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Abstract

The big world hypothesis says that for many learning problems, the world is mul-
tiple orders of magnitude larger than the agent. The agent neither fully perceives
the state of the world nor can it learn the correct value or optimal action for each
state. It has to rely on approximate solutions to achieve its goals. In this paper, we
make a case for embracing the big world hypothesis. We argue that even as com-
putational resources grow, the big world hypothesis remains relevant. We conclude
by discussing the implications of accepting the big world hypothesis on the design
and evaluation of algorithms.

1 The Big World Hypothesis

The big world hypothesis says that in many decision-making problems the agent is orders of magni-
tude smaller than the environment. It can neither fully perceive the state of the world nor can it
represent the value or optimal action for every state. Instead, it must learn to make sound decisions
using its limited understanding of the environment. The key research challenge for achieving goals
in big worlds is to come up with solution methods that efficiently utilize the limited resources of the
agent.

The opposing view to the big world hypothesis is that real-world decision-making problems have
a simple solution. The agent is not only capable of representing the simple solution but also has
additional capacity that can be used to search for the solution more efficiently—they are over-
parameterized. The key research challenge for achieving goals with over-parameterized agents is to
find the solution that enables optimal decision-making in perpetuity.

There are many problems that satisfy the big world hypothesis and many that do not. The problem of
finding roots of a second degree polynomial admits a simple solution that always work. Representing
the value function of the game of Go for all states does not have a simple solution. The big world
hypothesis is more a statement about the class of problems we should care about than a fact about
all decision-making problems. It can be made true or false by exercising control over the design of
the environment and the agent (e.g., when developing benchmarks).

Developing algorithms for big worlds poses unique challenges. The best algorithms for big worlds
might prefer fast approximate solutions over slow exact ones. They might learn incorrect simplistic
models that are sufficient for achieving agent’s goals over causally correct complex models (e.g.,
Newtonian physics as opposed to quantum mechanics). They might forgo knowledge that is not
frequently used by the agent to make room for knowledge used more often. Such trade-offs do not
exist for over-parameterized agents.

The big world hypothesis is not a novel proposition. Over the past few years, several independent
works have entertained the idea of small bounded agents learning in large unbounded environments.
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Sutton (2020) argued that the world is large and complex and an agent cannot learn everything
there is to learn exactly. He proposed embracing function approximation for learning values, poli-
cies, models, and states. Dong et.al. (2022) theoretically studied the performance of a reinforcement
learning algorithm without making simplifying assumptions about the environment. Their work
shifts the focus from making assumptions about the environment to making assumptions about the
capabilities of the agent. Javed et.al. (2023) empirically studied the performance of small agents in
large environments. They found that approximate algorithms that use less computation can outper-
form exact algorithms that use more computation in big worlds. Kumar et.al. (2023) showed that
continual learning is a necessary element of reinforcement learning when the agent is computationally
constrained.

Is the big world hypothesis a temporary artifact of limitations of our current computers? Or would
it have relevance even as computational resources grow? In the next section, we argue that the big
world hypothesis is here to irrespective of the rate at which computational resources grow.

2 Reconciling the Big World Hypothesis and Exponentially Growing
Computation

Historically, access to computation has increased exponentially. With continuing growth, comput-
ers of the future could be sufficiently powerful to solve all problems we care about using over-
parameterized agents. We see two problems with this view.

First, it is not just our agents that are constrained by compute. The sensors used by our agents are
also constrained by compute. A rise in computation makes it possible to sense the world with more
precision and at a higher frequency. For example, within the last decade the camera sensors in our
phones have gone from sensing 640 x 420 pixels at 30 fps—around 7 million pixels per second—to
sensing in 4k at 60 fps—around 500 million pixels per second. To put these numbers in perspective,
a modern smartphone camera sensor in 2024 can generate more data in a week than that used to
train GPT-3 (Brown et.al., 2020). Even with these massive increases in the ability to sense the
world, our agents are not even close to sensing the world at its full scale. We speculate that as
computational resources grow so would the appetite to sense the world at higher fidelity, making
the decision-making problem more challenging.

The second problem with waiting for compute to grow is that as compute becomes more readily
available, the world itself becomes more complex. From the perspective of an agent, the world
consists of everything outside of itself. This includes other equally complex agents and computers.
An agent that interacts with multiple other agents of similar capabilities would be unable to model
the world exactly regardless of the rate at which computation grows.

A concrete example of the world getting more complex as computation grows is that of an agent
playing the game of Go against an opponent. If the opponent picks moves randomly, it is fairly
simple for the agent to model the environment exactly. The dynamics of the environment can be
simulated with a short program. However, if the opponent is more complex, such as an AlphaZero
(Silver et.al., 2015) agent, the only way to model the dynamics of the environment correctly is to
be able to represent the policy of the large AlphaZero agent accurately.

As computational resources increase so does the complexity of the world. The big world
hypothesis is not a temporary artifact of limitations of our current computers. For many
problems, the world will always be much larger than any single agent.

3 Existing Evidence Consistent with the Big World Hypothesis

There is some indirect evidence that shows that the behavior of our learning algorithms on large
problems is consistent with the big world hypothesis. We discuss two cases.
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Silver et al. (2015) trained a large neural network to learn the value function for the game of Go.
They found that even after extensive training the performance of the system could be improved if
the decisions were taken by combining the value function with a planner.

If the neural network had the capacity to represent the optimal value function of Go, and it had
been trained for sufficiently long time, decision time planning should not have improved performance.
Perhaps the neural network did not have sufficient capacity to represent the value function correctly
for all states and the planner was able to fill in the gaps.

The second and more direct evidence comes from the work of Brown et.al. (2020). They showed a
clear trend between the model size and performance of neural networks when fitting large language
datasets. They found that the train and validation error on the dataset could be reduced by in-
creasing the number of parameters in the network. Their finding is consistent with the big world
hypothesis and makes little sense if the neural networks were over-parameterized.

Neither of the two papers directly set out to test the big world hypothesis and their results have other
explanations. However, they don’t contradict the big world hypothesis and provide circumstantial
evidence for its relevance.

4 Ramifications of the Big World Hypothesis on Algorithm Design

The big world hypothesis is only worth discussing if accepting it would directly impact how we do
research in AI. In the next subsections, we discuss three ways accepting the hypothesis can influence
research today.

4.1 Online continual learning is an important solution method for achieving goals in
big worlds

The need for online continual learning in big worlds is intuitive—if the agent does not have the
resources to learn and retain everything important about the world simultaneously, it can learn
aspects that are important for decision-making at the current time and discard them when they are
no longer useful by learning continually. In the over-parameterized setting, on the other hand, there
is no need for online continual learning. Once the agent has found the underlying optimal solution,
it can use it forever without changing.

Learning things when they are needed and discarding them when they are not is sometimes called
tracking. Tracking has been empirically demonstrated to be superior to fixed solution in partially
observable environments by Sutton, Koop, & Silver (2007) and Silver, Sutton, & Müller (2008).

A key requirement or tracking to be effective is temporal coherence. Temporal coherence means
that parts of the world the agent experiences from one step to the next are correlated. An agent
learning online can exploit the temporal coherence to direct its resources to learn about the states
of the world that are temporally close at the expense of those that are far away. Tracking can be a
powerful solution method in temporally coherent big worlds.

Humans extensively rely on tracking in everyday life
Humans are continually learning agents. We extensively rely on tracking to achieve our goals.
An intuitive example is that of exams. Given the choice between taking exams of different
subjects on different days or taking them all on the same day, most of us would pick the
former. Intuitively, it feels easier to have to only have to learn and remember the material
for one exam at a time. This is exactly the behavior we should expect from a tracking agent
in a big world.

An analogy of a tracking system is the cache used by a CPU. The cache is much smaller than the
memory and can only store a small fraction of instructions and data used by the program. However,
by retaining the right pieces of information and discarding the least useful ones, a small cache can
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have a high hit ratio. Moreover, a high hit ratio is only possible when the program accesses memory
predictably, akin to having temporal coherence in big worlds.

If we were to accept the hypothesis, we would have to develop algorithms that can learn online and
continually. This is a significant departure from the current practice of training agents offline and
then deploying them.

4.2 Computationally efficient learning algorithms can be advantageous in big worlds

In big worlds, increasing the size of the agent can improve performance. This raises an important
trade-off between the complexity of the learning algorithm and the size of the agent. A trivial
example is the mini-batch size of a deep RL algorithm, such as DQN (Mnih et.al. 2015). For a fixed
amount of resources, an agent can double the number of parameters by halving the mini-batch size.

Javed, Shah, Sutton, & White (2023) empirically demonstrated that approximate but efficient
learning algorithms can outperform computationally expensive exact algorithms in big worlds. In
their experiments, they evaluated tiny recurrent networks—hidden state is a vector of less than 10
dimensions—on the Arcade Learning Environment (Bellemare et.al., 2013). They constrained all
algorithms to use the same amount of per-step computation. They found that a simple algorithm
that used less computation was able to outperform a more complex algorithm by repurposing the
saved computation to increase the size of the network.

Accepting the big world hypothesis mean we should actively look for more efficient learning algo-
rithms.

4.3 Making progress on big world problems requires a different approach for
evaluating algorithms

A common way to evaluate algorithms is to run them on a standardized benchmark. A good
benchmark is an accurate proxy for the real-world problem we care about and allows us to do careful
experiments. Designing a benchmark for big worlds requires a different approach than designing a
benchmark for over-parameterized agents.

One way to evaluate algorithms for big worlds is to test them on complex environments so that
even our largest agents on the latest hardware are not over-parameterized. While this approach has
merit, it makes it difficult to do careful and reproducible experiments.

The alternative is to restrict the computational capabilities of the agents instead of making the
environments larger. The primary limitation of restricting agents is that we might miss out on
emergent properties of large agents. However, a small agent learning in a non-trivial environment is
still a better proxy for learning in big worlds than a large over-parameterized agent learning in the
same environment.

Example: A typical DQN agent for Atari users orders of magnitude more com-
putation than the enviornment.
Arcade learning environment (Bellemare et.al., 2013) is a popular benchmark for reinforce-
ment learning. A typical game in the benchmark can run at around 7000 frames per second
on a modern CPU core. A DQN agent (Mnih et.al., 2014), on the other hand, runs at 300
frames per second on a modern GPU. While it is hard to directly compare different imple-
mentations of the agent and the environment running on different hardwares, it is clear that
the agent uses orders of magnitude more computation than the environment in this case..

Restricting the computational capabilities of the agents is not trivial. There is no consensus on what
aspects of the agents should be restricted. We could restrict the number of operations, the amount
of memory, the amount of memory bandwidth, or the amount of energy the agent can use. The
choice of constraints can have a significant impact on the performance of the agent.
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One option is to match the constraints on the agent with the constraints imposed by current hard-
ware. For example, if memory is cheaper than CPU cycles, we might want to restrict the CPU
cycles. Alternatively, if accessing the memory is a bottleneck, we might want to restrict the memory
bandwidth.

A second option is to limit energy usage. Energy is a universal constraint that can take into account
the evolution of hardware overtime and can even drive research for designing better hardware for
our agents. The downside of using energy as a constraint is that it is difficult to measure. Normally,
the computer running the agent is also running the environment, an operating system, and other
unrelated processes. Isolating the energy used by the agent from background tasks is challenging.

5 Conclusions

The big world hypothesis has direct implications on what we choose to study and how we evaluate our
algorithms. It is not a temporary artifact of current limitations of our computers. It is imperative
that we develop algorithms that can allow agents to achieve goals in big worlds. This requires
developing computationally efficient algorithms for learning continually. It also requires rethinking
the way we benchmark our algorithms.
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