
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

HIGH-ORDER MATCHING FOR ONE-STEP SHORTCUT
DIFFUSION MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

One-step shortcut diffusion models [Frans, Hafner, Levine and Abbeel, ICLR
2025] have shown potential in vision generation, but their reliance on first-order
trajectory supervision is fundamentally limited. The Shortcut model’s simplis-
tic velocity-only approach fails to capture intrinsic manifold geometry, leading to
erratic trajectories, poor geometric alignment, and instability-especially in high-
curvature regions. These shortcomings stem from its inability to model mid-
horizon dependencies or complex distributional features, leaving it ill-equipped
for robust generative modeling. In this work, we introduce HOMO (High-Order
Matching for One-Step Shortcut Diffusion), a game-changing framework that
leverages high-order supervision to revolutionize distribution transportation. By
incorporating acceleration, jerk, and beyond, HOMO not only fixes the flaws of
the Shortcut model but also achieves unprecedented smoothness, stability, and
geometric precision. Theoretically, we prove that HOMO’s high-order supervi-
sion ensures superior approximation accuracy, outperforming first-order methods.
Empirically, HOMO dominates in complex settings, particularly in high-curvature
regions where the Shortcut model struggles. Our experiments show that HOMO
delivers smoother trajectories and better distributional alignment, setting a new
standard for one-step generative models.

1 INTRODUCTION

In recent years, deep generative models have exhibited extraordinary promise across various types of
data modalities. Techniques such as Generative Adversarial Networks (GANs) (Goodfellow et al.,
2014), autoregressive models (Vaswani, 2017), normalizing flows (Lipman et al., 2022), and diffu-
sion models (Ho et al., 2020) have achieved outstanding results in tasks related to image, audio, and
video generation (Kalchbrenner et al., 2018; Blattmann et al., 2023). These models have attracted
considerable interest owing to their capacity to create invertible and highly expressive mappings,
transforming simple prior distributions into complex target data distributions. This fundamental
characteristic is the key reason they are capable of modeling any data distribution. Particularly,
(Lipman et al., 2022; Liu et al., 2022a) have effectively unified conventional normalizing flows with
score-based diffusion methods. These techniques produce a continuous trajectory, often referred
to as a “flow”, which transitions samples from the prior distribution to the target data distribution.
By adjusting parameterized velocity fields to align with the time derivatives of the transformation,
flow matching achieves not only significant experimental gains but also retains a strong theoretical
foundation.

Despite the remarkable progress in flow-based generative models, such as the Shortcut model (Frans
et al., 2025), these approaches still face challenges in accurately modeling complex data distribu-
tions, particularly in regions of high curvature or intricate geometric structure (Wang et al., 2024;
Hu et al., 2024c). This limitation stems from the reliance on first-order techniques, which primarily
focus on aligning instantaneous velocities while neglecting the influence of higher-order dynamics
on the overall flow geometry. Recent research in diffusion-based modeling (Chen, 2023; Hang &
Gu, 2024; Lin et al., 2024) has highlighted the importance of capturing higher-order information
to improve the fidelity of learned trajectories. However, a systematic framework for incorporating
such higher-order dynamics into flow matching, especially within Shortcut models, remains an open
problem.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

In this work, we propose HOMO (High-Order Matching for One-Step Shortcut Diffusion), a revolu-
tionary leap beyond the limitations of the original Shortcut model (Frans et al., 2025). While Short-
cut models rely on simplistic first-order dynamics, often empirically struggling to capture complex
data distributions and producing erratic trajectories in high-curvature regions, HOMO shatters these
barriers by introducing high-order supervision. By incorporating acceleration, jerk, and beyond,
HOMO not only addresses the empirical shortcomings of the Shortcut model but also achieves un-
paralleled geometric precision and stability. Where the Shortcut model falters—yielding suboptimal
trajectories and poor distributional alignment—HOMO thrives, delivering smoother, more accurate,
and fundamentally superior results.

Our primary contribution is a rigorous theoretical and empirical framework that showcases the dom-
inance of HOMO. We prove that HOMO’s high-order supervision drastically reduces approximation
errors, ensuring precise trajectory alignment from the earliest stages to long-term evolution. Empir-
ically, we demonstrate that the Shortcut model’s first-order dynamics fall short in complex settings,
while HOMO consistently outperforms it, achieving faster convergence, better sample quality, and
unmatched robustness.

The contributions of our work is summarized as follows:

• We introduce high-order supervision into the Shortcut model, resulting in the HOMO
framework, which includes novel training and sampling algorithms.

• We provide rigorous theoretical guarantees for the approximation error of high-order flow
matching, demonstrating its effectiveness in both the early and late stages of the generative
process.

• We demonstrate that HOMO achieves superior empirical performance in complex settings,
especially in intricate distributional landscapes, beyond the capabilities of the original
Shortcut model (Frans et al., 2025).

2 RELATED WORKS

Diffusion Models. Diffusion models have garnered significant attention for their capability to gen-
erate high-fidelity images by incrementally refining noisy samples, as exemplified by DiT (Peebles
& Xie, 2023) and U-ViT (Bao et al., 2023). These approaches typically involve a forward process
that systematically adds noise to an initial clean image and a corresponding reverse process that
learns to remove noise step by step, thereby recovering the underlying data distribution in a prob-
abilistic manner. Early works (Song & Ermon, 2019; Song et al., 2020) established the theoretical
foundations of this denoising strategy, introducing score-matching and continuous-time diffusion
frameworks that significantly improved sample quality and diversity. Subsequent research has fo-
cused on more efficient training and sampling procedures (Lu et al., 2022; Shen et al., 2024a;b), aim-
ing to reduce computational overhead and converge faster without sacrificing image fidelity. Other
lines of work leverage latent spaces to learn compressed representations, thereby streamlining both
training and inference (Rombach et al., 2022; Hu et al., 2024b). This latent learning approach inte-
grates naturally with modern neural architectures and can be extended to various modalities beyond
images, showcasing the versatility of diffusion processes in modeling complex data distributions. In
parallel, recent researchers have also explored multi-scale noise scheduling and adaptive step-size
strategies to enhance convergence stability and maintain high-resolution detail in generated content
in (Lovelace et al., 2024; Feng et al., 2024; Rout et al., 2024; Jiang et al., 2025; Luo et al., 2024).

Flow Matching. Generative models like diffusion (Sohl-Dickstein et al., 2015; Ho et al., 2020;
Song et al., 2020) and flow-matching (Lipman et al., 2022; Liu et al., 2022a) operate by learning
ordinary differential equations (ODEs) that map noise to data. To simplify, this study leverages the
optimal transport flow-matching formulation (Liu et al., 2022a). A linear combination of a noise
sample x0 ∼ N (0, I) and a data point x1 ∼ D defines xt = (1− t)x0 + tx1, vt = x1 − x0, with vt
representing the velocity vector directed from x0 to x1. While vt is uniquely derived from (x0, x1),
knowledge of only xt renders it a random variable due to the ambiguity in selecting (x0, x1). Neural
networks in flow models approximate the expected velocity v̄t = E[vt | xt], calculated as an average
over all valid pairings. Training involves minimizing the deviation between predicted and empirical

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

velocities:

v̄θ(xt, t) ∼ Ex0,x1∼D [vt | xt]
LF(θ) = Ex0,x1∼D

[
∥v̄θ(xt, t)− (x1 − x0)∥2

]
. (1)

Sampling involves first drawing a noise point x0 ∼ N (0, I) and iteratively transforming it into a
data point x1. The denoising ODEs, parameterized by v̄θ(xt, t), governs this transformation, and
Euler’s method approximates it over small, discrete time steps.

High-order ODE Gradient in Diffusion Models. Higher-order gradient-based methods
like TTMs (Kloeden & Platen, 1992) have applications far exceeding DDMs. For instance,
solvers (Djeumou et al., 2022) and regularization frameworks (Kelly et al., 2020; Finlay et al., 2020)
for neural ODEs (Chen et al., 2018; Grathwohl et al., 2018) frequently utilize higher-order deriva-
tives. Beyond machine learning contexts, the study of higher-order TTMs has been extensively
directed toward solving stiff (Chang & Corliss, 1994) and non-stiff (Chang & Corliss, 1994; Corliss
& Chang, 1982) systems.

3 PRELIMINARY

This section elaborates on the flow-matching framework, extending it to the second-order case, with
critical definitions underscored. We begin with describing the general framework of flow matching
and its second-order rectification. These concepts form the basis for our proposed method, as they
integrate first and second-order information for trajectory estimation.

Fact 3.1. Let a field xt be defined as xt = αtx0 + βtx1, where αt and βt are functions of t, and
x0, x1 are constants. Then, the first-order gradient ẋt and the second-order gradient ẍt can be
manually calculated as ẋt = α̇tx0 + β̇tx1, ẍt = α̈tx0 + β̈tx1., reprectively.

In practice, one often samples (x0, x1) from (µ0, π0) and parameterizes xt (e.g., interpolation) at
intermediate times to build a training objective that matches the velocity field to the true time deriva-
tive ẋt.

Definition 3.2 (Shortcut models, implicit definition from page 3 on (Frans et al., 2025)). Let ∆t =
1/128. Let xt be current field. Let t ∈ N denote time step. Let u1(xt, t, d) be the network to
be trained. Let d ∈ (1/128, 1/64, . . . , 1/2, 1) denote step size. Then, we define Shortcut model
compute next field xt+d as follow:

xt+d =

{
xt + u1(xt, t, d)d if d ≥ 1/128,

xt + u1(xt, t, 0)∆t if d < 1/128.

4 METHODOLOGY

When training a flow-based model, such as Shortcut model, using only the first-order term as the
training loss has several limitations compared to incorporating high-order losses. (1) Firstly, relying
solely on the first-order term results in a less accurate approximation of the true dynamics, as it
captures only the linear component and misses important nonlinear aspects that higher-order terms
can represent. This can lead to slower convergence, as the model must implicitly learn complex
dynamics without explicit guidance from higher-order terms. (2) Additionally, while the first-order
approach reduces model complexity and the risk of overfitting, it may also limit the model’s ability to
generalize effectively to unseen data, particularly when the underlying dynamics are highly nonlin-
ear. (3) In contrast, including higher-order terms enhances the model’s capacity to capture intricate
patterns, improving both accuracy and generalization, albeit at the cost of increased computational
complexity and potential overfitting risks.

Then, we introducing our HOMO model. The intuition behind this design is to leverage high-
order dynamics to achieve a more accurate and stable approximation of the field evolution. By
incorporating higher-order losses, we aim to capture the nonlinearities and complex interactions that
are often present in real-world systems. This approach not only improves the fidelity of the model
but also enhances its ability to generalize across different scenarios.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Definition 4.1 (HOMO Inference). Let ∆t = 1/128. Let xt be the current field. Let t ∈ N
denote the time step. Let u1,θ1(·) and u2,θ2(·) denote the HOMO models to be trained. Let d ∈
(0, 1/128, 1/64, . . . , 1/2, 1) denote the step size. Then, we define the HOMO computation of the
next field xt+d as follows:

xt+d =

{
xt + d · u1(xt, t, d) + d2

2 · u2(u1(xt, t, d), xt, t, d) if d ≥ 1/128,

xt +∆t · u1(xt, t, 0) + (∆t)2

2 · u2(u1(xt, t, 0), xt, t, 0) if d < 1/128.

The self-consistency target is to ensure that the model’s predictions are consistent across different
time steps, which is crucial for maintaining the stability and accuracy of the model over long-term
predictions.
Definition 4.2 (HOMO Self-Consistency Target). Let u1,θ1 be the networks to be trained. Let xt
be the current field and xt+d be defined in Definition 4.1. Let t ∈ N denote the time step. Let
d ∈ (0, 1/128, 1/64, . . . , 1/2, 1) denote the step size. We define the Self-Consistency target as
follows:

ẋtargett = u1,θ1(xt, t, d)/2 + u1,θ1(xt+d, t, d)/2

The second-order HOMO loss is designed to optimize the model by minimizing the discrepancy
between the predicted and true velocities and accelerations. This loss function ensures that the
model not only captures the immediate dynamics but also the underlying trends and changes in the
system.
Definition 4.3 (Second-order HOMO Loss). Let xt be the current field. Let t ∈ N denote the
time step. Let ẋtargett be defined by Definition 4.2. Let u1,θ1(·) and u2,θ2(·) denote the HOMO
models to be trained. Let d ∈ (0, 1/128, 1/64, . . . , 1/2, 1) denote the step size. Let ẋtruet and
ẍtruet be the observed (or numerically approximated) true velocity and acceleration. Let ẋpredt :=
u1,θ1(xt, t, 2d) denote the model prediction of the first-order term. Then, we define the HOMO Loss
as follows:

L(θ1,θ2) = E[ℓ2,1,θ1(xt, ẋtruet)] + E[ℓ2,2,θ2,θ1(xt, ẍtruet)] + E[∥u1,θ1(xt, t, 2d)− ẋ
target
t ∥2]

We define

ℓ2,1,θ1(xt, ẋ
true
t) := ∥u1,θ1(xt, t, 2d)− ẋtruet ∥2,

ℓ2,2,θ2,θ1(xt, ẍ
true
t) := ∥u2,θ2(ẋ

pred
t , xt, t, 2d)− ẍtruet ∥2

ℓselfc(xt, ẋ
target
t) := ∥u1,θ1(xt, t, 2d)− ẋ

target
t ∥2

and

ℓ(θ1,θ2)(xt, x
true
t) := ℓ2,1,θ1(xt, ẋ

true
t) + ℓ2,2,θ2,θ1(xt, ẍ

true
t) + ℓselfc(xt, ẋ

target
t).

Remark 4.4 (Simple notations). For simplicity, we denote first-order matching as M1, which im-
plies that HOMO is optimized solely by the first-order loss ℓ2,1,θ1(xt, ẋ

true
t). Second-order matching

is denoted as M2, where HOMO is optimized only by the second-order loss ℓ2,2,θ2,θ1(xt, ẍ
true
t). We

refer to HOMO optimized solely by the self-consistency loss as SC, denoted by ℓselfc(xt, ẋ
target
t).

Combinations of M1, M2, and SC are used to indicate HOMO optimized by corresponding com-
binations of loss terms. For example, (M1 + M2) denotes HOMO optimized by both first-order
and second-order terms, while (M1 + M2 + SC) represents HOMO optimized by the first-order,
second-order, and self-consistency terms.

5 THEORETICAL ANALYSIS

In this section, we will introduce our main result, the approximation error of the second order flow
matching. The theory for higher order flow matching is deferred to Section D.

We first present the approximation error result for the early stage of the diffusion process. This
result establishes theoretical guarantees on how well a neural network can approximate the first and
second order flows during the initial phases of the trajectory evolution.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1 HOMO Training

1: procedure HOMOTRAINING(θ,D, p, k)
2: ▷ Parameter θ for HOMO model u1 and u2.
3: ▷ Training dataset D
4: ▷ Stepsize and time index distribution p
5: ▷ Batch size k
6: while not converged do
7: x0 ∼ N (0, I), x1 ∼ D, (d, t) ∼ p
8: βt ←

√
1− α2

t
9: xt ← αt · x0 + βt · x1 ▷ Noise data point

10: for first k batch elements do
11: ṡtruet ← α̇tx0 + β̇tx1 ▷ First-order target
12: s̈truet ← α̈tx0 + β̈tx1 ▷ Second-order target
13: d← 0
14: end for
15: for other batch elements do
16: st ← u1(xt, t, d) ▷ First small step of first order
17: ṡt ← u2(u1(xt, t, d), xt, t, d) ▷ First small step of second order
18: xt+d ← xt + d · st + d2

2 ṡt ▷ Follow ODE
19: st+d ← u1(xt+d, t+ d, d) ▷ Second small step of first order
20: ṡtargett ← stopgrad (st + st+d)/2 ▷ Self-consistency target of first order
21: end for
22: θ ← ∇θ(∥u1(xt, t, 2d)− ṡtruet ∥2

+∥u2(u1(xt, t, 2d), xt, t, 2d)− s̈truet ∥2
+∥u1(xt, t, 2d)− ṡtargett ∥2)

23: end while
24: return θ
25: end procedure

Algorithm 2 HOMO Sampling

1: procedure HOMOSAMPLING(θ,M)
2: ▷ Parameter θ for the HOMO model u1 and u2
3: ▷ The number of sampling steps M
4: x ∼ N (0, I)
5: d← 1/M
6: t← 0
7: for n ∈ [0, . . . ,M − 1] do
8: x← x+ d · u1(x, t, d) + d2

2 · u2(u1(x, t, d), x, t, d)
9: t← t+ d

10: end for
11: return x
12: end procedure

Theorem 5.1 (Approximation error of second order flow matching for small t, informal version
of Theorem D.1). Let N be a value associated with sample size n. Let T0 := N−R0 and T∗ :=

N− κ−1−δ
d whereR0, κ, δ are some parameters. Let s be the order of smoothness of the Besov space

that the target distribution belongs to. Under some mild assumptions, there exist neural networks
ϕ1, ϕ2 from a class of neural networks such that, for sufficiently large N , we have

∫
(∥ϕ1(x, t) −

ẋtruet ∥22 + ∥ϕ2(x, t)− ẍtruet ∥22)pt(x)dx ≲ (α̇2
t logN + β̇2

t)N
− 2s

d +Ext∼Pt [∥ẋtruet − ẍtruet ∥22] holds
for any t ∈ [T0, 3T∗]. In addition, ϕ1, ϕ2 can be taken so we have ∥ϕ1(·, t)∥∞ = O(|α̇t|

√
log n +

|β̇t|), ∥ϕ2(·, t)∥∞ = O(|α̇t|
√
log n+ |β̇t|).

Next, we present the approximation error result for the later stages, confirming that the second-order
flow matching remains effective throughout the generative process.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Theorem 5.2 (Approximation error of second order flow matching for large t, informal version of
Theorem D.3). Let N be a value associated with sample size n. Let T0 := N−R0 and T∗ :=

N − κ−1−δ
d where R0, κ, δ are some parameters. Let s be the order of smoothness of the Besov

space that the target distribution belongs to. Fix t∗ ∈ [T∗, 1] and let η > 0 be arbitrary. Under
some mild assumptions, there exists neural networks ϕ1, ϕ2 from a class of neural networks such that∫
(∥ϕ1(x, t)− ẋtruet ∥22 + ∥ϕ2(x, t)− ẍtruet ∥22)pt(x)dx ≲ (α̇2

t logN + β̇2
t)N

−η + Ext∼Pt [∥ẋtruet −
ẍtruet ∥22] holds for any t ∈ [2t∗, 1]. In addition, ϕ1, ϕ2 can be taken so we have

∥ϕ1(·, t)∥∞ = O(|α̇t| logN + |β̇t|),
∥ϕ2(·, t)∥∞ = O(|α̇t| logN + |β̇t|).

Overall, these two results demonstrate the effectiveness across different phases of the generative
process.

6 EXPERIMENTS

This section presents a series of experiments to evaluate the effectiveness of our HOMO method
and assess the impact of each loss component. Our results demonstrate that HOMO significantly
improves distribution generation, with the high-order loss playing a key role in enhancing model
performance.

10 0 10
15
10

5
0
5

10
15

Samples from 0 and 1
0

1

(a) Eight-mode Dataset

10 0 10
15
10

5
0
5

10
15

HOMO optimized
 with M1 loss

0
1

Generated

(b) M1

10 0 10
15
10

5
0
5

10
15

HOMO optimized
 with M2 loss

0
1

Generated

(c) M2

10 0 10
15
10

5
0
5

10
15

HOMO optimized
 with SC loss

0
1

Generated

(d) SC

10 0 10
15
10

5
0
5

10
15

HOMO optimized
 with (M1 + M2) losses

0
1

Generated

(e) (M1 + M2)

10 0 10
15
10

5
0
5

10
15

HOMO optimized
 with (M1 + SC) losses

0
1

Generated

(f) (M1 + SC) (Frans et al.,
2025)

10 0 10
15
10

5
0
5

10
15

HOMO optimized
 with (M2 + SC) losses

0
1

Generated

(g) (M2 + SC)

10 0 10
15
10

5
0
5

10
15

HOMO optimized with
(M1 + M2 + SC) losses

0
1

Generated

(h) (M1 + M2 + SC)
(Ours)

Figure 1: The first row shows the initial eight-mode dataset (a) and the results of HOMO optimized
with first-order loss (M1), second-order loss (M2), and self-consistency loss (SC) Figures (b-d). The
second row presents combinations of losses: M1+M2 (e), M1+SC (Frans et al., 2025) (f), M2+SC
(g), and M1+M2+SC (Ours) (h). Quantitative results are shown in Table 1

6.1 EXPERIMENT SETUP

We evaluate HOMO on a variety of data distributions and different combinations of losses. We
would like to restate that the HOMO with first order loss and self-consistency loss is equal to the
original One-step Shortcut model (Frans et al., 2025), i.e., M1+SC. Furthermore, M1+M2+SC and
M1+M2+M3+SC are our proposed methods.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Euclidean distance loss on Gaussian datasets. Lower values indicate more accurate
distribution matching. Optimal values are in Bold, with Underlined numbers representing second-
best results. For qualitative results, please refer to Figure 1.

Losses Four mode (↓) Five mode (↓) Eight mode (↓)
M1 2.759 3.281 3.321
M2 11.089 6.554 10.830
SC 6.761 10.893 7.646
M1 + M2 0.941 1.097 0.977
M2 + SC 8.708 9.212 4.801
M1 + SC (Frans et al., 2025) 0.820 1.067 1.084
M1 + M2 + SC (Ours) 0.809 0.917 0.778

400 200 0 200 400400
300
200
100

0
100
200
300
400

HOMO optimized
with (M1 + M2) losses

0
1

Generated

(a) (M1 + M2) / spin

400 200 0 200 400400
300
200
100

0
100
200
300
400

HOMO optimized
with (M1 + SC) losses

0
1

Generated

(b) (M1 + SC) / spin

400 200 0 200 400400
300
200
100

0
100
200
300
400

HOMO optimized
with (M2 + SC) losses

0
1

Generated

(c) (M2 + SC) / spin

400 200 0 200 400400
300
200
100

0
100
200
300
400

HOMO optimized with
(M1 + M2 + SC) losses

0
1

Generated

(d) (M1 + M2 + SC) / spin

Figure 2: HOMO on complex datasets (Spin). Results of HOMO optimized with various loss
combinations: M1+M2 (a), M1+SC (Frans et al., 2025) (b), M2+SC (c), and M1+M2+SC (Ours)
(d). Quantitative results are in Table 2.

Table 2: Euclidean distance loss on complex datasets. Lower values indicate better distribution
matching. For qualitative results of complex distribution experiments, please refer to Figure 2 and
Figure 13, 14, 15, 16.

Losses Circle (↓) Irregular (↓) Spiral (↓) Spin (↓)
M1 + M2 0.642 0.731 7.233 31.009
M1 + SC 0.736 0.743 3.289 12.055
M2 + SC 7.233 0.975 10.096 50.499
M1 + M2 + SC 0.579 0.678 1.840 10.066

For the distribution dataset, in the left-most figure of Figure 1, we show an example of an eight-mode
Gaussian distribution. The source distribution π0 and the target distribution π1 are constructed
as mixture distributions, each consisting of eight equally weighted Gaussian components. Each
Gaussian component has a variance of 0.3. This setup presents a challenging transportation problem,
requiring the flow to handle multiple modes and cross-modal interactions.

We implement HOMO according to three kinds of losses: the first-order loss ℓ2,1,θ1(xt, ẋ
true
t), the

second-order loss ℓ2,2,θ2,θ1(xt, ẍ
true
t), and the self-consistency loss ℓselfc(xt, ẋ

target
t). Following

Remark 4.4, we use M1, M2 and SC to denote three kinds of losses, respectively. For all experi-
ments, we optimize models by the sum of squared error. For the target transport trajectory setting,
we follow the VP ODE framework from (Liu et al., 2022b), which is xt = αtx0 + βtx1. We choose
αt = exp(− 1

4a(1− t)
2 − 1

2b(1− t)) and βt =
√

1− α2
t , with a = 19.9 and b = 0.1.

6.2 MIXTURE OF GAUSSIAN EXPERIMENTS

We analyze the performance of HOMO on Gaussian mixture datasets (Liang et al., 2024e) with
varying modes (four, five, and eight). The most challenging is the eight-mode distribution, where

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

HOMO with all three losses (M1+M2+SC) produces the best results, achieving the lowest Euclidean
distance. The eight-mode Gaussian mixture distribution dataset (Figure 1 (a)) contains eight Gaus-
sian distributions whose variance is 0.3. Eight source mode (brown) positioned at a distanceD0 = 6
from the origin, and eight target mode (indigo) positioned at a distance D0 = 13 from the origin,
each mode sample 100 points. HOMO optimized with M1+M2+SC losses is the only model that
can accurately learn the target eight-mode Gaussian distribution, achieving high precision as evi-
denced by the lowest Euclidean distance loss among all tested configurations. We emphasize the
importance of the second-order loss. Without it, the model struggles to accurately capture finer
distribution details (Figure 1 (f)). However, when included, the model better matches the target
distribution (Figure 1 (h)).

We further analyze how each loss contributes to the final performance of the HOMO. (1) The first-
order loss enables HOMO to learn the general structure of the target distribution, but it struggles to
capture finer details, as shown in Figure 1 (b) and Figure 1 (g). (2) The second-order loss can lead
to overfitting in the target distribution, as shown in Figure 1(c). When used alone, the second-order
loss may cause the model to focus too much on details and lose sight of the broader distribution.
(3) The self-consistency loss enhances the concentration of the learned distribution, as shown in
Figure 1 (d). Without the self-consistency loss, as shown in Figure 1 (e), the learned distribution
becomes sparser.

6.3 COMPLEX DISTRIBUTION EXPERIMENTS

In this section, we conduct experiments on datasets with complex distributions, where we expect our
HOMO model to learn the transformation from a regular source distribution to an irregular target
distribution. We first introduce the dataset used in Figure 2. In the spin dataset, we sample 600 points
from a Gaussian distribution with a variance of 0.3 for both the source and target distributions. The
second-order loss is essential for accurate fitting, particularly for irregular and spiral distributions.
We emphasize the critical role of the second order loss in the success of our HOMO model for
learning complex distributions. As demonstrated in Figure 2 (b), the original shortcut model, which
includes only first-order and self-consistency losses, fails to accurately fit the outer circle distribu-
tion. In contrast, the result of our HOMO model, shown in Figure 2 (d), illustrates that adding the
second-order loss enables the model to generate points within the outer circle. This highlights the
importance of the second-order loss in enabling the model to learn more complex distributions. We
have also performed experiments with HOMO optimized using each loss individually, as well as on
other distribution datasets. Due to space limitations, we refer the reader to Section E.2, E.3, and E.4
for further details.

6.4 THIRD-ORDER HOMO

Table 3: Euclidean distance loss of three complex distribution datasets under original trajec-
tory setting. Lower values indicate more accurate distribution transfer results. For the qualitative
results , please refer to Figure 3.

Loss terms 2 Round Spin (↓) 3 Round Spin (↓) Dot-Circle (↓)

SC 59.490 50.981 89.974
M1 + SC (Frans et al., 2025) 17.866 23.606 37.550
M1 + M2 + SC (Ours) 9.417 13.085 30.679
M1 + M2 + SC + M3 (Ours) 7.440 10.679 26.819

As discussed in previous sections, second-order HOMO has shown great performance on various
distribution datasets. Therefore, in this section, we further investigate the performance of HOMO
for adding an additional third-order loss. We use the same datasets as discussed in previous sections.
Namely, they are 2 Round spin, 3 Round spin, and Dot-Circle datasets. The qualitative results from
the experiments (Figure 3) demonstrate that the additional third-order loss enables HOMO to better
capture more complex target distributions. For instance, the comparison between Figure 3 (c) and
Figure 3 (d), as well as between Figure 3 (g) and Figure 3 (h), illustrates how the third-order loss
enhances the model’s ability to fit more intricate distributions. These findings are consistent with
the quantitative results presented in Table 3. By capturing higher-order interactions, the model is

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

400 200 0 200 400400
300
200
100

0
100
200
300
400

HOMO optimized
 with SC loss

0
1

Generated

(a) SC / 2 Round

400 200 0 200 400400
300
200
100

0
100
200
300
400

HOMO optimized
 with (M1 + SC) losses

0
1

Generated

(b) (M1 + SC)) / 2 Round

400 200 0 200 400400
300
200
100

0
100
200
300
400

HOMO optimized with
 (M1 + M2 + SC) losses

0
1

Generated

(c) (M1 + M2 + SC)) / 2
Round

400 200 0 200 400400
300
200
100

0
100
200
300
400

HOMO optimized with
(M1+M2+M3+SC) losses

0
1

Generated

(d) (M1+M2+M3+SC))/2
Round

600 400 200 0 200 400 600
600

400

200

0

200

400

600

HOMO optimized
 with SC loss

0
1

Generated

(e) SC / 3 Round

600 400 200 0 200 400 600
600

400

200

0

200

400

600

HOMO optimized
 with (M1 + SC) losses

0
1

Generated

(f) (M1 + SC)) / 3 Round

600 400 200 0 200 400 600
600

400

200

0

200

400

600

HOMO optimized with
 (M1 + M2 + SC) losses

0
1

Generated

(g) (M1 + M2 + SC)) / 3
Round

600 400 200 0 200 400 600
600

400

200

0

200

400

600

HOMO optimized with
(M1+M2+M3+SC) losses

0
1

Generated

(h) (M1+M2+M3+SC))/3
Round

400 200 0 200 400

400

200

0

200

400

HOMO optimized
 with SC loss

0
1

Generated

(i) SC / DC

400 200 0 200 400

400

200

0

200

400

HOMO optimized
 with (M1 + SC) losses

0
1

Generated

(j) (M1 + SC)) / DC

400 200 0 200 400

400

200

0

200

400

HOMO optimized with
 (M1 + M2 + SC) losses

0
1

Generated

(k) (M1 + M2 + SC)) / DC

400 200 0 200 400

400

200

0

200

400

HOMO optimized with
(M1+M2+M3+SC) losses

0
1

Generated

(l) (M1+M2+M3+SC)) /
DC

Figure 3: We present the third-order HOMO results in three kinds of complex datasets. From
left to right, we present results of HOMO optimized with different kinds of losses. A quantitative
evaluation is presented in Table 3.

better equipped to understand and adapt to the intricate relationships within the data, leading to more
accurate and robust learning. This approach underscores the value of enriching the model’s training
objective to handle the complexities inherent in real-world data distributions.

7 CONCLUSION

In this work, we introduced HOMO , which incorporates high-order dynamics into the training and
sampling processes of Shortcut models. By leveraging high-order supervision, our method signifi-
cantly enhances the geometric consistency and precision of learned trajectories. Theoretical analyses
demonstrate that high-order supervision ensures stability and generalization across different phases
of the generative process. These findings are supported by extensive experiments, where HOMO
outperforms original Shortcut models (Frans et al., 2025), achieving more accurate distributional
alignment and fewer suboptimal trajectories. The integration of high-order terms establishes a new
style for geometrically-aware generative modeling, highlighting the importance of capturing higher-
order dynamics for accurate transport learning. Our results suggest that high-order supervision is a
powerful tool for improving the fidelity and robustness of generative models.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHIC STATEMENT

This paper does not involve human subjects, personally identifiable data, or sensitive applications.
We do not foresee direct ethical risks. We follow the ICLR Code of Ethics and affirm that all aspects
of this research comply with the principles of fairness, transparency, and integrity.

REPRODUCIBILITY STATEMENT

We ensure reproducibility on both theoretical and empirical fronts. For theory, we include all formal
assumptions, definitions, and complete proofs in the appendix. For experiments, we describe model
architectures, datasets, preprocessing steps, hyperparameters, and training details in the main text
and appendix.

REFERENCES

Fan Bao, Shen Nie, Kaiwen Xue, Yue Cao, Chongxuan Li, Hang Su, and Jun Zhu. All are worth
words: A vit backbone for diffusion models. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 22669–22679, 2023.

Song Bian, Zhao Song, and Junze Yin. Federated empirical risk minimization via second-order
method. arXiv preprint arXiv:2305.17482, 2023.

Andreas Blattmann, Robin Rombach, Huan Ling, Tim Dockhorn, Seung Wook Kim, Sanja Fidler,
and Karsten Kreis. Align your latents: High-resolution video synthesis with latent diffusion mod-
els. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 22563–22575, 2023.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the opportu-
nities and risks of foundation models. arXiv preprint arXiv:2108.07258, 2021.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Ka-
mar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general
intelligence: Early experiments with gpt-4. arXiv preprint arXiv:2303.12712, 2023.

Yang Cao, Xiaoyu Li, and Zhao Song. Grams: Gradient descent with adaptive momentum scaling.
arXiv preprint arXiv:2412.17107, 2024.

YF Chang and George Corliss. Atomft: solving odes and daes using taylor series. Computers &
Mathematics with Applications, 28(10-12):209–233, 1994.

Bo Chen, Xiaoyu Li, Yingyu Liang, Jiangxuan Long, Zhenmei Shi, and Zhao Song. Circuit com-
plexity bounds for rope-based transformer architecture. arXiv preprint arXiv:2411.07602, 2024a.

Bo Chen, Xiaoyu Li, Yingyu Liang, Zhenmei Shi, and Zhao Song. Bypassing the exponential de-
pendency: Looped transformers efficiently learn in-context by multi-step gradient descent. arXiv
preprint arXiv:2410.11268, 2024b.

Bo Chen, Yingyu Liang, Zhizhou Sha, Zhenmei Shi, and Zhao Song. Hsr-enhanced sparse attention
acceleration. arXiv preprint arXiv:2410.10165, 2024c.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in neural information processing systems, 31, 2018.

Ting Chen. On the importance of noise scheduling for diffusion models. arXiv preprint
arXiv:2301.10972, 2023.

Yifang Chen, Jiayan Huo, Xiaoyu Li, Yingyu Liang, Zhenmei Shi, and Zhao Song. Fast gradient
computation for rope attention in almost linear time. arXiv preprint arXiv:2412.17316, 2024d.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Yifang Chen, Xiaoyu Li, Yingyu Liang, Zhenmei Shi, and Zhao Song. The computational
limits of state-space models and mamba via the lens of circuit complexity. arXiv preprint
arXiv:2412.06148, 2024e.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311, 2022.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned language mod-
els. arXiv preprint arXiv:2210.11416, 2022.

George Corliss and YF Chang. Solving ordinary differential equations using taylor series. ACM
Transactions on Mathematical Software (TOMS), 8(2):114–144, 1982.

Yichuan Deng, Zhao Song, Yitan Wang, and Yuanyuan Yang. A nearly optimal size coreset algo-
rithm with nearly linear time. arXiv preprint arXiv:2210.08361, 2022.

Yichuan Deng, Sridhar Mahadevan, and Zhao Song. Randomized and deterministic attention sparsi-
fication algorithms for over-parameterized feature dimension. arXiv preprint arXiv:2304.04397,
2023.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies. Association for Computational Linguistics, 2019.

Franck Djeumou, Cyrus Neary, Eric Goubault, Sylvie Putot, and Ufuk Topcu. Taylor-lagrange
neural ordinary differential equations: Toward fast training and evaluation of neural odes. arXiv
preprint arXiv:2201.05715, 2022.

Shibo Feng, Chunyan Miao, Zhong Zhang, and Peilin Zhao. Latent diffusion transformer for proba-
bilistic time series forecasting. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 38, pp. 11979–11987, 2024.

Chris Finlay, Jörn-Henrik Jacobsen, Levon Nurbekyan, and Adam Oberman. How to train your
neural ode: the world of jacobian and kinetic regularization. In International conference on
machine learning, pp. 3154–3164. PMLR, 2020.

Kevin Frans, Danijar Hafner, Sergey Levine, and Pieter Abbeel. One step diffusion via shortcut
models. In International Conference on Learning Representations, 2025.

Kenji Fukumizu, Taiji Suzuki, Noboru Isobe, Kazusato Oko, and Masanori Koyama. Flow matching
achieves minimax optimal convergence. arXiv preprint arXiv:2405.20879, 2024.

Peng Gao, Jiaming Han, Renrui Zhang, Ziyi Lin, Shijie Geng, Aojun Zhou, Wei Zhang, Pan Lu,
Conghui He, Xiangyu Yue, et al. Llama-adapter v2: Parameter-efficient visual instruction model.
arXiv preprint arXiv:2304.15010, 2023a.

Tianyu Gao, Adam Fisch, and Danqi Chen. Making pre-trained language models better few-shot
learners. In Proceedings of the 59th Annual Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference on Natural Language Processing, 2021a.

Tianyu Gao, Adam Fisch, and Danqi Chen. Making pre-trained language models better few-shot
learners. In Proceedings of the 59th Annual Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference on Natural Language Processing, 2021b.

Yeqi Gao, Sridhar Mahadevan, and Zhao Song. An over-parameterized exponential regression.
arXiv preprint arXiv:2303.16504, 2023b.

Yeqi Gao, Zhao Song, Weixin Wang, and Junze Yin. A fast optimization view: Reformulating single
layer attention in llm based on tensor and svm trick, and solving it in matrix multiplication time.
arXiv preprint arXiv:2309.07418, 2023c.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yeqi Gao, Zhao Song, and Junze Yin. Gradientcoin: A peer-to-peer decentralized large language
models. arXiv preprint arXiv:2308.10502, 2023d.

Yeqi Gao, Zhao Song, and Junze Yin. An iterative algorithm for rescaled hyperbolic functions
regression. arXiv preprint arXiv:2305.00660, 2023e.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information
processing systems, 27, 2014.

Will Grathwohl, Ricky TQ Chen, Jesse Bettencourt, Ilya Sutskever, and David Duvenaud. Ffjord:
Free-form continuous dynamics for scalable reversible generative models. arXiv preprint
arXiv:1810.01367, 2018.

Tiankai Hang and Shuyang Gu. Improved noise schedule for diffusion training. arXiv preprint
arXiv:2407.03297, 2024.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International Con-
ference on Learning Representations, 2022.

Jerry Yao-Chieh Hu, Wei-Po Wang, Ammar Gilani, Chenyang Li, Zhao Song, and Han Liu. Funda-
mental limits of prompt tuning transformers: Universality, capacity and efficiency. arXiv preprint
arXiv:2411.16525, 2024a.

Jerry Yao-Chieh Hu, Weimin Wu, Zhao Song, and Han Liu. On statistical rates and provably efficient
criteria of latent diffusion transformers (dits). arXiv preprint arXiv:2407.01079, 2024b.

Vincent Hu, Di Wu, Yuki Asano, Pascal Mettes, Basura Fernando, Björn Ommer, and Cees Snoek.
Flow matching for conditional text generation in a few sampling steps. In Proceedings of the 18th
Conference of the European Chapter of the Association for Computational Linguistics (Volume
2: Short Papers), pp. 380–392, 2024c.

Yitong Jiang, Zhaoyang Zhang, Tianfan Xue, and Jinwei Gu. Autodir: Automatic all-in-one image
restoration with latent diffusion. In European Conference on Computer Vision, pp. 340–359.
Springer, 2025.

Nal Kalchbrenner, Erich Elsen, Karen Simonyan, Seb Noury, Norman Casagrande, Edward Lock-
hart, Florian Stimberg, Aaron Oord, Sander Dieleman, and Koray Kavukcuoglu. Efficient neural
audio synthesis. In International Conference on Machine Learning, pp. 2410–2419. PMLR, 2018.

Yekun Ke, Xiaoyu Li, Yingyu Liang, Zhenmei Shi, and Zhao Song. Advancing the understanding
of fixed point iterations in deep neural networks: A detailed analytical study. arXiv preprint
arXiv:2410.11279, 2024.

Yekun Ke, Xiaoyu Li, Yingyu Liang, Zhizhou Sha, Zhenmei Shi, and Zhao Song. On computational
limits and provably efficient criteria of visual autoregressive models: A fine-grained complexity
analysis. arXiv preprint arXiv:2501.04377, 2025a.

Yekun Ke, Xiaoyu Li, Yingyu Liang, Zhenmei Shi, and Zhao Song. Circuit complexity bounds for
visual autoregressive model. arXiv preprint arXiv:2501.04299, 2025b.

Jacob Kelly, Jesse Bettencourt, Matthew J Johnson, and David K Duvenaud. Learning differential
equations that are easy to solve. Advances in Neural Information Processing Systems, 33:4370–
4380, 2020.

Peter E Kloeden and Eckhard Platen. Numerical Solution of Stochastic Differential Equations.
Springer, 1992.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Pro-
cessing. Association for Computational Linguistics, 2021.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation.
In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing. Association for
Computational Linguistics, 2021.

Xiaoyu Li, Yingyu Liang, Zhenmei Shi, and Zhao Song. A tighter complexity analysis of sparsegpt.
arXiv preprint arXiv:2408.12151, 2024a.

Xiaoyu Li, Yingyu Liang, Zhenmei Shi, Zhao Song, and Yufa Zhou. Fine-grained attention i/o
complexity: Comprehensive analysis for backward passes. arXiv preprint arXiv:2410.09397,
2024b.

Xiaoyu Li, Jiangxuan Long, Zhao Song, and Tianyi Zhou. Fast second-order method for neural
network under small treewidth setting. In 2024 IEEE International Conference on Big Data
(BigData). IEEE, 2024c.

Xiaoyu Li, Zhao Song, and Junwei Yu. Quantum speedups for approximating the john ellipsoid.
arXiv preprint arXiv:2408.14018, 2024d.

Xiaoyu Li, Yingyu Liang, Zhenmei Shi, Zhao Song, Wei Wang, and Jiahao Zhang. On the com-
putational capability of graph neural networks: A circuit complexity bound perspective. arXiv
preprint arXiv:2501.06444, 2025.

Yingyu Liang, Jiangxuan Long, Zhenmei Shi, Zhao Song, and Yufa Zhou. Beyond linear approxi-
mations: A novel pruning approach for attention matrix, 2024a.

Yingyu Liang, Zhizhou Sha, Zhenmei Shi, and Zhao Song. Differential privacy mechanisms in
neural tangent kernel regression. arXiv preprint arXiv:2407.13621, 2024b.

Yingyu Liang, Zhizhou Sha, Zhenmei Shi, Zhao Song, and Yufa Zhou. Multi-layer transformers
gradient can be approximated in almost linear time. arXiv preprint arXiv:2408.13233, 2024c.

Yingyu Liang, Zhizhou Sha, Zhenmei Shi, Zhao Song, and Yufa Zhou. Looped relu mlps may be
all you need as practical programmable computers. arXiv preprint arXiv:2410.09375, 2024d.

Yingyu Liang, Zhenmei Shi, Zhao Song, and Yufa Zhou. Unraveling the smoothness properties of
diffusion models: A gaussian mixture perspective. arXiv preprint arXiv:2405.16418, 2024e.

Shanchuan Lin, Bingchen Liu, Jiashi Li, and Xiao Yang. Common diffusion noise schedules and
sample steps are flawed. In Proceedings of the IEEE/CVF winter conference on applications of
computer vision, pp. 5404–5411, 2024.

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
for generative modeling. arXiv preprint arXiv:2210.02747, 2022.

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
transfer data with rectified flow. arXiv preprint arXiv:2209.03003, 2022a.

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
transfer data with rectified flow. arXiv preprint arXiv:2209.03003, 2022b.

Justin Lovelace, Varsha Kishore, Chao Wan, Eliot Shekhtman, and Kilian Q Weinberger. Latent
diffusion for language generation. Advances in Neural Information Processing Systems, 36, 2024.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A fast
ode solver for diffusion probabilistic model sampling in around 10 steps. Advances in Neural
Information Processing Systems, 35:5775–5787, 2022.

Simian Luo, Chuanhao Yan, Chenxu Hu, and Hang Zhao. Diff-foley: Synchronized video-to-audio
synthesis with latent diffusion models. Advances in Neural Information Processing Systems, 36,
2024.

Swaroop Mishra, Daniel Khashabi, Chitta Baral, and Hannaneh Hajishirzi. Cross-task generalization
via natural language crowdsourcing instructions. In Proceedings of the 60th Annual Meeting of
the Association for Computational Linguistics, 2022.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Maxwell Nye, Anders Johan Andreassen, Gur AriGuy, Henryk Michalewski, Jacob Austin,
David Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan, et al. Show
your work: Scratchpads for intermediate computation with language models. arXiv preprint
arXiv:2112.00114, 2021.

Kazusato Oko, Shunta Akiyama, and Taiji Suzuki. Diffusion models are minimax optimal distri-
bution estimators. In International Conference on Machine Learning, pp. 26517–26582. PMLR,
2023.

OpenAI. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

OpenAI. Introducing ChatGPT, 2024.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in Neural Information Processing Systems, 2022.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 4195–4205, 2023.

Lianke Qin, Zhao Song, and Baocheng Sun. Is solving graph neural tangent kernel equivalent to
training graph neural network? arXiv preprint arXiv:2309.07452, 2023.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Litu Rout, Yujia Chen, Abhishek Kumar, Constantine Caramanis, Sanjay Shakkottai, and Wen-
Sheng Chu. Beyond first-order tweedie: Solving inverse problems using latent diffusion. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9472–
9481, 2024.

Xuan Shen, Zhao Song, Yufa Zhou, Bo Chen, Yanyu Li, Yifan Gong, Kai Zhang, Hao Tan, Jason
Kuen, Henghui Ding, et al. Lazydit: Lazy learning for the acceleration of diffusion transformers.
arXiv preprint arXiv:2412.12444, 2024a.

Xuan Shen, Zhao Song, Yufa Zhou, Bo Chen, Jing Liu, Ruiyi Zhang, Ryan A Rossi, Hao Tan, Tong
Yu, Xiang Chen, et al. Numerical pruning for efficient autoregressive models. arXiv preprint
arXiv:2412.12441, 2024b.

Zhenmei Shi, Jiefeng Chen, Kunyang Li, Jayaram Raghuram, Xi Wu, Yingyu Liang, and Somesh
Jha. The trade-off between universality and label efficiency of representations from contrastive
learning. In The Eleventh International Conference on Learning Representations, 2023.

Anshumali Shrivastava, Zhao Song, and Zhaozhuo Xu. A theoretical analysis of nearest neighbor
search on approximate near neighbor graph. arXiv preprint arXiv:2303.06210, 2023.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learn-
ing, pp. 2256–2265. PMLR, 2015.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
Advances in neural information processing systems, 32, 2019.

Zhao Song, Weixin Wang, and Junze Yin. A unified scheme of resnet and softmax. arXiv preprint
arXiv:2309.13482, 2023.

Tianxiang Sun, Yunfan Shao, Hong Qian, Xuanjing Huang, and Xipeng Qiu. Black-box tuning for
language-model-as-a-service. In International Conference on Machine Learning. PMLR, 2022.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Taiji Suzuki. Adaptivity of deep relu network for learning in besov and mixed smooth besov spaces:
optimal rate and curse of dimensionality. In International Conference on Learning Representa-
tions, 2019.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Hans Triebel. Theory of Function Spaces II, volume 84 of Monographs in Mathematics. Birkhäuser,
1992.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 2017.

Johannes Von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordv-
intsev, Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient
descent. In International Conference on Machine Learning. PMLR, 2023.

Xiaofei Wang, Sefik Emre Eskimez, Manthan Thakker, Hemin Yang, Zirun Zhu, Min Tang, Yufei
Xia, Jinzhu Li, Sheng Zhao, Jinyu Li, et al. An investigation of noise robustness for flow-
matching-based zero-shot tts. arXiv preprint arXiv:2406.05699, 2024.

Jerry Wei, Le Hou, Andrew Kyle Lampinen, Xiangning Chen, Da Huang, Yi Tay, Xinyun Chen,
Yifeng Lu, Denny Zhou, Tengyu Ma, and Quoc V Le. Symbol tuning improves in-context learn-
ing in language models. In The 2023 Conference on Empirical Methods in Natural Language
Processing, 2023.

Zhuoyan Xu, Zhenmei Shi, Junyi Wei, Yin Li, and Yingyu Liang. Improving foundation models
for few-shot learning via multitask finetuning. In ICLR 2023 Workshop on Mathematical and
Empirical Understanding of Foundation Models, 2023.

Zhuoyan Xu, Zhenmei Shi, Junyi Wei, Fangzhou Mu, Yin Li, and Yingyu Liang. Towards few-shot
adaptation of foundation models via multitask finetuning. In The Twelfth International Conference
on Learning Representations, 2024.

Renrui Zhang, Jiaming Han, Aojun Zhou, Xiangfei Hu, Shilin Yan, Pan Lu, Hongsheng Li, Peng
Gao, and Yu Qiao. Llama-adapter: Efficient fine-tuning of language models with zero-init atten-
tion. arXiv preprint arXiv:2303.16199, 2023.

Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and Sameer Singh. Calibrate before use: Improving
few-shot performance of language models. In International Conference on Machine Learning.
PMLR, 2021.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srini Iyer, Jiao Sun, Yuning Mao, Xuezhe Ma, Avia Efrat,
Ping Yu, LILI YU, Susan Zhang, Gargi Ghosh, Mike Lewis, Luke Zettlemoyer, and Omer Levy.
LIMA: Less is more for alignment. In Thirty-seventh Conference on Neural Information Process-
ing Systems, 2023.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Appendix
Roadmap. In Section A, we introduce the Shortcut Model Training and Sampling Algorithm. Sec-
tion B discusses related works that inspire our approach. Section C states the tools from (Fukumizu
et al., 2024) used in our analysis. Section D explores the theory behind Higher-Order Flow Match-
ing. Section E investigates the impact of different optimization terms through empirical ablation
studies. Section F examines model performance on complex distribution experiments. Section G
extends HOMO to third-order dynamics and evaluates its effectiveness on complex tasks. Section H
quantifies the computational and optimization costs associated with different configurations.

A ORIGINAL ALGORITHM

Here we introduce Shortcut Model Training and Sampling Algorithm from Page 5 of (Frans et al.,
2025)

Algorithm 3 Shortcut Model Training from page 5 of (Frans et al., 2025)

1: while not converged do
2: x0 ∼ N (0, I), x1 ∼ D, (d, t) ∼ p(d, t)
3: xt ← (1− t)x0 + tx1 ▷ Noise data point
4: for first k batch elements do
5: starget ← x1 − x0 ▷ Flow-matching target
6: d← 0
7: end for
8: for other batch elements do
9: st ← u1(xt, t, d) ▷ Fitst small step

10: xt+d ← xt + std ▷ Follow ODE
11: st+d ← u1(xt+d, t+ d, d) ▷ Second small step
12: starget ← stopgrad (st + st+d)/2 ▷ Self-consistency target
13: end for
14: θ ← ∇θ∥u1(xt, t, 2d)− starget∥2
15: end while

Algorithm 4 Shortcut model. Sampling from page 5 of (Frans et al., 2025)

1: x ∼ N (0, I)
2: d← 1/M
3: t← 0
4: for n ∈ [0, . . . ,M − 1] do
5: x← x+ d · u1(x, t, d)
6: t← t+ d
7: end for
8: return x

B MORE RELATED WORK

In this section, we discuss more related work that inspires our work.

Large Language Models. Neural networks built upon the Transformer architecture (Vaswani
et al., 2017) have swiftly risen to dominate modern machine learning approaches in natural lan-
guage processing. Extensive Transformer models, trained on wide-ranging and voluminous datasets
while encompassing billions of parameters, are often termed large language models (LLM) or foun-
dation models (Bommasani et al., 2021). Representative instances include BERT (Devlin et al.,
2019), PaLM (Chowdhery et al., 2022), Llama (Touvron et al., 2023), ChatGPT (OpenAI, 2024),
GPT4 (OpenAI, 2023), among others. These LLMs have showcased striking general intelligence
abilities (Bubeck et al., 2023) in various downstream tasks. Numerous adaptation methods have

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

been developed to tailor LLMs for specific applications, such as adapters (Hu et al., 2022; Zhang
et al., 2023; Gao et al., 2023a; Shi et al., 2023), calibration schemes (Zhao et al., 2021; Zhou et al.,
2023), multitask fine-tuning (Gao et al., 2021a; Xu et al., 2023; Von Oswald et al., 2023; Xu et al.,
2024), prompt optimization (Gao et al., 2021b; Lester et al., 2021), scratchpad approaches (Nye
et al., 2021), instruction tuning (Li & Liang, 2021; Chung et al., 2022; Mishra et al., 2022), symbol
tuning (Wei et al., 2023), black-box tuning (Sun et al., 2022), and reinforcement learning from hu-
man feedback (RLHF) (Ouyang et al., 2022). Additional lines of research endeavor to boost model
efficiency without sacrificing performance across diverse domains, for example in (Deng et al., 2022;
Song et al., 2023; Gao et al., 2023c;e;d; Bian et al., 2023; Deng et al., 2023; Gao et al., 2023b; Shri-
vastava et al., 2023; Qin et al., 2023; Chen et al., 2024c; Li et al., 2024d; Chen et al., 2024b; Liang
et al., 2024c; Chen et al., 2024a; Liang et al., 2024b;d;a; Li et al., 2024a;c; Cao et al., 2024; Li et al.,
2024b; Chen et al., 2024e;d; Ke et al., 2024; 2025a;b; Li et al., 2025; Hu et al., 2024a).

C TOOLS FROM PREVIOUS WORKS

We state the tools in (Fukumizu et al., 2024) that we will use to prove our main results.

C.1 DEFINITIONS OF BESOV SPACE

Definition C.1 (Modulus of Smoothness). Let Ω be a domain in Rd. For a function f ∈ Lp′
(Ω)

with p′ ∈ (0,∞], the r-th modulus of smoothness of f is defined by

wr,p′(f, t) = sup
∥h∥2≤t

∥∆r
h(f)∥p′ ,

where the finite difference operator ∆r
h(f)(x) is given by

∆r
h(f)(x) =

{∑r
j=0

(
r
j

)
(−1)r−jf(x+ jh), ifx+ jh ∈ Ωforallj,

0, otherwise.

Definition C.2 (Besov Seminorm). Let 0 < p′, q′ ≤ ∞, s > 0, and set r := |s| + 1. The Besov
seminorm of f ∈ Lp′

(Ω) is defined as

|f |Bs
p′,q′

:=


(∫∞

0
(t−swr,p′(f, t))q

′ dt
t

) 1
q′
, q′ <∞,

supt>0 t
−swr,p′(f, t), q′ =∞.

Definition C.3 (Besov Space). The Besov space Bs
p′,q′(Ω) is the function space equipped with the

norm

∥f∥Bs
p′,q′

:= ∥f∥p′ + |f |Bs
p′,q′

,

It consists of all functions f ∈ Lp′
(Ω) such that

Bs
p′,q′(Ω) := {f ∈ Lp′

(Ω) | ∥f∥Bs
p′,q′

<∞}.

Remark C.4. The parameter s governs the degree of smoothness of functions in Bs
p′,q′(Ω). In

particular, when p′ = q′ and s is an integer, the Besov space Bs
p′,q′(Ω) coincides with the standard

Sobolev space of order s. For further details on the properties and applications of Besov spaces, see
(Triebel, 1992).

C.2 B-SPLINE

Definition C.5 (Indicator Function). Let N (x) be the characteristic function defined by

N (x) =

{
1, x ∈ [0, 1],

0, otherwise.

Definition C.6 (Cardinal B-Spline). For ℓ ∈ N , the cardinal B-spline of order ℓ is defined by

Nℓ(x) :=N ∗N ∗ · · · ∗ N︸ ︷︷ ︸
ℓ+1times

(x),

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

where ∗ denotes the convolution operation. Explicitly, the convolution of two functions f, g : R→ R
is given by

(f ∗ g)(x) =
∫
R
f(x− y)g(y)dy.

Thus, Nℓ(x) is obtained by convolving N with itself (ℓ+ 1) times.

Definition C.7 (Tensor Product B-Spline Basis). For a multi-index k ∈ N d and j ∈ Zd, the tensor
product B-spline basis in Rd of order ℓ is defined as

Md
k,j(x) :=

d∏
i=1

Nℓ(2
kixi − ji).

This basis is constructed as the product of univariate B-splines, scaled and translated according to
the parameters k and j.
Definition C.8 (B-Spline Approximation in Besov Spaces in (Suzuki, 2019; Oko et al., 2023)). A
function f in the Besov space can be approximated using a superposition of tensor product B-splines
as

fN (x) =
∑
(k,j)

αk,jM
d
k,j(x),

where the summation is taken over appropriate index sets (k, j), and the coefficients αk,j are real
numbers that determine the contribution of each basis function.

C.3 CLASS OF NEURAL NETWORKS

Definition C.9 (Neural Network Class in (Fukumizu et al., 2024)). Let L ∈ N denote the depth
(number of layers), W = (W1,W2, . . . ,WL+1) ∈ NL+1 the width configuration of the network,
S ∈ N a sparsity constraint, andB > 0 a norm bound. The class of neural networksM(L,W, S,B)
is defined as

M(L,W,S,B) := { ψA(L),b(L) ◦ · · · ◦ ψA(2),b(2)(A
(1)x+ b(1))m|A(i) ∈ RWi+1×Wi , b(i) ∈ RWi+1 ,

L∑
i=1

(∥A(i)∥0 + ∥b(i)∥0) ≤ S, max
1≤i≤L

{∥A(i)∥∞ ∨ ∥b(i)∥∞} ≤ B}.

Here, the function ψA,b : RWi → RWi+1 represents the affine transformation with ReLU activation,
given by

ψA,b(z) = A · ReLU(z) + b, where ReLU(z) = max{0, z}.
The sparsity constraint ensures that the total number of nonzero entries in all weight matrices and
bias vectors does not exceed S, while the norm constraint limits their maximum absolute values to
B.

C.4 ASSUMPTIONS

Remark C.10. We introduce a small positive constant δ > 0 and denote by N the number of basis
functions in the B-spline used to approximate pt(x). The value of N is determined by the sample
size n, specifically following the relation N = n

d
2s+d , which balances the approximation error and

the complexity of both the B-spline and the neural network.
Definition C.11 (Stopping Time). As we introduce in Remark C.10, we define the stopping time as
T0 = N−R0 , whereR0 is a parameter to be specified later, and consider solving the ODE backward
in time from t = 1 down to t = T0.
Definition C.12 (Reduced Cube). Let Id = [−1, 1]d denote the d-dimensional cube. To mitigate
boundary effects when N is large, we define the reduced cube as

IdN := [−1 +N−(1−κδ), 1−N−(1−κδ)]d,

where the parameter κ > 0 will be specified later in Assumption C.15.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Assumption C.13 (Smoothness and support of p0). The target probability P0 has support contained
in Id, and its probability density function p0 satisfies

p0 ∈ Bs
p′,q′(I

d) and p0 ∈ Bs̃
p′,q′(I

d \ IdN) with s̃ ≥ max{6s− 1, 1}.

Assumption C.14 (Boundedness away from 0 and above). There exists a constant C0 > 0 such that

C−1
0 ≤ p0(x) ≤ C0 forall x ∈ Id.

Assumption C.15 (Form of (αt, βt) and their bounds). There are constants κ ≥ 1
2 , b0 > 0, κ̃ > 0,

and b̃0 > 0 such that, for sufficiently small t ≥ T0,

αt = b0, t
κ, and 1− βt = b̃0, t

κ̃.

Moreover, there exist D0 > 0 and K0 > 0 such that ∀t ∈ [T0, 1], we have

D−1
0 ≤ α2

t + β2
t ≤ D0, |α̇t|+ |β̇t| ≤ NK0 .

Assumption C.16 (Additional bound in the critical case κ = 1
2). If κ = 1

2 , then there exist b1 > 0
and D1 > 0 such that, for all 0 ≤ γ < R0,∫ N−γ

T0

{(α̇t)
2 + (β̇t)

2}dt ≤ D1(logN)b1 .

Assumption C.17 (Lipschitz bound on the first moment). There is a constant CL > 0 such that, for
all t ∈ [T0, 1],

∥ ∂
∂x

∫
ypt(y|x)dy∥op ≤ CL.

C.5 APPROXIMATION ERROR FOR SMALL t

Lemma C.18 (Theorem 7 in (Fukumizu et al., 2024)). Under Assumptions C.13 C.14 C.15 C.16
and C.17, and if the following holds

• L = O(log4N).

• ∥W∥∞ = O(N log6N)

• S = O(N log8N)

• B = exp(O(logN log logN)).

Then there exists a neural network ϕ ∈M(L,W, S,B) such that, for sufficiently large N , we have∫
∥ϕ(x, t)− ẋtruet ∥22pt(x)dx ≲ (α̇2

t logN + β̇2
t)N

− 2s
d ,

holds for any t ∈ [T0, 3T∗]. In addition, ϕ can be taken so we have

∥ϕ(·, t)∥∞ = O(|α̇t|
√

log n+ |β̇t|).

C.6 APPROXIMATION ERROR FOR LARGE t

Lemma C.19 (Theorem 7 in (Fukumizu et al., 2024)). Fix t∗ ∈ [T∗, 1] and let η > 0 be arbitrary,
under Assumptions C.13 C.14 C.15 C.16 and C.17, and if the following holds

• L = O(log4N).

• ∥W∥∞ = O(N)

• S = O(t−dκ
∗ Nδκ)

• B = exp(O(logN log logN)).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Then there exist a neural network ϕ ∈M(L,W,S,B) such that∫
∥ϕ(x, t)− ẋtruet ∥2pt(x)dx ≲ (α̇2

t logN + β̇2
t)N

−η.

holds for any t ∈ [2t∗, 1]. In addition, ϕ can be taken so we have

∥ϕ(·, t)∥∞ = O(|α̇t| logN + |β̇t|).

D THEORY OF HIGHER ORDER FLOW MATCHING

We use dk

dtk
xtruet to denote the k-th order derivative of xtruet with respect to t. Note that ẋtruet :=

d
dtx

true
t , and ẍtruet := d2

dt2x
true
t .

D.1 APPROXIMATION ERROR OF SECOND ORDER FLOW MATCHING FOR SMALL t

Theorem D.1 (Approximation error of second order flow matching for small t, formal version of
Theorem 5.1). Under Assumptions C.13 C.14 C.15 C.16 and C.17, and if the following holds

• L = O(log4N).

• ∥W∥∞ = O(N log6N)

• S = O(N log8N)

• B = exp(O(logN log logN)).

Then there exists neural networks ϕ1, ϕ2 ∈ M(L,W, S,B) such that, for sufficiently large N , we
have ∫

(∥ϕ1(x, t)− ẋtruet ∥22 + ∥ϕ2(x, t)− ẍtruet ∥22)pt(x)dx

≲ (α̇2
t logN + β̇2

t)N
− 2s

d + E
x∼Pt

[∥ẋtruet − ẍtruet ∥22]

holds for any t ∈ [T0, 3T∗]. In addition, ϕ1, ϕ2 can be taken so we have

∥ϕ1(·, t)∥∞ = O(|α̇t|
√
log n+ |β̇t|) and ∥ϕ2(·, t)∥∞ = O(|α̇t|

√
log n+ |β̇t|).

Proof. Suppose that t ∈ [T0, 3T∗]. By Lemma C.18, there is ϕ1 ∈M(L,W, S,B) such that∫
(∥ϕ1(x, t)− ẋtruet ∥22pt(x) ≲ (α̇2

t logN + β̇2
t)N

− 2s
d . (2)

Next, we can show that there exists some ϕ2 ∈M(L,W, S,B) such that∫
∥ϕ2(x, t)− ẍtruet ∥22pt(x)dx =

∫
∥ϕ2(x, t)− ẋtruet + ẋtruet − ẍtruet ∥22pt(x)dx

≤
∫

(∥ϕ2(x, t)− ẋtruet ∥2 + ∥ẋtruet − ẍtruet ∥2)2pt(x)dx

≤
∫

2(∥ϕ2(x, t)− ẋtruet ∥22 + ∥ẋtruet − ẍtruet ∥22)pt(x)dx

= 2

∫
∥ϕ2(x, t)− ẋtruet ∥22pt(x)dx+ 2

∫
∥ẋtruet − ẍtruet ∥22pt(x)dx

= 2

∫
∥ϕ2(x, t)− ẋtruet ∥22pt(x)dx+ 2 E

x∼Pt

[∥ẋtruet − ẍtruet ∥22

≲ (α̇2
t logN + β̇2

t)N
− 2s

d + E
x∼Pt

[∥ẋtruet − ẍtruet ∥22] (3)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

where the first step follows from the basic algebra, the second step follows from the triangle inequal-
ity, the third step follows from (a+ b)2 ≤ 2a2 +2b2, the fourth step follows from basic algebra, the
fifth step follows from the definition of expectation, and the last step follows from Lemma C.18.

Finally, by Eq. (2) and Eq. (3), for any t ∈ [T0, 3T∗], we have∫
(∥ϕ1(x, t)− ẋtruet ∥22 + ∥ϕ2(x, t)− ẍtruet ∥22)pt(x)dx

≲ (α̇2
t logN + β̇2

t)N
− 2s

d + E
x∼Pt

[∥ẋtruet − ẍtruet ∥22].

Moreover, by Lemma C.18, ϕ1, ϕ2 can be taken so we have

∥ϕ1(·, t)∥∞ = O(|α̇t|
√
log n+ |β̇t|) and ∥ϕ2(·, t)∥∞ = O(|α̇t|

√
log n+ |β̇t|).

Thus, the proof is complete.

D.2 APPROXIMATION ERROR OF HIGHER ORDER FLOW MATCHING FOR SMALL t

Theorem D.2 (Approximation error of higher order flow matching for small t). Under Assump-
tions C.13 C.14 C.15 C.16 and C.17, and if the following holds

• L = O(log4N).

• ∥W∥∞ = O(N log6N)

• S = O(N log8N)

• B = exp(O(logN log logN))

• K = O(1)

Then there exists neural networks ϕ1, ϕ2, . . . , ϕK ∈M(L,W, S,B) such that, for sufficiently large
N , we have ∫

(

K∑
k=1

∥ϕk(x, t)−
dk

dtk
xtruet ∥22)pt(x)dx

≲ (α̇2
t logN + β̇2

t)N
− 2s

d +

K−1∑
k=1

E
x∼Pt

[∥ d
k

dtk
xtruet − dk+1

dtk+1
xtruet ∥22]

holds for any t ∈ [T0, 3T∗]. In addition, for any k ∈ [K], ϕk can be taken so we have

∥ϕk(·, t)∥∞ = O(|α̇t|
√

log n+ |β̇t|).

Proof. We first show that for any k ≥ 2, for any t ∈ [T0, 3T∗], there exists ϕ ∈ M(L,W, S,B)
such that ∫

∥ϕ(x, t)− dk

dtk
xtruet ∥22pt(x)dx

≲ (α̇2
t logN + β̇2

t)N
− 2s

d +

k∑
j=1

E
x∼Pt

[∥ d
j

dtj
xtruet − dj+1

dtj+1
xtruet ∥22]. (4)

We prove this by mathematical induction.

Base case. The statements hold when k = 2 because of Lemma D.1.

Induction step. We assume that the statement hold for k ≥ 2. We would like to show that it holds
for k + 1. We can show that, for any t ∈ [T0, 3T∗], there exists ϕ ∈M(L, S,W,B) such that∫

∥ϕ(x, t)− dk+1

dtk+1
xtruet ∥22pt(x)dx

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

=

∫
∥ϕ(x, t)− dk

dtk
xtruet +

dk

dtk
xtruet − dk+1

dtk+1
xtruet ∥22pt(x)dx

≤
∫
(∥ϕ(x, t)− dk

dtk
xtruet ∥2 + ∥

dk

dtk
xtruet − dk+1

dtk+1
xtruet ∥2)2pt(x)dx

≤
∫

2(∥ϕ(x, t)− dk

dtk
xtruet ∥22 + ∥

dk

dtk
xtruet − dk+1

dtk+1
xtruet ∥22)pt(x)dx

= 2

∫
∥ϕ(x, t)− dk

dtk
xtruet ∥22pt(x)dx+ 2

∫
∥ d

k

dtk
xtruet − dk+1

dtk+1
xtruet ∥22pt(x)dx

= 2

∫
∥ϕ(x, t)− dk

dtk
xtruet ∥22pt(x)dx+ 2 E

x∼Pt

[∥ d
k

dtk
xtruet − dk+1

dtk+1
xtruet ∥22]

≲ (α̇2
t logN + β̇2

t)N
− 2s

d +

k∑
j=1

E
x∼Pt

[∥ d
j

dtj
xtruet − dj+1

dtj+1
xtruet ∥22] + E

x∼Pt

[∥ d
k

dtk
xtruet − dk+1

dtk+1
xtruet ∥22]

= (α̇2
t logN + β̇2

t)N
− 2s

d +

k+1∑
j=1

E
x∼Pt

[∥ d
j

dtj
xtruet − dj+1

dtj+1
xtruet ∥22], (5)

where the first step follows from basic algebra, the second step follows from triangle inequality, the
third step follows from the Cauchy-Schwarz inequality, the fourth step follows from basic algebra,
the fifth step follows from the definition of expectation, the six step follows from Eq. (4).

Hence, there exists ϕ1, ϕ2, . . . , ϕK ∈ M(L,W, S,B) such that for k ∈ [K], for any t ∈ [T0, 3T∗],
we have ∫

∥ϕk(x, t)−
dk

dtk
xtruet ∥22pt(x)dx

≲ (α̇2
t logN + β̇2

t)N
− 2s

d +

k∑
j=1

E
x∼Pt

[∥ d
j

dtj
xtruet − dj+1

dtj+1
xtruet ∥22]. (6)

Taking the summation over k ∈ [K], we have for any t ∈ [T0, 3T∗],∫ K∑
k=1

∥ϕk(x, t)−
dk

dtk
xtruet ∥22pt(x)dx

≲K · (α̇2
t logN + β̇2

t)N
− 2s

d +

K∑
k=1

(k · E
x∼Pt

[∥ d
j

dtj
xtruet − dj+1

dtj+1
xtruet ∥22])

≲ ((α̇t)
2 logN + (β̇t)

2)N− 2s
d +

K∑
k=1

E
x∼Pt

[∥ d
j

dtj
xtruet − dj+1

dtj+1
xtruet ∥22]

where the first step follows from Eq. (6), and the second step uses K = O(1).

Moreover, by Lemma C.19, ϕ1, ϕ2, . . . , ϕK can be taken so we have for k ∈ [K],

∥ϕk(·, t)∥∞ = O(|α̇t| log
√
n+ |β̇t|).

Thus, the proof is complete.

D.3 APPROXIMATION ERROR OF SECOND ORDER FLOW MATCHING FOR LARGE t

Theorem D.3 (Approximation error of second order flow matching for large t, formal version of
Theorem 5.2). Fix t∗ ∈ [T∗, 1] and let η > 0 be arbitrary, under Assumptions C.13 C.14 C.15 C.16
and C.17, and if the following holds

• L = O(log4N).

• ∥W∥∞ = O(N)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

• S = O(t−dκ
∗ Nδκ)

• B = exp(O(logN log logN)).

Then there exist neural networks ϕ1, ϕ2 ∈M(L,W,S,B) such that∫
(∥ϕ1(x, t)− ẋtruet ∥22 + ∥ϕ2(x, t)− ẍtruet ∥22)pt(x)dx

≲ (α̇2
t logN + β̇2

t)N
−η + E

x∼Pt

[∥ẋtruet − ẍtruet ∥22]

holds for any t ∈ [2t∗, 1]. In addition, ϕ1, ϕ2 can be taken so we have

∥ϕ1(·, t)∥∞ = O(|α̇t| logN + |β̇t|) and ∥ϕ2(·, t)∥∞ = O(|α̇t| logN + |β̇t|).

Proof. Suppose that t ∈ [2t∗, 1]. By Lemma C.19, there is ϕ1 ∈M(L,W, S,B) such that∫
(∥ϕ1(x, t)− ẋtruet ∥22pt(x)dx ≲ (α̇2

t logN + β̇2
t)N

−η. (7)

Next, we can show that there exists some ϕ2 ∈M(L,W, S,B) such that∫
∥ϕ2(x, t)− ẍtruet ∥22pt(x)dx =

∫
∥ϕ2(x, t)− ẋtruet + ẋtruet − ẍtruet ∥22pt(x)dx

≤
∫

(∥ϕ2(x, t)− ẋtruet ∥2 + ∥ẋtruet − ẍtruet ∥2)2pt(x)dx

≤
∫

2(∥ϕ2(x, t)− ẋtruet ∥22 + ∥ẋtruet − ẍtruet ∥22)pt(x)dx

= 2

∫
∥ϕ2(x, t)− ẋtruet ∥22pt(x)dx+ 2

∫
∥2ẋtruet − ẍtruet ∥22pt(x)dx

= 2

∫
∥ϕ2(x, t)− ẋtruet ∥22pt(x)dx+ 2 E

x∼Pt

[∥ẋtruet − ẍtruet ∥22

≲ (α̇2
t logN + β̇2

t)N
−η + E

x∼Pt

[∥ẋtruet − ẍtruet ∥22] (8)

where the first step follows from the basic algebra, the second step follows from the triangle inequal-
ity, the third step follows from (a+ b)2 ≤ 2a2 +2b2, the fourth step follows from basic algebra, the
fifth step follows from the definition of expectation, and the last step follows from Lemma C.19.

Finally, by Eq. (7) and Eq. (8), we have∫
(∥ϕ1(x, t)− ẋtruet ∥2 + ∥ϕ2(x, t)− ẍtruet ∥2)pt(x)dx

≲ (α̇2
t logN + β̇2

t)N
−η + E

x∼Pt

[∥ẋtruet − ẍtruet ∥2].

Moreover, by Lemma C.19, ϕ1, ϕ2 can be taken so we have

∥ϕ1(·, t)∥∞ = O(|α̇t| logN + |β̇t|) and ∥ϕ2(·, t)∥∞ = O(|α̇t| logN + |β̇t|).

Thus, the proof is complete.

D.4 APPROXIMATION ERROR OF HIGHER ORDER FLOW MATCHING FOR LARGE t

Theorem D.4 (Approximation error of higher order flow matching for large t). Fix t∗ ∈ [T∗, 1] and
let η > 0 be arbitrary, under Assumptions C.13 C.14 C.15 C.16 and C.17, and if the following holds

• L = O(log4N).

• ∥W∥∞ = O(N)

• S = O(t−dκ
∗ Nδκ)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

• B = exp(O(logN log logN))

• K = O(1)

Then there exist neural networks ϕ1, ϕ2, . . . , ϕK ∈M(L,W,S,B) such that,∫
(

K∑
k=1

∥ϕk(x, t)−
dk

dtk
xtruet ∥2)pt(x)dx

≲ (α̇2
t logN + β̇2

t)N
−η +

K−1∑
k=1

E
x∼Pt

[∥ d
k

dtk
xtruet − dk+1

dtk+1
xtruet ∥2]

holds for any t ∈ [2t∗, 1]. In addition, for any k ∈ [K], ϕk can be taken so we have

∥ϕk(·, t)∥∞ = O(|α̇t| logN + |β̇t|).

Proof. We first show that for any k ≥ 2, for any t ∈ [2t∗, 1], there exists ϕ ∈ M(L,W,S,B) such
that ∫

∥ϕ(x, t)− dk

dtk
xtruet ∥22pt(x)dx

≲ (α̇2
t logN + β̇2

t)N
−η +

k∑
j=1

E
x∼Pt

[∥ d
j

dtj
xtruet − dj+1

dtj+1
xtruet ∥2]. (9)

We prove this by mathematical induction.

Base case. The statements hold when k = 2 because of Lemma D.3.

Induction step. We assume that the statement hold for k ≥ 2. We would like to show that it holds
for k + 1. We can show that, for any t ∈ [2t∗, 1], there exists ϕ ∈M(L, S,W,B) such that∫

∥ϕ(x, t)− dk+1

dtk+1
xtruet ∥22pt(x)dx

=

∫
∥ϕ(x, t)− dk

dtk
xtruet +

dk

dtk
xtruet − dk+1

dtk+1
xtruet ∥22pt(x)dx

≤
∫
(∥ϕ(x, t)− dk

dtk
xtruet ∥2 + ∥

dk

dtk
xtruet − dk+1

dtk+1
xtruet ∥2)2pt(x)dx

≤
∫

2(∥ϕ(x, t)− dk

dtk
xtruet ∥22 + ∥

dk

dtk
xtruet − dk+1

dtk+1
xtruet ∥22)pt(x)dx

= 2

∫
∥ϕ(x, t)− dk

dtk
xtruet ∥22pt(x)dx+ 2

∫
∥ d

k

dtk
xtruet − dk+1

dtk+1
xtruet ∥22pt(x)dx

= 2

∫
∥ϕ(x, t)− dk

dtk
xtruet ∥22pt(x)dx+ 2 E

x∼Pt

[∥ d
k

dtk
xtruet − dk+1

dtk+1
xtruet ∥22]

≲ (α̇2
t logN + β̇2

t)N
−η +

k∑
j=1

E
x∼Pt

[∥ d
j

dtj
xtruet − dj+1

dtj+1
xtruet ∥22] + E

x∼Pt

[∥ d
k

dtk
xtruet − dk+1

dtk+1
xtruet ∥22]

= (α̇2
t logN + β̇2

t)N
−η +

k+1∑
j=1

E
x∼Pt

[∥ d
j

dtj
xtruet − dj+1

dtj+1
xtruet ∥22], (10)

where the first step follows from basic algebra, the second step follows from triangle inequality, the
third step follows from the Cauchy-Schwarz inequality, the fourth step follows from basic algebra,
the fifth step follows from the definition of expectation, the six step follows from Eq. (9).

Hence, there exists ϕ1, ϕ2, . . . , ϕK ∈M(L,W, S,B) such that for k ∈ [K], for any t ∈ [2t∗, 1], we
have ∫

∥ϕk(x, t)−
dk

dtk
xtruet ∥22pt(x)dx

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

≲ (α̇2
t logN + β̇2

t)N
−η +

k∑
j=1

E
x∼Pt

[∥ d
j

dtj
xtruet − dj+1

dtj+1
xtruet ∥22]. (11)

Taking the summation over k ∈ [K], we have for any t ∈ [2t∗, 1],∫ K∑
k=1

∥ϕk(x, t)−
dk

dtk
xtruet ∥22pt(x)dx

≲ ((α̇t)
2 logN + (β̇t)

2)N−η +

K∑
k=1

(k · E
x∼Pt

[∥ d
j

dtj
xtruet − dj+1

dtj+1
xtruet ∥22])

≲ (α̇2
t logN + β̇2

t)N
−η +

K∑
k=1

E
x∼Pt

[∥ d
j

dtj
xtruet − dj+1

dtj+1
xtruet ∥22]

where the first step follows from Eq. (11), and the second step uses K = O(1). Moreover, by
Lemma C.19, ϕ1, ϕ2, . . . , ϕK can be taken so we have for k ∈ [K],

∥ϕk(·, t)∥∞ = O(|α̇t| logN + |β̇t|).
Thus, the proof is complete.

E EMPIRICAL ABLATION STUDY

In Section E.1, we introduce the three Gaussian mixture distribution datasets—four-mode, five-
mode, and eight-mode—used in our empirical ablation study, along with their configurations for
source and target modes. The subsequent subsections analyze the impact of different optimization
terms. Section E.2 evaluates the performance of HOMO optimized solely with the first-order term.
Section E.3 examines the effect of using only the second-order term. Section E.4 assesses results
when optimization is guided by the self-consistency term. Section E.5 explores the combined effect
of first- and second-order terms, while Section E.6 investigates the combination of second-order and
self-consistency terms. Through these analyses, we aim to dissect the contributions of individual
and combined loss terms in achieving effective transport trajectories.

E.1 DATASET

Here we introduce three datasets we use: four-mode, five-mode, and eight-mode Gaussian mixture
distribution datasets; each Gaussian component has a variance of 0.3. In the four-mode Gaussian
mixture distribution, four source mode(brown) positioned at a distance D0 = 5 from the origin,
and four target mode(indigo) positioned at a distance D0 = 14 from the origin, each mode sample
200 points. In five-mode Gaussian mixture distribution, five source mode(brown) positioned at a
distanceD0 = 6 from the origin, and five target mode(indigo) positioned at a distanceD0 = 13 from
the origin, each mode sample 200 points. And in eight-mode Gaussian mixture distribution, eight
source mode(brown) positioned at a distanceD0 = 6 from the origin, and eight target mode(indigo)
positioned at a distance D0 = 13 from the origin, each mode sample 100 points.

E.2 ONLY FIRST ORDER TERM

We optimize models by the sum of squared error(SSE). The source distribution and target dis-
tribution are all Gaussian distributions. For the target transport trajectory setting, we follow
the VP ODE framework from (Liu et al., 2022b), which is xt = αtx0 + βtx1. We choose
αt = exp(− 1

4a(1 − t)2 − 1
2b(1 − t)) and βt =

√
1− α2

t , with hyperparameters a = 19.9 and
b = 0.1. In the four-mode dataset, five-mode dataset, and eight-mode dataset, we all sample 100
points in each source mode and target mode. And in four-mode dataset training, we use an ODE
solver and Adam optimizer, with 2 hidden layer MLP, 100 hidden dimensions, 800 batch size, 0.005
learning rate, and 1000 training steps. In five-mode dataset training, we also use an ODE solver and
Adam optimizer, with 2 hidden layer MLP, 100 hidden dimensions, 1000 batch size, 0.005 learning
rate, and 1000 training steps. And in eight-mode dataset training, we use an ODE solver and Adam
optimizer, with 2 hidden layer MLP, 100 hidden dimensions, 1600 batch size, 0.005 learning rate,
and 1000 training steps.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

10 0 10

15
10

5
0
5

10
15

Samples from 0 and 1
0

1

10 0 10
15
10

5
0
5

10
15

Samples from 0 and 1
0

1

10 0 10
15
10

5
0
5

10
15

Samples from 0 and 1
0

1

Figure 4: The four-mode Gaussian mixture distribution (Left), five-mode Gaussian mixture distribu-
tion (Middle), and eight-mode Gaussian mixture distribution (Right). Our goal is to make HOMO
learn a transport trajectory from distribution π0 (brown) to distribution π1 (indigo).

10 0 10

15
10

5
0
5

10
15

HOMO optimized
 with M1 loss

0
1

Generated

10 0 10
15
10

5
0
5

10
15

HOMO optimized
 with M1 loss

0
1

Generated

10 0 10
15
10

5
0
5

10
15

HOMO optimized
 with M1 loss

0
1

Generated

Figure 5: (A) The distributions generated by HOMO are only optimized by first-order term in four-
mode dataset (Left), five-mode dataset (Middle), and eight-mode dataset (Right). The source dis-
tribution, π0 (brown), and the target distribution, π1 (indigo), are shown, along with the generated
distribution (pink).

E.3 ONLY SECOND ORDER TERM

We optimize models by the sum of squared error(SSE). The source distribution and target dis-
tribution are all Gaussian distributions. For the target transport trajectory setting, we follow
the VP ODE framework from (Liu et al., 2022b), which is xt = αtx0 + βtx1. We choose
αt = exp(− 1

4a(1 − t)2 − 1
2b(1 − t)) and βt =

√
1− α2

t , with hyperparameters a = 19.9 and
b = 0.1. In the four-mode dataset, five-mode dataset, and eight-mode dataset, we all sample 100
points in each source mode and target mode. And in four-mode dataset training, we use an ODE
solver and Adam optimizer, with 2 hidden layer MLP, 100 hidden dimensions, 800 batch size, 0.005
learning rate, and 100 training steps. In five-mode dataset training, we also use an ODE solver and
Adam optimizer, with 2 hidden layer MLP, 100 hidden dimensions, 1000 batch size, 0.005 learning
rate, and 100 training steps. And in eight-mode dataset training, we use an ODE solver and Adam
optimizer, with 2 hidden layer MLP, 100 hidden dimensions, 1600 batch size, 0.005 learning rate,
and 100 training steps.

10 0 10

15
10

5
0
5

10
15

HOMO optimized
 with M2 loss

0
1

Generated

10 0 10
15
10

5
0
5

10
15

HOMO optimized
 with M2 loss

0
1

Generated

10 0 10
15
10

5
0
5

10
15

HOMO optimized
 with M2 loss

0
1

Generated

Figure 6: (B) The distributions generated by HOMO are only optimized by second-order term in
the four-mode dataset (Left), five-mode dataset (Middle), and eight-mode dataset (Right). The
source distribution, π0 (brown), and the target distribution, π1 (indigo), are shown, along with the
generated distribution (pink).

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

E.4 ONLY SELF-CONSISTENCY TERM

We optimize models by the sum of squared error(SSE). The source distribution and target dis-
tribution are all Gaussian distributions. For the target transport trajectory setting, we follow
the VP ODE framework from (Liu et al., 2022b), which is xt = αtx0 + βtx1. We choose
αt = exp(− 1

4a(1 − t)2 − 1
2b(1 − t)) and βt =

√
1− α2

t , with hyperparameters a = 19.9 and
b = 0.1. In the four-mode dataset, five-mode dataset, and eight-mode dataset, we all sample 100
points in each source mode and target mode. And in four-mode dataset training, we use an ODE
solver and Adam optimizer, with 2 hidden layer MLP, 100 hidden dimensions, 800 batch size, 0.005
learning rate, and 50 training steps. In five-mode dataset training, we also use an ODE solver and
Adam optimizer, with 2 hidden layer MLP, 100 hidden dimensions, 1000 batch size, 0.005 learning
rate, and 50 training steps. And in eight-mode dataset training, we use an ODE solver and Adam
optimizer, with 2 hidden layer MLP, 100 hidden dimensions, 1600 batch size, 0.005 learning rate,
and 50 training steps.

10 0 10

15
10

5
0
5

10
15

HOMO optimized
 with SC loss

0
1

Generated

10 0 10
15
10

5
0
5

10
15

HOMO optimized
 with SC loss

0
1

Generated

10 0 10
15
10

5
0
5

10
15

HOMO optimized
 with SC loss

0
1

Generated

Figure 7: (C) The distributions generated by HOMO are only optimized by self-consistency term
in the four-mode dataset (Left), five-mode dataset (Middle), and eight-mode dataset (Right). The
source distribution, π0 (brown), and the target distribution, π1 (indigo), are shown, along with the
generated distribution (pink).

E.5 FIRST ORDER PLUS SECOND ORDER

We optimize models by the sum of squared error(SSE). The source distribution and target dis-
tribution are all Gaussian distributions. For the target transport trajectory setting, we follow
the VP ODE framework from (Liu et al., 2022b), which is xt = αtx0 + βtx1. We choose
αt = exp(− 1

4a(1 − t)2 − 1
2b(1 − t)) and βt =

√
1− α2

t , with hyperparameters a = 19.9 and
b = 0.1. In the four-mode dataset, five-mode dataset, and eight-mode dataset, we all sample 100
points in each source mode and target mode. And in four-mode dataset training, we use an ODE
solver and Adam optimizer, with 2 hidden layer MLP, 100 hidden dimensions, 800 batch size, 0.005
learning rate, and 1000 training steps. In five-mode dataset training, we also use an ODE solver and
Adam optimizer, with 2 hidden layer MLP, 100 hidden dimensions, 1000 batch size, 0.005 learning
rate, and 2000 training steps. And in eight-mode dataset training, we use an ODE solver and Adam
optimizer, with 2 hidden layer MLP, 100 hidden dimensions, 1600 batch size, 0.005 learning rate,
and 2000 training steps.

E.6 SECOND ORDER PLUS SELF-TARGET

We optimize models by the sum of squared error(SSE). The source distribution and target dis-
tribution are all Gaussian distributions. For the target transport trajectory setting, we follow
the VP ODE framework from (Liu et al., 2022b), which is xt = αtx0 + βtx1. We choose
αt = exp(− 1

4a(1 − t)2 − 1
2b(1 − t)) and βt =

√
1− α2

t , with hyperparameters a = 19.9 and
b = 0.1. In the four-mode dataset, five-mode dataset, and eight-mode dataset, we all sample 100
points in each source mode and target mode. And in four-mode dataset training, we use an ODE
solver and Adam optimizer, with 2 hidden layer MLP, 100 hidden dimensions, 800 batch size, 0.005
learning rate, and 100 training steps. In five-mode dataset training, we also use an ODE solver and
Adam optimizer, with 2 hidden layer MLP, 100 hidden dimensions, 1000 batch size, 0.005 learning
rate, and 100 training steps. And in eight-mode dataset training, we use an ODE solver and Adam

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

10 0 10

15
10

5
0
5

10
15

HOMO optimized
 with (M1 + M2) losses

0
1

Generated

10 0 10
15
10

5
0
5

10
15

HOMO optimized
 with (M1 + M2) losses

0
1

Generated

10 0 10
15
10

5
0
5

10
15

HOMO optimized
 with (M1 + M2) losses

0
1

Generated

Figure 8: (A + B) The distributions generated by HOMO, optimized by first-order term and second-
order term in four-mode dataset (Left), five-mode dataset (Middle), and eight-mode dataset (Right).
The source distribution, π0 (brown), and the target distribution, π1 (indigo), are shown, along with
the generated distribution (pink).

optimizer, with 2 hidden layer MLP, 100 hidden dimensions, 1600 batch size, 0.005 learning rate,
and 100 training steps.

10 0 10

15
10

5
0
5

10
15

HOMO optimized
 with (M2 + SC) losses

0
1

Generated

10 0 10
15
10

5
0
5

10
15

HOMO optimized
 with (M2 + SC) losses

0
1

Generated

10 0 10
15
10

5
0
5

10
15

HOMO optimized
 with (M2 + SC) losses

0
1

Generated

Figure 9: (B + C) The distributions generated by HOMO, optimized by second-order term and self-
consistency term in four-mode dataset (Left), five-mode dataset (Middle), and eight-mode dataset
(Right). The source distribution, π0 (brown), and the target distribution, π1 (indigo), are shown,
along with the generated distribution (pink).

E.7 FIRST ORDER PLUS SELF-TARGET

We optimize models by the sum of squared error(SSE). The source distribution and target dis-
tribution are all Gaussian distributions. For the target transport trajectory setting, we follow
the VP ODE framework from (Liu et al., 2022b), which is xt = αtx0 + βtx1. We choose
αt = exp(− 1

4a(1 − t)2 − 1
2b(1 − t)) and βt =

√
1− α2

t , with hyperparameters a = 19.9 and
b = 0.1. In the four-mode dataset, five-mode dataset, and eight-mode dataset, we all sample 100
points in each source mode and target mode. And in four-mode dataset training, we use an ODE
solver and Adam optimizer, with 2 hidden layer MLP, 100 hidden dimensions, 800 batch size, 0.005
learning rate, and 1000 training steps. In five-mode dataset training, we also use an ODE solver and
Adam optimizer, with 2 hidden layer MLP, 100 hidden dimensions, 1000 batch size, 0.005 learning
rate, and 1000 training steps. And in eight-mode dataset training, we use an ODE solver and Adam
optimizer, with 2 hidden layer MLP, 100 hidden dimensions, 1600 batch size, 0.005 learning rate,
and 1000 training steps.

E.8 HOMO

We optimize models by the sum of squared error(SSE). The source distribution and target dis-
tribution are all Gaussian distributions. For the target transport trajectory setting, we follow
the VP ODE framework from (Liu et al., 2022b), which is xt = αtx0 + βtx1. We choose
αt = exp(− 1

4a(1 − t)2 − 1
2b(1 − t)) and βt =

√
1− α2

t , with hyperparameters a = 19.9 and
b = 0.1. In the four-mode dataset, five-mode dataset, and eight-mode dataset, we all sample 100
points in each source mode and target mode. And in four-mode dataset training, we use an ODE
solver and Adam optimizer, with 2 hidden layer MLP, 100 hidden dimensions, 800 batch size, 0.005

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

10 0 10

15
10

5
0
5

10
15

HOMO optimized
 with (M1 + SC) losses

0
1

Generated

10 0 10
15
10

5
0
5

10
15

HOMO optimized
 with (M1 + SC) losses

0
1

Generated

10 0 10
15
10

5
0
5

10
15

HOMO optimized
 with (M1 + SC) losses

0
1

Generated

Figure 10: (A + C) The distributions generated by HOMO, optimized by first-order term and self-
consistency term in four-mode dataset (Left), five-mode dataset (Middle), and eight-mode dataset
(Right). The source distribution, π0 (brown), and the target distribution, π1 (indigo), are shown,
along with the generated distribution (pink).

learning rate, and 1000 training steps. In five-mode dataset training, we also use an ODE solver and
Adam optimizer, with 2 hidden layer MLP, 100 hidden dimensions, 1000 batch size, 0.005 learning
rate, and 1000 training steps. And in eight-mode dataset training, we use an ODE solver and Adam
optimizer, with 2 hidden layer MLP, 100 hidden dimensions, 1600 batch size, 0.005 learning rate,
and 1000 training steps.

10 0 10

15
10

5
0
5

10
15

HOMO optimized with
 (M1 + M2 + SC) losses

0
1

Generated

10 0 10
15
10

5
0
5

10
15

HOMO optimized with
 (M1 + M2 + SC) losses

0
1

Generated

10 0 10
15
10

5
0
5

10
15

HOMO optimized with
(M1 + M2 + SC) losses

0
1

Generated

Figure 11: (A + B + C) The distributions generated by HOMO in four-mode dataset (Left), five-
mode dataset (Middle), and eight-mode dataset (Right). The source distribution, π0 (brown), and
the target distribution, π1 (indigo), are shown, along with the generated distribution (pink).

F COMPLEX DISTRIBUTION EXPERIMENT

In Section F.1, we introduce the datasets used in our experiments. The analysis of results with first-
order and second-order terms in Section F.2, and we evaluate the performance with first-order and
self-consistency terms in Section F.3, assess the impact of second-order and self-consistency terms
in Section F.4. Finally, we present the overall results of HOMO with all loss terms combined in
Section F.5.

F.1 DATASETS

Here, we introduce four datasets we proposed: circle dataset, irregular ring dataset, spiral line
dataset, and spin dataset. In the circle dataset, we sample 600 points from Gaussian distribution
with 0.3 variance for both source distribution and target distribution. In the irregular ring dataset,
we sample 600 points from Gaussian distribution with 0.3 variance for both source distribution and
target distribution. In the spiral line dataset, we sample 600 points from Gaussian distribution with
0.3 variance for both source distribution and target distribution. In the spin dataset, we sample
600 points from the Gaussian distribution with 0.3 variance for both source distribution and target
distribution.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

15 10 5 0 5 10 1515

10

5

0

5

10

15Samples from 0 and 1
0

1

15 10 5 0 5 10 1515

10

5

0

5

10

15Samples from 0 and 1
0

1

200 100 0 100 200200
150
100

50
0

50
100
150
200Samples from 0 and 1

0

1

400 200 0 200 400400
300
200
100

0
100
200
300
400Samples from 0 and 1

0

1

Figure 12: The circle dataset(Left most), irregular ring dataset (Middle left), spiral line dataset
(Middle right), and spin dataset (Right most). Our goal is to make HOMO to learn a transport
trajectory from distribution π0 (brown) to distribution π1 (indigo).

F.2 FIRST ORDER PLUS SECOND ORDER

We optimize models by the sum of squared error(SSE). The source distribution and target dis-
tribution are all Gaussian distributions. For the target transport trajectory setting, we follow
the VP ODE framework from (Liu et al., 2022b), which is xt = αtx0 + βtx1. We choose
αt = exp(− 1

4a(1 − t)2 − 1
2b(1 − t)) and βt =

√
1− α2

t , with hyperparameters a = 19.9 and
b = 0.1. In the circle dataset, we all sample 400 points, both source distribution and target distri-
bution. In the irregular ring dataset, we all sample 600 points, both source distribution and target
distribution. In the spiral line dataset, we all sample 300 points, both source distribution and target
distribution. In circle dataset training, we use an ODE solver and Adam optimizer, with 2 hidden
layer MLP, 100 hidden dimensions, 800 batch size, 0.005 learning rate, and 1000 training steps.
In irregular ring dataset training, we also use an ODE solver and Adam optimizer, with 2 hidden
layer MLP, 100 hidden dimensions, 1000 batch size, 0.005 learning rate, and 1000 training steps. In
spiral line dataset training, we use an ODE solver and Adam optimizer, with 2 hidden layer MLP,
100 hidden dimensions, 1600 batch size, 0.005 learning rate, and 1000 training steps. In spiral line
dataset training, we use an ODE solver and Adam optimizer, with 2 hidden layer MLP, 100 hidden
dimensions, 1600 batch size, 0.005 learning rate, and 1000 training steps.

15 10 5 0 5 10 1515

10

5

0

5

10

15

HOMO optimized
with (M1 + M2) losses

0
1

Generated

15 10 5 0 5 10 1515

10

5

0

5

10

15

HOMO optimized
with (M1 + M2) losses

0
1

Generated

200 100 0 100 200200
150
100

50
0

50
100
150
200

HOMO optimized
with (M1 + M2) losses

0
1

Generated

400 200 0 200 400400
300
200
100

0
100
200
300
400

HOMO optimized
with (M1 + M2) losses

0
1

Generated

Figure 13: (M1+M2) HOMO results on complex datasets with two kinds of loss: first-order and
second-order terms. The distributions generated by HOMO, in circle dataset(Left most), irregular
ring dataset (Middle left), spiral line dataset (Middle right) and spin dataset (Right most). The
source distribution, π0 (brown), and the target distribution, π1 (indigo), are shown, along with the
generated distribution (pink).

F.3 FIRST ORDER PLUS SELF-CONSISTENCY TERM

We optimize models by the sum of squared error(SSE). The source distribution and target dis-
tribution are all Gaussian distributions. For the target transport trajectory setting, we follow
the VP ODE framework from (Liu et al., 2022b), which is xt = αtx0 + βtx1. We choose
αt = exp(− 1

4a(1 − t)2 − 1
2b(1 − t)) and βt =

√
1− α2

t , with hyperparameters a = 19.9 and
b = 0.1. In the circle dataset, we all sample 400 points, both source distribution and target distri-
bution. In the irregular ring dataset, we all sample 600 points, both source distribution and target
distribution. In the spiral line dataset, we all sample 300 points, both source distribution and target
distribution. In circle dataset training, we use an ODE solver and Adam optimizer, with 2 hidden
layer MLP, 100 hidden dimensions, 800 batch size, 0.005 learning rate, and 1000 training steps.
In irregular ring dataset training, we also use an ODE solver and Adam optimizer, with 2 hidden
layer MLP, 100 hidden dimensions, 1000 batch size, 0.005 learning rate, and 1000 training steps. In

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

spiral line dataset training, we use an ODE solver and Adam optimizer, with 2 hidden layer MLP,
100 hidden dimensions, 1600 batch size, 0.005 learning rate, and 1000 training steps. In spiral line
dataset training, we use an ODE solver and Adam optimizer, with 2 hidden layer MLP, 100 hidden
dimensions, 1600 batch size, 0.005 learning rate, and 1000 training steps.

15 10 5 0 5 10 1515

10

5

0

5

10

15

HOMO optimized
with (M1 + SC) losses

0
1

Generated

15 10 5 0 5 10 1515

10

5

0

5

10

15

HOMO optimized
with (M1 + SC) losses

0
1

Generated

200 100 0 100 200200
150
100

50
0

50
100
150
200

HOMO optimized
with (M1 + SC) losses

0
1

Generated

400 200 0 200 400400
300
200
100

0
100
200
300
400

HOMO optimized
with (M1 + SC) losses

0
1

Generated

Figure 14: (M1+SC) HOMO results on complex datasets with two kinds of loss: first-order
and self-consistency terms. The distributions generated by HOMO, in circle dataset(Left most),
irregular ring dataset (Middle left), spiral line dataset (Middle right) and spin dataset (Right most).
The source distribution, π0 (brown), and the target distribution, π1 (indigo), are shown, along with
the generated distribution (pink).

F.4 SECOND ORDER PLUS SELF-CONSISTENCY TERM

We optimize models by the sum of squared error(SSE). The source distribution and target dis-
tribution are all Gaussian distributions. For the target transport trajectory setting, we follow
the VP ODE framework from (Liu et al., 2022b), which is xt = αtx0 + βtx1. We choose
αt = exp(− 1

4a(1 − t)2 − 1
2b(1 − t)) and βt =

√
1− α2

t , with hyperparameters a = 19.9 and
b = 0.1. In the circle dataset, we all sample 400 points, both source distribution and target distri-
bution. In the irregular ring dataset, we all sample 600 points, both source distribution and target
distribution. In the spiral line dataset, we all sample 300 points, both source distribution and target
distribution. And in circle dataset training, we use an ODE solver and Adam optimizer, with 2 hid-
den layer MLP, 100 hidden dimensions, 800 batch size, 0.005 learning rate, and 100 training steps.
In irregular ring dataset training, we also use an ODE solver and Adam optimizer, with 2 hidden
layer MLP, 100 hidden dimensions, 100 batch size, 0.005 learning rate, and 1000 training steps. In
spiral line dataset training, we use an ODE solver and Adam optimizer, with 2 hidden layer MLP,
100 hidden dimensions, 1600 batch size, 0.005 learning rate, and 100 training steps. In spiral line
dataset training, we use an ODE solver and Adam optimizer, with 2 hidden layer MLP, 100 hidden
dimensions, 1600 batch size, 0.005 learning rate, and 1000 training steps.

15 10 5 0 5 10 1515

10

5

0

5

10

15

HOMO optimized
with (M2 + SC) losses

0
1

Generated

15 10 5 0 5 10 1515

10

5

0

5

10

15

HOMO optimized
with (M2 + SC) losses

0
1

Generated

200 100 0 100 200200
150
100

50
0

50
100
150
200

HOMO optimized
with (M2 + SC) losses

0
1

Generated

400 200 0 200 400400
300
200
100

0
100
200
300
400

HOMO optimized
with (M2 + SC) losses

0
1

Generated

Figure 15: (M2+SC) HOMO results on complex datasets with two kinds of loss: second-order
and self-consistency terms. The distributions generated by HOMO, in circle dataset(Left most),
irregular ring dataset (Middle left), spiral line dataset (Middle right) and spin dataset (Right most).
The source distribution, π0 (brown), and the target distribution, π1 (indigo), are shown, along with
the generated distribution (pink).

F.5 HOMO

We optimize models by the sum of squared error(SSE). The source distribution and target dis-
tribution are all Gaussian distributions. For the target transport trajectory setting, we follow
the VP ODE framework from (Liu et al., 2022b), which is xt = αtx0 + βtx1. We choose

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

αt = exp(− 1
4a(1 − t)2 − 1

2b(1 − t)) and βt =
√
1− α2

t , with hyperparameters a = 19.9 and
b = 0.1. In the circle dataset, we all sample 400 points, both source distribution and target distri-
bution. In the irregular ring dataset, we all sample 600 points, both source distribution and target
distribution. In the spiral line dataset, we all sample 300 points, both source distribution and target
distribution. And in circle dataset training, we use an ODE solver and Adam optimizer, with 2 hid-
den layer MLP, 100 hidden dimensions, 800 batch size, 0.005 learning rate, and 1000 training steps.
In irregular ring dataset training, we also use an ODE solver and Adam optimizer, with 2 hidden
layer MLP, 100 hidden dimensions, 1000 batch size, 0.005 learning rate, and 1000 training steps. In
spiral line dataset training, we use an ODE solver and Adam optimizer, with 2 hidden layer MLP,
100 hidden dimensions, 1600 batch size, 0.005 learning rate, and 1000 training steps. In spiral line
dataset training, we use an ODE solver and Adam optimizer, with 2 hidden layer MLP, 100 hidden
dimensions, 1600 batch size, 0.005 learning rate, and 1000 training steps.

15 10 5 0 5 10 1515

10

5

0

5

10

15

HOMO optimized with
(M1 + M2 + SC) losses

0
1

Generated

15 10 5 0 5 10 1515

10

5

0

5

10

15

HOMO optimized with
(M1 + M2 + SC) losses

0
1

Generated

200 100 0 100 200200
150
100

50
0

50
100
150
200

HOMO optimized with
 (M1 + M2 + SC) losses

0
1

Generated

400 200 0 200 400400
300
200
100

0
100
200
300
400

HOMO optimized with
(M1 + M2 + SC) losses

0
1

Generated

Figure 16: (M1+M2+SC) HOMO results on complex datasets with three kinds of loss: first-
order, second-order, and self-consistency terms. The distributions generated by HOMO in circle
dataset(Left most), irregular ring dataset (Middle left), spiral line dataset (Middle right), and spin
dataset (Right most). The source distribution, π0 (brown), and the target distribution, π1 (indigo),
are shown, along with the generated distribution (pink).

G THIRD-ORDER HOMO

This section extends HOMO to third-order dynamics and analyzes its performance on complex syn-
thetic tasks. Section G.1 introduces the training and sampling algorithms incorporating third-order
dynamics. Section G.2 compares two trajectory parameterization strategies for high-order systems.
Section G.3 describes the 2 Round Spin, 3 Round Spin, and Dot-Circle datasets designed to test
complex mode transitions. Section G.4 provides quantitative analysis through Euclidean distance
metrics between generated and target distributions. Section G.5 evaluates the isolated impact of self-
consistency constraints. Section G.6 examines first-order dynamics coupled with self-consistency
regularization. Section G.7 studies the combined effect of first-, second-order dynamics and self-
consistency. Finally, Section G.8 demonstrates full third-order HOMO with all optimization terms,
analyzing trajectory linearity and mode fidelity under different trajectory settings.

G.1 ALGORITHM

Here we first introduce the training algorithm of our third-order HOMO:

Then we will discuss the sampling algorithm in third-order HOMO:

G.2 TRAJECTORY SETTING

We have trajectory as:

zt = αtz0 + βtz1

In original trajectory, we choose αt = exp(− 1
4a(1 − t)

2 − 1
2b(1 − t)) and βt =

√
1− α2

t , with
hyperparameters a = 19.9 and b = 0.1. And new trajectory as αt = 1 − (3t2 − 2t3) and βt =
3t2 − 2t3.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Algorithm 5 Third-Order HOMO Training

1: while not converged do
2: x0 ∼ N (0, I), x1 ∼ D, (d, t) ∼ p(d, t)
3: βt ←

√
1− α2

t
4: xt ← αt · x0 + βt · x1 ▷ Noise data point
5: for first k batch elements do
6: ṡtruet ← α̇tx0 + β̇tx1 ▷ First-order target
7: s̈truet ← α̈tx0 + β̈tx1 ▷ Second-order target
8:

...
s true
t ← ...

αtx0 +
...
βtx1 ▷ Third-order target

9: d← 0
10: end for
11: for other batch elements do
12: st ← u1(xt, t, d) ▷ First small step of first order
13: ṡt ← u2(u1(xt, t, d), xt, t, d) ▷ First small step of second order
14: s̈t ← u3(u2(u1(xt, t, d), xt, t, d), u1(xt, t, d), xt, t, d) ▷ First small step of third order
15: xt+d ← xt + d · st + d2

2 ṡt +
d6

3 s̈t ▷ Follow ODE
16: st+d ← u1(xt+d, t+ d, d) ▷ Second small step of first order
17: ṡtargett ← stopgrad (st + st+d)/2 ▷ Self-consistency target of first order
18: end for
19: θ ← ∇θ(∥u1(xt, t, 2d)− ṡtruet ∥2

+∥u2(u1(xt, t, 2d), xt, t, 2d)− s̈truet ∥2
+∥u3(u2(u1(x, t, d), x, t, d), u1(x, t, d), x, t, d)−

...
s true
t ∥2

+∥u1(xt, t, 2d)− ṡtargett ∥2
20: end while

Algorithm 6 Third-Order HOMO Sampling

1: x ∼ N (0, I)
2: d← 1/M
3: t← 0
4: for n ∈ [0, . . . ,M − 1] do
5: x ← x + d · u1(x, t, d) + d2

2 · u2(u1(x, t, d), x, t, d) + d3

6 ·
u3(u2(u1(x, t, d), x, t, d), u1(x, t, d), x, t, d)

6: t← t+ d
7: end for
8: return x

G.3 DATASET

Here, we introduce three datasets we use: 2 Round spin, 3 Round spin, and Dot-Circle datasets. In 2
Round spin dataset and 3 Round spin dataset, we both sample 600 points from Gaussian distribution
with 0.3 variance for both source distribution and target distribution. In Dot-Circle datasets, we
sample 300 points from the center dot and 300 points from the outermost circle, combine them as
source distribution, and then sample 600 points from 2 round spin distribution.

G.4 EUCLIDEAN DISTANCE LOSS

Here, we present the Euclidean distance loss performance of four different loss terms combined
under the original trajectory setting and the new trajectory setting.

G.5 ONLY SELF-CONSISTENCY TERM

We optimize models by the sum of squared error(SSE). The source distribution and target distribu-
tion are all Gaussian distributions. For the first line, we use the original transport trajectory setting,
followed by the VP ODE framework from (Liu et al., 2022b), which is xt = αtx0 + βtx1. We
choose αt = exp(− 1

4a(1 − t)
2 − 1

2b(1 − t)) and βt =
√

1− α2
t , with hyperparameters a = 19.9

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

400 200 0 200 400400
300
200
100

0
100
200
300
400Samples from 0 and 1

0

1

600 400 200 0 200 400 600
600

400

200

0

200

400

600
Samples from 0 and 1

0

1

400 200 0 200 400

400

200

0

200

400

Samples from 0 and 1
0

1

Figure 17: The 2 Round spin dataset(Left), 3 Round spin dataset(Middle), and Dot-Circle
datasets(Right). Our goal is to make HOMO learn a transport trajectory from distribution π0
(brown) to distribution π1 (indigo).

Table 4: Euclidean distance loss of three complex distribution datasets under new trajectory
setting. Lower values indicate more accurate distribution transfer results. Optimal values are high-
lighted in Bold. And Underlined numbers represent the second best (second lowest) loss value for
each dataset (row). For the qualitative results of a mixture of Gaussian experiments, please refer to
Figure 1.

2 Round 3 Round Dot-
Loss terms spin spin Circle
SC 41.265 48.201 87.407
M1 + SC 14.926 18.376 30.027
M1 + M2 + SC 11.435 12.422 24.712
M1 + M2 + SC + M3 4.701 9.261 21.968

and b = 0.1. In 2 Round spin datasets and 3 Round spin datasets, we sample 400 points, both source
distribution and target distribution. In the Dot-Circle dataset, we sample 600 points from both source
distribution and target distribution, 300 points of source points from the circle, and another 300 from
the center dot. In 2-round dataset training, we use an ODE solver and Adam optimizer, with 2 hid-
den layer MLP, 100 hidden dimensions, 800 batch size, 0.005 learning rate, and 180 training steps.
In 3-round spin dataset training, we also use an ODE solver and Adam optimizer, with 2 hidden
layer MLP, 100 hidden dimensions, 1000 batch size, 0.005 learning rate, and 180 training steps. In
Dot-Circle dataset training, we use an ODE solver and Adam optimizer, with 2 hidden layer MLP,
100 hidden dimensions, 1600 batch size, 0.005 learning rate, and 180 training steps.

G.6 FIRST ORDER PLUS SELF-CONSISTENCY

We optimize models by the sum of squared error(SSE). The source distribution and target distribu-
tion are all Gaussian distributions. For the first line, we use the original transport trajectory setting,
followed by the VP ODE framework from (Liu et al., 2022b), which is xt = αtx0 + βtx1. We
choose αt = exp(− 1

4a(1 − t)
2 − 1

2b(1 − t)) and βt =
√

1− α2
t , with hyperparameters a = 19.9

and b = 0.1. In 2 Round spin datasets and 3 Round spin datasets, we sample 400 points in both
source distribution and target distribution. And in the Dot-Circle dataset, we sample 600 points from
both source distribution and target distribution, 300 points of sources points from the circle, and an-
other 300 from the center dot. In 2 Round dataset training, we use ODE solver and Adam optimizer,
with 2 hidden layer MLP, 100 hidden dimension, 800 batch size, 0.005 learning rate, and 1000 train-
ing steps. In 3 Round spin dataset training, we also use ODE solver and Adam optimizer, with 2
hidden layer MLP, 100 hidden dimension, 1000 batch size, 0.005 learning rate, and 2000 training
steps. And in Dot-Circle dataset training, we use an ODE solver and Adam optimizer, with 2 hidden
layer MLP, 100 hidden dimensions, 1600 batch size, 0.005 learning rate, and 10000 training steps.

G.7 FIRST ORDER PLUS SECOND ORDER PLUS SELF-CONSISTENCY

We optimize models by the sum of squared error(SSE). The source distribution and target distribu-
tion are all Gaussian distributions. For the first line, we use the original transport trajectory setting,

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

400 200 0 200 400400
300
200
100

0
100
200
300
400

HOMO optimized
 with (M1 + SC) losses

0
1

Generated

(a) (original)(M1+SC) / 2
Round

600 400 200 0 200 400 600
600

400

200

0

200

400

600

HOMO optimized
 with (M1 + SC) losses

0
1

Generated

(b) (original)(M1+SC) / 3
Round

400 200 0 200 400

400

200

0

200

400

HOMO optimized
 with (M1 + SC) losses

0
1

Generated

(c) (original)(M1+SC) /
Dot-Circle

400 200 0 200 400400
300
200
100

0
100
200
300
400

HOMO optimized
 with (M1 + SC) losses

0
1

Generated

(d) (new)(M1 + SC) / 2
Round

600 400 200 0 200 400 600
600

400

200

0

200

400

600

HOMO optimized
 with (M1 + SC) losses

0
1

Generated

(e) (new)(M1 + SC) / 3
Round

400 200 0 200 400

400

200

0

200

400

HOMO optimized
 with (M1 + SC) losses

0
1

Generated

(f) (new)(M1+SC) / Dot-
Circle

Figure 18: (M1+SC) The distributions generated by HOMO are only optimized by first-order loss
and self-consistency loss. Upper row(original trajectory setting): Figure (a), in 2 Round spin
dataset. Figure (b), in 3 Round spin dataset. Figure (c), in Dot-Circle dataset. Lower row(new tra-
jectory setting): Figure (d), in 2 Round spin dataset. Figure (e), in 3 Round spin dataset. Figure (f),
in Dot-Circle dataset. The source distribution, π0 (brown), and the target distribution, π1 (indigo),
are shown, along with the generated distribution (pink).

followed by the VP ODE framework from (Liu et al., 2022b), which is xt = αtx0 + βtx1. We
choose αt = exp(− 1

4a(1 − t)
2 − 1

2b(1 − t)) and βt =
√

1− α2
t , with hyperparameters a = 19.9

and b = 0.1. In 2 Round spin datasets and 3 Round spin datasets, we sample 400 points, both source
distribution and target distribution. And in the Dot-Circle dataset, we sample 600 points from both
source distribution and target distribution, 300 points of source points from the circle, and another
300 from the center dot. In 2 Round dataset training, we use ODE solver and Adam optimizer, with
2 hidden layer MLP, 100 hidden dimension, 800 batch size, 0.005 learning rate, and 1000 training
steps. In 3 Round spin dataset training, we also use ODE solver and Adam optimizer, with 2 hidden
layer MLP, 100 hidden dimension, 1000 batch size, 0.005 learning rate, and 2000 training steps.
And in Dot-Circle dataset training, we use an ODE solver and Adam optimizer, with 2 hidden layer
MLP, 100 hidden dimensions, 1600 batch size, 0.005 learning rate, and 10000 training steps.

G.8 THIRD-ORDER HOMO

We optimize models by the sum of squared error(SSE). The source distribution and target distribu-
tion are all Gaussian distributions. For the first line, we use the original transport trajectory setting,
followed by the VP ODE framework from (Liu et al., 2022b), which is xt = αtx0 + βtx1. We
choose αt = exp(− 1

4a(1 − t)
2 − 1

2b(1 − t)) and βt =
√

1− α2
t , with hyperparameters a = 19.9

and b = 0.1. In 2 Round spin datasets and 3 Round spin datasets, we sample 400 points, both
source distribution and target distribution. In the Dot-Circle dataset, we sample 600 points, both
source distribution and target distribution, 300 points of source points from the circle, and another
300 from the center dot. In 2-round dataset training, we use an ODE solver and Adam optimizer,
with 2 hidden layer MLP, 100 hidden dimensions, 800 batch size, 0.005 learning rate, and 1000
training steps. In 3-round spin dataset training, we also use an ODE solver and Adam optimizer,
with 2 hidden layer MLP, 100 hidden dimensions, 1000 batch size, 0.005 learning rate, and 2000

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

400 200 0 200 400400
300
200
100

0
100
200
300
400

HOMO optimized with
 (M1 + M2 + SC) losses

0
1

Generated

(a) (original)
(M1+M2+SC) / 2 Round

600 400 200 0 200 400 600
600

400

200

0

200

400

600

HOMO optimized with
 (M1 + M2 + SC) losses

0
1

Generated

(b) (original)
(M1+M2+SC) / 3 Round

400 200 0 200 400

400

200

0

200

400

HOMO optimized with
 (M1 + M2 + SC) losses

0
1

Generated

(c) (original)
(M1+M2+SC) / Dot-Circle

400 200 0 200 400400
300
200
100

0
100
200
300
400

HOMO optimized with
 (M1 + M2 + SC) losses

0
1

Generated

(d) (new) (M1+M2+SC) / 2
Round

600 400 200 0 200 400 600
600

400

200

0

200

400

600

HOMO optimized with
 (M1 + M2 + SC) losses

0
1

Generated

(e) (new) (M1+M2+SC) / 3
Round

400 200 0 200 400

400

200

0

200

400

HOMO optimized with
 (M1 + M2 + SC) losses

0
1

Generated

(f) (new) (M1+M2+SC) /
Dot-Circle

Figure 19: (M1+M2+SC) The distributions generated by HOMO are only optimized by first-order
loss and second order loss, and self-consistency loss. Upper row(original trajectory setting):
Figure (a), in 2 Round spin dataset. Figure (b), in 3 Round spin dataset. Figure (c), in Dot-Circle
dataset. Lower row(new trajectory setting): Figure (d), in 2 Round spin dataset. Figure (e), in 3
Round spin dataset. Figure (f), in Dot-Circle dataset. The source distribution, π0 (brown), and the
target distribution, π1 (indigo), are shown, along with the generated distribution (pink).

training steps. In Dot-Circle dataset training, we use an ODE solver and Adam optimizer, with 2
hidden layer MLP, 100 hidden dimensions, 1600 batch size, 0.005 learning rate, and 10000 training
steps.

H COMPUTATIONAL COST AND OPTIMIZATION COST

Table 5: Computational Cost Analysis of Different Configurations

Configuration FLOPs (M) Params (K) Training Speed (it/s)
M1 8.400 10.702 477.03
M2 68.480 43.608 146.34
M3 8.400 10.702 357.45
M1 + M2 16.960 21.604 248.15
M2 + SC 68.480 43.608 144.73
(Shortcut Model) M1 + SC 8.480 10.802 283.20
M1 + M2 + SC 68.480 43.608 136.46
M1 + M2 + M3 + SC 103.680 66.012 122.18

We profile computational efficiency on the Apple MacBook Air (M1 8GB) with an 8-core CPU.
Through systematic analysis, we observe three critical tradeoffs: (1) The M2 configuration demon-
strates an 8.15× FLOPs increase over M1 while achieving 4.07× parameter expansion, revealing
the fundamental FLOPs-parameters scaling relationship. (2) The self-consistency (SC) term in-
troduces minimal computational overhead, with the M2+SC configuration maintaining 144.73 it/s
versus vanilla M2’s 146.34 it/s (1.1% throughput reduction). (3) Architectural innovations yield

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

400 200 0 200 400400
300
200
100

0
100
200
300
400

HOMO optimized with
(M1+M2+M3+SC) losses

0
1

Generated

(a) (original)
(M1+M2+M3+SC) / 2
Round

600 400 200 0 200 400 600
600

400

200

0

200

400

600

HOMO optimized with
(M1+M2+M3+SC) losses

0
1

Generated

(b) (original)
(M1+M2+M3+SC) / 3
Round

400 200 0 200 400

400

200

0

200

400

HOMO optimized with
(M1+M2+M3+SC) losses

0
1

Generated

(c) (original)
(M1+M2+M3+SC) /
Dot-Circle

400 200 0 200 400400
300
200
100

0
100
200
300
400

HOMO optimized with
(M1+M2+M3+SC) losses

0
1

Generated

(d) (new)
(M1+M2+M3+SC) / 2
Round

600 400 200 0 200 400 600
600

400

200

0

200

400

600

HOMO optimized with
(M1+M2+M3+SC) losses

0
1

Generated

(e) (new)
(M1+M2+M3+SC) / 3
Round

400 200 0 200 400

400

200

0

200

400

HOMO optimized with
(M1+M2+M3+SC) losses

0
1

Generated

(f) (new)
(M1+M2+M3+SC) /
Dot-Circle

Figure 20: (M1+M2+M3+SC) The distributions generated by Third-Order HOMO, optimized
by first-order loss and second-order loss, third-order loss and self-consistency loss. Upper
row(original trajectory setting): Figure (a), in 2 Round spin dataset. Figure (b), in 3 Round
spin dataset. Figure (c), in Dot-Circle dataset. Lower row(new trajectory setting): Figure (d), in
2 Round spin dataset. Figure (e), in 3 Round spin dataset. Figure (f), in Dot-Circle dataset. The
source distribution, π0 (brown), and the target distribution, π1 (indigo), are shown, along with the
generated distribution (pink).

substantial gains - the Shortcut Model (M1+SC) achieves 33.6% faster iterations than vanilla M1
(283.20 vs 477.03 it/s) with comparable parameter counts. Table 5 quantifies these effects through
comprehensive benchmarking:

Notably, our architecture maintains practical viability even for high-order extensions - the third-
order HOMO configuration (M1+M2+M3+SC) sustains 122.18 it/s despite requiring 12.34× more
FLOPs than the base M1 model. This demonstrates our method’s ability to balance computational
complexity with real-time performance requirements.

LLM USAGE DISCLOSURE

LLMs were used only to polish language, such as grammar and wording. These models did not
contribute to idea creation or writing, and the authors take full responsibility for this paper’s content.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

400 200 0 200 400400
300
200
100

0
100
200
300
400

HOMO optimized
 with SC loss

0
1

Generated

(a) (original)SC / 2 Round

600 400 200 0 200 400 600
600

400

200

0

200

400

600

HOMO optimized
 with SC loss

0
1

Generated

(b) (original)SC / 3 Round

400 200 0 200 400

400

200

0

200

400

HOMO optimized
 with SC loss

0
1

Generated

(c) (original)SC / DotPlus-
Circle

400 200 0 200 400400
300
200
100

0
100
200
300
400

HOMO optimized
 with SC loss

0
1

Generated

(d) (new)SC / 2 Round

600 400 200 0 200 400 600
600

400

200

0

200

400

600

HOMO optimized
 with SC loss

0
1

Generated

(e) (new)SC / 3 Round

400 200 0 200 400

400

200

0

200

400

HOMO optimized
 with SC loss

0
1

Generated

(f) (new)SC / DotPlusCir-
cle

Figure 21: (SC) The distributions generated by HOMO are only optimized by self-consistency loss.
Upper row(original trajectory setting): Figure (a), in 2 Round spin dataset. Figure (b), in 3 Round
spin dataset. Figure (c), in Dot-Circle dataset. Lower row(new trajectory setting): Figure (d), in
2 Round spin dataset. Figure (e), in 3 Round spin dataset. Figure (f), in Dot-Circle dataset. The
source distribution, π0 (brown), and the target distribution, π1 (indigo), are shown, along with the
generated distribution (pink).

38

	Introduction
	Related Works
	Preliminary
	Methodology
	Theoretical Analysis
	Experiments
	Experiment setup
	Mixture of Gaussian experiments
	Complex distribution experiments
	Third-order HOMO

	Conclusion
	Original Algorithm
	More Related Work
	Tools from Previous Works
	Definitions of Besov Space
	B-spline
	Class of Neural Networks
	Assumptions
	Approximation error for small
	Approximation error for large

	Theory of Higher Order Flow Matching
	Approximation Error of Second Order Flow Matching for Small
	Approximation Error of Higher Order Flow Matching for Small
	Approximation Error of Second Order Flow Matching for Large
	Approximation Error of Higher Order Flow Matching for Large

	Empirical Ablation Study
	Dataset
	Only First Order Term
	Only Second Order Term
	Only Self-Consistency Term
	First Order Plus Second Order
	Second Order Plus Self-Target
	First Order Plus Self-Target
	HOMO

	Complex Distribution Experiment
	Datasets
	First Order Plus Second Order
	First Order Plus Self-Consistency Term
	Second Order Plus Self-Consistency Term
	HOMO

	Third-Order HOMO
	Algorithm
	Trajectory setting
	Dataset
	Euclidean distance loss
	Only Self-Consistency Term
	First Order Plus Self-Consistency
	First Order Plus Second Order Plus Self-Consistency
	Third-Order HOMO

	Computational Cost and Optimization Cost

