Adam optimizer, with 2 hidden layer MLP, 100 hidden dimensions, 1000 batch size, 0.005 learning
rate, and 1000 training steps. And in eight-mode dataset training, we use an ODE solver and Adam
optimizer, with 2 hidden layer MLP, 100 hidden dimensions, 1600 batch size, 0.005 learning rate,
and 1000 training steps.

E.§ HOMO

We optimize models by the sum of squared error(SSE). The source distribution and target dis-
tribution are all Gaussian distributions. For the target transport trajectory setting, we follow
the VP ODE framework from (Liu et al) 2022b), which is x; = a;xg + Brx1. We choose
oy = exp(—1a(l — )2 — 1b(1 — t)) and B; = /1 — o, with hyperparameters @ = 19.9 and
b = 0.1. In the four-mode dataset, five-mode dataset, and eight-mode dataset, we all sample 100
points in each source mode and target mode. And in four-mode dataset training, we use an ODE
solver and Adam optimizer, with 2 hidden layer MLP, 100 hidden dimensions, 800 batch size, 0.005
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Figure 10: (A + C) The distributions generated by HOMO, optimized by first-order term and self-
consistency term in four-mode dataset (Left), five-mode dataset (Middle), and eight-mode dataset
(Right). The source distribution, 7y (brown), and the target distribution, 7; (indigo), are shown,
along with the generated distribution (pink).

learning rate, and 1000 training steps. In five-mode dataset training, we also use an ODE solver and
Adam optimizer, with 2 hidden layer MLP, 100 hidden dimensions, 1000 batch size, 0.005 learning
rate, and 1000 training steps. And in eight-mode dataset training, we use an ODE solver and Adam
optimizer, with 2 hidden layer MLP, 100 hidden dimensions, 1600 batch size, 0.005 learning rate,
and 1000 training steps.
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Figure 11: (A + B + C) The distributions generated by HOMO in four-mode dataset (Left), five-
mode dataset (Middle), and eight-mode dataset (Right). The source distribution, 7y (brown), and
the target distribution, 7, (indigo), are shown, along with the generated distribution (pink).

F COMPLEX DISTRIBUTION EXPERIMENT

In Section [FI] we introduce the datasets used in our experiments. The analysis of results with first-
order and second-order terms in Section [F.2] and we evaluate the performance with first-order and
self-consistency terms in Section assess the impact of second-order and self-consistency terms

in Section Finally, we present the overall results of HOMO with all loss terms combined in
Section
F.1 DATASETS

Here, we introduce four datasets we proposed: circle dataset, irregular ring dataset, spiral line
dataset, and spin dataset. In the circle dataset, we sample 600 points from Gaussian distribution
with 0.3 variance for both source distribution and target distribution. In the irregular ring dataset,
we sample 600 points from Gaussian distribution with 0.3 variance for both source distribution and
target distribution. In the spiral line dataset, we sample 600 points from Gaussian distribution with
0.3 variance for both source distribution and target distribution. In the spin dataset, we sample
600 points from the Gaussian distribution with 0.3 variance for both source distribution and target
distribution.
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Figure 12: The circle dataset(Left most), irregular ring dataset (Middle left), spiral line dataset
(Middle right), and spin dataset (Right most). Our goal is to make HOMO to learn a transport
trajectory from distribution 7y (brown) to distribution 7; (indigo).

F.2 FIRST ORDER PLUS SECOND ORDER

We optimize models by the sum of squared error(SSE). The source distribution and target dis-
tribution are all Gaussian distributions. For the target transport trajectory setting, we follow
the VP ODE framework from (Liu et all 2022b), which is z; = aixg + Pfrz1. We choose
oy = exp(—+a(l — ¢)2 — b(1 — t)) and B; = /1 — o, with hyperparameters a = 19.9 and
b = 0.1. In the circle dataset, we all sample 400 points, both source distribution and target distri-
bution. In the irregular ring dataset, we all sample 600 points, both source distribution and target
distribution. In the spiral line dataset, we all sample 300 points, both source distribution and target
distribution. In circle dataset training, we use an ODE solver and Adam optimizer, with 2 hidden
layer MLP, 100 hidden dimensions, 800 batch size, 0.005 learning rate, and 1000 training steps.
In irregular ring dataset training, we also use an ODE solver and Adam optimizer, with 2 hidden
layer MLP, 100 hidden dimensions, 1000 batch size, 0.005 learning rate, and 1000 training steps. In
spiral line dataset training, we use an ODE solver and Adam optimizer, with 2 hidden layer MLP,
100 hidden dimensions, 1600 batch size, 0.005 learning rate, and 1000 training steps. In spiral line
dataset training, we use an ODE solver and Adam optimizer, with 2 hidden layer MLP, 100 hidden
dimensions, 1600 batch size, 0.005 learning rate, and 1000 training steps.
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Figure 13: (M1+M2) HOMO results on complex datasets with two kinds of loss: first-order and
second-order terms. The distributions generated by HOMO, in circle dataset(Left most), irregular
ring dataset (Middle left), spiral line dataset (Middle right) and spin dataset (Right most). The
source distribution, 7y (brown), and the target distribution, 71 (indigo), are shown, along with the
generated distribution (pink).

F.3 FIRST ORDER PLUS SELF-CONSISTENCY TERM

We optimize models by the sum of squared error(SSE). The source distribution and target dis-
tribution are all Gaussian distributions. For the target transport trajectory setting, we follow
the VP ODE framework from (Liu et all 2022b), which is x; = «aixg + Pfrz1. We choose
oy = exp(—+a(l — ¢)2 — 3b(1 — 1)) and B; = /1 — o, with hyperparameters a = 19.9 and
b = 0.1. In the circle dataset, we all sample 400 points, both source distribution and target distri-
bution. In the irregular ring dataset, we all sample 600 points, both source distribution and target
distribution. In the spiral line dataset, we all sample 300 points, both source distribution and target
distribution. In circle dataset training, we use an ODE solver and Adam optimizer, with 2 hidden
layer MLP, 100 hidden dimensions, 800 batch size, 0.005 learning rate, and 1000 training steps.
In irregular ring dataset training, we also use an ODE solver and Adam optimizer, with 2 hidden
layer MLP, 100 hidden dimensions, 1000 batch size, 0.005 learning rate, and 1000 training steps. In
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spiral line dataset training, we use an ODE solver and Adam optimizer, with 2 hidden layer MLP,
100 hidden dimensions, 1600 batch size, 0.005 learning rate, and 1000 training steps. In spiral line
dataset training, we use an ODE solver and Adam optimizer, with 2 hidden layer MLP, 100 hidden
dimensions, 1600 batch size, 0.005 learning rate, and 1000 training steps.
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Figure 14: (M1+SC) HOMO results on complex datasets with two kinds of loss: first-order
and self-consistency terms. The distributions generated by HOMO, in circle dataset(Left most),
irregular ring dataset (Middle left), spiral line dataset (Middle right) and spin dataset (Right most).
The source distribution, 7y (brown), and the target distribution, 7; (indigo), are shown, along with
the generated distribution (pink).

F.4 SECOND ORDER PLUS SELF-CONSISTENCY TERM

We optimize models by the sum of squared error(SSE). The source distribution and target dis-
tribution are all Gaussian distributions. For the target transport trajectory setting, we follow
the VP ODE framework from (Liu et all 2022b), which is z; = aixg + PBrz1. We choose
oy = exp(—ta(l — ¢)2 — 3b(1 — t)) and B; = /1 — o, with hyperparameters a = 19.9 and
b = 0.1. In the circle dataset, we all sample 400 points, both source distribution and target distri-
bution. In the irregular ring dataset, we all sample 600 points, both source distribution and target
distribution. In the spiral line dataset, we all sample 300 points, both source distribution and target
distribution. And in circle dataset training, we use an ODE solver and Adam optimizer, with 2 hid-
den layer MLP, 100 hidden dimensions, 800 batch size, 0.005 learning rate, and 100 training steps.
In irregular ring dataset training, we also use an ODE solver and Adam optimizer, with 2 hidden
layer MLP, 100 hidden dimensions, 100 batch size, 0.005 learning rate, and 1000 training steps. In
spiral line dataset training, we use an ODE solver and Adam optimizer, with 2 hidden layer MLP,
100 hidden dimensions, 1600 batch size, 0.005 learning rate, and 100 training steps. In spiral line
dataset training, we use an ODE solver and Adam optimizer, with 2 hidden layer MLP, 100 hidden
dimensions, 1600 batch size, 0.005 learning rate, and 1000 training steps.
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Figure 15: (M2+SC) HOMO results on complex datasets with two kinds of loss: second-order
and self-consistency terms. The distributions generated by HOMO, in circle dataset(Left most),
irregular ring dataset (Middle left), spiral line dataset (Middle right) and spin dataset (Right most).
The source distribution, 7y (brown), and the target distribution, 7; (indigo), are shown, along with
the generated distribution (pink).

F.5 HOMO
We optimize models by the sum of squared error(SSE). The source distribution and target dis-

tribution are all Gaussian distributions. For the target transport trajectory setting, we follow
the VP ODE framework from (Liu et al., 2022b), which is x; = a;xo + Bixr1. We choose
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oy = exp(—1a(l —¢)?2 — 1b(1 — t)) and B; = /1 — o, with hyperparameters = 19.9 and
b = 0.1. In the circle dataset, we all sample 400 points, both source distribution and target distri-
bution. In the irregular ring dataset, we all sample 600 points, both source distribution and target
distribution. In the spiral line dataset, we all sample 300 points, both source distribution and target
distribution. And in circle dataset training, we use an ODE solver and Adam optimizer, with 2 hid-
den layer MLP, 100 hidden dimensions, 800 batch size, 0.005 learning rate, and 1000 training steps.
In irregular ring dataset training, we also use an ODE solver and Adam optimizer, with 2 hidden
layer MLP, 100 hidden dimensions, 1000 batch size, 0.005 learning rate, and 1000 training steps. In
spiral line dataset training, we use an ODE solver and Adam optimizer, with 2 hidden layer MLP,
100 hidden dimensions, 1600 batch size, 0.005 learning rate, and 1000 training steps. In spiral line
dataset training, we use an ODE solver and Adam optimizer, with 2 hidden layer MLP, 100 hidden
dimensions, 1600 batch size, 0.005 learning rate, and 1000 training steps.
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Figure 16: (M1+M2+SC) HOMO results on complex datasets with three kinds of loss: first-
order, second-order, and self-consistency terms. The distributions generated by HOMO in circle
dataset(Left most), irregular ring dataset (Middle left), spiral line dataset (Middle right), and spin
dataset (Right most). The source distribution, 7y (brown), and the target distribution, 71 (indigo),
are shown, along with the generated distribution (pink).

G THIRD-ORDER HOMO

This section extends HOMO to third-order dynamics and analyzes its performance on complex syn-
thetic tasks. Section[G.I]introduces the training and sampling algorithms incorporating third-order
dynamics. Section[G.2|compares two trajectory parameterization strategies for high-order systems.
Section describes the 2 Round Spin, 3 Round Spin, and Dot-Circle datasets designed to test
complex mode transitions. Section [G.4] provides quantitative analysis through Euclidean distance
metrics between generated and target distributions. Section|G.5|evaluates the isolated impact of self-
consistency constraints. Section examines first-order dynamics coupled with self-consistency
regularization. Section studies the combined effect of first-, second-order dynamics and self-
consistency. Finally, Section demonstrates full third-order HOMO with all optimization terms,
analyzing trajectory linearity and mode fidelity under different trajectory settings.

G.1 ALGORITHM
Here we first introduce the training algorithm of our third-order HOMO:
Then we will discuss the sampling algorithm in third-order HOMO:
G.2 TRAJECTORY SETTING
We have trajectory as:
2= auzo + Pz
In original trajectory, we choose oy = exp(—1a(l — )2 — 1b(1 —t)) and B; = /1 — o, with

hyperparameters ¢ = 19.9 and b = 0.1. And new trajectory as oy = 1 — (3t — 2t3) and 3; =
3t — 23,
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Algorithm 5 Third-Order HOMO Training

1: while not converged do

2: xONN(OvI)axlND7(d7t)Np(dat)
3: Bt — 1-— Oé%
4: Ty oy - xo+ Py - 1y > Noise data point
5: for first k batch elements do
6: sPUe ¢ g + Braa > First-order target
7: siue o G + By > Second-order target
8: §irue o Gyxo + B &> Third-order target
9: d<+« 0
10: end for
11: for other batch elements do
12: 8¢ up(xy, t,d) > First small step of first order
13: $¢ < ua(uq (e, t,d), x4, t, d) &> First small step of second order
14: 8t + ug(ua(uy(ze, t, d), s, t, d), uy (x4, t,d), x4, t,d) > First small step of third order
15: Topa e ai+dos+ La 4+ L5 > Follow ODE
16: Sttd — U1 (xpqa,t +d,d) > Second small step of first order
17: 55778« stopgrad (s; + S114)/2 > Self-consistency target of first order
18: end for
19: 0 < Vo(|lui(ze,t,2d) — strue||?

+||uz (ur (2, t, 2d), x4, t, 2d) — 589¢|2

+luz(ua(uy (2, t,d), 2, t, d), uy (2, t,d), v, t,d) — §8e|?

Hllua (e, t, 2d) — $,7782

20: end while

Algorithm 6 Third-Order HOMO Sampling

z~N(0,1)
d+ 1/M
t+ 0
forn e [0,...,M — 1] do
x — x + d - wl(x,t,d) + d; - ug(uy(z,t,d), x, t,d)  + %
U3(u2(u1(x,t,d),x,t,d),ul(x,t,d),x,t,d)
t—t+d
end for
8: return x

AN e

2

G.3 DATASET

Here, we introduce three datasets we use: 2 Round spin, 3 Round spin, and Dot-Circle datasets. In 2
Round spin dataset and 3 Round spin dataset, we both sample 600 points from Gaussian distribution
with 0.3 variance for both source distribution and target distribution. In Dot-Circle datasets, we
sample 300 points from the center dot and 300 points from the outermost circle, combine them as
source distribution, and then sample 600 points from 2 round spin distribution.

G.4 EUCLIDEAN DISTANCE LOSS

Here, we present the Euclidean distance loss performance of four different loss terms combined
under the original trajectory setting and the new trajectory setting.

G.5 ONLY SELF-CONSISTENCY TERM

We optimize models by the sum of squared error(SSE). The source distribution and target distribu-
tion are all Gaussian distributions. For the first line, we use the original transport trajectory setting,
followed by the VP ODE framework from (Liu et al., [2022b)), which is x; = asxg + Srz1. We

choose a; = exp(—32a(l —¢)? — 1b(1 —t)) and B; = /1 — o2, with hyperparameters a = 19.9
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Figure 17: The 2 Round spin dataset(Left), 3 Round spin dataset(Middle), and Dot-Circle
datasets(Right). Our goal is to make HOMO learn a transport trajectory from distribution 7
(brown) to distribution 71 (indigo).

Table 4: Euclidean distance loss of three complex distribution datasets under new trajectory
setting. Lower values indicate more accurate distribution transfer results. Optimal values are high-
lighted in Bold. And Underlined numbers represent the second best (second lowest) loss value for
each dataset (row). For the qualitative results of a mixture of Gaussian experiments, please refer to

Figure/[T}

2 Round | 3 Round | Dot-
Loss terms ‘ spin ‘ spin ‘ Circle
SC 41.265 48.201 | 87.407
M1 + SC 14.926 18.376 | 30.027
M1+ M2+ SC 11.435 12.422 | 24.712
M1 + M2 + SC + M3 4.701 9.261 21.968

and b = 0.1. In 2 Round spin datasets and 3 Round spin datasets, we sample 400 points, both source
distribution and target distribution. In the Dot-Circle dataset, we sample 600 points from both source
distribution and target distribution, 300 points of source points from the circle, and another 300 from
the center dot. In 2-round dataset training, we use an ODE solver and Adam optimizer, with 2 hid-
den layer MLP, 100 hidden dimensions, 800 batch size, 0.005 learning rate, and 180 training steps.
In 3-round spin dataset training, we also use an ODE solver and Adam optimizer, with 2 hidden
layer MLP, 100 hidden dimensions, 1000 batch size, 0.005 learning rate, and 180 training steps. In
Dot-Circle dataset training, we use an ODE solver and Adam optimizer, with 2 hidden layer MLP,
100 hidden dimensions, 1600 batch size, 0.005 learning rate, and 180 training steps.

G.6 FIRST ORDER PLUS SELF-CONSISTENCY

We optimize models by the sum of squared error(SSE). The source distribution and target distribu-
tion are all Gaussian distributions. For the first line, we use the original transport trajectory setting,
followed by the VP ODE framework from (Liu et al., [2022b)), which is x; = axg + Bix1. We
choose a; = exp(—3a(l —t)? — 1b(1 —t)) and B, = /1 — o2, with hyperparameters a = 19.9
and b = 0.1. In 2 Round spin datasets and 3 Round spin datasets, we sample 400 points in both
source distribution and target distribution. And in the Dot-Circle dataset, we sample 600 points from
both source distribution and target distribution, 300 points of sources points from the circle, and an-
other 300 from the center dot. In 2 Round dataset training, we use ODE solver and Adam optimizer,
with 2 hidden layer MLP, 100 hidden dimension, 800 batch size, 0.005 learning rate, and 1000 train-
ing steps. In 3 Round spin dataset training, we also use ODE solver and Adam optimizer, with 2
hidden layer MLP, 100 hidden dimension, 1000 batch size, 0.005 learning rate, and 2000 training
steps. And in Dot-Circle dataset training, we use an ODE solver and Adam optimizer, with 2 hidden
layer MLP, 100 hidden dimensions, 1600 batch size, 0.005 learning rate, and 10000 training steps.

G.7 FIRST ORDER PLUS SECOND ORDER PLUS SELF-CONSISTENCY

We optimize models by the sum of squared error(SSE). The source distribution and target distribu-
tion are all Gaussian distributions. For the first line, we use the original transport trajectory setting,
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Figure 18: (M1+SC) The distributions generated by HOMO are only optimized by first-order loss
and self-consistency loss. Upper row(original trajectory setting): Figure (a), in 2 Round spin
dataset. Figure (b), in 3 Round spin dataset. Figure (c), in Dot-Circle dataset. Lower row(new tra-
jectory setting): Figure (d), in 2 Round spin dataset. Figure (e), in 3 Round spin dataset. Figure (f),
in Dot-Circle dataset. The source distribution, 7 (brown), and the target distribution, 71 (indigo),
are shown, along with the generated distribution (pink).

followed by the VP ODE framework from (Liu et al., 2022b), which is x; = axg + Bix1. We
choose a; = exp(—za(l — )% — 3b(1 —t)) and B; = \/1 — o, with hyperparameters a = 19.9
and b = 0.1. In 2 Round spin datasets and 3 Round spin datasets, we sample 400 points, both source
distribution and target distribution. And in the Dot-Circle dataset, we sample 600 points from both
source distribution and target distribution, 300 points of source points from the circle, and another
300 from the center dot. In 2 Round dataset training, we use ODE solver and Adam optimizer, with
2 hidden layer MLP, 100 hidden dimension, 800 batch size, 0.005 learning rate, and 1000 training
steps. In 3 Round spin dataset training, we also use ODE solver and Adam optimizer, with 2 hidden
layer MLP, 100 hidden dimension, 1000 batch size, 0.005 learning rate, and 2000 training steps.
And in Dot-Circle dataset training, we use an ODE solver and Adam optimizer, with 2 hidden layer
MLP, 100 hidden dimensions, 1600 batch size, 0.005 learning rate, and 10000 training steps.

G.8 THIRD-ORDER HOMO

We optimize models by the sum of squared error(SSE). The source distribution and target distribu-
tion are all Gaussian distributions. For the first line, we use the original transport trajectory setting,
followed by the VP ODE framework from (Liu et al., 2022b), which is x; = aixg + Bix1. We
choose c; = exp(—3a(l —t)? — 1b(1 —t)) and B; = /1 — o, with hyperparameters a = 19.9
and b = 0.1. In 2 Round spin datasets and 3 Round spin datasets, we sample 400 points, both
source distribution and target distribution. In the Dot-Circle dataset, we sample 600 points, both
source distribution and target distribution, 300 points of source points from the circle, and another
300 from the center dot. In 2-round dataset training, we use an ODE solver and Adam optimizer,
with 2 hidden layer MLP, 100 hidden dimensions, 800 batch size, 0.005 learning rate, and 1000
training steps. In 3-round spin dataset training, we also use an ODE solver and Adam optimizer,
with 2 hidden layer MLP, 100 hidden dimensions, 1000 batch size, 0.005 learning rate, and 2000

35



Under review as a conference paper at ICLR 2026

HOMO optimized with
(M1 + M2 + SC) losses

HOMO optimized with

HOMO optimized with
(M1 + M2 + SC) losses

200 00 (M1 + M2 + SC) losses
™ ™ -
300 . m 400 o
o o o Conerated 400 P R A p ” B perated
y . 200 4/ o '\ 200{ & ¢ s ™ (3
100 . 0 §. # % 3 4 4 N 3
LY 3 { ’ b e ¥ ,‘ 1 &
01 £ & o ¢ 0 § 4 ¥°F 3 {8 §, ¥ §
e oA ; v LA | ; ¢ E / H
—-100 R 4 200 . \ g - 1 i - f 4
—200 S cudl e f" / -2001 ® r 4
—400 ‘)/ o o
-300 \u“ 4 © o' o ~400 ® ¢ oanws”
—400 —600
—400 -200 0 200 400 —600—400—-200 0 200 400 600 —400 -200 0 200 400

(a) (original) (b) (original)
M1+M2+SC) /2 Round (M1+M2+SC) /3 Round

400

HOMO optimized with
(M1 + M2 + SC) losses

HOMO optimized with

00 (M1 + M2 + SC) losses

(c) (original)
(M14M2+SC) / Dot-Circle

HOMO optimized with
(M1 + M2 + SC) losses

™ w -
300 ) . . 400 P e
o0 g Geneaes 400 SO D e S iy, - -
4 ~ y _ 9 . pee= S a
100 t[‘ \\ 200 " e 7(,‘.\ 2001 § N
£ ) | y ‘ PN B A ? S0, 3§ H
o1 7 [ oW & } 01 § H I ov ¥y B 01 ¢ ( ¥ 1
\ y h | L ¥ ®
-100 %» ' g 4 _200 . ' ! 200 § \ , W ®
_200 ﬁ o - / ~ ‘;‘ kv 39 ” ,O «\ﬁ)\ ¢
~300 e e ~400 F Vo s
S -400 e
—-400 —600 T T T T T
—400 -200 0 200 400 —-600-400-200 0 200 400 600 —400-200 O 200 400

(d) (new) (M1+M2+SC) / 2(e) (new) M1+M2+SC) / 3(f) (new) (M1+M2+SC) /
Round Round Dot-Circle

Figure 19: (M14+M2+SC) The distributions generated by HOMO are only optimized by first-order
loss and second order loss, and self-consistency loss. Upper row(original trajectory setting):
Figure (a), in 2 Round spin dataset. Figure (b), in 3 Round spin dataset. Figure (c), in Dot-Circle
dataset. Lower row(new trajectory setting): Figure (d), in 2 Round spin dataset. Figure (e), in 3
Round spin dataset. Figure (f), in Dot-Circle dataset. The source distribution, 7y (brown), and the
target distribution, 7; (indigo), are shown, along with the generated distribution (pink).

training steps. In Dot-Circle dataset training, we use an ODE solver and Adam optimizer, with 2
hidden layer MLP, 100 hidden dimensions, 1600 batch size, 0.005 learning rate, and 10000 training
steps.

H COMPUTATIONAL COST AND OPTIMIZATION COST

Table 5: Computational Cost Analysis of Different Configurations

Configuration FLOPs (M) Params (K) Training Speed (it/s)
M1 8.400 10.702 477.03
M2 68.480 43.608 146.34
M3 8.400 10.702 357.45
M1 + M2 16.960 21.604 248.15
M2 + SC 68.480 43.608 144.73
(Shortcut Model) M1 + SC 8.480 10.802 283.20
M1 + M2 + SC 68.480 43.608 136.46
M1 +M2 +M3 +SC 103.680 66.012 122.18

We profile computational efficiency on the Apple MacBook Air (M1 8GB) with an 8-core CPU.
Through systematic analysis, we observe three critical tradeoffs: (1) The M2 configuration demon-
strates an 8.15x FLOPs increase over M1 while achieving 4.07x parameter expansion, revealing
the fundamental FLOPs-parameters scaling relationship. (2) The self-consistency (SC) term in-
troduces minimal computational overhead, with the M2+SC configuration maintaining 144.73 it/s
versus vanilla M2’s 146.34 it/s (1.1% throughput reduction). (3) Architectural innovations yield
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Figure 20: (M1+M2+M3+SC) The distributions generated by Third-Order HOMO, optimized
by first-order loss and second-order loss, third-order loss and self-consistency loss. Upper
row(original trajectory setting): Figure (a), in 2 Round spin dataset. Figure (b), in 3 Round
spin dataset. Figure (c), in Dot-Circle dataset. Lower row(new trajectory setting): Figure (d), in
2 Round spin dataset. Figure (e), in 3 Round spin dataset. Figure (f), in Dot-Circle dataset. The
source distribution, 7y (brown), and the target distribution, 7; (indigo), are shown, along with the
generated distribution (pink).

substantial gains - the Shortcut Model (M1+SC) achieves 33.6% faster iterations than vanilla M1
(283.20 vs 477.03 it/s) with comparable parameter counts. Table 5] quantifies these effects through
comprehensive benchmarking:

Notably, our architecture maintains practical viability even for high-order extensions - the third-
order HOMO configuration (M1+M2+M3+SC) sustains 122.18 it/s despite requiring 12.34 x more
FLOPs than the base M1 model. This demonstrates our method’s ability to balance computational
complexity with real-time performance requirements.

LLM USAGE DISCLOSURE

LLMs were used only to polish language, such as grammar and wording. These models did not
contribute to idea creation or writing, and the authors take full responsibility for this paper’s content.
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Figure 21: (SC) The distributions generated by HOMO are only optimized by self-consistency loss.
Upper row(original trajectory setting): Figure (a), in 2 Round spin dataset. Figure (b), in 3 Round
spin dataset. Figure (c), in Dot-Circle dataset. Lower row(new trajectory setting): Figure (d), in
2 Round spin dataset. Figure (e), in 3 Round spin dataset. Figure (f), in Dot-Circle dataset. The
source distribution, 7y (brown), and the target distribution, 7; (indigo), are shown, along with the

generated distribution (pink).
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